

Data flow security in Role-Based Access Control

Luigi Logrippo

Université du Québec en Outaouais,
Dépt. d’informatique et d’ingénierie

CP 1250, Succ. Hull
Gatineau, Québec, Canada J8X 3X7

University of Ottawa
SEECS: Electrical Eng & Computer Sc.

75 Laurier Ave. E
Ottawa, Ontario, Canada K1N 6N5

luigi@uqo.ca

Abstract. We show how data security concepts such as data flow, secrecy (or confidentiality) and integrity can
be defined for RBAC, Role-Based Access Control. In contrast to the prevailing literature that uses a lattice model
to express such concepts, we demonstrate the use of a partial order model that is more general. This is done by
using the concepts of “partial order of equivalence classes” and of “security labels” that can be associated with
RBAC subjects and objects and determine their mutual data flows, as well as their secrecy and integrity prop-
erties. Our model allows to reason on RBAC configurations with different assignments of roles to subjects. On
the converse, we demonstrate a method for obtaining RBAC configurations from data security requirements or
security label assignments. These results are supported by a proof showing that three methods for defining
data flow: by access control matrices, by labels and by roles, are equivalent and mutually convertible. We show
how RBAC state changes, or “reconfigurations” can be defined in this framework, and what are the effects of
elementary reconfigurations on data flow, secrecy and integrity of data.

Keywords: RBAC, Role-based access control, data flow control; data security; data secrecy; data confidentiality;
data integrity; multi-level access control; mandatory access control; security labeling; design for security.

1. Introduction

Role-Based Access Control (RBAC) is a very well-established access control method. In its
many variations and adaptations, it is used in many organizations and systems. With exten-
sions, it is being considered for use in the Cloud and in the Internet of things (IoT)
[2,6,11,26,32,35,36,37,44,46,47].

RBAC can be used to protect resources of different types. In this paper, we concentrate
on the use of RBAC for protecting data objects with respect to reading and writing operations
and resulting data flows. Given a network of entities, which can be data objects (data sets,
databases, files) and users represented by subjects, each with a set of role-based permis-
sions, and with the hypothesis of transitivity (that a subject that reads some data can pass
them on), where can data end up, what are the levels of secrecy and integrity of subjects and
objects? How do these change if the permissions change? These questions are part of the
general questions of data security and privacy. Landwehr [25] and Kozyri et al. [23], among
others, note the relationship between privacy violations and improper data flow. However,
the literature on the specific subject of this paper is limited to essentially three papers
[34,17,36], as we will see in Section 6.

Research on RBAC data flow security has for long followed the theory that secure data
networks must be defined in terms of lattice structures, a theory contrasted by the fact that
RBAC can define non-lattice networks [34]. We have shown in our previous papers [27,28]
that this established theory can be generalized to a theory that is valid for all networks,

mailto:luigi@uqo.ca

2

whether they are lattice-structured or not, given the fact that for any network of communi-
cating entities there exists a partial order of equivalence classes of entities, to which security
labels can be assigned.

We have also shown that a data flow security theory based on partial orders has the fol-
lowing advantages with respect to the established theory based on lattices:

• Only actually used entities and security labels need to be present in partial orders;
further, by excluding certain labels, it is possible to exclude the possibility of cer-
tain subjects or objects being able to access certain data combinations, corre-
sponding to situations of conflict such as those addressed by familiar ‘Brewer-
Nash’ or ‘Chinese wall’ mechanisms [9,38].

• The theory is closed under reconfigurations, in the sense that changes in the per-
missions will lead from partial orders to partial orders (see Sect. 5).

• Well-known, efficient algorithms exist to make the theory applicable [42].

• Implementation methods exist for this theory, namely one using SDN, Software
Defined Networking, which is described in [43].

Using these results, we show in this paper that:

a) It is possible to efficiently analyze the data flows defined by RBAC configurations,
to see what paths data can take, from the entities that initially can have them, to
all the entities that potentially can get them, directly or indirectly.

b) Given the results of this analysis, it is possible to determine the levels of secrecy
(or confidentiality) and integrity of the RBAC subjects and objects.

c) Given a specified data flow in a network of entities, it is possible to efficiently gen-
erate an RBAC configuration that defines it. The specification can be in terms of
data flow requirements or labels.

d) The effects of RBAC reconfigurations for secrecy and integrity can be evaluated.

In our previous work [42] we have mentioned that our partial order data flow theory is
applicable to RBAC. This paper explains this claim, by explicitly using RBAC definitions and
examples.

To this end, we proceed as follows:

After restating the essence of our previous work in Sect.2, in Sect. 3 we define arbitrary
bipartite networks, consisting of subjects and objects, with a Channel relation, which repre-
sents permissions to read or write. Then we define RBAC networks, which are networks as
just described, but defined in terms of RBAC subjects, objects, roles and permissions, in a
given RBAC configuration. We then show that any arbitrary bipartite network can be defined
as an RBAC network. We will see that such networks define partial orders of equivalence
classes, enabling the definition of secrecy and integrity levels, as well as security labeling.
Several examples follow in Sect. 4, including one where we show how it is possible to con-
struct RBAC networks starting from data flow requirements. In Sect. 5 we make an analysis
of RBAC reconfigurations, to see how changes in roles and permissions can affect changes in
secrecy and integrity of subjects and objects. In Sect. 6 we review the literature, comparing
it with our results. Section 7 concludes the paper and underlines contributions.

3

2. Background

This section is a quick recapitulation of definitions and results that have already been pub-
lished [28,30,42] or submitted and available [29]. We start with some standard order-theo-
retical concepts that will be used throughout the paper. A binary relation in a set of entities
is [8,19]:

• A preorder (also called quasi-order), if it is reflexive and transitive.
• A partial order if it is reflexive, transitive and antisymmetric. For two entities x, y in a

partial order one of the following is true: x dominates y (y⊑x) or x is dominated by y
(x⊑y), or they are incomparable. x⊑y and y⊑x iff x=y. We say that x strictly dominates
y and we write y⋤x if y⊑x and x≠y. A finite partial order has maximal and minimal
elements: an element is maximal (minimal) if no element strictly dominates it (is
strictly dominated by it).

• Atotal order if it is a partial order where any two entities are comparable.
• A lattice if it is a partial order and for any two entities x,y there exist unique z,w such

that z, the join (w, the meet) dominates (is dominated by) both x and y and is domi-
nated by (dominates) all the other entities that have the same property.

The concept of lattice is not used in our theory but is mentioned since the established
theory uses it, following [14,39].

Definition 1. A data network (or simply a network henceforth) is a set of entities with a
binary relation Channel. Each entity x has a Name(x), which uniquely identifies it in the net-
work, it is a character string with capital initials. An access control matrix is a Boolean matrix
representation of a Channel relation.

Letters x, y, z, possibly with primes or subscripts, will be used as variables for entities.
Channel models a permission to execute unidirectional data transfers, such as reading or
writing, receiving or sending.

Definition 2. The binary relation CanFlow (written CF) is the reflexive, transitive closure
of the relation Channel.

Note that CF is a preorder.

Definition 3. Entities x and y are equivalent if CF(x,y) and CF(y,x). An equivalence class
of entities including x,y,…. is denoted [x,y,…].

Definition 4. Two networks are equivalent if they have the same set of entities with the
same names and, for all entities x and y, CF(x,y) in one iff CF(x,y) in the other.

Hence, equivalent networks may have different Channel relations.

According to order theory [8], the preorder CF defines a partial order of equivalence clas-
ses on the set of entities, such that CF(x,y) iff [x]⊑[y].

Definition 5. Let Names be the set of all names of entities in a network. We associate with
each equivalence class [x] a set, the label of [x] or Lab([x]), which is a subset of Names. For
each [x], let Ownlabel([x]) = {Name(y) | y∈[x]}. For each [x], let Lab([x]) = ∪{Ownlabel([y])
| [y] ⊑ [x]}.

Definition 6. For an entity x, Lab(x)=Lab([x]).

Note the following equivalent definition:

Definition 6’.For an entity x, Lab(x)={Name(y)|CF(y,x)}.

4

Labels can be efficiently calculated starting from the bottom of the partial order of equiv-
alence classes. According to Def. 5, an equivalence class at the bottom gets a label that is the
set of the names of entities in the class. An equivalence class that dominates others gets a
label that is the union of the names of entities in the class with the labels of the classes it
dominates, see the examples given later in the paper. Labels implement a simple concept of
provenance, in the sense that each entity’s label includes the names of all entities whose data
it can contain, with the given CF relation.

Theorem 1. For any network, CF(x,y) iff [x]⊑[y] iff Lab(x)⊆Lab(y).

Proof. The first part has been given earlier as an order-theoretical result. The second part
can be easily checked by Def. 5.

Theorem 2. For any network, given any of:
a) a CF relation,
b) a partial order of equivalence classes of entities,
c) an assignment of labels to entities in the set,

the other two, satisfying Theorem 1, can be calculated with linear time or polynomial time
algorithms.

Proof. To go from a) to b), note that equivalence classes constitute strongly connected
components in the graph of the CF relation, and so we can use standard linear time algo-
rithms to find the corresponding partial order of components [42]. To go from b) to c), given
the partial order, calculate the labels using Def. 5 and moving up from the minimal elements
of the partial order found in the previous step. This algorithm is also linear-time. To go from
c) to a), the CF relation can be calculated from the set of labels using Theorem 1: CF(x,y) iff
Lab(x)⊆Lab(y). We need an algorithm for checking for set inclusion. Such algorithms are
known to have the same complexity as sorting algorithms: first sort the two labels and then
compare their elements one by one.

We will not elaborate on these concepts and proofs, since they are introduced in [28] and
more formally proved in [29]. Lab(x)⊆Lab(y) is the label dominance relation in established
data security theory. Theorem 1 says that, consistently with established theory, data flow in
our networks according to the dominance relation. Established theory limits this principle
to dominance in lattice-formed networks, but the principle can be generalized to any net-
work [28,29]. Theorem 2 states the ‘efficiency’ claim of our method, as defined in [1]. We will
not insist on this claim, since a previous paper [42] has examined the subject in detail, both
theoretically and by simulation. In this paper, we will see examples of applications of these
concepts.

The following definitions can apply just as well to entities as to equivalence classes of
entities.

Definition 7. We say that an equivalence class [x] is more secret than an equivalence class
[y] if [y]⋤[x]; in this case, Lab(y) ⊊ Lab(x) and we also say that x is more secret than y. We
say that an equivalence class [x] has more integrity than an equivalence class [y] if [x] ⋤[y];
in this case, Lab(x) ⊊ Lab(y) and we also say that x has more integrity than y. If [x] is a max-
imal (minimal) element in a partial order, we say that [x] or x is of maximum secrecy and
minimum integrity (maximum integrity and minimum secrecy).

5

In the case of maximum secrecy, there are no outgoing flows from elements of [x], in the
of maximum integrity there are no incoming flows to them. A justification of the second def-
inition in terms of the literature is given in our Literature Review (Sect. 6).

Note that our concept of label is in agreement with the traditional one of labels such as
TopSecret, Secret, … ,Public, etc. These are names for equivalence classes of entities, that can
be used instead of, or together with, labels as in Def. 5 in order to obtain shorter labels. See
[28,29] and the example in Sect. 4.4.

3. Application of the theory to RBAC

3.1 Bipartite networks and RBAC configurations

The definitions of RBAC are well-known and some of the most cited references are [15,16]
We follow the formulation in [16], with the following limitations:

• The objects considered (OBS) are data-carrying entities such as files or databases;
• the subjects (SUBS) are entities that can read or write objects; they can also carry

data obtained from objects by the effect of reading operations or passed to them
by their users;

• the operations (OPS) considered are of reading and writing objects;
• the permissions (PRMS) are for subjects to read from objects (CanRead or CR) and

subjects to write to objects(CanWrite or CW); these are Channel relations, see be-
low;

• we do not consider explicitly users in our formulation because users can generate
data flows only when they activate subjects (also called sessions) with subsets of
their roles; therefore the assignment of subjects to users is not considered in our
configurations;

• we concentrate on RBAC0, although some considerations on inheritance and con-
straints will be presented later.

We start with a generic definition:

Definition 8. A bipartite data network (or simply bipartite network henceforth) is a net-
work of named entities that are partitioned into two subsets SUBS and OBS. The relation
Channel is a subset of OBS⨯ SUBS ∪ SUBS ⨯OBS. As all networks, bipartite networks can be
defined by access control matrices.

By this definition, the CF relation is defined for bipartite networks and the theory of Sect.
2 applies. In particular, equivalence classes and labels are defined for subjects and objects in
such networks, according to the definitions of Sect. 2.

We will use the letter s (resp. o) with primes or subscripts for variables denoting mem-
bers of SUBS (resp. OBS). The names of entities are arbitrary strings of characters with cap-
ital initials. In much of this paper, names for subjects will be S1, S2, … and for objects O1, O2,
…. Also roles, see below, will have names that will often be written R1, R2, ….Variables for
roles will be noted by the letter r with primes and subscripts.

Property 1. In bipartite networks:

1) CF(s,s’) iff there is o such that CF(s,o) and CF(o,s’)
2) CF(o,o’) iff there is s such that CF(o,s) and CF(s,o’)

Proof. By the fact that there cannot be channels between subjects or objects.

6

RBAC systems are sets of RBAC definitions that can evolve over time by administrative
or user action that take them from configuration to configuration. In a RBAC configuration,
all RBAC definitions are fixed. Changes in the definitions will be called reconfigurations.
RBAC networks are defined for RBAC configurations. The RBAC network for a RBAC config-
uration is a bipartite network that has the same sets SUBS and OBS as the RBAC configura-
tion, and a Channel relation defined according to RBAC definitions in the configuration, as
described below. Thus a RBAC configuration defines a RBAC network and an RBAC network
defines an RBAC configuration by Construction 1 below.

Definition 9. The RBAC set OPS is defined as OPS={CR,CW} .

Definition 10. In a bipartite network, we define the two relations CR and CW on SUBS
⨯OBS as follows [24]:

a) CR(s,o) iff Channel(o,s) and
b) CW(s,o) iff Channel(s,o).
The RBAC set PRMS is the set of such relations.

In RBAC [16], the set of permissions for subjects according to their roles is defined
through several expressions. There were reasons for how these definitions were formulated,
but we simplify them here by saying that in each configuration, there is an assignment of
roles to subjects and an assignment of permissions to roles, which leads to an assignment of
permissions to subjects.

Definition 11. We use then three functions, which we consider to be defined for each
RBAC configuration (let ℙ denote the set of all subsets of a set):

• SR:SUBS→ℙ(ROLES) assigns sets of activated roles to subjects;
• PA:ROLES→ℙ(PRMS) assigns sets of permissions to roles;
• SP:SUBS → ℙ(PRMS), composition of SR and PA, assigns sets of permissions to

subjects according to their activated roles.

Definition 12. An RBAC network R for an RBAC configuration is a bipartite network that
has the same sets SUBS and OBS as the RBAC configuration and where:

1) Channel(o,s) or CR(s,o) is true in R iff <CR,o> ∈ SP(s) is true in the RBAC configura-
tion;

2) Channel(s,o) or CW(s,o) is true iff <CW,o> ∈ SP(s) is true in the RBAC configuration;
3) Channel and the relations CR, CW are false for all other pairs of entities in R.

3.2 Bipartite networks, bipartite partial orders, and RBAC networks

The following theorem shows that any bipartite network or access control matrix can be de-
fined as an equivalent RBAC network corresponding to an RBAC configuration, thus RBAC is
in this sense a ‘complete’ formalism. This result has already been proved with other defini-
tions, see literature review. We provide our own proof, and in doing so we present Construc-
tion 1, which will be used later.

Theorem 3. For any bipartite network N, there is an equivalent RBAC network R.

Proof. We provide a construction of roles and permissions that, given a bipartite network,
leads to the desired CF relation in the RBAC network R for the configuration. Let N be the
bipartite network. The equivalent RBAC network R will have the same sets SUBS and OBS as

7

N, with the same names. Construction 1 is used to determine what the roles and permissions
are.

Construction 1. From the Channel relation of the bipartite network, calculate the CF rela-
tion, the equivalence classes and then the labels for the subjects and objects in N (Defs. 1 to
6). For each label l, define a set of permissions Pr(l) as follows:

1) <CR,o>∈Pr(l) for all and only objects o such that Lab(o) ⊆ l in N
2) <CW,o>∈Pr(l) for all and only objects o such that l ⊆ Lab(o) in N

Further, we define a role Rl(l) such that PA(Rl(l))=Pr(l) and for every subject s such that
Lab(s)=l, let SR(s)={Rl(l)}.

In other words, labels identify positions in the partial order. A subject gets a role that
permits it to read all and only the objects it dominates, and write all and only the objects by
which it is dominated. The permissions and role calculations need to be done only for the
labels that apply to subjects.

We should check that CF(x,y) in N iff CF(x,y) in R.

To see CF(x,y) in N implies CF(x,y) in R, suppose CF(x,y) in N. Then by Theorem 1 Lab(x)
⊆ Lab(y) in N. Let us consider all the cases using s, s’, o, o’ for x and y:

a) CF(s,o) in N. Then Lab(s) ⊆ Lab(o). Let Lab(s)=l. By Construction 1, <CW,o>∈Pr(l)
and SR(s)={Rl(l)} and <CW,o> ∈ SP(s) is true in the RBAC configuration and so by
Def. 12.2) Channel(s,o) is true in R, hence CF(s,o) is true in R.

b) CF(o,s) in N. Similarly, Lab(o) ⊆ Lab(s) and <CR,o> is a permission in the role of s
and so Channel(o,s) is true in R.

c) CF(s,s’) in N. Then by Property 1 there must be an object o such that CF(s,o) and
CF(o,s’) and the reasoning reduces to cases a) and b). There must be channels from s
to o and from o to s’ in N and R, so CF(s,s’) in R.

d) CF(o,o’) in N. By a similar reasoning (Property 1), CF(o,o’) in R.

To see that CF(x,y) in R implies CF(x,y) in N, note that the CF relation in R is the transitive
closure of the Channel relation in R. The latter is defined in terms of the CR and CW permis-
sions in the RBAC configuration. By Construction 1, CR (or CW) permissions are in a role for
a subject s on an object o in R iff Lab(o)⊆Lab(s) in N (or Lab(s)⊆ Lab(o) in N), which, by
Theorem 1, implies that CF(x,y) in N. Hence no additional flows can exist in R with respect
to N. This completes the proof of Theorem 3.

Definition 13. We say that a partial order of equivalence classes on a set of subjects and
objects (the entities), is bipartite if the following are true:

a) For any two s and s’ such that Lab(s) ⊆ Lab(s’) there is an o such that Lab(s) ⊆ Lab(o)
⊆ Lab(s’).

b) For any two o and o’ such that Lab(o) ⊆ Lab(o’) there is an s such that Lab(o) ⊆ Lab(s)
⊆ Lab(o’).

Theorem 4. For every bipartite network N there is a bipartite partial order P such that
for entities x and y, CF(x,y) in N iff Lab(x) ⊆ Lab(y) in P and vice-versa.

Proof. The label generation method of Section 2 gives us a P for each N. For the converse,
given a P, an N can be constructed as follows. Suppose that Lab(x) ⊆ Lab(y), then considering
all cases where x and y can be subjects or objects, we have:

a) Lab(s) ⊆ Lab(o) in P. Then we define Channel(s,o) (or CW(s,o)) in N.

8

b) Lab(o) ⊆ Lab(s) in P. Then we define Channel(o,s) (or CR(s,o)) in N.
c) Lab(s) ⊆ Lab(s’) in P. Then by Def. 11.a) there is an o such that Lab(s) ⊆ Lab(o) ⊆

Lab(s’). We define Channel(s,o) and Channel(o,s’) (or CW(s,o) and CR(s’,o)) in N.
d) Lab(o) ⊆ Lab(o’) in P. Then by Def. 11.b) there is an s such that Lab(o) ⊆ Lab(s) ⊆

Lab(o’). We define Channel(o,s) and Channel(s,o’) (or CR(s,o) and CW(s,o’)) in N.

Corollary 1. For a set of subjects and objects (the entities), given any of:
a) an access control matrix,
b) a bipartite network,
c) a CF relation,
d) a mapping Lab defined for the entities,
e) a bipartite partial order of equivalence classes,
f) an RBAC configuration for the entities,

the other five, all defining equivalent networks, can be calculated with linear time or polyno-
mial-time algorithms.

Proof. a) and b) are equivalent representations, one in relational and the other in Boolean
form. A transitive closure algorithm, of cubic complexity [1] takes us from b) to c). From c)
Lab is calculated as described in Section 2, and this gives d). We can go from d) to e) by using
the construction of Theorem 4. This construction gives us also a bipartite network, which
takes us to f) by using Construction 1. This requires the use of a subset-checking algorithm
for labels, which, as mentioned above, has the same complexity as sorting. Once we have an
RBAC configuration, we have the function SP which tells which channels exist between sub-
jects and objects (Def. 12) and we can then construct the access control matrix a). The com-
plexity of this last algorithm is |SUBS| ⨯ |OBS|. Of course, other methods can be found to go
directly between any two of a) to f).

We take a mapping Lab, together with the relation of Theorem 1, to define a bipartite MLS
system (Multilayer Access Control System, also called MAC or Mandatory Access Control
system). As a consequence, we have an efficient construction to go from any bipartite MLS
system to an equivalent RBAC configuration and vice-versa.

It should be noted that our construction of roles is only a formal device and is not neces-
sarily one that would be useful in an organizational context, where roles are assigned to sub-
jects according to their functions in the organization, see Ferraiolo [16] and the abundant
literature on role mining.

3.3 Secrecy (or confidentiality) and integrity in RBAC

Def. 7 applies to RBAC entities. We consider that it is possible to define secrecy and integrity
for both subjects and objects, on the intuition that the fact that a subject can write is equiva-
lent for secrecy to the fact that an object can be read, and similarly for integrity. We do not
attempt in this paper to compare secrecy and integrity of entities, apart from telling which
entities have maximal ones. Different criteria could be used to define absolute levels of se-
crecy or integrity, e.g. by the number of outgoing or incoming edges for an entity, by the
number of entities that strictly dominate or are dominated by an entity, by the shortest path
from an entity to ones of maximal secrecy or integrity, and there may be other possibilities.
More precise definitions may depend on the needs of specific application domains.

9

4. Examples

4.1 Graphical notation, terminology and first example

We write s(r1,…,rn) if subject s has, in the current configuration, roles r1…rn. We combine this
notation with the label notation to write s(r1,…,rn):{y1,…,yn} to refer to both the roles and the
label of s. We have seen how the label of a subject in an RBAC network, derived from a con-
figuration, can be computed from its permissions, thus its roles.

The graphical representation for the examples (configuration graphs) is as follows (in
examples we will have constants for subjects, objects, and roles, with capital initials).

• As usual in related work, the function PA for an RBAC configuration is represented
by an access control matrix which shows the CR or CW permissions for each role
on each object, abridged to simple R and W. We call this role-permission table.

• Subjects are represented as ovals with the names of the subjects, their assigned
roles and their computed labels.

• Objects are represented as rectangles with their computed labels.
• Directed arrows represent the relation Channel or CF between subjects and ob-

jects, usually in transitively reduced form and without reflexive edges. The direc-
tion of an arrow is the direction of the permitted data transfer or flow, and bidirec-
tional arrows signify the presence of channels or flows in both directions. We do
not use different arrows for the Channel and the CF relations derived by transitiv-
ity since we are interested in CF only, as it could be implemented by different chan-
nel combinations.

• Configuration graphs will be usually arranged in an upward direction, to show the
data flow from the highest integrity to the highest secrecy level.

• For RBAC configurations, we may also give their partial order graphs. Such graphs
consist of double-sided rectangles containing each a label and the set of equivalent
entities that have that label; the arrows represent the inclusion partial order in the
set of labels, and so also the data flow between equivalence classes.

Informally, we say that subjects can know data and objects can store them, where data
are files or databases. Subjects can know data from their users (RBAC function SU) or read
them from objects; they can also write data that they know on objects. Objects can store data
of their own and data that they get by the effect of subjects writing on them. We are inter-
ested here in potential data flows, and so only in the possibility of reading or writing, rather
than in actually occurring reading or writing operations.

We will use the following intuitions:

• CF(s,o) implies that any data that s can know, o can store;
• CF(o,s) implies that any data that o can store, s can know;
• CF(s,s’) implies that any data that s can know, s’ can know also;
• CF(o,o’) implies that any data that o can store, o’ can store also.

A first example follows to introduce the notation and some basic ideas of our method.

Fig. 1.a) shows a role-permission table. Fig. 1.b) shows, as a bipartite graph, a network
with three subjects, S1 with roles R1 and R2, S2 with role R3, and S3 with role R1. The read

10

and write permissions of the subjects on the objects are represented by arrows (this repre-
sentation will not be used in the rest of the paper, since it is easily obtained).

Figure 1. a) A role-permission table, b) its corresponding bipartite graph, and c) its corresponding labeled graph

Fig. 1.c) shows a representation of the same configuration but oriented from maximum
integrity towards maximum secrecy, with the labels calculated according to Defs. 5 and
6. There are two equivalence classes of entities in the configuration, i.e. [S1,S2,O1,O2] ⊑
[S3]. Also Lab([S1,S2,O1,O2]) = {S1,S2,O1,O2} and Lab([S3]) = {S1,S2,S3,O1,O2}. Fig. 2.a)
shows at the same time the entities, their labels derived from their roles, and their bipar-
tite partial order. We call this representation a partial order graph. We can now see that
the configuration described so far is equivalent to others, one of which is shown in Fig.
2.b) for the role-permission table of Fig. 2.c), where only two roles are used. The inher-
itance R1>R2 can be defined.

Figure 2. a) The partial order graph for the network of Fig.1; b) an equivalent network; c) its role-permission table

So a partial order graph is a representation of a number of equivalent RBAC networks
and configurations and can be a basis for a reorganization of the set of entities and roles. This
is important in view of possible implementation constraints, by which some role or permis-
sion assignments could be preferable to others.

Fig. 1.a) shows a reduced data flow network, in the sense that the removal of any permis-
sions would change the labels and the data flow. In reduced networks, data may have to go
through intermediate entities in order to get to entities that can know or store them. Fig. 2.b)
shows instead the maximal data flow network in its equivalence class, since all possible chan-
nels are present, as in Construction 1. In maximal networks, such as the one of Fig. 2.b), direct
permissions are given to subjects to transfer data to wherever they can end up and from
wherever they can come. In implementations, which permissions are given depends on the
organizational structure and needs. We will usually show reduced graphs, in order to reduce
arrow clutter for readability. Note that, while a maximal data flow network is unique in its
equivalence class, in general reduced networks are not.

11

Examples like this, where we have a totally ordered label set, can be considered to be
implementations of simple Bell-La Padula systems. Subject S3 could be considered to be at
the Secret level since its data cannot be known anywhere else, where all the remaining enti-
ties could be considered to be at a lower level, which may be called Public, since their data
are known everywhere. For integrity the converse is true: the entities in the lower-level
equivalence class, not getting data from other entities, have collectively the highest integrity,
while S3, that gets data from the former class, has the lowest integrity.

From this analysis is also possible to get representations showing the data flows among
subjects and objects (thus eventually among users), such as those in Fig. 3. We shall not elab-
orate on these representations in this paper, but they could be useful for administrators.

Figure 3. a) Data flow among subjects; b) data flow among objects for the example of Fig.1

4.2 Other examples of role assignment analysis

Given sets of subjects and roles, we can analyze the data flows arising by assigning different
combinations of the roles to the subjects. Each combination is a different RBAC configuration.
Questions that can be answered by such analysis for a given configuration include:

• How can data flow between subjects (and so their users) and objects?
• What are the most secret entities and those that have the highest integrity?
• Are specified data separation constraints implemented?
• Are there parts of the network that don’t appear to be useful for subject-to-subject or

for user-to-user data flows?
• Are there configurations that are equivalent to the current one?

Of course, in order to do these analyses on real systems, appropriate software must be
developed, and certain difficulties have to be taken care of, among others in practical RBAC
systems permissions may be conditional, which is one important aspect we don’t consider.

To establish a relation with related research, we use an example from a previous paper
by Radhika et al. on a closely related topic [36], which in turn was inspired by examples in a
paper by Chakraborty et al. on RBAC to ABAC policy mining [10]. This example is extremely
small, but the advantage is that all the facts claimed will be easy to see. Three objects and
four roles are proposed, see Table 1. When subjects are assigned to roles, we get the SP func-
tion, which will be used for the analysis.

12

We will present a few configurations, to illustrate the analysis that can be carried out on
different subject and role combinations, and also the very different results that can be ob-
tained. But immediately we can see that

1) Object O1, being able to be read only, will always be of highest integrity in this con-
figuration; it can be interpreted as a database containing constant values at the cur-
rent configuration.

2) Object O2, being able to be written only, will always be of highest secrecy.
3) Since roles R3 and R4 have only reading permissions, subjects having only these roles

will have the highest secrecy; on the other hand, since role R2 has only writing per-
missions, subjects having only this role will have the highest integrity.

A question of principle can be expressed about this role-permission table, since all pos-
sible assignments of roles to subjects will lead to flows starting from O1, which then must
have constant contents, and ending in O2 (not necessarily in the same flow), which cannot
be read by any subject, thus by any user. Questions of this type can be answered by saying
that the system might allow other configurations, with different flows. For example, O1 at
this configuration might contain data written there in a previous configuration, and O2 might
be the destination of data to be read in future configurations. Such considerations will be of
interest for a systems designer or administrator.

Let us see some examples of assignments. The first assignment considers a configuration
with four subjects, each having one of the four roles. The labeled global data flow is given in
Fig. 4.a), and its partial order graph is given in Fig. 4.b).

Figure 4. a) A network with one role per subject; b) Its partial order

As mentioned, the permission of S4 to read from O1 is not shown since S4 can get O1’s
data indirectly by transitivity. All equivalence classes are singletons. The most secret entities
are O2, S3 and S4, and those that have the highest integrity are S2 and O1. We see that S2 can
write data on O2 (imagine a database of statistics which is being compiled for use in later

Table 1. Sample role-permission table

13

configurations). The right-hand flow could be interpreted as S1 processing data coming from
a user (not shown), using constant data in O1 and writing results in O3, results that can be
consumed by users associated with S3 and S4. This role assignment implements a situation
of conflict or separation of data (possibly a Chinese Wall [9,38]) between the data of O2 and
those of O1,O3, since no entity can have labels containing {O1,O2} or {O2,O3}. This causes
the flow to be partitioned in two.

Note also that Fig. 4.b) is not a lattice and could be made into a lattice only by adding
extraneous entities and permissions, inconsistent with what appear to be the requirements
that motivated the design of this configuration. The same will be true for Fig. 7.b) and Fig. 8.

Next, we consider the opposite case, where all roles are assigned to a single subject S1,
see Fig. 3. S1 and O3 are equivalent, however here they are in a configuration where they are
obliged to read and write only on objects that are not accessible to any other subject: O1
which has maximum integrity and minimum secrecy, and O2 which is the opposite. S1 can
get data from a user, and calculate results using constants in O1. Some of these results can
be stored in O3, and then remain accessible to S1, and others in O2, for possible future access.

Figure 5. a) A network with only one subject that has all the roles; b) its partial order

Next, we consider a configuration with two subjects S1 and S2, where S1 has roles R2 and
R4, and S2 has roles R1 and R3. This network is represented in Fig. 6.a), while Fig. 6.b) is its
partial order graph.

Figure 6. a) Another assignment of roles and b) its partial order

We have the non-singleton equivalence class {S2,O3}. Again O1 has the highest integrity
and least secrecy, while O2 is the opposite. In this case, S2 could be processing data brought
in from its user, using data in O1, and storing the results in O3. These data are available to S1
which can make them available to its user while storing them in O2 for later use.

Finally, we consider a case where there are two subjects, S1 with roles R2, R4 and S2 with
role R3. Role R1 is not used.

14

Figure 7. a) Another assignment of roles and b) its partial order

In this case O1 and O3 are of lowest secrecy but highest integrity, both are constant da-
tabases. S2 cannot know O1’s data and the subjects cannot know each other’s data, describ-
ing a situation of conflict. CF(O1,O3) is false because R1 is not used. This example could be
interpreted as two users acting through their subjects to share database O3, S1 using its own
database O1 and storing its results in database O2 for future use.

Although we are leaving users implicit in this paper, for interpreting the previous exam-
ples we have brought in the notion of user. In fact, different associations of users to subjects
(RBAC function SU) might be required for different utilizations of the networks. This type of
study is interesting in view of specific applications. In Sect. 4.3 we will see an example where
we will design a network according to data flow requirements among users.

Labels can be extended to users. In each configuration, for a user u, Lab(u)= ∪{Lab(s) |
SU(s)=u}, this defines a partial order of users based on the labels of their subjects. If it is
desired to construct labels that explicitly represent data flow among users, then such labels
can be constructed for users including user names, by replacing each Name(s) with Name(u)
where SU(s)=u. We leave this to further research.

This analysis can lead to imposing ‘separation of duties’ (SoD) constraints. In the example
of Fig. 5, if SU(S1)=U, the network shown is impossible if U has the (static or dynamic) con-
straint ({R1,R2,R3,R4},4). Separation of duties can also be specified, in a different manner
and with different results, by excluding certain combinations of categories in labels. For ex-
ample, several of the networks seen above are impossible if labels containing {O1,O2,O3} are
forbidden.

4.3 Example of deriving roles from data flow requirements

We show here an example of application of Theorem 3, by which, given any network, it is
possible to construct an equivalent RBAC configuration.

The bipartite network of Fig. 8 was generated at random, but it could be justified in terms
of the following description. In a company, there are normally many teams and many data
flows, and the network of Fig. 8 can be thought as showing one of them, which we call the
Project. Six users and three databases are involved in the Project. We assume that each user
can open only one session, and so we give the subjects the names of their users. Zak is the
manager of the Project and Ali is its accountant. Moh, Kai and Jul work in collaboration, form-
ing an equivalence class of subjects that will be called the MainTeam. Ben has been asked to
work on his own, without any communication except reporting to the manager. The four
databases are used as shown in the diagram, they are used for communication, and they can
also contain their own data for storage and consultation. The members of the MainTeam

15

have different permissions on the databases DB A and DB B but each of them can get all their
contents, directly or indirectly. Fig. 8 could be expressed as an access control matrix.

In terms of security requirements, this network satisfies the following:

• The MainTeam can share among themselves all data, including those of DB A and
DB B.

• The MainTeam, including its databases, cannot know the data known or stored in
outside databases or by outside Project members. It constitutes an equivalence
class of maximum integrity.

• Zak and Ali cannot know each other’s data. Each has maximum secrecy.
• Ben can only know its own data, and so is of maximum integrity.
• Only Zak can know the contents of all databases.
• Ali can know the data of the MainTeam and DB C, it cannot know the data of Ben,

DB D or Zak.
• DB D can only store the data of the MainTeam and Ben, including its own.
• DB C can only store the data of the Main Team, including its own.

We have expressed the requirements visible in Fig. 8, or Fig. 8 could be derived from the
requirements, possibly specified in a more stylized form, and we leave this to further re-
search.

Figure 8. a) Data flow in the Project; b) Labels in the Project

To give labels to the entities of this network, according to Defs. 5 and 6 and Theorem 4,
we start by giving all members of the MainTeam their common label, which is {Moh, Kai,
Julie, DBA, DB B}. To shorten the other labels, we use the familiar notation +, meaning that
each equivalence class of entities has a label that includes its own and the ones of the entities
from which it can read. Fig. 8.b) shows the bipartite partial order of the labels of the entities
in the Project Table 2 shows the CR and CW permissions of each subject on each object. Ac-
cording to Theorem 3 and Construction 1, roles for the project can be generated as shown in
Table 3. The obtained RBAC network is equivalent to the initially given network.

Note that the permissions of Tables 2 and 3 give subjects direct access to databases to
which they only have indirect access in Fig. 8.a). This is consistent with our view that, from

16

a security perspective, direct or indirect access are equivalent. Surely, the permissions can
be modified according to other considerations.

Table 2. Permissions for the Project

Two inheritance relations can be defined, namely: R2<R1 and R3<R4. However we reit-
erate that these roles and inheritances are mechanically determined according to the per-
missions required and may not be appropriate in terms of the structure of the organization
and its evolution needs. In practice, these require further analysis.

Following is a summary of the method:

1) The data flow requirements are specified in a language (yet to be defined).
2) The specification is translated into a bipartite graph (method to be devised).
3) The methods described in Section 2 are used to identify the bipartite partial order of

equivalence classes and calculate the labels for the entities in the bipartite graph.
4) The reading and writing permissions are calculated from the labels and the roles are

assigned to subjects (Construction 1).

Note that, in order for this example to be realistic, we must assume that there are other
data flows in the Project: one such flow would be necessary to allow Zak to relay instructions
and feedback to his team, another would allow Zak and Abby to communicate, etc.

There are two different mechanisms to allow such additional data flows:

• Sequentially, by users changing roles for subjects or creating different sessions
• Concurrently, by allowing users to have different Usernames, each with different

roles defined on different data types. In the example above, one could define a
datatype for InstructionToTeam, another for RequestToAccountant, etc. In practice,
each such datatype will have its own data format to be sent over specific channels.
The different Usernames for a user will have to keep their data separate. Communi-
cation among them will have to abide by specific protocols, possibly including anon-
ymization and other practices that are not the subject of this paper.

The second mechanism is not usually considered in RBAC literature, but there is nothing
against using it in practice.

4.4 Example of deriving roles from security labels

In organizations, data flows can be defined implicitly by directly defining security labels and
assigning them to subjects. As a variation of the above example, we now give an example of
this.

The typical examples of security labels found in practice show totally ordered sets of la-
bels, such as Public ⊑ Protected ⊑ Confidential ⊑ Secret. Our theory [28,29] allows security

17

labels to form more complex partial orders. Fig. 9 shows a partial order of labels that can
also be written in the following way:

ProtectedA ⊑ ConfidentialA ⊑ SecretA,

ProtectedB ⊑ ConfidentialB ⊑ SecretB,

ProtectedB ⊑ ConfidentialA,

ConfidentialB ⊑ SecretA.

This is a renaming of the partial order of Fig. 8.b) but could also be interpreted as a label-
ing system used in an organization with two offices, A and B, with a requirement that some
employees (or databases) of office A should be able to know (or store) some of office B’s
data, as shown. Since this is a bipartite partial order, according to Corollary 1, it can be trans-
lated into an RBAC network. The RBAC role-permission table for this example is still the one
of Table 3.

Figure 9. Example of security labels

5. Reconfigurations

When any of the sets or functions in an RBAC configuration change, we have a reconfigura-
tion. Reconfigurations can occur by user action, such as activation or deactivation of sessions
or roles, by administrative action or by effect of policies. In some environments (e.g. in the
Cloud or in the IoT), reconfigurations can also occur as effect of failures, e.g. when a subject,
object or communication line fails. We will take failure as a case of subject, object or permis-
sion removal. Reconfigurations of RBAC networks yield other RBAC networks with their own
relations, partial orders of equivalence classes and sets of labels.

We are interested in reconfigurations that change the CR, CW relations, hence possibly
the CF relation. Logrippo [28] gives a brief discussion of ‘transformations’ in generic net-
works. In RBAC we have additions or removals of permissions to subjects, which can be
caused by addition or removal of permissions to roles, addition or removal of roles to sub-
jects, or changes in inheritance relations. Creation and removal of entities will be treated by
assuming the existence of a sufficient number of subjects with no roles, and objects for which
no permissions exist. These will have labels containing only their own names. They will be
connected to the rest of the network when roles or permissions are created for them or to-
wards them and disconnected when there are no more such roles or permissions (they may
then be purged of all the data they have come to know or to store, see later).

Describing in general terms the effects of reconfigurations on the CF relation, and thus
on labels, secrecy and integrity, is difficult for several reasons: the transitive nature of the CF
relation; the fact that role assignment or inheritance (or their removal) can give (remove)

18

several reading and writing permissions at once; as can the fact that a change of permissions
for a role has effect on all subjects that have the same role, or have senior roles if inheritance
is present. Of course, reconfigurations can lead from a configuration to an equivalent one (i.e.
may not change the CF relation) but in general this can only be known after the relation is
recalculated for the whole network.

We assume that entities maintain their names in different configurations and we use sub-
scripts to denote their relations at various configurations. So we write CRi(x,y) to refer to the
CR relation existing at configuration i, and similarly for CWi, CFi and Labi. In the rest of this
section, we will use indexes i and k, where k is a configuration that follows i. Calculating the
new labels is easy in two cases of adding permissions, by application of Defs. 5 and 6:

Property 2. If the only difference between configuration i and configuration k is that for
some s and o:

1) CRi(s,o) is false, but CRk(s,o) is true, then Labk(x) = Labi(x) ∪ Labi(o) for all x such
that CFi(s,x).

2) CWi(s,o) is false, but CWk(s,o) is true, then Labk(x) = Labi(x) ∪ Labi(s) for all x such
that CFi(o,x).

If, however, read or write permissions are removed, then the solution is less simple, since
it is not possible to remove the name of an entity x from the label of an entity y without
considering all possible flows from x to y. To see this, consider the following example: two
subjects S1 and S2 and two objects O1 and O2, with CR(S1,O1), CR(S2,O1), CW(S1,O2),
CW(S2,O2). Then Name(O1)∈Lab(O2) and this will remain true if CW(S2,O2) is removed.

A difficulty is the fact that roles may include both reading and writing permissions. To
simplify this aspect, we follow Sandhu’s proposal [41] to separate reading and writing roles.
Using Tab. 1 as an example, reading and writing roles can be separated by splitting Role R1,
as seen in Tab. 4. Hence in a network using Tab. 4, assignment (removal) of role R1 of Tab.1
can be accomplished by assigning (removing) roles R1R and R1W. In the rest of this section,
we assume that each role is either a writing or a reading role. Although such separation is
not done in current practice, it can be used in order to better understand the effects of adding
or removing roles.

Recall that a subject that has only reading roles is a subject of highest secrecy, while a
subject that has only writing roles is a subject of highest integrity. In the middle are subjects
with both reading and writing roles.

Table 4. Separation of reading and writing roles

Adding or removing reading or writing roles may have effects on the secrecy and integ-

rity of entities.

19

Definition 14:

1) The secrecy of x is increased (resp. decreased) with respect to y from configuration
i to configuration k if CFi(x,y) but not CFk(x,y) (resp. CFk(x,y) but not CFi(x,y)).

2) The integrity of x is increased (resp. decreased) with respect to y from configura-
tion i to configuration k if CFi(y,x) but not CFk(y,x) (resp. CFk(y,x) but not CFi(y,x)).

Or equivalently, since CF(x,y) iff Lab(x) ⊆ Lab(y):

1) The secrecy of x is increased (resp. decreased) with respect to y from configuration
i to configuration k if Labi(x) ⊆ Labi(y) is true but Labk(x) ⊆ Labk(y) is false (resp.
Labk(x) ⊆ Labk(y) is true but Labi(x) ⊆ Labi(y) is false).

2) The integrity of x is increased (resp. decreased) with respect to y from configura-
tion i to configuration k if Labi(y) ⊆ Labi(x) is true but Labk(y) ⊆ Labk(x) is false
(resp. if Labk(y) ⊆ Labk(x) is true but Labi(y) ⊆ Labi(x) is false).

Note that the secrecy of x is increased with respect to y iff the integrity of y is increased
with respect to x. Also the secrecy of x is decreased with respect to y iff the integrity of y is
decreased concerning x. Increase or loss can be with respect to several entities.

Theorem 5. For a subject s :

1) Adding a reading role to s does not decrease its secrecy or increase its integrity
with respect to any entity.

2) Removing a reading role from s does not increase its secrecy or decrease its integ-
rity with respect to any entity.

3) Adding a writing role to s does not increase its secrecy or decrease its integrity
with respect to any entity.

4) Removing a writing role from s does not decrease its secrecy or increase its integ-
rity with respect to any entity.

Proof. There are eight properties here, but the proofs are similar.

1) Adding a reading role to s will not reduce its label (Prop.2.1). For secrecy, this means
that it will not be the case that Labi(s) ⊆ Labi(y) is false but Labk(s) ⊆ Labk(y) is true for any
y. In other words, s will not flow to any additional entities. Hence the secrecy of s will not
decrease with respect to any entity. For integrity, all the entities that could flow to s earlier
still could after the addition, so the integrity of s will not increase.

2) Removing a reading role from s may result in its label to be reduced. s will still be able
to flow to the entities to which it flew before (secrecy not increased) but no additional enti-
ties will become able to flow to s (integrity not decreased).

3) Adding a writing role to s will not change the label of s but may augment other labels.
s will still be able to flow to all entities to which it flew earlier (secrecy of s not increased);
no other labels may become included in the label of s (integrity of s not decreased).

4) Removing a writing role from s will not change the label of s but may reduce other
labels. The secrecy of s will not decrease but its integrity will not increase.

Note that, of course, whenever it is said that a property is not increased (or not de-
creased), this means that it may well decrease (or increase).

20

Very similar properties can be derived to describe what can happen to the labels and the
secrecy and integrity of objects if subjects get or lose roles that allow them to read from or
write to them.

The properties of Theorem 5 are weak because, when a role is added, it is not known if
its permissions were already present because of another previously assigned role (similarly
for removals). Stronger properties could be proved by adding assumptions, but this would
complicate the statements without significant added insight. More useful is the fact that
stronger properties can be derived if the labels are recomputed after each reconfiguration
and compared with the ones of the previous configuration, see Property 2 above for two easy
cases. The application of Def. 14 will then make it possible to determine the changes in se-
crecy and integrity that have occurred. We leave this matter for future research.

Figure 10. A reconfiguration of Fig. 4

As a first example, consider the network of Fig. 10, which is a reconfiguration of the net-
work of Fig. 4 where role R1 has been split into R1R and R1W (Table 4) as well R1R has been
added to S2. So we are in case 1) of Theorem 5, also in Case 1) of Property 2. O1 has been
added to the labels of S2 and O2. The secrecy of S2 or O2 has not been decreased with respect
to any entity. However the integrity of S2 and O2 has been decreased with respect to O1 and
so the label of O1 is now included in the label of S2 and O2. Correspondingly, the secrecy of
O1 has been decreased with respect to S2 and O2. Perhaps a warning to the administrator or
to the users involved should be issued.

Figure 11. A reconfiguration of Fig. 10

Further, consider the network of Fig. 11, where the network of Fig. 10 has been reconfig-
ured by removing R1W from S1. We are in case 4 of Theorem 5. We see that the secrecy of S1
and O1has increased with respect to O3, S3, S4, so S1 is now of maximum secrecy. We also

21

see that the integrity of O3, S3 and S4 has increased with respect to S1 and O1, however it
might not have been so if there were other flows between O1, S1 and O3.

Increases or decreases in secrecy or integrity are important in practice because of possi-
ble data flows through reconfigurations [28] These flows occur if an entity can keep the data
that it has known or stored through reconfigurations, in other words if we assume that these
data will be available for reading or writing in the next configuration. In our formalism, there
is the implicit assumption that entities keep the data for which the flow from the originating
entity still exist, but purge the data for which the flow from the originating entity has been
lost. In practice, policies should be established for the following events:

• The label of an entity x loses Name(y) for some y. The integrity of x is increased
with respect to y and the secrecy of y is increased with respect to x. x should be
required to purge all data previously acquired from y. Administrative warnings
may be in order. Also this may be prevented from happening by policies, e.g. poli-
cies specifying that x should always know the data of y (constraints on the sets of
labels were discussed in [28]).

• The label of an entity x acquires Name(y).The secrecy of y is decreased with re-
spect to x and the integrity of x is reduced with respect to y. Administrative warn-
ings may be in order. Also this may be prevented from happening by policies, e.g.
policies specifying that the data of y should never be known to x.

More complicated labeling methods could also be envisaged, for example to remember
that an entity is keeping data acquired until a specified reconfiguration, but we leave this for
further research.

Purging and warning policies are well-known in corporate practice and have their place
in the IoT. For example, when an employee moves from one office to another, which is not
higher in the data flow order, normally she not only loses access to the data sources she had
access to in the previous office, but she also has to dispose of (purge) all related documents
she might have acquired from those sources. This matter acquires a different aspect if the
data themselves can be transformed. For example, in a hospital setting, data can be moved
from one entity to another of lower classification after losing identifying information, they
then become different data with different secrecy requirements, see Myers and Liskov [31].
A new data flow is started with the anonymized data and the entity where the anonymization
is done can be thought as split into two entities, one that is at the end of a flow, and another
that is at the beginning of a new flow [29]. Obsolescence is an automatic data transformation
by which data lose secrecy value in time. This has been studied in other contexts and we
leave it for future research in our context.

Theorem 5 is also relevant for the introduction or reconfiguration of role hierarchies. It
is interesting to see that the secrecy of a subject s may decrease if s becomes senior of a role
that has writing permissions that its initial role did not have. Data purging from s may be
required.

6. Literature review and comparisons

The theory developed here was influenced by two early papers, the work of Bell and La Pad-
ula [4] and its refinement in the work of Sandhu [39]. Although neither of these papers is on
RBAC, they introduce several basic concepts that are still valid, well beyond the application

22

areas for which they were originally conceived. These concepts are: the partial ordering of
data security levels and its relation with data flows, labels, secrecy and integrity; with the
idea that data flow policies can be enforced by constraining the sets of available labels. Bell
and La Padula [4] use a partial order model (see below) while Sandhu [39] uses a lattice
model and cites the fact that partial orders can be embedded into lattices [5]. It has been
shown in our papers [28,29], as well as in this paper, that this embedding may force the in-
troduction of unnecessary entities, and that a simpler, more general theory can be developed
by using directly partial orders instead of lattices.

Basing data flow theory on partial order theory generalizes established notions of se-
crecy and integrity. There can be little doubt that the top entities in a partial order, not having
outgoing channels, should be considered the most secret. Coming to integrity, several no-
tions of integrity have been presented in the literature, and ours is consistent with Sandhu’s
information flow integrity [40], and derives from Biba [7]. It also conforms with Bell-La Pad-
ula’s definition [4], where it is noted that an entity with no incoming flows “cannot be sabo-
taged”. Sandhu shows in [39] that both secrecy and integrity levels can be expressed in a
single lattice partial order and we follow his idea, after extension to general partial orders.
Since our labels determine both secrecy and integrity of entities, together with the permitted
data flows, it is justified to call them security labels.

The short paper by Osborn [34] was the first on the problem of data flow analysis for
RBAC. We share its basic goals, and we agree on its examples, but we generalize its approach
in several ways: i) the paper addresses data flows among objects, as determined by data
flows among roles, and not data flows among subjects and objects as we do; ii) the paper
assumes that to generate security labels it is necessary to generate a lattice flow, which we
show not to be the case; iii) as a consequence, we can in our paper introduce concepts of
secrecy and integrity, which that paper does not use; iv) the paper uses its own algorithms,
based on node and edge creation; these algorithms are not analyzed for complexity.

Gofman et al. [17] elaborate on the results of the previous paper and present improved
algorithms, which are specific to this problem and not the application of general-purpose
algorithms as in our case. They provide a complexity analysis of the algorithms they propose,
which is polynomial, just as ours [42], however with some exponents to the fifth power while
our algorithms are of cubic complexity, due to the use of the transitive closure algorithm
together with the linear algorithm that constructs the partial ordering. A comparison of their
algorithm with ours would require much detailed work, since our approach differs from
theirs for the same reasons i) to iii) mentioned for Osborn’s paper. It would require aligning
the two algorithms to take in consideration these differences, and then executing them on
the same data and computer. The paper continues with an “incremental analysis algorithm”
which proposes to “incrementally update the information flow graph in response to changes
to the RBAC policy”. We have presented our view on this subject in Sect. 5. Essentially, in-
stead of ad-hoc algorithms to take care of various types of reconfigurations, which these au-
thors propose, we propose to recalculate all the labels at each reconfiguration, which is an
efficient process. In any case, comparing algorithm efficiency is outside of the scope of this
paper.

Then, this research subject has remained dormant until the paper by Radhika et al. [36],
which is the most recent reference. This paper essentially “describes how a lattice model can
be captured using an RBAC configuration” and it also “helps in creating information-flow

23

secure RBAC policies”. Our aims are similar but not being bound to the lattice model we can
be more general. While they claim that standard RBAC does not provide information flow
control, we claim that any RBAC configuration with reading and writing permissions controls
the flow of data in ways that can be determined by using efficient algorithms. We use generic
algorithms, while they use their own algorithms. They derive labels for objects and roles,
while we find it more useful to derive labels for subjects and objects. Their method does not
produce the detailed flow analyses, involving combinations of subjects and roles, that we
have demonstrated in Sect. 4.

None of these three papers positions itself in the framework of a general theory of data
security in networks. In particular, none of them justifies the use of the lattice model, except
than by citation of previous work. However, as mentioned, Osborn notes in [34] that the Can-
Flow graph for RBAC configurations “may or may not be a lattice”.

Coming to other related papers, Kuhn [22] presents a method for implementing RBAC
using multi-level mechanisms. He develops a set of definitions for assigning permissions to
category sets, and he evaluates how many roles can be supported with different numbers of
categories, ignoring security levels. His concern is implementation, whereas our concern has
been to show that several methods of defining data networks are essentially equivalent and
can be mutually translated in principle.

Barkley [3] shows how an RBAC access control policy can be created for any given access
policy expressed in terms of an access control list. See for this our Corollary 1.

Osborn et al. [33] show that it is possible to configure RBAC to enforce both Lattice-based
and Discretionary access control policies (LBAC and DAC). They present constructions to
satisfy in RBAC the various properties of LBAC, such as Simple security property, Liberal *-
property, Strict *-property, and variations (a previous paper by Sandhu [41] is based on sim-
ilar ideas). Concerning DAC, they show that it is possible to represent in RBAC not only access
control lists, but also reconfigurations due to creation and destruction of objects, ownership
changes, granting and revocation of permissions. Their goals are more general than ours.

Zhao and Chadwick [48] present an alternative view of the same topic. They concentrate
on the Bell-La Padula model [4], and they show how it can be implemented in RBAC. Faithful
to BLP, they consider executing, reading, appending, and writing permissions, as well as ex-
ecuting roles, reading roles, appending roles and writing roles. They define four mappings,
one from subjects to executing roles, another from security levels to reading roles, another
from security levels to appending roles, and a final one from security levels to writing roles.
They also take advantage of role hierarchy allowing reading permissions to increase and
writing permissions to decrease according to the positions in the security hierarchy.

Habib et al. [18] present the BLP model as a lattice-based model and get to the conclusion
that “the BLP model is more restrictive than the RBAC model”.

All these authors define BLP, as well as LBAC and MLS, as lattice-based, while in fact the
BLP report [4] bases its model on the theory of partial orders without any mention of lattices
(most clearly, see Fig. A1, p. 72 in [4], which is not a lattice). Thus BLP, just as the bipartite
MLS defined in this paper, can specify any bipartite network and so any RBAC network (Sec-
tion 3.2).

The contribution of our paper is theoretical, i.e. to show, by a straightforward proof, that
all the methods mentioned for defining data flows are, in their essence, mutually equivalent

24

and mutually reducible. Our proof uses a construction that has no claims of practicality or
efficiency, and so if realistic constructions are required, other methods should be used. We
do not propose here a direct comparison with the BLP model since it is complex and would
require a separate study.

Koch et al. [21] present a graph-based formalism for RBAC. However their graphs repre-
sent structural relationships such as ownership of sessions, role assignments, activation of
roles, etc., which are different concerns than data flow and security.

The problem of analyzing the effects of reconfigurations (the safety analysis problem for
RBAC) has been studied in several papers. See Jha et al. [20] which contains a literature re-
view. Examples of properties studied in this literature are whether certain classes of users
could possibly gain or be refused access to resources by effect of sequences of reconfigura-
tions. A related topic is comparing the expressive power of access control models for their
ability to preserve security properties across state transitions [45]. These issues are outside
of the scope of this paper, which is concerned only with the presentation of our partial-order
model and the immediate consequences of basic reconfigurations.

Our approach does not take into account role hierarchies. However for any RBAC net-
work defined with the use of role hierarchies, there is an equivalent one defined without
using them, and role hierarchies can always be ‘flattened’, see Chen and Crampton [12].
Crampton [13] pointed out the awkwardness of implementing multi-level systems using
RBAC because of the inheritance rules in RBAC, and proposed a new inheritance model to
address this problem. An earlier paper by Sandhu [41] addressed similar concerns.

7. Conclusions

We have reviewed the long-standing problem of data flow analysis for RBAC systems, using
the concept of partial order of equivalence classes of entities, so far not exploited in this re-
search area. The contributions of this paper with respect to the literature on the same topic
are:

1) Previous studies were limited by the view that secure data flows must be lattice-
structured, however RBAC can define data flows that are not lattice-structured. We
have shown that RBAC can define any bipartite network, and that data security con-
cepts such as secrecy and integrity can be defined for any network, thus for any RBAC
network (Sect. 3).

2) Previous studies considered data flow relations between roles and objects; we have
considered instead flow relations between subjects and objects, where subjects can
have combinations of roles (Sect. 4).

3) We have shown the equivalence and mutual transformability between apparently dif-
ferent data security models such as access control matrices (or arbitrary bipartite
networks), multi-level networks, and RBAC configurations. Roles correspond to
equivalence classes of entities and labels (Sect. 3 with examples in Sect. 4).

4) We have shown the expressive capabilities of our partial order diagrams, where sin-
gle vertices represent equivalence classes of entities. From them, information can be
obtained concerning data flows, secrecy and integrity; roles and role assignments can
be derived from them (Sect. 4).

25

5) We have shown, but only by example, how roles can be derived from data flow re-
quirements (Sect. 4.3). In the example, we have shown how ‘data separation’ or ‘con-
flict’ requirements on data flows can be implemented in labels and then translated
into role configurations. A generic method for generating RBAC configurations that
implement specified data security requirements is a subject for further research.

6) We have shown that the reconfiguration of any network will yield another network
that is a partial order of equivalence classes (while clearly the reconfiguration of a
lattice is not necessarily a lattice), and so all these networks can be defined in RBAC;
we have examined the data flow consequences of adding or removing roles (Sect. 6).

7) We have considered also the problem of data flows between RBAC configurations, as
permissions in a system change, analyzing the possibility that subjects and objects
keep their data, and pass them on in the next configuration. We have seen the effects
of certain reconfigurations on secrecy and integrity. Concepts of administrative warn-
ings and data purging were related to such reconfigurations (Sect. 6).

Reference [43] presents a method for implementing partial order data security models
such as the one used in this paper in Software defined networks (SDN).

Future research could deal with the application of these concepts for the design of organ-
izational or IoT systems with various data security requirements. Requirement specification
languages could be defined, for implementation in terms of bipartite networks and roles.

This theory is of course limited to RBAC systems that constrain data flows. RBAC is a very
general security model that has many applications, well beyond data security. Also, RBAC
must adapt itself to the needs of the organizations where it is used, which opens other con-
siderations that are outside of the scope of this paper.

Acknowledgment. This research was funded in part by a grant of the Natural Sciences
and Engineering Research Council of Canada. We are grateful to Omer Landry Nguena Timo
for his comments that have led to several improvements.

Compliance with ethical standards. This research was funded exclusively by a Discovery
Grant of the Natural Sciences and Engineering Research Council of Canada (NSERC) awarded
to the author for long-term research. The author declares that he has no conflicts of interest.

Ethical approval: This article does not contain any studies with human participants or
animals. This research has not involved any data repositories or Artificial Intelligence meth-
ods.

References

1. A.V. Aho, J.E. Hopcroft, J.D. Ullman. The design and analysis of computer algorithms.
Addison-Wesley, 1974.

2. M. Alramadhan, K. Sha. An overview of access control mechanisms for Internet of
things. Proc. 2017 26th International Conference on Computer Communication and
Networks (ICCCN 2017) IEEE, 1-6.

3. J. Barkley. Comparing simple role-based access control models and access control
lists. Proc. 2nd ACM workshop on Role-based access control. (1997) ACM 127-132.

4. D.E. Bell, L.J. La Padula. Secure computer systems: unified exposition and Multics
interpretation. MTR-2997, Mitre Corp., Bedford, Mass., 1976.

26

5. K. Bertet, M. Morvan, L. Nourine. Lazy completion of a partial order to the smallest
lattice. Intern. KRUSE Symposium: Knowledge Retrieval, Use and Storage for Effi-
ciency (1997), 72–81.

6. E.Bertin, D.Hussein, C.Sengul, V. Frey. Access control in the Internet of Things: a sur-
vey of existing approaches and open research questions. Annals of telecomm. 74(7)
(2019), 375-388.

7. K.J. Biba. Integrity considerations for secure computer systems. TR-3153. Mitre
Corp. Bedford, Mass.(1977).

8. G. Birkhoff. Lattice Theory, American Mathematical Society, 1967.
9. M. Bishop. Computer security, Art and science. 2nd edition. Addison-Wesley, 2019.
10. S .Chakraborty, R. Sandhu, R. Krishnan. On the feasibility of attribute-based access

control policy mining. 2019 IEEE 20th Internat. Conf. on Information Reuse and In-
tegration for Data Science (IRI 2019) IEEE, 245-252.

11. H.C. Chen. Collaboration IoT-Based RBAC with Trust Evaluation Algorithm Model
for Massive IoT Integrated Application. Mobile Netw Appl 24, (2019) 839–852.

12. L. Chen, J. Crampton. Risk-aware role-based access control. 7th International Work-
shop on Security and Trust Management, (STM 2011), Revised Selected Papers 7
2012, 140-156. Springer.

13. J. Crampton. On permissions, inheritance and role hierarchies. In: Proc. 10th ACM
Conf. on Computer and communications security (CCS 2003). ACM Press, 85-92.

14. D.E. Denning. A lattice model of secure information flow. Comm. ACM 19(5) (1976),
236-243.

15. D.F. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, R. Chandramouli. Proposed NIST
standard for Role-Based Access Control. ACM Trans. on Information and System Se-
curity, 4(3) (2001) 224–274.

16. D.F. Ferraiolo, D.R. Kuhn, R. Chandramouli. Role-based access control. 2nd Ed. Ar-
tech House, 2007.

17. M.I. Gofman, R. Luo, J. He, Y. Zhang, P. Yang, S. Stoller. Incremental Information Flow
Analysis of Role Based Access Control. Security and Management (2009), 397-403.

18. L. Habib, M. Jaume, C. Morisset. A formal comparison of the Bell & Lapadula and
Rbac models. The Fourth International Conference on Information Assurance and
Security (2008) IEEE,3-8.

19. E. Harzheim. Ordered sets. Springer, 2005.
20. S. Jha, N. Li, M. Tripunitara, Q. Wang, W. Winsborough. Towards formal verification

of role-based access control policies. IEEE Trans. on Dependable and Secure Com-
puting. 2008 11;5(4) (2008):242-55.

21. M. Koch, L.V. Mancini, F. Parisi-Presicce. A graph-based formalism for RBAC. ACM
Trans. on Information and System Security (TISSEC). 5(3) (2002) 332-65.

22. D. R. Kuhn. Role Based Access control on MLS Systems without Kernel changes.
Proc. 3rd ACM Workshop on Role-Based Access Control (1998), 25-32.

23. E.Kozyri, S Chong, A.C. Myers. Expressing information flow properties. Foundations
and Trends in Privacy and Security., 18;3(1), (2022) 1-102.

24. B.W. Lampson. Protection. ACM SIGOPS Operating Systems Review, 8(1) (1974)
18-24.

25. C. E. Landwehr. Privacy research directions. Comm. ACM 59(2) (2016) 29-31.

27

26. H. Li, S. Wang, X.Tian, W. Wei, C. Sun. A survey of extended role-based access control
in cloud computing. Proc. 4th Intern. Conf`. on Computer Engineering and Networks
(2015) 821-831.

27. L. Logrippo. Multi-level access control, directed graphs and partial orders in flow
control for data secrecy and privacy. Proc. 10th Intern. Symp. on Foundations and
Practice of Security (FPS 2017), LNCS Vol. 10723, 111-123.

28. L. Logrippo. Multi-level models for data security in networks and in the Internet of
things. Journal of Information Security and Applications, Vol. 58 (2021), 102778.

29. L. Logrippo The order-theoretical foundation for data flow security. Submitted for
publication. Available in: https://www.site.uottawa.ca/~luigi/papers/23_Order-
Theory.pdf (accessed Jul. 2024),

30. L. Logrippo, A. Stambouli. Configuring data flows in the Internet of Things for secu-
rity and privacy requirements. Proc. 11th International Symp. on Foundations and
Practice of Security (FPS 2018). Springer LNCS Vol. 11358, 115-130.

31. A. C. Myers, B. Liskov. Protecting privacy using the decentralized label model. ACM
Trans. on Software Eng. and Methodology, 9(4), 2000, 410-442.

32. A. Ouaddah, H. Mousannif, A. Abou Elkalam, A.A. Ouahman. Access control in the
Internet of Things: Big challenges and new opportunities. Computer Networks 112.
(2017) 237-62.

33. S. Osborn, R. Sandhu, Q. Munawer. Configuring role-based access control to enforce
mandatory and discretionary access control policies. ACM Trans. on Information
and System Security (TISSEC). 3(2) (2000) 85-106.

34. S. Osborn, Information flow analysis of an RBAC system. Proc. 7th ACM Symp. on
Access control models and technologies (SACMAT 2002), 163-68.

35. J. Qiu, Z. Tian, C. Du, Q. Zuo, S. Su, B. Fang A survey on access control in the age of
Internet of things. IEEE Internet of Things Journal. 7(6)(2020)4682-96.

36. B.S. Radhika, N.V. Narendra Kumar, R.K. Shyamasundar. Towards unifying RBAC
with information flow control. Proc. 26th ACM Symposium on Access Control Mod-
els and Technologies (2021), ACM, 45-54.

37. S. Ravidas, A.Lekidis, F.Paci, N.Zannone. Access control in Internet-of-Things: A sur-
vey. Journal of Network and Computer Applications, 144 (2019), 79-101.

38. R.S. Sandhu. Lattice-based enforcement of Chinese Walls. Computers & Security
11(8)(1992), 753-763.

39. R.S. Sandhu. Lattice-based access control models. IEEE Computer 26(11)(1993), 9–
19.

40. R.S. Sandhu. On five definitions of data integrity. Database Security VII: Status and
Prospects, North-Holland (1994), 257-267.

41. R.S. Sandhu. Role hierarchies and constraints for lattice-based access control. 4th
ESORICS Symp., Springer (1996), 65-79.

42. A. Stambouli, L. Logrippo. Data flow analysis from capability lists, with application
to RBAC. Information Processing Letters, 141(2019), 30-40.

43. A. Stambouli, L. Logrippo. Implementation of a partial order data security model for
the Internet of Things (IoT) using Software defined networking (SDN). To appear
in the Journal of Cybersecurity and Privacy (MDPI) (2024).

https://www.site.uottawa.ca/~luigi/papers/23_OrderTheory.pdf
https://www.site.uottawa.ca/~luigi/papers/23_OrderTheory.pdf

28

44. A.Thakare, E. Lee, A. Kumar, V.B. Nikam, Y.G. Kim. PARBAC: Priority-attribute-based
RBAC model for Azure IoT cloud. IEEE Internet of Things Journal. 7(4) (2020)
2890-900.

45. M. Tripunitara, N. Li. A theory for comparing the expressive power of access control
models. Journ. Computer Security, 15 (2007), 231-272.

46. Y.A. Younis, K. Kifayat, M. Merabti. An access control model for cloud computing.
Journal of Information Security and Applications. 19(1) (2014) 45-60.

47. G. Zhang, J. Tian. An extended Role based access control model for the Internet of
Things. Intern. Conf. on information, networking and automation (ICINA 2010)
IEEE, .Vol. 1, 319-323,

48. G. Zhao, D.W. Chadwick. On the Modeling of Bell-LaPadula Security Policies using
RBAC. 17th IEEE International Workshops on Enabling Technologies (WETICE
2008) 257-262.

