
Introduction into the ODP Reference Model, 2/14/96

1

The ISO Reference Model for Open Distributed Processing
- An Introduction

Kazi Farooqui1, Luigi Logrippo1, Jan de Meer2,

1)Department of Computer Science, University of Ottawa,
Ottawa K1N 6N5, Canada
email: (farooqui | luigi)@csi.uottawa.ca

2)Research Institute for Open Communication Systems Berlin
(GMD-FOKUS), D10623 Berlin, Hardenbergplatz 2, Germany,
email: jdm@fokus.berlin.gmd.d400.de

Abstract:
The ISO Reference Model of Open Distributed Processing (RM-ODP) consists

of four parts - an Overview of the reference model, the Descriptive Model, the Pre-
scriptive Model, and the Architectural Semantics. The four parts provide the con-
cepts and rules ofdistributed processingto ensureopenness between interacting
distributed application components. Openness is a combination of characteristics,
i.e. scalability, accessibility, heterogeneity, autonomy and distribution.

The RM-ODP introduces the concept ofviewpointto describe a system from a
particular set of concerns, and hence to deal with the complexity of distributed sys-
tems.

���������	�
�����
�������������������������
���������������
��� �����
���	!"�#�%$&����� �'�(���)�
�*!+!"�#�%�%,��)��-
!#�%�%�
����.#/0�
�"!1�%23�%�
��45�%67�
����$8��4+� / �9�
�
�%���:�
�;!<���*,=�>�������9���;,?45�"!#���%�@�
�%���
���<���A�#�
�'�;�
�B.��"�
�C45�"�%�D!"������$&�
��2E���F�
���G!"�#�%�%,��H�
�*!G��4+� ����4+�������
�
�%���I��-C!"�%�%�
����.�/ �
�#!
�%23�%�
��45�KJ7L#�&��4 �M!"�%�%�
�9��.#/ �'�"!N�K��-'�
�O�
���	���*,����������9�>�*,����������P��-Q�������P6R�'�A�<$8��4+S
�0/ ���
�
�%���;�
���
�*!	���;,=�������������*,T�������������>�������
�U���'�A��45�"�%� ��4+���������
���
VW�
����2��U��X0��$&�
�'�A�5�Y��-'�
�O�
���5�%�
�Z/ $[�
/ ���5��-P�
���G!#�%�%�
����.#/0�
�"!\�
�0� ����$8�
�
�%���F45�#�%�B$&�%�"�%����2]J�^'�F�
���%�
�����
�[�"!"/0$&������2_���
� ���`6����C$8����$&�����
�a�
�
�b���O�
���D$8��4+� / ���
�'�%���*�
�c�
�;!b���*,=���A�����9���;,
�������������������

.

Keywords:
Standardisation, Distributed Processing, Viewpoint Models,
Architectural Semantics, Specification Process, Openness

1. INTRODUCTION

The standardization effort, within ISO and ITU-T (formerly CCITT) on the
Reference Model for Open Distributed Processing (RM-ODP) started in response
to the diverse forces affecting the development and evolution of distributed com-
puting systems.

The ISO and ITU-T have actively investigated the problem of heterogeneous
system interconnection. This has resulted in the Open System Interconnection
(OSI) model. This model, structured into seven layers, is widely used for heteroge-
neous system interconnection. With the proliferation of numerous application-spe-

Introduction into the ODP Reference Model, 2/14/96

2

cific standards in the layer 7, the application layer, of the OSI model, it was soon
realized that the (lower six layers of the) OSI stack only provides support for com-
munication, and that a more general reference model is needed to address all
aspects related to distribution of applications.

The need to address applicationintercommunication problems rather than pure
systeminterconnection problems, in a standardized way, was very strong in the dis-
tributed systems community. In the last few years, the needs for openness, integra-
tion, and inter-operability of distributed applications were strongly felt in order to
foster the widespread use of distributed processing applications. This, together with
the demands of the open service market (based on networked computing) for stand-
ardized interfaces between application components and the supporting distributed
platform, paved the way towards the standardization of an Open Distributed
Processing Reference Model (RM-ODP) as the basis for the provision of these
requirements. The RM-ODP addresses the need of models for the development of
complex distributed systems. The idea of ODP is an attempt to provide a standard-
ized framework for the establishment of an integrated distributed environments that
spans heterogeneous systems. In contrast to OSI, ODP is not restricted to commu-
nication between heterogeneous systems. It deals also with application portability
across systems and with the provision of various distribution transparencies within
systems. In this sense, ODP encompasses, and extends OSI. OSI becomes a (com-
munication) enabling technology for ODP applications.

The ODP reference model is quite general and can be used in several areas. It is
a generic framework for the development of numerous future standards in various
application domains. Specific fields of ODP applications include advanced tele-
communications, Intelligent Networks, Automated Manufacturing Systems, Office
Systems, Management Information Systems, etc.

The model identifies several types of interfaces at which standardization may
be required, and places constraints only at these interfaces. It identifies the func-
tionality of the distributed platform, the ODP Support Environment, required for
open and distribution-transparent interaction between application components.

 The ISO Project JTC 1.21.49, i.e. Basic Reference Model of Open Distributed
Processing (RM-ODP) is a long range, ongoing, joint standardisation activity of
ISO and ITU-T. It is expected that the International Standard (ISO 10746) of the
RM-ODP will be available by the end of 1996.

2. PARTS OF ODP REFERENCE MODEL

The set of documents, which build the forthcoming standard of the RM-ODP
consist of four parts. Part 1 of the RM-ODP (ISO 10746-1/ ITU-T X.901) provides
an overview and a guide to the use of other parts. It introduces the concept of infor-
mation distribution. The application of standards for distributed information
processing ranges from global communication networks to applications that run on
them. It includes all types of application intercommunication and information
media such as data, text, voice, video, hyper-media, etc. and all types of communi-
cation facilities. Thus, standardization of distribution aspects, i.e. processing, stor-

Introduction into the ODP Reference Model, 2/14/96

3

age, user access, communication, interworking, identification, management and
security aspects, supports the portability of applications and the interworking
between ODP systems.

Part 2 (ISO 10746-2 / ITU-T X.902) and Part-3 (ISO 10746-3 / ITU-T X.903)
respectively, are the descriptive and prescriptive models of the RM-ODP. Part 2
provides the basic modelling concepts, whereas part 3 prescribes the concepts,
rules and functions a system must adhere to in order to be qualified as an ODP Sys-
tem. The concepts, rules and functions are structured according to the RM-ODP
concept of the“viewpoint” .

For each of these viewpoints, viewpoint-specific“languages” are introduced
in Part-3, that use the terminology (descriptive concepts) of the ODP Part 2 in order
to define viewpoint-specific concepts and rules. Apart from the viewpoint lan-
guages, the ODP functions such as distribution transparency functions, security
functions, management functions, etc. are defined in Part-3. These functions consti-
tute the building blocks of ODP systems (and are subject to separate standardiza-
tion). The viewpoint approach is applied for the specification to the ODP functions.

The object concept plays an important role in the modelling of ODP systems.
An object-oriented approach has been adopted for modelling distributed systems in
each viewpoint. An object stands for data abstraction, function encapsulation and
modularity. However, different interpretations of the concept of an object are possi-
ble, i.e. a real-world thing, the subject of concern, an idealised thing, a denotation
of a model or program or the object itself as part of the real-world.

Part-4 (ISO 10746-4 / ITU-T X.904), of the RM-ODP is called “Architectural
Semantics”. It deals with how the modelling concepts of Part-2 and the viewpoint
languages of Part-3 can be represented in standardised formal description tech-
niques (FDTs) such as LOTOS, Estelle, and SDL. There are, however, also sugges-
tions of including non-standardized specification languages like Z and RAISE
RSL. It appears that no single specification language is suitable for specifying sys-
tems in all viewpoints.

3. THE VIEWPOINT APPROACH OF RM-ODP

For any given information processing system, there are a number of user cate-
gories - or more accurately, a number of“r oles” - that have an interest in the sys-
tem. Examples include the members of the enterprise who use the system, the
system analysts, who specify it, the system designers, who implement it, and the
system administrator, who install it. Each role is interested in the same system, but
their relative views of the system are different, they see different issues, they have
different requirements, and they use different vocabularies (or languages) when
describing the system. RM-ODP attempts to recognize these different interests by
defining differentviewpoints.

Rather than attempting to deal with the full complexity of distributed systems,
the RM-ODP considers the system from different viewpoints or projections, each
of which is chosen to reflect one set of design concerns. Each viewpoint represents

Introduction into the ODP Reference Model, 2/14/96

4

a different abstraction of the original distributed system, without the need to create
one large model describing it.

The ODP framework of viewpoints partitions the concerns to be addressed in
the design of distributed systems. A viewpoint leads to a representation of the sys-
tem with emphasis on a specific set of concerns, and the resulting representation is
an abstraction of the system, that is, a description which recognizes some distinc-
tions (those relevant to the concern) and ignores others (those not relevant to the
concern). Different viewpoints address different concerns, but there is a common
ground between them. The framework of viewpoints must treat this common
ground consistently, in order to relate viewpoint models and to make it possible to
assert correspondences between the representations of the same system in different
viewpoints. This framework allows the verification of both the completeness of the
various descriptions and of the consistency between them.

The ODP viewpoints can be used to structure the specification of a distributed
system, and can be related to a design methodology. Design of the system can be
regarded as a process that may be subdivided into phases related to different view-
points. Each of the viewpoints can be used as problem analysis technique as well as
a solution space of the relevant issues of the problem domain.

These viewpoints should not be seen as architectural layers, but rather as differ-
ent abstractions of the same system, and should all be used to completely analyse
the system. With this approach, consistent and complete system models may be
described and developed based on concepts and methods still to be designed for
individual viewpoints.

Figure 1. Viewpoints: Different Projections on the System

RM-ODP defines the following five viewpoints. Together they provide the
complete description of the system:enterprise viewpoint, information viewpoint,
computational viewpoint, engineering viewpoint, and technology viewpoint. The
concerns addressed in each of the viewpoints are briefly sketched below:

computation enterpriseinformation
engineeringtechnology

SYSTEM

Introduction into the ODP Reference Model, 2/14/96

5

1. Enterprise Viewpoint: It is directed to theneeds of theusers of an informa-
tion system. It describes the (distributed) system in terms of answering what it is
required to do for the enterprise or business. It is the most abstract of the ODP
framework of viewpoints stating high level enterprise requirements and policies.

2. Information Viewpoint: It focuses on the information content of the enter-
prise. The information modelling activity involves identifyinginformation ele-
ments of the system,manipulations that may be performed on information
elements, and the information flows in the system.

3. Computational Viewpoint: It deals with the logical partitioning of the distrib-
uted applications independent of any specific distributed environment on which
they run. It hides from the application designer the details of the underlying
machine (distributed platform) that supports the application.

4. Engineering Viewpoint: It addresses the issues of system support (platform)
for distributed applications. It identifies the functionality of the distributed platform
required for the support of the computational model.

5. Technology Viewpoint: The technology model identifies possible technical
artifacts for the engineering mechanisms, computational structures, information
structures, and enterprise structures.

The purpose of viewpoints of the RM-ODP is to position services relative to
one another, to guide the selection of appropriate models of services, and to help in
the placement of boundaries upon ODP. The framework of viewpoints is used to
partition the concerns to be addressed when describing all facets of an ODP sys-
tem, so that the task is made simpler. A summary of ODP viewpoints is presented
in table 1.

Table 1: Summary of ODP Viewpoints

Viewpoint Enterprise Information Computation Engineering Technology

Areas of
concern.

Enterprise
needs of IS;
Objectives
and roles of
IS in the
organization.

Information
models,
Information
structures,
Information
flows,
Information
manipulation
.

Logical partitio-
ning of application,
application compo-
nents, component
interfaces, compo-
nent interactions;
service-oriented
view of distributed
application.

Distributed platform infra-
structure;distribution trans-
parency, communication
support, and other distribu-
tion enabling, regulating,
and hiding generic mecha-
nisms; system-oriented
view of distributed appli-
cation.

Technological
artifacts
required for
realizing engi-
neering
mechanisms.

Main
concepts

agents, arti-
facts, com-
munities,
roles, etc.

schemas,
relations,
integrity
roles, etc.

computational
object, computatio-
nal interface, envi-
ronment constraints,
computational inter-
actions, etc.

Basic engineering objects,
transparency objects, pro-
tocol object, nucleus, etc.

Technological
solutions cor-
responding to
engineering
mechanisms
and structures

Introduction into the ODP Reference Model, 2/14/96

6

Using the five ODP viewpoints to examine system issues encourages a clear
separation of concerns, which in turn leads to a better understanding of the prob-
lems being addressed: describing the role of the enterprise (enterprise viewpoint)
independently of the way in which that role is automated; describing the informa-
tion content of the system (information viewpoint) independently of the way in
which the information is stored or manipulated; describing the application pro-
gramming environment (computation viewpoint) independently of the way in
which that environment is supported; describing the components, mechanisms used
to build systems independently of the machines on which they run; and describing
the basic system hardware and software (technology viewpoint) independently of
the role it plays in the enterprise.

4. THE ODP COMPUTATIONAL MODEL

The ODP computational model is a framework for describing the structure,
specification and interactions of (components of) a distributed application on a
(distributed) computing platform, which is also called the computational infrastruc-
ture.

The computational model provides a set of basic (abstract) concepts and ele-
ments for the construction of a programming (specification) language for which the
model does not provide any syntax. Using the computational modelling concepts,
one can specify (program) a distributed application without worrying about the
details of the underlying distributed execution platform. The design principle of the
computational model is to minimize the amount of engineering details that the
application programmer is required to know, yet at the same time allowing the pro-
grammer to exploit the benefits of distributed computing.

A computational specificationof a distributed application consists of the com-
position ofcomputational objects (which represent application components) inter-
acting, byoperation invocations, at their interfaces. It identifies the activities that

Whom does
it concern

System
procurers,
Corporate
managers.

Information
Analysts,
System Ana-
lysts, Infor-
mation
Engineers.

Application desi-
gners and program-
mers.

Operating System desi-
gners, Communication
System designers, System
designers.

System inte-
grators,
System vend-
ors.

Language/
Notation

requirement
description
languages.

entity-relati-
onship
models, con-
ceptual sche-
mas, etc.

application pro-
gramming environ-
ments, tools,
programming lan-
guages, etc.

Distributed platforms,
engineering support envi-
ronments, etc.

Technology
mappings,
identification
of technical
artifacts, etc.

Role in
software
engineering

Requirement
 capture and
early design
of distribu-
ted system.

Conceptual
design and
information
modelling.

Software design and
development.

System design and
development.

Technology
identification,
procurement,
installation.

Table 1: Summary of ODP Viewpoints

Viewpoint Enterprise Information Computation Engineering Technology

Introduction into the ODP Reference Model, 2/14/96

7

occur within the computational objects, and the interactions that occur at their
interfaces, (computational interfaces).

4.1 Computational Model: A Object-Oriented View of Distributed Application

The computational model is based on a distributed-object model. It prescribes
an object-oriented view of the distributed application. Applications are collections
of interacting objects. In this model, objects are the units of distribution, encapsula-
tion, and failure.

The computational model is an ‘object world’ populated with concurrent (com-
putational) objects interacting with each other, in a distribution-transparent
abstraction, by invoking operations at their interfaces. An object can have multiple
interfaces and these interfaces define the interactions that are possible with the
object.

“Activity” is a unit of concurrency within an object. A collection of (computa-
tional) objects may have any number of activities threading through them. The
state encapsulated by the object can be accessed and modified by the activities exe-
cuting the operations in the interfaces of that object.

A distributed computation progresses by operation invocations at object inter-
faces. The activity in an object (invoking object) can pass into another object
(invoked object) by invoking operations in the interface of the invoked object.
Activities carry the state of their computations with them, i.e., when an activity
passes into an operation it carries the parameters for that invocation, and returns
carrying results. In the computational model, concurrency within an object and
communication between objects are separate concerns. While concurrency is mod-
elled by the concept of activity, communication between object is modelled as
(remote) invocation of an operation.

4.2 Distribution Issues and the Computational Model

Computational specifications are intended to be distribution-transparent, i.e.,
written without regard to the specifics of a physically distributed, heterogeneous
environment. However, the expression ofenvironment constraints in the computa-
tional interface template provides a hint of the application requirements from the
distributed platform, e.g., distribution transparencies, security mechanisms, spe-
cific resource requirements, etc.

At the computational level, user applications are unaware of how the underly-
ing distributed platform is structured or how the distribution enabling and regulat-
ing mechanisms are realised.

Introduction into the ODP Reference Model, 2/14/96

8

Figure 2. ODP Computational: An Object World supported by Distributed Platform

4.3 Elements of the Computational Model

The design philosophy of the computational model has been to find the small-
est number of concepts (elements) needed to describe distributed computations and
to propose adeclarative approach to the formulation of each concept. This section
is a brief introduction of some basic computational elements out of which thecom-
putational specification of the distributed application is constructed.

The basic elements of the computational model are:computational object,
computational interface, interface invocation mechanisms such ascomputational
operation, and the abstraction to model the communication between the computa-
tional interfaces-binding object.

Computational Object: The components of distributed application are repre-
sented as computational objects in the computational model. The computational
objects are the units of (application) structure and distribution. The computational
objects model both the application components that perform information process-
ing and those components that store the information.

As shown in figure 3, a computational object template consists of a set of com-
putational interface templates which the object can instantiate.

Computational Interface: While computational objects are the units of struc-
ture and encapsulation of (application-specific) services, interfaces are the units of
provision of services; they are the places at which objects can interact and obtain
services.

d e f d e g

d e h
d e i

d e j d e k

e l m d e n m o p q p ^ e r q s ^ r L t q u p t o d p o t v

d � 4 � / � � � � � � � � n � ! � �

Introduction into the ODP Reference Model, 2/14/96

9

The distributed application components (modelled as computational objects)
may be written in different (programming) languages and may run on heterogene-
ous environments. In order for a component to be constructed independently of
another component with which it is to interact, a precise specification of the inter-
actions between them is necessary. The specification of interaction between com-
putational objects and their environment, and of their requirements of interaction
are captured by interfaces. The computational interfaces model different interaction
concerns of an object.

A computational object may support multiple computational interfaces which
need not be of the same type. Interfaces of the same type may be provided by
objects which are not of the same type. Each object may provide interfaces which
are unlike those provided by the other object.

Figure 3. ODP Computational Model Concepts

In the ODP computational model two kinds of interfaces are identified:opera-
tional interfaces andstream interfaces.

Operational Interface: The specification of operational interface template
consists of:

1. Operation Specification
2. Behaviour Specification
3. Environment Contract

d � 4 � / � � � � � � � �e . w � $ �

d � 4 � / � � � � � � � �e . w � $ �p � 4 � � � � � x

d � 4 � / � � � � � � � �^ � � � � - � $ �p � 4 � � � � �
d � 4 � / � � � � � � � �^ � � � � - � $ �p � 4 � � � � �

d � 4 � / � � � � � � � �^ � � � � - � $ �d � 4 � / � � � � � � � �^ � � � � - � $ �

d � 4 � � � � � � � � � -d � 4 � / � � � � � � � � ^ � � � � - � $ �p � 4 � � � � � � y q $ � � � � �� � � - � � 4 � ! . 2 � . w � $ � y

z m � � w � $ � � � � � - � � � � � � �� . w � $ � . � � � � � � / � {

v � � � � � � 4 � � � d � � � � � � � � � �� � � � � $ � . � � � � � . w � $ � J

Introduction into the ODP Reference Model, 2/14/96

10

The operation specification includes the operation name together with the
number, sequence, and type of arguments that may be passed in each operation
invocation and its response(s). This is calledoperation signature.

The behaviour specification defines the behaviour exhibited at the interface.
All possible orderings of operation invocations at or from the interface are speci-
fied. The behaviour constitutes the protocol part of the interface.

Most interface specifications, to date, have concentrated on the syntactic
requirements of the interface such as the operation signature. Aspects other than
pure syntax are also important in facilitating the interaction between a pair of
objects. This additional semantic information falls into two categories:

* information affecting the way in which the infrastructure supports the interac-
tions; this information constrains the type of distribution transparencies, choice of
communication protocols, etc. that must be placed in the interaction path between
the interacting objects.

* the behaviour (or the semantics) of the service offered at the interface; an
interface is viewed as a projection of an object’s behaviour, seen only in terms of a
specified set of observable actions. As a result, signature compatibility is less dis-
criminating than interface compatibility.

The environment contract in the computational interface template defines the
following attributes:

1. distribution transparency requirement on operation invocation.
2. quality of service (including communication quality of service) attributes

associated with the operations.
3. temporal constraints on operations (e.g., deadlines).
4. dependability constraints (e.g., availability, reliability, fault tolerance, secu-

rity etc.)
5. location constraints on interfaces (and hence their supporting objects).
6. other environment constraints on operations (e.g., those arising from enter-

prise and information viewpoint).
These attributes may be associated with individual operations or the entire

interface. The environment contract is an important component of the computa-
tional interface template and has a direct relationship to the realized engineering
structures and mechanisms.

Stream Interface: The computational objects may perform both the informa-
tion processing task as well as act as containers of information. There is a need to
model not only the interfaces which provide ‘service’, but also those interfaces
which model ‘continuous’ information flow. Such interfaces are modelled, in the
computational model, as stream interfaces (also known as non-operational inter-
faces).

The stream interface is a set of information flows whose behaviour is described
by a single action which continues throughout the life time of the interface. Infor-
mation media such as voice and video inherently consists of a continuous sequence
of symbols. Such media are described ascontinuous and the termstream is used to
refer to the sequence of symbols comprising such a medium.

Introduction into the ODP Reference Model, 2/14/96

11

Examples include the flow of audio or video information in a multimedia appli-
cation, or the continuous flow of periodic sensor readings in a process control
application. The computational description does not need to be concerned with
detailed mechanisms; the fact that the flow is established and continues during the
relevant period is enough.

The template for a non-operational or stream interface consists of:
Stream Signature: A specification of the type of each information flow con-

tained in a stream interface and, for each flow, the direction in which the flow takes
place.

Envir onment Constraint: Continuous media have strict timing and synchroni-
zation requirements. The environment constraints that are relevant to stream inter-
faces include synchronization and clocking properties, time constraints, priority
constraints, throughput, jitter, delay, media-specific communication quality
requirements, etc., in addition to the properties applicable to operational interfaces.

Role: A role for each information flow, e.g., a producer object or a consumer
object.

Binding Object: Interactions between computational objects are only possible,
when their interfaces are bound. There is a concept of implicit and explicit binding
in the computational model. When objects get implicitly bound in the computa-
tional model, it is assumed that the underlying platform (the engineering infrastruc-
ture), will provide the service of checking the consistence between the interfaces to
be bound.

The computational objects are explicitly bound through a binding object. The
template for the binding object specifies the interaction patterns between the bound
computational objects. The binding object contains control interfaces which allow
dynamic modification of number and types of objects involved in the binding.

5. ENGINEERING MODEL

The engineering model is an abstract model to express the concepts of the engi-
neering viewpoint. It involves concepts such as operating systems, distribution
transparency mechanisms, communication systems (protocols, networks), proces-
sors, storage, etc. As the notions of processor, memory, transport network play a
more indirect role in a distributed system, the term ‘engineering model’ is used
here in a more general way to describe a framework oriented towards the organiza-
tion of the underlying distributed infrastructure and targeted to the application sup-
port. It mostly focuses on what services may be provided to applications and what
mechanisms should be used to obtain these services. The termplatform is used to
refer to the (configuration of) services offered to applications by the infrastructure.

The engineering model is still an abstraction of the distributed system, but it is
a different abstraction than the computational model. Distribution is no longer
transparent, but we still need not concern ourselves with real computers or with the

Introduction into the ODP Reference Model, 2/14/96

12

implementations (technology) of mechanisms or services identified in the engineer-
ing model. The engineering model provides a machine-independent execution
environment for distributed applications.

Unlike the enterprise, information, and computational models which deal with
the semantics of distributed applications, the engineering model is not concerned
with the semantics of the distributed application, except to determine its require-
ments for distribution.

|]} ~	�#�0���'�c�]�
���'�0�������0�
�9�
�?�)�T���9�
�&�'�9���]�&�]�C�����Z�'�Z�'���0�9�]���#�9�
�'�[�=���
The ODP engineering model is an architectural framework for the provision of

an object-based distributed platform. The set of basic services and mechanisms,
identified in the engineering model, are modelled as a collection of interacting
objects which together provide support for therealization of interactions between
distributed application components.

The engineering model can be considered as an extended operating system
spanning a network of interconnected computers. In thenetworked-operating sys-
tem view of the model, the linked computers preserve much of their autonomy and
are managed by their local operating systems which are enhanced with mechanisms
to enable, regulate and (if desired) hide distribution.

|]} �	�#�0���'�c�]�
���'�0�������0�
�9�
�?�0�'�N�
�'�9�=�)�=���B�=�1�0�0�9�
�'�9�=�c�
�������0�
�
The interest of the computational model is directly related to the existence of a

mapping enabling it to relate to engineering concerns. This means, for instance,
being able to map computational concepts onto the engineering structures.

The engineering model provides an infrastructure or a distributed platform for
the support of the computational model. The model provides generic services and
mechanisms capable of supporting distributed applications specified in the compu-
tational model. The model is concerned withhow an application, specified in the
computational model, may beengineered onto the distributed platform. The selec-
tion of distribution transparency and communication (protocol) objects, among
many other support mechanisms, tailored to application needs, forms an important
task.

The engineering model identifies thefunctionality of basic system components
that must be present, in some form or other, in order to support the computational
model. Hypothetically, there may be several engineering models for a particular
computational environment, reflecting the use of different system components and
mechanisms to achieve the same end. The issue in the computational model iswhat
(interactions, distribution requirements); the engineering model prescribes solution
as tohow to realize these interactions, satisfying the stated requirements.

|]} 	¡#�'�Z���&�'�0�a���=���#�0���'�c�]�
���'�0�����#���
�
The engineering model reveals the structure of the distributed platform, the

ODP infrastructure which supports the computational model. The services or

Introduction into the ODP Reference Model, 2/14/96

13

mechanisms which enable, regulate and hide distribution in the ODP infrastructure,
are modelled as objects, calledengineering objects, which may support multiple
interfaces.

There are different kinds of engineering objects in the engineering model corre-
sponding to different distribution (enabling, regulating, hiding) functions required
in distributed environment. This is illustrated in Figure 4. Some engineering
objects correspond to the application functionality and are referred to asbasic engi-
neering objects while those which provide distribution functions are classified as
transparency objects, protocol objects, support objects, etc. At a given host, the
basic engineering objects belonging to an application may be grouped intoclusters.
A host may support multiple clusters in its addressing domain, known ascapsule.
A capsule consists of clusters of basic engineering objects, set of transparency
objects, protocol objects and other local operating system facilities.

 From an engineering viewpoint, the ODP infrastructure consists of intercon-
nected autonomous computer systems (hosts), which are callednodes. Each node
supports anucleusobjectand multiple capsules. The nucleus encapsulates comput-
ing, storage, and communication resources at a node. All the objects in the node
share common processing, storage, and communication resources encapsulated in
the nucleus object of the node.

As mentioned before, the engineering modelanimates the computational
model. The computational-level interactions between a pair of computational
objects (or their interfaces) are supported throughchannel structures in the engi-
neering model. A channel binds basic engineering objects in different clusters, cap-
sules, or nodes. The channel is a configuration of transparency objects, protocol
objects, etc. which provide distribution support.

The services and mechanisms currently identified in the engineering model are
generic in nature and can support distribution requirements of applications in a
broad range of enterprise domains (Telecoms, Office Information Systems, Compu-
ter Integrated Manufacturing, etc.). However, domain-specific supporting functions
will be defined in the domain-specific engineering models (which are the speciali-
zation of ODP engineering model).

The following is a brief description of the engineering objects and structures
currently identified in the ODP engineering model. The objects and structures
which are defined later in the text are italicized. Table 2 gives a relationship
between the engineering objects and the real world system.

Basic Engineering Object: Basic Engineering Objects (BEOs) are the run
time representation of computational objects (obtained through compilation, inter-
pretation or through some other transformation of computational objects) which
encapsulate application functionality.

Cluster: A cluster is a configuration of basic engineering objects. Clusters are
used to express related objects (which belong to the same application) that should
be local to one another, i.e., those groups of objects that should always be on the

Introduction into the ODP Reference Model, 2/14/96

14

same node at all times.

FIGURE4. ODP ENGINEERING MODEL: Organization of Distributed Infrastructure

Capsule: A capsule consists of clusters of basic engineering objects,transpar-
ency objects, andprotocol objectsbound to a commonnucleus in a distinct address

r o d s v o u r o d s v o u

¢ ¢

¢

d q m u o s v

d � / � � � �
d � / � � � � d � / � � � �

£¤
¥¦¦
§¨

r e l v S f r e l v S g

¢ ¢

p f p g

p h

m f

m g

m h

¢ ¢ ¢ ¢

p t q r u m e t p r v p � e t ©

£¤
¥¦¦
§¨

£¤
¥¦¦
§¨

ª « ¬

ª ­ ® « ¯ ° ± ² ³ ° ¯ ´ ± µ ¶® · ¸ ´ µ ¹ ¬ ¯ º ¹ º µ º »
® · ¸ ´ µ ¹ ¼ » ½ ² ¹ ´ ¯ ¼ ° ³ ² ½ » ´ ¼ ¾ ° ± ± ´ » ¿ º À ´

Introduction into the ODP Reference Model, 2/14/96

15

space from any other capsule. A capsule provides to its clusters access to the
objects in thechanneland to the nucleus to which it is bound.

Nucleus: A nucleus is an object that provides access to basic processing, stor-
age, and communication functions of anode for use by basic engineering objects,
transparency objects, protocol objects, bound together into capsules. A nucleus
may support more than one capsule. A nucleus has the capability of interacting
with other nuclei (through its communication function), providing the basis for
inter-capsule and inter-node communication.

Node: A node consists of one nucleus object, a node manager, and a set of cap-
sules. All of the objects in a node share common processing, storage, and commu-
nications resources.

Channel: A channel is a configuration oftransparency objects, protocol
objects,application specific supporting objects, etc. providing a binding between a
set of interfaces to basic engineering objects, through which interaction can occur.
The structure of the channel is dependent on the distribution function requirements
of the interaction between basic engineering objects.

Figure 5 shows the client-half and server-half of a single channel object. If the
objects being bound are on different nodes, there is still conceptually only one
channel object created, i.e., there is not one channel object on one node and a dif-
ferent channel object on the other.

Stub Object: An object which acts to a basic engineering object as arepresent-
ative of another basic engineering object located in different clusters, thus contrib-

Table 2: System Abstractions in Engineering Model

Engineering object System representation

Node single computer system, network of workstations managed by a distrib-
uted operating system, any autonomous information processing system
with independentnucleusresources and failure characteristics.

Nucleus abstraction of an operating system providing processing, storage, and
communication resources of anode.

Capsule the concept of address space in operating systems.

Cluster the concept of ‘linked’ modules to form an executable program image.

BEO the program module which may not be executed in isolation.

Channel the run time ‘binding’ between distributed BEOs

Transparency
object

Special purpose modules which enhance the operating system environ-
ment of thenode and can be dynamically linked into the distributed
application program.

Introduction into the ODP Reference Model, 2/14/96

16

uting towards distribution transparency. Stub objects are bound to the basic
engineering objects for the purpose of hiding certain aspects resulting from distri-
bution (or heterogeneity).

The stub objects have direct access to the basic engineering objects. The opera-
tion invocations on the interfaces of basic engineering objects areintercepted by
stub objects to hide some aspects of distribution such as concurrency in the system
or to modify the information exchanged between basic engineering objects, thus
masking the heterogeneity in the distributed system.

Stub objectsadd further interactions and/or information to interactions between
interacting basic engineering objects to support distribution transparency. As an
example, a stub object may provide adaptation fucess tranctions such as marshal-
ling and un-marshalling of openctions such asnctions such as marshalling and un-
marshalling of operation parameters to enableacncnctions such as marshalling and
un-marshalling of operation parameters to enableactionctions such as marshalling
and un-marshalling of operation parameters to enableacns such as marshalling and
un-marshalling of operation parameters to enableac marshalling and un-marshal-
ling of operation parameters to enableacration parameters to enableacnsparent
interactions between interfaces of basic engineering objects.

Examples of stub objects includeaccess transparency objectandconcurrency
transparency object discussed in the next section.

Basic engineering objects are always directly bound to the stub objects. Stub
objects within a channel can interact with one another using other objects in the
channel, or via interaction with supporting objects outside of the channel.

Binder Object: An object whichcontrols andmaintains the binding between
interacting basic engineering objects, contributing towards the provision of distri-
bution transparency.

Binder objects maintain the binding between basic engineering objects, even if
they are migrated, reactivated at new location, or are replicated. Examples of
binder objects includelocation transparency object, migration transparency
object, replication transparency object, failure transparency object, andresource
transparency object.

Stub objects are bound to binder objects. Binder objects interact with one
another to maintain the integrity of the binding between the interacting basic engi-
neering objects. Binder objects in the channel can interact with one another using
other objects in the channel, or via interaction with supporting objects outside the
channel. Binder objects are interconnected by protocol objects.

Protocol Object: An object which encapsulates communication protocol func-
tionality for supporting communication between basic engineering objects. A chan-
nel may be composed of a number of protocol objects corresponding to different
communication support requirements of interactions between basic engineering
objects. Protocol objects interact with other protocol objects to support interaction
between basic engineering objects.

Inter ceptor Object: An object which masks administrative and technology

Introduction into the ODP Reference Model, 2/14/96

17

domain boundaries by performing transformation functions such as protocol con-
version, type conversion etc. It enables interactions to cross administrative and
communication domains, thus contributing towardsfederation transparency.

Distribution Transparency: The following transparencies have been identified
in the ODP engineering model, as important in distributed systems. The concept of
transparency is viewed as the corner stone of ODP architecture. A brief description
of transparencies, based on the concept of client and server objects (or client and
server interfaces) is outlined below:

FIGURE 5. SIMPLIFIED GENERIC CHANNEL STRUCTURE

These transparency mechanisms provide an enhanced environment positioned
on top of the low-level operating systems and communications facilities of the dis-
tributed platform, for the support of distribution transparent programming environ-
ment offered by the computational model.

The technique for providing any transparency service is based on the single
principle of replacing an original service by a new service which combines the
original service with the transparency service, and which permits clients to interact
with it as if it were the original service. The clients need not be aware of how these
combined services are achieved.

TRANSPARENCY SYSTEM

Configuration
of Transparency
Stubs

Configuration
of Transparency
Binders

Configuration
of Transparency
Stubs

Configuration
of Transparency
Binders

of Protocol
Objects

Protocol
Objects

Interceptor

Stub
Supporting
Objects

Binder
Supporting
Objects

BEO BEO

d � � Á , / � � � � � �
� - m � � � � $ � �e . w � $ � �

d � � Á , / � � � � � �

d Â q r r v s

Introduction into the ODP Reference Model, 2/14/96

18

Since the interaction between the objects occur at their interfaces, these trans-
parencies are applicable to individual interfaces or to specific operations of the
interfaces. An interface may have a set of transparency requirements which may be
different from those of other interfaces of the same object.

A summary of transparency mechanisms is presented in Table 3.

Access Transparency: It hides from a client object the details of the access
mechanisms for a given server object, including details of data representation and
invocation mechanisms (and vice versa). Access transparency hides the difference
between local and remote provision of the service.

Access transparency enables interworking across heterogeneous computer
architectures, operating systems and programming languages.

Concurrency Transparency: It hides from the client the existence of concur-
rent accesses being made to the server. Concurrency transparency hides theeffects
due to the existence of concurrent users of a service from individual users of the
service.

Location Transparency: It hides from a user (client) where the object (server)
being accessed is located.

Migration T ransparency: Migration transparency hides from the user of the
service (client) the effects of the provider of the service moving from one location
to another, during the provision of the service (between successive operation invo-
cations).

Location transparency is a static transparency in the sense that it is assumed
that once located the interface remains at its location (until the binding between the
involved interfaces is broken). Migration transparency is the dynamic case which
arises if the server interface can move while the client object is interacting with it,
without disturbing those interactions.

Replication Transparency: Replication transparency, also known asgroup
transparency, hides the presence of multiple copies of services and maintaining the
consistency of multiple copies of data, from the users of the services.

It enables a set of objects (their interfaces) organized as areplica group to be
coordinated so as to appear to interacting objects (or their interfaces) as if they
were a single object (interface).

There are two main aspects of replication transparency. The first hides the dif-
ference between a replicated and a non-replicated provider of a service from users
of that service, and the second hides the difference between replicated and non-rep-
licated users of a service from providers of that service.

Users are unaware of multiple providers of the service and need not concern
about making multiple operation invocation or dealing with multiple responses.

Resource Transparency: It hides from a user (client) the mechanisms which
manage allocation of resources by activating or passivating (server) objects as
demand varies. It also implies the hiding of deactivation and reactivation of

Introduction into the ODP Reference Model, 2/14/96

19

(server) objects from the clients.
Resource transparency, also known asliveness transparency, masks the auto-

mated transfer of clusters from a capsule to a storage object and back again, to opti-
mize the use of node’s nucleus resources (processor, memory, etc.).

With resource transparency in place, clients can invoke operations on the server
irrespective of whether the server is currently active or passive.

Failur e Transparency: Failure transparency masks (certain) failure(s) and
possible recovery of server objects from the client objects, thus providing fault tol-
erance.

Federation Transparency: Federation transparency hides the effects of opera-
tions crossing multiple administrative boundaries from the clients. It permits inter-
working across multiple administration and technology domains.

Table 3: ODP Distribution Transparencies

Transparency Central Issue Result of Transparency

Access The method of access to objects
(invocation mechanism and data rep-
resentation).

Client need not be unaware ofaccess
mechanisms at the server interface.

Concurrency Concurrent access to objects in the
distributed system.

Clients are masked from the effects of
concurrent access to the server inter-
face.

Location Location of object in the distributed
system.

Clients are unaware of the physical
location of the server.

Migration Dynamic re-location of objects during
the “bind-session”.

Clients are unaware of the dynamic
migration of the server.

Replication Multiple invocations on replicated
objects, multiple responses, and con-
sistency of replicated data.

Client invokes a replicated server
group as if it were a single server.
Distribution of requests, collation of
responses, consistency of data, and
membership changes are hidden.

Resource Resource management policies of the
node (deactivation and reactivation of
objects).

Client unaware of the deactivation
and reactivation of the server.

Failure Partial failure of object in thenode. Client unaware of the failure of the
server and its subsequent reactivation
(possibly at another node).

Federation Pan-organizational boundaries. Clients unaware of interactions cross-
ing administrative and technology
boundaries.

Introduction into the ODP Reference Model, 2/14/96

20

6. CONCLUSION & SUMMAR Y OF PAPERS IN THE SPECIAL
ISSUE
This introduction shall give the reader an overview of the principles of the ref-

erence model for Open Distributed Processing (ODP). Through the reference
model, a framework is created to give descriptive and design support for distribu-
tion, interworking and portability. More information can be found in the four parts
of the publicly available standardisation documents, i.e. ITU-T Recommendations
X.901 to X.904. The standards however, must be populated by abstraction con-
cepts, design and evaluation methods, engineering mechanisms etc. This special
issue would like to make a contribution for the population of and the application of
the ODP reference model.

One of the new challenges in the realm of ODP is the handling of multimedia
and the communication by streams, as it is outlined in /Coul et al/. The integration
of streams into an open distributed processing environment requires the develop-
ment of new abstraction concepts, that allow the description of information stream-
ing over time. Furthermore the question has been raised how to support the
processing of streams from an engineering point of view. Audio and video streams
need engineering support to maintain their isochronous nature over time. In order
to maintain a distinguished quality of the streams, resource allocation and resource
control mechanism is to be provided by the framework.

By the specification of a multiparty audio and video interaction the suitability
of the RM-ODP concepts and rules as described by the five viewpoint languages
has been evaluated in /Gay etal/. The audio-video interaction facilities are mod-
elled in each viewpoint. In the enterprise model the requirements of the stream
binding object are specified. The binding contract is an element of the information
view. The bound objects exchanging video and audio streams are specified distri-
bution-transparently by terms of the computational language. The distribution sup-
port for the computational model is an issue of the engineering viewpoint.

A model for the process of designing ODP systems is another item dealt with in
/Sind etal/. The model comprises a mapping of ODP concepts and designing rules
onto formal description constructs. Such a mapping is called architectural seman-
tics, that allows a specification being interpreted by means of ODP concepts and
rules.

The formal handling of ODP description concepts from part I and II of the ref-
erence model, and their relations to FDTs is discussed in /Gotz/ and /Najm etal/. It
is part of the architectural semantics principle to provide with formal and their
interpretation. Formal compositional notions of architectures, behaviours and sys-
tems are being introduced together with design concepts of abstraction and refine-
ment. The latter ones are introduced in order to refine or abstract consistently from
parts of an architecture, a behaviour or a system.

Whereas this is a more general approach to distributed system design, /Najm
etal/ have restricted themselves to the introduction of a formal operational seman-
tics for a language-independent modelling framework of the computational view-
point. Type checking procedures and rewriting rules are introduced for the purpose

Introduction into the ODP Reference Model, 2/14/96

21

of early consistency checks at the application of strongly typed object interfaces.

7. PAPERS IN THIS ISSUE

/ISO 10746-1 to 4/ ODP Reference Model Part I to IV 1994.

/Coul. etal/ G.Coulson, G.S.Blair Lancaster University GB, J-B.Stefani,
F.Horn, L.Hazard CNET Paris

Supporting the Real-Time Requirements of Continuous Media in
ODP

/Gay etal/ Valerie Gay Universite Paris VI, Peter Leydekkers PTT Research
Groningen Netherlands, Robert Huis in’t Veld University of
Twente, Netherlands

Specification of Multiparty Audio and Video Interaction based on
the RM-ODP

/Sind. etal/ Marten van Sinderen, Luis Ferreira Pires, Chris Vissers, Joost-Pie-
ter Katoen University of Twente, Netherlands

/Gotz/ Reinhard Gotzhein Universität Kaiserslautern Germany
Towards a Basic Reference Model of Open Distributed Processing

/Najm et al./ Elie Najm ENST Paris, Jean-Bernard Stefani CNET Paris
A formal Semantics for the ODP Computational Model
CNIS Special Issue on ODP

8. SUGGESTED REFERENCES

1. Draft Recommendation ITU-T X.901 / ISO 10746-1: Basic Reference Model of Open Dis-
tributed Processing - Part-1: Overview.

2. Draft International Standard ITU-T X.902 / ISO 10746-2: Basic Reference Model of Open
Distributed Processing - Part-2: Descriptive Model.

3. Draft International Standard ITU-T X.903 / ISO 10746-3: Basic Reference Model of Open
Distributed Processing - Part-3: Prescriptive Model.

4. Draft Recommendation ITU-T X.904 / ISO 10746-4: Basic Reference Model of Open Dis-
tributed Processing - Part-4: Architectural Semantics.

5. Proceedings of the IFIP TC6/WG6.4 International Workshop on Open Distributed Process-
ing (October 1991), North Holland 1992.

6. Proceedings of the International Conference on Open Distributed Processing (September
1993), Berlin.

7.Proceedings of the First Telecommunication Information Networking Architecture Work-
shop, (TINA 90), Lake Mohonk, New York, USA, June 1990.

8. Proceedings of the Second Telecommunication Information Networking Architecture
Workshop, (TINA 91), Chantilly, France, March 1991.

9. Proceedings of the Third Telecommunication Information Networking Architecture Work-
shop, (TINA 92), Narita, Japan, January 1992

10. Proceedings of the Fourth Telecommunication Information Networking Architecture
Workshop, (TINA 93), L’Aquila, Italy, September 1993.

