
Citation: Stambouli, A.; Logrippo, L.

Implementation of a Partial-Order

Data Security Model for the Internet

of Things (IoT) Using Software-

Defined Networking (SDN). J.

Cybersecur. Priv. 2024, 4, 468–493.

https://doi.org/10.3390/jcp4030023

Academic Editor: Danda B. Rawat

Received: 13 May 2024

Revised: 17 July 2024

Accepted: 18 July 2024

Published: 20 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Implementation of a Partial-Order Data Security Model
for the Internet of Things (IoT) Using Software-Defined
Networking (SDN)
Abdelouadoud Stambouli 1,* and Luigi Logrippo 1,2

1 Département d’informatique et d’ingénierie, Université du Québec en Outaouais,
Gatineau, QC J8X 3X7, Canada; luigi@uqo.ca

2 School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
* Correspondence: staa16@uqo.ca

Abstract: Data security on the Internet of Things (IoT) is usually implemented through encryption.
This paper presents a solution based on routing, in which data are forwarded only to entities that are
intended to receive them according to security requirements of secrecy (also called confidentiality),
integrity, and conflicts. Our solution is generic in the sense that it can be used in any network,
together with encryption as appropriate. We use the fact that, in any network, security requirements
generate a partial order of equivalence classes of entities, and each entity can be labeled according
to the position of its equivalence class in the partial order. Routing tables among entities can be
compiled using the labels. The method is demonstrated in this paper for software-defined networking
(SDN) routers and controllers. We propose a centralized IoT architecture with a cloud structure using
SDN as networking infrastructure, where storage entities (i.e., cloud servers) are associated with
application entities. A small ‘hospital’ example is shown for illustration. Procedures for network
reconfigurations are presented. We also demonstrate the method for the normal case where different
partial orders, representing distinct but concurrent security requirements, coexist among a set of
entities. The method proposed does not impose an overhead on the normal functioning of SDN
networks since it requires calculations only when the network must be reconfigured because of
administrative intervention or policies. These occasional updates can be done efficiently and offline.

Keywords: Internet of Things (IoT); software-defined networking (SDN); data and information
security; data flow control; access control; secrecy-confidentiality-integrity

1. Introduction and Motivation

In this paper, we see the Internet of Things (IoT) as a set of entities that contain data,
are interconnected by directional data channels, and can modify their data contents by trans-
ferring data among themselves over the channels. Entities and channels can change over
time. However, it is always necessary that certain data security requirements be respected.
Data security is concerned with the three aspects of secrecy (often called confidentiality), in-
tegrity, and availability [1]. Secrecy means that only authorized entities can read certain data;
integrity means that only certain entities can write them; and availability means that all
authorized entities can access them. In this paper, we also consider ‘conflict’ requirements.
These are found where it is required that certain entities should not be allowed to know
(i.e., read) certain combinations of data (see the concept of the Chinese Wall in [1]). Conflict
requirements are secrecy requirements but are applied to combinations of data rather than
to single data items. We present a method to satisfy all these requirements by appropriately
programming routers in a software-defined networking and ‘cloud’ architecture.

Data security, information security, and data privacy are major concerns in the IoT; see
Alaba et al. [2], Singh et al. [3], and Qiang et al. [4]. The importance of data flow security
for data privacy is discussed by Landwehr in [5].

J. Cybersecur. Priv. 2024, 4, 468–493. https://doi.org/10.3390/jcp4030023 https://www.mdpi.com/journal/jcp

https://doi.org/10.3390/jcp4030023
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcp
https://www.mdpi.com
https://orcid.org/0000-0001-8804-0450
https://doi.org/10.3390/jcp4030023
https://www.mdpi.com/journal/jcp
https://www.mdpi.com/article/10.3390/jcp4030023?type=check_update&version=1


J. Cybersecur. Priv. 2024, 4 469

Encryption is the established method to protect data in the IoT, and it can be expected
to remain so. However, routing, with its ability to prevent data from reaching certain
entities or to direct data towards certain entities, has received much less attention. This
paper focuses on routing and proposes a method for using it, possibly as a complement
to encryption, especially in cases where encryption is unfeasible or impractical (e.g., if the
network’s entities have very limited computing capabilities), in order to further strengthen
data security.

Software-defined networking (SDN) is a networking architecture that facilitates the
establishment of global routing strategies. In SDN, packets can be forwarded or dropped.
However, no research exists on the use of SDN for the satisfaction of the security re-
quirements mentioned above. Most security research related to SDN is concerned with
infrastructure vulnerabilities.

Our approach to using SDN for data security is based on data labeling, combined
with policies stating that only entities labeled in certain ways can receive data from entities
labeled in certain other ways. Data labeling can be used to specify constraints on passing
data among entities as a general-purpose data flow control method. Research towards
the use of labeling in security exists (see Section 2), but not in connection with the global
routing capabilities of SDN. We show that SDN routing tables can be compiled for arbitrary
networks by using labels constructed according to an efficient method.

In Section 2, we provide a literature review. In Section 3, we give a short account of
previous research on data flow control for security and an introduction to software-defined
networking. Section 4 describes our method in principle. Section 5 presents a concrete
‘hospital’ example. Section 6 discusses the topic of network reconfigurations. Section 7
shows how networks with multiple flows can be implemented in our method. Section 8
presents how our method was simulated and tested. Section 9 deals with efficiency and
scalability. Section 10 concludes the paper.

2. Related Work

We have drawn inspiration from the work by Etalle et al. [6], where a function Tag is
defined that maps subjects or objects to the set of tags assigned to them, and where a security
administrator can formulate logic-based authorization policies that define access rights in
terms of these tags. This work extends work by Hinrichs et al. [7]. An important difference
between our approach and the one of [6,7] is that our labels can be calculated automatically,
while their tags are assigned by users. These authors also introduce expressive policy
languages that are still under development for our approach. In Singh et al. [3], entities
and data are labeled with two labels, one for secrecy and another for integrity, and security
policies are defined in such a way that data from entities can only flow into other entities
labeled to receive them. In our approach, we generalize this idea by using labels that can
be computed in any network, and we take advantage of the observation of Sandhu [8], in
which only one label is required to express both the secrecy and integrity of data.

In a recent paper, Burke et al. [9] propose MLS-Enforcer, a software-defined networking
(SDN) controller that enforces multi-level policies while retaining the ability to securely
relabel network nodes under changing configurations and network traffic demands; this is
done by using a polynomial-time heuristic relabeling algorithm. From the security point of
view, their method is much less general than our method, being restricted to a “Relaxed
Bell-La Padula” model, and the labels used are heuristic and more complex than ours.
However, they consider traffic demands that are outside of our scope. Future research can
deal with combining the ideas of this paper with those of ours, possibly leading to more
general results.

Some papers propose the use of different types of access control and data flow control
policy models in the IoT; for example, Xie et al. [10] propose the use of provenance-based
data flow control (PDFC), defined by complex authorization rules. Our policy model is
simpler, covers both access and flow control, has well-defined concepts of secrecy and



J. Cybersecur. Priv. 2024, 4 470

integrity, and can be directly applied to SDN. It also expresses provenance to the extent
that our labels can express provenance.

Al-Haj and Aziz [11] present a solution to enforce security policies to control the
routing configuration in database-defined networks. To achieve this, the authors use row-
level security checks and the lattice-based model [8,12] alongside the RAVEL architecture
(Wang et al. [13]). Their solution consists of constructing routing tables by using the
lattice model, encoding the tables in the database-defined network architecture of RAVEL,
and enforcing multi-level security policies using row-level security as an enforcement
mechanism. The authors deal separately with secrecy and integrity. To enforce the upward
flow of data, the authors propose to define the flow path, in the Can Flow table. This path
consists of sequences of nodes that data can flow into. Once a path is defined, each node
in this path starting from the first one, will be given a security label. Finally, a security
policy is defined with respect to a multi-level model, which states that data can only flow
upward from a security level into a higher one. The enforcement of downward data flow
for integrity is dual. Our work generalizes the work done in this paper in at least two
directions, namely that it can be applied to any network rather than lattice-based ones and
that our labels encode simultaneously secrecy and integrity requirements. One idea we
retain for further research is using a database approach to represent data flow policies.

Fernandes et al. [14] and Celik et al. [15] use data flow tracking within the system to
enforce fine-grained security policies using a combination of dynamic and static analysis.
We take another approach, which is labeling data. This can be simpler, compatible with
existing infrastructure, and efficient, but it can have limited granularity. Assigning labels to
data packets is a straightforward process that does not require significant computational
resources or expertise. This approach can be compatible with existing IoT systems since
many IoT systems already use some form of data labeling, such as metadata or tags, to
identify and manage data. It can also be more efficient than tracking the flow of data
in systems with limited resources. Labeling data can have limited granularity, and its
appropriateness depends on the context. For example, labeling an entire data packet with
a single label can be an efficient approach if the packet contains multiple data items of
similar sensitivity.

Haotian et al. [16] focus on smart home environments, and their approach may be
less applicable to other IoT domains. Our approach can be applied to any IoT domain
beyond smart homes and proposes a solution for securely sharing data between different
IoT domains. Our approach also provides a comprehensive analysis of the requirements
for IoT data flow configuration and presents a detailed architecture for implementation
using SDN.

Papers dealing with SDN security usually tackle security factors such as the exchange
and deployment of security policies within the network in the case of SDN domains, intru-
sion detection, security against external attacks, etc. [17,18]. Several of the proposed security
solutions use cryptographic algorithms that may be difficult to implement in sensors, and
in any case, they can be used in conjunction with our method. As mentioned, our approach
does not require cryptography, although cryptography can be used in combination with it.
Several of the reviewed papers are short and present only ideas for solutions. Many do not
concentrate on data security. Our work is the first to present a data flow control method for
security based on SDN routing, and thus a direct comparison of results is not possible.

Surely, some of the techniques proposed may be compatible with our approach and,
in combination with it, may lead to efficiency and security improvements; this will be the
subject of further research.

3. Preliminaries
3.1. Data Security Concepts

In classical papers by Denning [12] and Sandhu [8], which were preceded by the work
of Bell-La Padula [19] and followed by many others concurring with their basic ideas,
a concept of secure information flow was introduced, in which data are expected to flow



J. Cybersecur. Priv. 2024, 4 471

according to the order relations in a lattice of labeled entities. We adapt the basic definitions
from this literature as follows: For entities x and y, we say that there is a Channel from x to
y if entity x has permission to write data on y or entity y has permission to read data from x,
and graphically, we represent this as an arrow from x to y. Terms such as receiving or pulling
can also be used instead of reading and sending or pushing instead of writing.

The CanFlow or CF relation is defined as the transitive, reflexive closure of the Channel
relation and graphically corresponds to directed paths between entities. Any network of
entities that are represented as a directed graph in this manner is a preorder that can be
reduced to a partial order of equivalence classes of entities, where two entities x and y belong
to the same equivalence class iff CF(x,y) and CF(y,x) [20]. In other words, a set of entities
is in the same equivalence class if the data that is in any one of them can reach any other
through a directed path; further, the set of the resulting equivalence classes forms a partial
order.

We define the label of x, Lab(x), as the set of the names of all entities that can flow to
x. So, if x, y, and z are the names of all entities that can flow to w beside w itself, then
Lab(w) = {x,y,z,w}. Entities in the same equivalence class have the same label. It follows that
CF(x,y) iff Lab(x) ⊆ Lab(y), and so labels, with the inclusion relation between them, define
the flow relation between entities in the partial order.

Following the usual terminology in data security theory, we call entity names categories,
and we note that each category also defines a data provenance. Thus, the label of an entity
represents the data categories that the entity can know. It is important to note that, given a
set of reading and writing permissions, as they could be represented in an access control
matrix or in a graph, the labels can be computed efficiently by using well-known graph
component algorithms [21].

Following Sandhu [8], we say that the top entities in a partial order, not having any
outgoing data flows, have top secrecy, while the bottom entities, not having any incoming
data flows, have top integrity. Top secrecy corresponds to minimum integrity, and vice
versa. By extension, entities can be considered to have different levels of secrecy or integrity
according to their position in the partial order. In addition, situations of conflict (such
as the ones represented by Chinese Walls) can be represented by excluding certain label
combinations; e.g., if no entity is supposed to know both data of category x and category y,
then labels containing both x and y are forbidden (again, this is consistent with Sandhu [8]).
Studies [20,21] have shown that these definitions can be used not only for lattice networks
but also for any networks that can be specified by means of access control matrices or
permission lists, including the widely implemented role-based access control (RBAC).

Thus, a main difference between the theory presented in Denning [12] and Sandhu [8]
and the theory used here can be expressed as follows: while the former states that secure
data flows must be built by forming lattices of labeled entities, the latter theory shows that
for any preorder of entities, representing an arbitrary data flow in a network at a given
time, the equivalence classes of the entities form a partial order, and the entities in the
partial order can be considered to have different levels of secrecy or integrity according to
the position of their equivalence classes in the partial order. In the former theory, a lattice
structure is a precondition for secure data flows, while in the theory we have described,
any network (lattice-structured or not) has its own security properties for secrecy, integrity,
and conflicts.

3.2. Software-Defined Networking (SDN)

Just like the IoT, SDN is a networking technology introduced at the beginning of this
century. The literature on SDN is abundant; we mention some points in this section for
completeness.

SDN is an evolution of the classic network model into a network defined by appli-
cations. SDN architecture separates the network control (control plane) and forwarding
functions (data plane), enabling the network control to become directly programmable
and centrally managed. This programming is done via SDN controllers instead of classical



J. Cybersecur. Priv. 2024, 4 472

Internet protocols. Centralization allows the controller to maintain a global view of the
network and control it through standards such as OpenFlow, which is a protocol defined
by the Open Networking Foundation to transfer forwarding rules from the controllers to
the routers using APIs. We use in our work the most common way of programming SDN
networks, where applications give abstract rules to controllers, which translate them into
commands for the network equipment concerned, the SDN router.

To justify our choice of the SDN architecture, we start with the observation that global
security solutions are more efficient and effective when they are centralized, as SDN is.
Further, SDN is a system designed for efficient networking, so its use for data security will
be efficient. Finally, we will see that SDN allows a straightforward translation of our labels
into rules for controllers and then routers. Many types of controllers and routers exist in
practice, but our approach appears to be feasible for any of them. The use of SDN limits our
approach to centrally controlled IoT systems, but the resulting efficiency makes it valuable
in such contexts.

Reviews of SDN and its use for security can be found in several papers, e.g., Huang
et al. [22], a review paper that focuses on the use of SDN specifically for security in the
IoT. Other research that proposes SDN-based security frameworks for the IoT has been
mentioned in Section 2. However, the main concerns of this literature are the management
and deployment of security policies, identity management, and detection or prevention of
vulnerabilities, intrusions, or attacks; these subjects are outside of this paper’s scope.

SDN has been adopted in various systems and contexts, both in research and industrial
practice. Google uses SDN in its B4 WAN [23] to optimize bandwidth usage and resource
allocation between its data centers. Microsoft employs SDN in its Azure cloud platform [24]
to manage network resources efficiently, providing scalable and reliable cloud services.
GENI [25] is a research initiative that uses SDN to create a flexible and programmable
testbed for experimenting with future internet architectures and services. Researchers use
GENI to explore new networking paradigms and applications. Several other applications
of the SDN concept are found in theory and practice, hence the importance of our research.

4. Our System Design
4.1. Network Configurations and Graphic Representation

Following on the principles presented in Section 3, the main idea of this paper is that
the labels of entities, which can be computed automatically and efficiently from the Channel
relation [20,21], can be used for routing data in SDN networks, from the entities where
data originates, their provenance, to all the entities where they can flow. By using SDN
configured according to the partial order security model, it is possible to constrain the flow
of data in IoT systems to satisfy data security requirements. On this basis, we formulate
an SDN architecture where SDN forwarding tables are set by the SDN controllers using
the entities’ labels. It follows from the theory presented in Section 3 that this method is
general in the sense that it can be used for any network for which the data flow relation
can be represented as a directed graph of entities. Our method considers a centralized IoT
architecture where all data are transferred and stored on cloud platforms and accessed by
user applications.

We chose to work on a centralized IoT architecture with a cloud structure using
SDN as communication infrastructure. Several papers in the literature propose centralized
configurations for IoT security, such as Christos et al. [26], Hany et al. [27], and Roy et al. [28].
Further, our efficient centralized algorithms can reconfigure networks dynamically as
necessary; see Section 6. SDN will work very well in closed systems such as hospitals,
industrial plants, smart homes, and the like since its architecture is well-conceived for
scalability and efficiency.

In the Cloud, a data container and a server can be two distinct entities interconnected
via the network. For simplicity, we chose to represent them as a single entity. In cen-
tralized IoT systems, all devices are connected through centralized cloud servers, and
communication between different devices must be achieved through these servers. This



J. Cybersecur. Priv. 2024, 4 473

IoT configuration consists of three main layers: Sensing layer, Networking layer, and Ap-
plication layer. The Sensing layer consists of different types of sensors, RFIDs, and other
data-collecting devices. This layer collects data from the environment and sends it to the
cloud servers via centralized gateways. Entities requiring high integrity are found in this
layer. The Application layer involves various IoT applications that use the data collected by
sensors in contexts such as healthcare systems, smart cities, etc. High-secrecy entities are
found in this layer. The Cloud constitutes the IoT Networking layer and all communication
passes through it.

The Networking layer connects IoT objects to the Internet and contains the servers used
to store the data collected from the Sensing layer. Several communications technologies
and protocols can be used in this layer, such as 3G/4G/5G, Zigbee, Bluetooth, WiFi to
transport data from the Sensing layer to the Application layer on the one hand and inside the
Networking layer between the servers on the other hand. Our solutions are oriented towards
Wi-Fi since, with this technology, every entity or object in the system will have an IPAD
(or IP address) that identifies it. This simplifies our presentation, but our approach can
be extended.

We adapt the centralized IoT architecture to the SDN architecture; see Figure 1. The
Controller will have two routers to take care of: the first router is the Cloud router, which
interconnects the servers in the Cloud, implementing the Networking layer. The second
router is the Application router, to which the cloud router connects, and which interconnects
the entities in the Application layer. We also have an Access point that connects the Sensing
layer with the Networking layer, but we do not program this one, since its function is simply
forwarding the data to the cloud router. These are logical devices that can be implemented
by several physical devices of different types.

J. Cybersecur. Priv. 2024, 4, x FOR PEER REVIEW 7 of 27 
 

 
Figure 1. Our SDN implementation configuration. 

4.2. Labeling Tables, Forwarding Tables, and Data Flow Control Policy Enforcement 
Our method starts with a network representing an application layer configuration of 

directly connected application entities, defining a Channel relation. Following the princi-
ples presented in Section 3 and in the papers cited there, the equivalence classes of entities 
in the network are identified, and the resulting reduced graph is a partial order of equiv-
alence classes. Labels are then assigned to the equivalence classes, which become the la-
bels of the entities in each class. These labels can be simply obtained by set union, pro-
ceeding from source to sink. For example, if the label of a source equivalence class contains 
the name BobPulse, then all equivalence classes that dominate it will also contain this name 
in their labels. As mentioned, the necessary calculations are automatic, starting with the 
Channel relation [20]. 

The network obtained in this way will not be in the form of a centralized cloud-based 
configuration since application entities will be shown as communicating directly and not 
through the Cloud. So, the next step, in addition to the method described above, is to 
create the cloud infrastructure. This will be done by assigning at least one storage entity (in 
practice, a server or database) to each equivalence class of entities. Hence, in our architec-
ture, data are sent simultaneously to application entities and their associated storage en-
tities for permanent storage. The partial order of equivalence classes will be unchanged, 
with storage entities added to equivalence classes. The collection of these storage entities 
forms the Cloud and implements the Networking Layer of the IoT. 

At this point, we note that names in labels can be replaced by entity names. For ex-
ample, if a name such as BobPulse denotes data originating from an entity (a sensor) 
named A, then each occurrence of BobPulse in labels can be replaced by the name A. The 
label-inclusion relationship remains the same. These new labels based on entity names 
will directly provide the routing information needed to configure the SDN routers. They 
are compiled in labeling tables in the following way: For entities x and y, we say that x ∈ 
Holds(y) iff Label(x) ⊆ Label(y). A labeling table will have a line for each entity y in the net-
work and a column Holds containing, for each y, the set of x such that x ∈ Holds(y). For the 
controller, x ∈ Holds(y) means that data in entity x can be forwarded to entity y. The pro-
gramming of SDN routers is then immediate. Forwarding tables contain the command 
forward if a packet should be forwarded from one entity to another. For each router, we 
implement a forwarding table that includes the entities that are connected to it. 

We assume that we deal with routers with arbitrarily large capacities. Average rout-
ers in use today can have up to 250 entities connected to them [31], but this number can 
be increased by connecting routers sequentially (in cascade). Many modern routers adapt 

Figure 1. Our SDN implementation configuration.

Many papers in the literature mention a single controller for wide-area SDN. In
ElGaroui et al. [29] and Dias et al. [30], the authors use the same controller as us (Ryu
controller) to control multiple routers in their wide-area SDN. The constraints on the
physical placement of the servers and of the application entities will depend on factors such
as the type of controllers and routers used; for example, hierarchical controllers allow a
more distributed placement. These are lower-level implementation concerns, not discussed
in this paper.



J. Cybersecur. Priv. 2024, 4 474

4.2. Labeling Tables, Forwarding Tables, and Data Flow Control Policy Enforcement

Our method starts with a network representing an application layer configuration of
directly connected application entities, defining a Channel relation. Following the principles
presented in Section 3 and in the papers cited there, the equivalence classes of entities in
the network are identified, and the resulting reduced graph is a partial order of equivalence
classes. Labels are then assigned to the equivalence classes, which become the labels of the
entities in each class. These labels can be simply obtained by set union, proceeding from
source to sink. For example, if the label of a source equivalence class contains the name
BobPulse, then all equivalence classes that dominate it will also contain this name in their
labels. As mentioned, the necessary calculations are automatic, starting with the Channel
relation [20].

The network obtained in this way will not be in the form of a centralized cloud-based
configuration since application entities will be shown as communicating directly and not
through the Cloud. So, the next step, in addition to the method described above, is to create
the cloud infrastructure. This will be done by assigning at least one storage entity (in practice,
a server or database) to each equivalence class of entities. Hence, in our architecture, data
are sent simultaneously to application entities and their associated storage entities for
permanent storage. The partial order of equivalence classes will be unchanged, with
storage entities added to equivalence classes. The collection of these storage entities forms
the Cloud and implements the Networking Layer of the IoT.

At this point, we note that names in labels can be replaced by entity names. For
example, if a name such as BobPulse denotes data originating from an entity (a sensor)
named A, then each occurrence of BobPulse in labels can be replaced by the name A. The
label-inclusion relationship remains the same. These new labels based on entity names
will directly provide the routing information needed to configure the SDN routers. They
are compiled in labeling tables in the following way: For entities x and y, we say that x
∈ Holds(y) iff Label(x) ⊆ Label(y). A labeling table will have a line for each entity y in the
network and a column Holds containing, for each y, the set of x such that x ∈ Holds(y). For
the controller, x ∈ Holds(y) means that data in entity x can be forwarded to entity y. The
programming of SDN routers is then immediate. Forwarding tables contain the command
forward if a packet should be forwarded from one entity to another. For each router, we
implement a forwarding table that includes the entities that are connected to it.

We assume that we deal with routers with arbitrarily large capacities. Average routers
in use today can have up to 250 entities connected to them [31], but this number can be
increased by connecting routers sequentially (in cascade). Many modern routers adapt
automatically if a port is connected to another router. These technical details are ignored
here because they depend on the technology available, which is rapidly evolving.

Of the several columns a forwarding table may have, we need only the columns
Match Rules and Action. Each packet will have a source and a destination header. If in the
labeling table x ∈ Holds(y), then the controller will create in the router a flow entry using
the IPAD (x) source (IP src) and IPAD (y) destination (IP dst) in match rules and define the
forward action for such a pair since this is an authorized flow. When a packet arrives at
the router, the router will compare the IP src and IP dst in the packet headers. If there is
a forwarding rule, the router will perform it. Otherwise, the packet will be dropped. If
a packet arrives at a router and the destination entity cannot be found connected to this
router, the router will forward this packet to the next router in the configuration. This will
prevent overloading routers and eliminate unnecessary delays. In this way, the specified
partial order of equivalence classes will be implemented. Figure 2 presents a summary of
our method.



J. Cybersecur. Priv. 2024, 4 475

J. Cybersecur. Priv. 2024, 4, x FOR PEER REVIEW 8 of 27 
 

automatically if a port is connected to another router. These technical details are ignored 
here because they depend on the technology available, which is rapidly evolving. 

Of the several columns a forwarding table may have, we need only the columns 
Match Rules and Action. Each packet will have a source and a destination header. If in the 
labeling table x ∈ Holds(y), then the controller will create in the router a flow entry using 
the IPAD (x) source (IP src) and IPAD (y) destination (IP dst) in match rules and define the 
forward action for such a pair since this is an authorized flow. When a packet arrives at 
the router, the router will compare the IP src and IP dst in the packet headers. If there is a 
forwarding rule, the router will perform it. Otherwise, the packet will be dropped. If a 
packet arrives at a router and the destination entity cannot be found connected to this 
router, the router will forward this packet to the next router in the configuration. This will 
prevent overloading routers and eliminate unnecessary delays. In this way, the specified 
partial order of equivalence classes will be implemented. Figure 2 presents a summary of 
our method. 

 
Figure 2. Summary of our method. 

5. Example 
5.1. The Basic Configuration and Its Implementation 

As an example, we consider a very small health system. In generic terms, its config-
uration is as follows: there are sensors for patients’ blood pressure and pulse. There are 
wards, each of which has doctors and nurses, and patients are assigned to wards. There is 
also a Reanimation department and a Chief of Medicine department, each with a work-
station. Entities other than sensors are application entities. There are the following data 
categories: Pressure and Pulse data for each patient, and Stat (statistics) data for each ward. 
The security policies or requirements to be implemented are as follows: 
• The sensors should have the highest integrity but also low secrecy since their Pressure 

and Pulse data are needed by all other entities. Thus, they must be at the bottom of the 
partial order [20], and this is where they will end up given that their labels contain 
only one data category. 

• The Chief of Medicine department will have the lowest integrity since it uses data col-
lected from all other entities, but also the highest secrecy, since it contains highly sen-
sitive data for all patients and Wards. It must be at the top of the partial order [20], and 
this is where it will end up given that its label contains all data categories. 

Figure 2. Summary of our method.

5. Example
5.1. The Basic Configuration and Its Implementation

As an example, we consider a very small health system. In generic terms, its config-
uration is as follows: there are sensors for patients’ blood pressure and pulse. There are
wards, each of which has doctors and nurses, and patients are assigned to wards. There is
also a Reanimation department and a Chief of Medicine department, each with a workstation.
Entities other than sensors are application entities. There are the following data categories:
Pressure and Pulse data for each patient, and Stat (statistics) data for each ward. The security
policies or requirements to be implemented are as follows:

• The sensors should have the highest integrity but also low secrecy since their Pressure
and Pulse data are needed by all other entities. Thus, they must be at the bottom of the
partial order [20], and this is where they will end up given that their labels contain
only one data category.

• The Chief of Medicine department will have the lowest integrity since it uses data
collected from all other entities, but also the highest secrecy, since it contains highly
sensitive data for all patients and Wards. It must be at the top of the partial order [20],
and this is where it will end up given that its label contains all data categories.

• The Wards and Reanimation departments take data from the sensors, process them, and
forward the results to the Chief of Medicine department, they should have intermediate
levels of integrity and secrecy.

• Conflicts: (a) Patient data should be known only in each patient’s own Ward and in the
Reanimation and the Chief of Medicine departments. In addition, (b) Each Ward keeps
its own statistics that should be known only to it and to the Chief of Medicine. These
conflicts are represented by forbidding labels containing conflicting data categories,
such as, in our example, SamPress in Ward2.

We limit ourselves to an instance of this type of network where there are two Wards
and three patients, Sam, Bob, and Sally, each using a sensor. It is shown in Figure 3. In the
figure, rectangles represent sensors (three in the bottom layer) or application entities (six in
the layers above) and include an upper-case letter for a short name of the entity, a longer
descriptive name, and the label (a set of data categories) in braces. For readability, labels



J. Cybersecur. Priv. 2024, 4 476

have been simplified with respect to the theory presented in Section 2, but still show the
data categories allowed in each entity, e.g., the workstation of Doctor2 can contain the data
for Sally and some local statistics. As in Section 3, arrows represent directional channels
for receiving (reading, pulling) and sending (writing, pushing), so for example in Figure 2
entity C can send data to K, or equivalently K can receive data from C. There is an arrow, or
a path of arrows (a data flow), between an entity and another iff the label of the first entity
is included in the one of the second.

J. Cybersecur. Priv. 2024, 4, x FOR PEER REVIEW 9 of 27 
 

• The Wards and Reanimation departments take data from the sensors, process them, and 
forward the results to the Chief of Medicine department, they should have intermediate 
levels of integrity and secrecy. 

• Conflicts: (a) Patient data should be known only in each patient’s own Ward and in 
the Reanimation and the Chief of Medicine departments. In addition, (b) Each Ward 
keeps its own statistics that should be known only to it and to the Chief of Medicine. 
These conflicts are represented by forbidding labels containing conflicting data cate-
gories, such as, in our example, SamPress in Ward2. 
We limit ourselves to an instance of this type of network where there are two Wards 

and three patients, Sam, Bob, and Sally, each using a sensor. It is shown in Figure 3. In the 
figure, rectangles represent sensors (three in the bottom layer) or application entities (six in 
the layers above) and include an upper-case letter for a short name of the entity, a longer 
descriptive name, and the label (a set of data categories) in braces. For readability, labels 
have been simplified with respect to the theory presented in Section 2, but still show the 
data categories allowed in each entity, e.g., the workstation of Doctor2 can contain the data 
for Sally and some local statistics. As in Section 3, arrows represent directional channels 
for receiving (reading, pulling) and sending (writing, pushing), so for example in Figure 
2 entity C can send data to K, or equivalently K can receive data from C. There is an arrow, 
or a path of arrows (a data flow), between an entity and another iff the label of the first 
entity is included in the one of the second. 

 
Figure 3. Hospital example. 

According to IoT terminology, the three sensors are the Sensing layer and the rest is 
the Application layer. Figure 3 shows a ‘direct’ Channel configuration without the Cloud or 
the Networking layer. It can be checked that the security policies above are implemented 
by the choice of label sets, which was done by the security administrator at the time the 
network was configured, explicitly or implicitly by defining the Channel relation. For ex-
ample, the blood pressure of Sam can only be known in Ward1, in the Reanimation or Chief 
of Medicine departments. 

Figure 3 represents the network architecture that results from the data flow policies. 
The resulting partial order of equivalence classes in this architecture is shown in Figure 4, 
using letters for the names of the entities in Figure 3. Note the non-trivial equivalence 
classes {A,C} and {B,D}, since the entities in Wards have symmetric channels and thus can 
know the same data. The other equivalence classes are singletons. The partial order of 
equivalence classes is shown by the arrows, e.g., {H}] < {A,C} < {K}, also {H} < {G} < {K}, etc. 
This partial order serves as a reference point for representing the order relationships in 
our design. In Figure 5, we present the labeling tables for the App router in this 

Figure 3. Hospital example.

According to IoT terminology, the three sensors are the Sensing layer and the rest is
the Application layer. Figure 3 shows a ‘direct’ Channel configuration without the Cloud or
the Networking layer. It can be checked that the security policies above are implemented
by the choice of label sets, which was done by the security administrator at the time the
network was configured, explicitly or implicitly by defining the Channel relation. For
example, the blood pressure of Sam can only be known in Ward1, in the Reanimation or Chief
of Medicine departments.

Figure 3 represents the network architecture that results from the data flow policies.
The resulting partial order of equivalence classes in this architecture is shown in Figure 4,
using letters for the names of the entities in Figure 3. Note the non-trivial equivalence
classes {A,C} and {B,D}, since the entities in Wards have symmetric channels and thus can
know the same data. The other equivalence classes are singletons. The partial order of
equivalence classes is shown by the arrows, e.g., {H}] < {A,C} < {K}, also {H} < {G} < {K}, etc.
This partial order serves as a reference point for representing the order relationships in our
design. In Figure 5, we present the labeling tables for the App router in this configuration,
obtained by the mentioned rule x ∈ Holds(y) iff Label(x) ⊆ Label(y) (Section 4.2). As defined
in Section 3.1, Lab(x) is the set of the names of all entities that can flow to x. For example, the
name of entity H is included in the labels of all entities that can receive the data from H. A
router programmed in this way implements all and only the flows in Figure 3, thus ensuring
that the data security constraints are satisfied. For example, entity B (the workstation of
Nurse 2) can only receive data from its equivalent entity D (Doctor’s 2 workstation) or
entity J, Sally’s pulse detector, or from itself, B (which can be removed if desired). On
the contrary, B cannot receive data from any of A, C, G, H, I, and K that are not in its
Holds. D has the same label and thus the same Hold as B and therefore can receive from
the same sources only. The SDN implementation configuration of this example is shown
in Figure 6. We see in this figure that the sensors are connected to the access point, and
the application entities are connected to the application router. The App Router in this
figure has the routing table shown in Figure 5, and so the bidirectional arrows do not mean
unconditional transfer of data in both directions; they mean transfer of data from and
to the router, which will decide where to forward according to its routing table. When
labeling tables are compiled into routing tables, an entity name such as A will be translated
to IPAD(A). To recapitulate, we have seen here an application of our method where the



J. Cybersecur. Priv. 2024, 4 477

Channel relation was used to calculate labels, the labels were used to compile the labeling
table, and the labeling table was used to program the App Router, after the replacement of
entity names with IP addresses.

J. Cybersecur. Priv. 2024, 4, x FOR PEER REVIEW 10 of 27 
 

configuration, obtained by the mentioned rule x ∈ Holds(y) iff Label(x) ⊆ Label(y) (Section 
4.2). As defined in Section 3.1, Lab(x) is the set of the names of all entities that can flow to 
x. For example, the name of entity H is included in the labels of all entities that can receive 
the data from H. A router programmed in this way implements all and only the flows in 
Figure 3, thus ensuring that the data security constraints are satisfied. For example, entity 
B (the workstation of Nurse 2) can only receive data from its equivalent entity D (Doctor’s 
2 workstation) or entity J, Sally’s pulse detector, or from itself, B (which can be removed 
if desired). On the contrary, B cannot receive data from any of A, C, G, H, I, and K that are 
not in its Holds. D has the same label and thus the same Hold as B and therefore can receive 
from the same sources only. The SDN implementation configuration of this example is 
shown in Figure 6. We see in this figure that the sensors are connected to the access point, 
and the application entities are connected to the application router. The App Router in 
this figure has the routing table shown in Figure 5, and so the bidirectional arrows do not 
mean unconditional transfer of data in both directions; they mean transfer of data from 
and to the router, which will decide where to forward according to its routing table. When 
labeling tables are compiled into routing tables, an entity name such as A will be trans-
lated to IPAD(A). To recapitulate, we have seen here an application of our method where 
the Channel relation was used to calculate labels, the labels were used to compile the la-
beling table, and the labeling table was used to program the App Router, after the replace-
ment of entity names with IP addresses. 

 
Figure 4. Partial order of equivalence classes for Figure 3. 

 
Figure 5. Labeling tables for the configuration of Figure 3. 

Figure 4. Partial order of equivalence classes for Figure 3.

J. Cybersecur. Priv. 2024, 4, x FOR PEER REVIEW 10 of 27 
 

configuration, obtained by the mentioned rule x ∈ Holds(y) iff Label(x) ⊆ Label(y) (Section 
4.2). As defined in Section 3.1, Lab(x) is the set of the names of all entities that can flow to 
x. For example, the name of entity H is included in the labels of all entities that can receive 
the data from H. A router programmed in this way implements all and only the flows in 
Figure 3, thus ensuring that the data security constraints are satisfied. For example, entity 
B (the workstation of Nurse 2) can only receive data from its equivalent entity D (Doctor’s 
2 workstation) or entity J, Sally’s pulse detector, or from itself, B (which can be removed 
if desired). On the contrary, B cannot receive data from any of A, C, G, H, I, and K that are 
not in its Holds. D has the same label and thus the same Hold as B and therefore can receive 
from the same sources only. The SDN implementation configuration of this example is 
shown in Figure 6. We see in this figure that the sensors are connected to the access point, 
and the application entities are connected to the application router. The App Router in 
this figure has the routing table shown in Figure 5, and so the bidirectional arrows do not 
mean unconditional transfer of data in both directions; they mean transfer of data from 
and to the router, which will decide where to forward according to its routing table. When 
labeling tables are compiled into routing tables, an entity name such as A will be trans-
lated to IPAD(A). To recapitulate, we have seen here an application of our method where 
the Channel relation was used to calculate labels, the labels were used to compile the la-
beling table, and the labeling table was used to program the App Router, after the replace-
ment of entity names with IP addresses. 

 
Figure 4. Partial order of equivalence classes for Figure 3. 

 
Figure 5. Labeling tables for the configuration of Figure 3. Figure 5. Labeling tables for the configuration of Figure 3.

J. Cybersecur. Priv. 2024, 4, x FOR PEER REVIEW 11 of 27 
 

 
Figure 6. Implementation configuration of Figure 3. 

5.2. Introducing the Networking Layer 
To the configuration of Figure 3, we now add the Cloud and the Networking layer to 

fully implement the configuration of Figure 1. Flows between application entities must 
pass through the Networking layer, and so storage entities (such as databases, servers, 
etc.) have been added to the Cloud; hence, at least an equivalent storage entity (i.e., with 
the same label) is associated with each equivalence class of application entities. Storage 
entities are identified with primes. For example, we have added an entity G′ that allows 
the ReanimationWkstn, entity G, to retrieve the data received from the sensors. We have 
also deleted any entity-to-entity channels that are not transited by a storage entity. Note 
that the required data flows between application entities (and no others) are still obtained 
by transitivity. 

In Figure 7, we see that databases A′, B′, G′, and K′ were added to function as storage 
entities. The partial order of equivalence classes implemented by this configuration is 
shown in Figure 8. 

 

Figure 6. Implementation configuration of Figure 3.



J. Cybersecur. Priv. 2024, 4 478

5.2. Introducing the Networking Layer

To the configuration of Figure 3, we now add the Cloud and the Networking layer to
fully implement the configuration of Figure 1. Flows between application entities must
pass through the Networking layer, and so storage entities (such as databases, servers,
etc.) have been added to the Cloud; hence, at least an equivalent storage entity (i.e., with
the same label) is associated with each equivalence class of application entities. Storage
entities are identified with primes. For example, we have added an entity G′ that allows
the ReanimationWkstn, entity G, to retrieve the data received from the sensors. We have
also deleted any entity-to-entity channels that are not transited by a storage entity. Note
that the required data flows between application entities (and no others) are still obtained
by transitivity.

In Figure 7, we see that databases A′, B′, G′, and K′ were added to function as storage
entities. The partial order of equivalence classes implemented by this configuration is
shown in Figure 8.

J. Cybersecur. Priv. 2024, 4, x FOR PEER REVIEW 11 of 27 
 

 
Figure 6. Implementation configuration of Figure 3. 

5.2. Introducing the Networking Layer 
To the configuration of Figure 3, we now add the Cloud and the Networking layer to 

fully implement the configuration of Figure 1. Flows between application entities must 
pass through the Networking layer, and so storage entities (such as databases, servers, 
etc.) have been added to the Cloud; hence, at least an equivalent storage entity (i.e., with 
the same label) is associated with each equivalence class of application entities. Storage 
entities are identified with primes. For example, we have added an entity G′ that allows 
the ReanimationWkstn, entity G, to retrieve the data received from the sensors. We have 
also deleted any entity-to-entity channels that are not transited by a storage entity. Note 
that the required data flows between application entities (and no others) are still obtained 
by transitivity. 

In Figure 7, we see that databases A′, B′, G′, and K′ were added to function as storage 
entities. The partial order of equivalence classes implemented by this configuration is 
shown in Figure 8. 

 Figure 7. Cloud configuration for Figure 3.

J. Cybersecur. Priv. 2024, 4, x FOR PEER REVIEW 12 of 27 
 

Figure 7. Cloud configuration for Figure 3. 

 
Figure 8. Partial order for the centralized architecture. 

For the implementation configuration of Figure 9, the sensors are connected to access 
points that transfer their data to first-level cloud routers. These cloud routers forward the 
data to the storage entities. Finally, second-level routers are configured to connect the user 
endpoints to the first level of cloud routers. By adding the required routers, we obtain the 
configuration shown. 

 
Figure 9. An implementation configuration for Figure 4. 

The configuration of Figure 9 is an extension of the configuration of Figure 6, ob-
tained by adding the mentioned new storage entities or databases and a router among 
them. As required, all the storage entities are connected to the Cloud Router, the application 
entities are connected to the App Router, and the sensors are connected to an Access point, 
which in turn is connected to the Cloud router, just as in Figure 7. No direct communication 
between application entities occurs, and all data passes through the Cloud Router. How-
ever, communication between storage entities is allowed to permit data flows to higher 
levels in partial order. 

This having been done, we must configure our routers; again, we do this by con-
structing the labeling tables. 

Figure 8. Partial order for the centralized architecture.

For the implementation configuration of Figure 9, the sensors are connected to access
points that transfer their data to first-level cloud routers. These cloud routers forward the
data to the storage entities. Finally, second-level routers are configured to connect the user
endpoints to the first level of cloud routers. By adding the required routers, we obtain the
configuration shown.



J. Cybersecur. Priv. 2024, 4 479

J. Cybersecur. Priv. 2024, 4, x FOR PEER REVIEW 12 of 27 
 

Figure 7. Cloud configuration for Figure 3. 

 
Figure 8. Partial order for the centralized architecture. 

For the implementation configuration of Figure 9, the sensors are connected to access 
points that transfer their data to first-level cloud routers. These cloud routers forward the 
data to the storage entities. Finally, second-level routers are configured to connect the user 
endpoints to the first level of cloud routers. By adding the required routers, we obtain the 
configuration shown. 

 
Figure 9. An implementation configuration for Figure 4. 

The configuration of Figure 9 is an extension of the configuration of Figure 6, ob-
tained by adding the mentioned new storage entities or databases and a router among 
them. As required, all the storage entities are connected to the Cloud Router, the application 
entities are connected to the App Router, and the sensors are connected to an Access point, 
which in turn is connected to the Cloud router, just as in Figure 7. No direct communication 
between application entities occurs, and all data passes through the Cloud Router. How-
ever, communication between storage entities is allowed to permit data flows to higher 
levels in partial order. 

This having been done, we must configure our routers; again, we do this by con-
structing the labeling tables. 

Figure 9. An implementation configuration for Figure 4.

The configuration of Figure 9 is an extension of the configuration of Figure 6, obtained
by adding the mentioned new storage entities or databases and a router among them. As
required, all the storage entities are connected to the Cloud Router, the application entities
are connected to the App Router, and the sensors are connected to an Access point, which
in turn is connected to the Cloud router, just as in Figure 7. No direct communication
between application entities occurs, and all data passes through the Cloud Router. However,
communication between storage entities is allowed to permit data flows to higher levels in
partial order.

This having been done, we must configure our routers; again, we do this by construct-
ing the labeling tables.

The Cloud router will have the function of allowing application entities and sensors
(right column) to send data to the storage entities. So, for example, data sent from sensor J
that detects SallyPulse will arrive at the Cloud router through the Access point. The router will
find the rows containing J, which are the ones for storage entities B′ and G′, and forward the
data to these entities. If the destination is not found in any row of the first router, the latter
will send the data to the second router. Note, for example, that Label(J) = {SallyPulse} and
Label(B) = Label(B′) = Lab(D) = {SallyPulse,Stat2}. So by label inclusion, each of {J, B, D, B′}
can flow to B′, as specified in the labeling table. These are all and only entities whose labels
are included in the label of B′, and so they are all and only entities whose data should be
allowed to flow to B′, as shown in Figure 10. The table in Figure 10 can be easily constructed
from the partial order of Figure 8, using the same formula x ∈ Holds(y) iff Label(x) ⊆ Label(y)
that was introduced in Section 4.2.

Once the data reaches the App Router the same treatment is done: we check which row
of the labeling table applies according to the provenance of the data, we send the data to
each designated entity, and we drop the rest. In this table, the data sent to B′ will also be
available to J, B, D, K, and K′, and the data sent to G′ will also be available to G, K, and K′.
On the other hand, it is easy to check that no new flows have been added.



J. Cybersecur. Priv. 2024, 4 480

J. Cybersecur. Priv. 2024, 4, x FOR PEER REVIEW 13 of 27 
 

The Cloud router will have the function of allowing application entities and sensors 
(right column) to send data to the storage entities. So, for example, data sent from sensor 
J that detects SallyPulse will arrive at the Cloud router through the Access point. The router 
will find the rows containing J, which are the ones for storage entities B′ and G′, and for-
ward the data to these entities. If the destination is not found in any row of the first router, 
the latter will send the data to the second router. Note, for example, that Label(J) = {Sally-
Pulse} and Label(B) = Label(B′) = Lab(D) = {SallyPulse,Stat2}. So by label inclusion, each of {J, 
B, D, B′} can flow to B′, as specified in the labeling table. These are all and only entities 
whose labels are included in the label of B′, and so they are all and only entities whose 
data should be allowed to flow to B′, as shown in Figure 10. The table in Figure 10 can be 
easily constructed from the partial order of Figure 8, using the same formula x ∈ Holds(y) 
iff Label(x) ⊆ Label(y) that was introduced in Section 4.2. 

 
Figure 10. Labeling table for Figure 6. 

Once the data reaches the App Router the same treatment is done: we check which 
row of the labeling table applies according to the provenance of the data, we send the data 
to each designated entity, and we drop the rest. In this table, the data sent to B′ will also 
be available to J, B, D, K, and K′, and the data sent to G′ will also be available to G, K, and 
K′. On the other hand, it is easy to check that no new flows have been added. 

Clearly, these transformations can be implemented by simple algorithms. 
The final configuration of Figure 9 seems to have no relation to the partial order of 

equivalence classes we started from (Figure 8), the only similarity being the fact that the 
sensors are at the bottom layer in both. However, according to the contents of the routing 
tables, the data flows between entities are the same, although not along the same paths. 
This means the first-given policies of secrecy, integrity, and conflict are properly imple-
mented. For example: 
1. In Figure 3, we have a flow H→A→C→K. By looking at Figures 7–9, we see that the 

data of H can go to A, C, and K through the Cloud Router and server A′. 
2. Similarly, in Figure 3, we have the flow J→G→K. In the cloud configuration data can 

go from J to G through G′ and from J to K through B′ and G′. 
3. On the other hand, unwanted flows are clearly impossible. For example, the reader 

can check easily that there is no way for data in H to end up in D or data in C to end 
up in D. Hence, conflict requirements are satisfied. 

Figure 10. Labeling table for Figure 6.

Clearly, these transformations can be implemented by simple algorithms.
The final configuration of Figure 9 seems to have no relation to the partial order of

equivalence classes we started from (Figure 8), the only similarity being the fact that the
sensors are at the bottom layer in both. However, according to the contents of the routing
tables, the data flows between entities are the same, although not along the same paths. This
means the first-given policies of secrecy, integrity, and conflict are properly implemented.
For example:

1. In Figure 3, we have a flow H→A→C→K. By looking at Figures 7–9, we see that the
data of H can go to A, C, and K through the Cloud Router and server A′.

2. Similarly, in Figure 3, we have the flow J→G→K. In the cloud configuration data can
go from J to G through G′ and from J to K through B′ and G′.

3. On the other hand, unwanted flows are clearly impossible. For example, the reader
can check easily that there is no way for data in H to end up in D or data in C to end
up in D. Hence, conflict requirements are satisfied.

We see that our solution uses multicasting, through which the same data can arrive at
its destination through multiple paths. Multicasting is a well-known technique in networks,
and methods exist to eliminate duplicate packets received from several sources. It makes
our solution fault-tolerant to some extent, e.g., in the second example, the failure of one of
B′ or G′ will not affect the path J→K.

Clearly, this example can be scaled up by introducing many more sensors, many more
wards, many more workstations, etc. To make this possible, the entities would have to
be parameterized or indexed, such as PulseDetect1, PulseDetect2, etc. Evidently, real-life
networks will not be able to be shown in the simple graphic format used here. Graphic
interfaces, showing high-level representations that can be manipulated by administrators,
should be the subject of future research.

6. Network Reconfigurations

In the IoT, the network topology may be continuously transformed or reconfigured
with the creation or removal of entities and communications channels. This can occur for
many reasons, notably by the intervention of system administrators or by the effect of
policies. For example, in some systems, some reconfigurations are determined by policies
expressed in terms of time, such as that at certain times, certain entities may change
their permissions (i.e., labels) or disappear altogether, while others may be created. The



J. Cybersecur. Priv. 2024, 4 481

routing tables must be updated at each such event, but the implementation configuration
will remain the one in Figure 1 or Figure 9. It is a useful property of the partial order
model that a partial order exists for any network, and so our method can be used to
construct new routing tables after each network reconfiguration (note that, on the contrary,
if a lattice-structured network is reconfigured, the result may not be lattice-structured).
Reconfigurations may affect only some routing tables.

In our partial order model, the reconfigurations that matter are the changes in the
domination relation, because these are the only ones that can change the data flows.
Reconfigurations that do not change this relation are adding or removing channels that
are implied by transitivity. Consequently, we consider three types of reconfigurations:
introduction or removal of entities, or label changes. The label of an entity can be specified
in one of two ways:

• Explicitly: in this case, the label indicates the intended contents of the entity and, by
inference, its Channel and CF relations

• Implicitly, in this case, the Channel or CF relations of the entity are given, along with,
by inference, its intended contents and label.

For implementation efficiency, it should be considered that different networks will
have different update needs. For example, some networks may have very frequent label
changes but much less frequent additions or removals. In this case, the algorithms and
data structures will have to be optimized for quick label changes, and it may not matter
if they perform less well for the other operations. Adding backward links in the labeling
tables will help speed up certain searches but will also increase the amount of memory
required for the tables. Further, the labeling tables may have to be kept sorted according to
some criteria to speed up searches. Such decisions should be left to the designers of specific
systems. Standard data structure theory proposes methods that can be used for optimizing
the reconfiguration methods, and we leave this to further research.

• Addition of new entities: Three types of entities can be introduced: sensors, storage
entities, and application entities. In each case, we assume that the new entity comes
with a label, see above.

- Adding a sensor: The sensor’s labels contain only the names of the sensors
themselves, along with the names of other equivalent sensors, if any. In the
implementation configuration, the new sensor must be attached to the appropriate
access point. In the labeling tables, a line must be added for the new entity,
containing in the Holds column the name of the equivalent sensors. Further, the
name of the new sensor must be added to the Holds lists of all entities that should
receive data from it.

- Adding a storage entity: If it is decided to add a new storage entity to the cloud
layer, the change to the implementation configuration is the appearance of this
entity attached to the cloud router. Concerning the labeling table, this new entity
will have to belong to one of the already existing equivalence classes. This one
already must have at least one storage entity (otherwise it will be disconnected
from the other entities). Then the new entity must be added to the labeling table
with the same Holds list as the other entities in its equivalence class; it must also
be included in the Holds lists of all the entities in its equivalence class.

- Adding an application entity: Two main cases arise, according to whether the
new entity belongs to an existing equivalence class or whether instead, it will be
in a new equivalence class (in other words, whether it has an existing label or a
new one).

A. The first case is easily treated. For the implementation configuration, the
new entity will be connected to the App Router. The new entity will access
the same data entities as the other entities in its class. For the labeling table,
a new entry must be created for the new entity, its name must be added
to the Holds lists of all entities in its equivalence class, and the Holds list



J. Cybersecur. Priv. 2024, 4 482

of the new entity must be the same as the Holds lists of these entities. The
name of the new entity should be added to the Holds lists of all entities that
dominate it in the partial order (that should receive data from it).

B. The second case is the case of the addition of an application entity with a
new label, which creates a new equivalence class. In this scenario, we must
add at least a corresponding storage entity for this new entity with the
same label. For the implementation configuration, the new entity must be
connected to the App Router and the new storage entity must be connected
to the Cloud Router. For the labeling tables, new entries must be created for
each of the two new entities. The Holds lists of these two entities must be
identical and must contain the names of all entities from which they should
receive data. The names of these two entities must be added to the Holds
lists of the entities where they should send data.

The following pseudocode summarizes the steps for adding entities to our configura-
tions (Algorithm 1).

Algorithm 1: Entity Addition

Input: Initial implementation configuration
Output: Updated implementation configuration

1: Procedure AddEntity(Entity E)
2: If E is a sensor, then
3: AddSensorEntity
4: Else if E is a storage entity (database), then
5: AddStorageEntity(E)
6: Else if E is a workstation, then
7: AddWorkstationEntity(E)
8: End if
9: End procedure

10: Procedure AddSensorEntity(Entity E)
11: Entity(E)
12: AddConnectionToAcessPoint(E)
13: UpdateRoutingTabllesForSensor(E)
14: End procedure

15: Procedure AddStorageEntity(Entity E)
16: AddEntity(E)
17: AddConnectionToCloudRouter(E)
18: UpdateCloudRouterLabelingTable(E)
19: UpdateAppRouterLabelingTable(E)
20: End procedure

21: Procedure AddWorkstationEntity(Entity E)
22: If E has an equivalent storage entity,Then
23: AddEntity(E)
24: AddConnectionToAppRouter(E)
25: UpdateAppRouterLabelingTable(E)26:
UpdateCloudRouterLabelingTableForAuthorizedEntities(
27: Else
28: AddEntity(E)
29: AddEquivalentStorageEntity(E)
30: Repeat AddWorkstationEntity(E) // Recursive call
31: End if
32: End procedure



J. Cybersecur. Priv. 2024, 4 483

33: Function UpdateCloudRouterLabelingTable(Entity E)
34: // Add a line in the cloud router’s labeling table for the new entity E
35: End function

36: Function UpdateAppRouterLabelingTable(Entit’ E)
37: // Add a line in AppRouter’s labeling table for the new entity E
38: End function

39: Function UpdateCloudRouterLabelingTableForAuthorizedEntities(Entity E)
40: // Add IP address of E into labeling table of cloud router for authorized entities only
41: End function

42: Function AddEntity(Entity E)
43: // Add entity E to the implementation configuration
44: End function

45: Function AddConnectionToAccessPoint(Entity E)
46: // Add connection between entity E and the Access Point
47: End function

48: Function AddConnectionToCloudRouter(Entity E)
49: // Add connection between entity E and the cloud router
50: End function

51: Function AddConnectionToAppRouter(Entity E)
52: // Add connection between entity E and AppRouter
53: End function

54: Input: Initial implementation configuration
55: Output: Updated implementation configuration

56: For each Entity E in InitialConfiguration do
57: AddEntity(E)
58: End for

59: Return UpdatedConfiguration

• Entity removal and entity failure: This will change the implementation configuration
since the removed entity will not be included in the new implementation configuration.
It should be kept in mind that the removal of an entity does not make it necessary
to find alternate paths in a network, since labeling tables contain the IPADs of all
potential receivers of a data item. In fact, the system will keep working properly even
if nothing is done in the case of entity removal: simply, data will continue to be sent
to a non-existent entity. In this sense, we claim that our system is tolerant of entity
failure, an important property of the IoT.

- Removing a sensor: The sensor must be removed from the implementation con-
figuration. All occurrences of the name of the sensor must be removed from the
labeling tables.

- Removing a storage entity: The fact that every equivalence class of entities must
have a storage entity implies that a storage entity can be removed if and only if
there remains at least one storage entity in its equivalence class. The name of the
storage entity must be removed from the labeling tables; however, these tables
should already contain references to other equivalent entities, so nothing else
needs to be changed. In practice, the different storage entities in an equivalence
class may have different contents, and if so, some contents may have to be copied,
but we leave this as an implementation issue.



J. Cybersecur. Priv. 2024, 4 484

- Removing an application entity: In our example, this would be removing a
workstation. In this scenario, we need also to check the equivalence classes. We
have two cases:

A. If the equivalence class that contains the entity to remove has at least
another application entity in it, we only remove the intended entity and we
leave the corresponding storage entities for the other application entities.
The name of the entity must be removed from the labeling tables.

B. Otherwise, we remove the intended entity and all the equivalent storage
entities since none of them is required anymore. The names of all such
entities must be removed from the labeling tables.

The following pseudocode summarizes the steps for removing entities from our
configuration Algorithm 2.

Algorithm 2: Entity Removal

Input: Initial implementation configuration
Output: Updated implementation configuration

1: Procedure RemoveEntity(Entity E)
2: If E is a sensor, then
3: RemoveSensorEntity(E)
4: Else
5: If E is a database (storage entity), then
6: RemoveStorageEntity(E)
7: Else If E is a workstation, then
8: RemoveWorkstationEntity(E)
9: End if
10: End if
11: End procedure

12: Procedure RemoveSensorEntity(Entity E)
13: RemoveEntityFromConfiguration(E)
14: RemoveEntriesFromLabelingTables(E)
15: End procedure

16: Procedure RemoveStorageEntity(Entity E)
17: RemoveEntityFromConfiguration(E)
18: RemoveEntriesFromLabelingTables(E)
19: End procedure

20: Procedure RemoveWorkstationEntity(Entity E)
21: If EquivalenceClassContainsOtherEntities(E) then
22: RemoveEntityFromConfiguration(E)
23: RemoveEntriesFromLabelingTables(E)
24: Else
25: RemoveEntityFromConfiguration(E)
26: RemoveCorrespondingStorageEntity(E)
27: RemoveEntriesFromLabelingTables(E, CorrespondingStorageEntity)
28: End if
29: End procedure

30: Function EquivalenceClassContainsOtherEntities(Entity E)
31: // Check if the equivalence class of E contains at least one other application layer entity
32: End function

33: Function RemoveEntityFromConfiguration(Entity E)
34: // Remove entity E from the implementation configuration
35: End function



J. Cybersecur. Priv. 2024, 4 485

36: Function RemoveEntriesFromLabelingTables(Entity E, Optional Entity F)
37: // Remove all entries of entity E from the labeling tables
38: If F is provided then
39: // Also remove entries of entity F from the labeling tables
40: End if
41: End function

42: Input: Initial implementation configuration
43: Output: Updated implementation configuration

44: For each Entity E to remove in ImplementationConfiguration do
45: RemoveEntity(E)
46: End for

47: Return UpdatedConfiguration

• Label changes: Changing the label of an entity is equivalent to removing the entity and
then adding it with the new label, so it can be done by combining the two procedures.
This change has no effect on the implementation configuration: the entity remains in
its place. The labeling tables will have to be consistent with the new labels.

It should be stressed that these are not manual operations, and in the above, we have
described the algorithms to perform them.

7. Networks with Multiple Data Flows

In the example of Section 5, we have only considered the existence of a single data flow
in the network. Usually, however, several separate data flows are present in networks. Each
one of these flows will have different security requirements and will need to be controlled
separately, hence it will have its partial order. We modify our hospital example to add
a downward flow that we call Diagnostic, from the Chief of medicine towards the patients.
For this new flow, the secrecy-integrity requirements are reversed, and labels denoting
combinations of patients’ diagnostic data are allowed only for certain equivalence classes
of entities.

We say that the example of Section 5 deals with Consultation data that flow from
patients towards the medical staff as we have seen. We add to this Diagnostic data that
travel in the opposite direction and have their requirements in terms of secrecy, which
leads to a different partial order. The network with the representation of the two different
flows is shown in Figure 11. In this figure, it is possible to find all flows considered in
Section 5, plus the new ones, among others the flow K→D→E by which Sally receives her
medical results.

We have two sets of labels, one with the flow identifier Consultation, and the other
with the flow identifier Diagnostic. There are also some new entities: BobWkstn, SamWkstn,
and SallyWkstn respectively L, F, and E, which represent the patient applications that will
allow them to consult the Diagnostic data flow. So some entities will have two labels. For
example, the labels of ChiefMedicWkstn are as follows: Consultation (SamPress, BobPulse,
SallyPulse, Stat1, S tat2) and Diagnostic (SamDiagnos, SallyDiagnos, BobDiagnos). This means
that ChiefMedicWkstn participates in the two flows, and that for each flow, ChiefMedicWkstn
has access to data on the corresponding labels.

This example shows an application of the concept of trusted entities that can access data
belonging to different flows but are trusted to deliver the right data to the rightful entities
only. One such entity is the ChiefMedicWkstn. This entity knows both Sam’s and Bob’s data
and sends data to both, but it is expected not to send Sam’s data to Bob or vice-versa. The
concept of a trusted entity is well established in security theory and is present in the Bell-La
Padula model [19], where trusted subjects are described as “guaranteed not to consummate
a security-breaching information transfer even if it is possible”. Trusted entities are very
common in security; for example, a bank employer will hold separate in her mind the two



J. Cybersecur. Priv. 2024, 4 486

conversations she may be having with her manager and with her client on two different
phone lines. Trusted entities can be thought of as split into different parts, one for each flow
to which they belong, with controlled internal communication between the parts. Each
part will be governed by the label associated with its flow. In the example below, the Chief
Medical Workstation and its database (K, K′) are trusted entities that are supposed to keep
separate the data of the three users, and similarly, the doctor and nurse workstations and
databases (C, A, A′) are supposed to keep separate the data of Bob and Sam. This could be
shown in greater detail but at the cost of complicating the presentation.

J. Cybersecur. Priv. 2024, 4, x FOR PEER REVIEW 20 of 27 
 

 
Figure 11. Two-flow network for the hospital example. 

Figure 12 represents the resulting network. We have two sets of labels, one set for 
each flow, respectively, named Consultation and Diagnostic. For each flow, the labels asso-
ciated with that flow are used. 

 
Figure 12. Cloud configuration of Figure 11. 

The data flow K→D→E noted in Figure 11 becomes in Figure 11 
K→K′→B′→D→E′→E since B′ is a Network layer database shared by D and B. 

The main difference with respect to the one-flow example is that the controller will 
have two forwarding tables, one for each data flow. In the case of Consultation data flow, 
the labeling tables for the two routers will be the same as the one for the one-flow example. 

The new implementation configuration is as described earlier; we have two routers 
that connect the network entities: one to connect the storage entities and one to connect 
the workstations. 

Figure 11. Two-flow network for the hospital example.

In order to implement this model, we need to create a network where all the data are
saved in the Cloud. For this purpose, we add storage entities to the newly created entities
for the patients. These can be small storage spaces allocated through the patient’s account
created during registration on the hospital servers.

Figure 12 represents the resulting network. We have two sets of labels, one set for each
flow, respectively, named Consultation and Diagnostic. For each flow, the labels associated
with that flow are used.

The data flow K→D→E noted in Figure 11 becomes in Figure 11 K→K′→B′→D→E′→E
since B′ is a Network layer database shared by D and B.

The main difference with respect to the one-flow example is that the controller will
have two forwarding tables, one for each data flow. In the case of Consultation data flow,
the labeling tables for the two routers will be the same as the one for the one-flow example.

The new implementation configuration is as described earlier; we have two routers
that connect the network entities: one to connect the storage entities and one to connect the
workstations.

Each router will have a forwarding table for each flow; each incoming packet will
contain its flow identifier together with its label; and the controller will use the flow
identifier to switch to the appropriate forwarding table for each packet.

The partial order for the new Diagnostic flow is shown in Figure 13. We clearly see in
this figure that the diagnostics start at entities K and K′, which are the ChiefMedicWkstn and
its database, and end at the patients and their databases. We also see that the dataflows do
not allow sending one patient’s data to other patients. The labeling table is still obtained
automatically by the rule of Section 4.2, as shown in Figure 14.



J. Cybersecur. Priv. 2024, 4 487

J. Cybersecur. Priv. 2024, 4, x FOR PEER REVIEW 20 of 27 
 

 
Figure 11. Two-flow network for the hospital example. 

Figure 12 represents the resulting network. We have two sets of labels, one set for 
each flow, respectively, named Consultation and Diagnostic. For each flow, the labels asso-
ciated with that flow are used. 

 
Figure 12. Cloud configuration of Figure 11. 

The data flow K→D→E noted in Figure 11 becomes in Figure 11 
K→K′→B′→D→E′→E since B′ is a Network layer database shared by D and B. 

The main difference with respect to the one-flow example is that the controller will 
have two forwarding tables, one for each data flow. In the case of Consultation data flow, 
the labeling tables for the two routers will be the same as the one for the one-flow example. 

The new implementation configuration is as described earlier; we have two routers 
that connect the network entities: one to connect the storage entities and one to connect 
the workstations. 

Figure 12. Cloud configuration of Figure 11.

J. Cybersecur. Priv. 2024, 4, x FOR PEER REVIEW 21 of 27 
 

Each router will have a forwarding table for each flow; each incoming packet will 
contain its flow identifier together with its label; and the controller will use the flow iden-
tifier to switch to the appropriate forwarding table for each packet. 

The partial order for the new Diagnostic flow is shown in Figure 13. We clearly see in 
this figure that the diagnostics start at entities K and K′, which are the ChiefMedicWkstn 
and its database, and end at the patients and their databases. We also see that the data-
flows do not allow sending one patient’s data to other patients. The labeling table is still 
obtained automatically by the rule of Section 4.2, as shown in Figure 14. 

 
Figure 13. Partial order for the Diagnostic Flow. 

 
Figure 14. Labeling table for Figure 9. 

The data flow K→K′→B′→D→E′→E, discussed above, can be traced in the labeling 
table by checking that the name of each entity in the sequence is included in the Holds of 
the following entity. It can also be checked that unwanted flows are impossible, e.g., Bob’s 
workstation L cannot receive Sally’s diagnostics because it does not have E in its Holds. 
The routing tables, derived from the labeling table, will not enable this forwarding. 

8. Simulation and Implementation of the Controller 
The SDN implementation of our hospital example has been tested using the Mininet 

network emulator. Mininet is a network emulator that runs a collection of end hosts, 
switches, routers, and links on a single Linux kernel. It uses virtualization to make the 
system look like a complete network, running the same kernel, system, and user code. 
Mininet hosts behave just like real machines that can run arbitrary programs. The 

Figure 13. Partial order for the Diagnostic Flow.

J. Cybersecur. Priv. 2024, 4, x FOR PEER REVIEW 21 of 27 
 

Each router will have a forwarding table for each flow; each incoming packet will 
contain its flow identifier together with its label; and the controller will use the flow iden-
tifier to switch to the appropriate forwarding table for each packet. 

The partial order for the new Diagnostic flow is shown in Figure 13. We clearly see in 
this figure that the diagnostics start at entities K and K′, which are the ChiefMedicWkstn 
and its database, and end at the patients and their databases. We also see that the data-
flows do not allow sending one patient’s data to other patients. The labeling table is still 
obtained automatically by the rule of Section 4.2, as shown in Figure 14. 

 
Figure 13. Partial order for the Diagnostic Flow. 

 
Figure 14. Labeling table for Figure 9. 

The data flow K→K′→B′→D→E′→E, discussed above, can be traced in the labeling 
table by checking that the name of each entity in the sequence is included in the Holds of 
the following entity. It can also be checked that unwanted flows are impossible, e.g., Bob’s 
workstation L cannot receive Sally’s diagnostics because it does not have E in its Holds. 
The routing tables, derived from the labeling table, will not enable this forwarding. 

8. Simulation and Implementation of the Controller 
The SDN implementation of our hospital example has been tested using the Mininet 

network emulator. Mininet is a network emulator that runs a collection of end hosts, 
switches, routers, and links on a single Linux kernel. It uses virtualization to make the 
system look like a complete network, running the same kernel, system, and user code. 
Mininet hosts behave just like real machines that can run arbitrary programs. The 

Figure 14. Labeling table for Figure 9.



J. Cybersecur. Priv. 2024, 4 488

The data flow K→K′→B′→D→E′→E, discussed above, can be traced in the labeling
table by checking that the name of each entity in the sequence is included in the Holds of
the following entity. It can also be checked that unwanted flows are impossible, e.g., Bob’s
workstation L cannot receive Sally’s diagnostics because it does not have E in its Holds.
The routing tables, derived from the labeling table, will not enable this forwarding.

8. Simulation and Implementation of the Controller

The SDN implementation of our hospital example has been tested using the Mininet
network emulator. Mininet is a network emulator that runs a collection of end hosts,
switches, routers, and links on a single Linux kernel. It uses virtualization to make the
system look like a complete network, running the same kernel, system, and user code.
Mininet hosts behave just like real machines that can run arbitrary programs. The programs
can send packets through what appears to be a real Ethernet interface, with a given link
speed and delay. Packets get processed by what look like real Ethernet switches or routers,
as in our case.

In summary, Mininet’s virtual components (hosts, switches, links, and controllers)
are created using software rather than hardware, and their overall behavior mimics to the
one of discrete hardware elements. It is usually possible to create a Mininet network that
represents a hardware network, or a hardware network that represents a Mininet network,
and to run the same binary code and applications on either platform. Mininet is particularly
adapted to simulate SDN networks, and also is efficient and easy to use.

For the choice of controller, several reasons led us to use the Ryu controller of Asadol-
lahi et al. [32,33]. First, we considered the comparison study documented by Ola et al. [34].
Second, there is the fact that Ryu provides software components with well-defined APIs
that make it easy for developers to create new network management and control applica-
tions. Third, Ryu is the most suitable controller to use in a Mininet environment since it
supports OpenFlow 1.0, 1.2, 1.3, and 1.4. Fourth, because Ryu is Python-based, it is easier
for Ryu to develop new network management and control applications in comparison
with other controllers. And finally, Asadollahi et al. [32] and Islam and Refat [35] have
reported on testing the performance of the Ryu controller in many simulation scenarios and
have concluded that the controller is very suitable for prototyping and experimentation for
research, experimentation, and demonstrations.

To create our implementation configuration, we have used the Python API to write a
configuration Python script. First, we had to create an empty network and add nodes or
entities to it. To create this empty network, we manually created a default controller called
Controller c0. This default controller was replaced later with our Ryu controller.

Figure 15, generated by Mininet, shows our example’s topology created in the simula-
tion environment. Note that in the figure, Router2 refers to the AppRouter. and r1 refers to
the AccessPoint.

The table of Figure 16 gives the meaning of the hostnames presented in the topology
of Figure 15.

The simulations that were done aimed to test the integrity and secrecy requirements;
in other words, it was tested that by using our labeling tables and derived routing tables,
data flows would only arrive at authorized entities. The case of multiple flows was also
tested. Parameters such as the performance of the controller, scalability, etc. have been
tested in other SDN-related work already mentioned, see Asadollahi et al. [32], Islam, and
Refat [35].

After implementation, the data flow in the network was simulated. We use the ping
command to see if the results match the security requirements expressed by our partial
order. Figures 17 and 18 show examples of the results obtained.



J. Cybersecur. Priv. 2024, 4 489

J. Cybersecur. Priv. 2024, 4, x FOR PEER REVIEW 22 of 27 
 

programs can send packets through what appears to be a real Ethernet interface, with a 
given link speed and delay. Packets get processed by what look like real Ethernet switches 
or routers, as in our case. 

In summary, Mininet’s virtual components (hosts, switches, links, and controllers) 
are created using software rather than hardware, and their overall behavior mimics to the 
one of discrete hardware elements. It is usually possible to create a Mininet network that 
represents a hardware network, or a hardware network that represents a Mininet network, 
and to run the same binary code and applications on either platform. Mininet is particu-
larly adapted to simulate SDN networks, and also is efficient and easy to use. 

For the choice of controller, several reasons led us to use the Ryu controller of Asadol-
lahi et al. [32,33]. First, we considered the comparison study documented by Ola et al. [34]. 
Second, there is the fact that Ryu provides software components with well-defined APIs 
that make it easy for developers to create new network management and control applica-
tions. Third, Ryu is the most suitable controller to use in a Mininet environment since it 
supports OpenFlow 1.0, 1.2, 1.3, and 1.4. Fourth, because Ryu is Python-based, it is easier 
for Ryu to develop new network management and control applications in comparison 
with other controllers. And finally, Asadollahi et al. [32] and Islam and Refat [35] have 
reported on testing the performance of the Ryu controller in many simulation scenarios 
and have concluded that the controller is very suitable for prototyping and experimenta-
tion for research, experimentation, and demonstrations. 

To create our implementation configuration, we have used the Python API to write a 
configuration Python script. First, we had to create an empty network and add nodes or 
entities to it. To create this empty network, we manually created a default controller called 
Controller c0. This default controller was replaced later with our Ryu controller. 

Figure 15, generated by Mininet, shows our example’s topology created in the simu-
lation environment. Note that in the figure, Router2 refers to the AppRouter.and r1 refers 
to the AccessPoint. 

 
Figure 15. The simulated topology generated by Mininet. 

Figure 15. The simulated topology generated by Mininet.

J. Cybersecur. Priv. 2024, 4, x FOR PEER REVIEW 23 of 27 
 

The table of Figure 16 gives the meaning of the hostnames presented in the topology 
of Figure 15. 

 
Figure 16. Entities correspondence in the simulation. 

The simulations that were done aimed to test the integrity and secrecy requirements; 
in other words, it was tested that by using our labeling tables and derived routing tables, 
data flows would only arrive at authorized entities. The case of multiple flows was also 
tested. Parameters such as the performance of the controller, scalability, etc. have been 
tested in other SDN-related work already mentioned, see Asadollahi et al. [32], Islam, and 
Refat [35]. 

After implementation, the data flow in the network was simulated. We use the ping 
command to see if the results match the security requirements expressed by our partial 
order. Figures 17 and 18 show examples of the results obtained. 

In Figure 17, we can see some results for a defined scenario. We have a connection 
established between entities in the case of authorized data flow J to B, where J represents 
PulseDetect(Sally) and B represents Nurse2Wkstn. 

 
Figure 17. Simulation result of an authorized flow. 

Another scenario, presented in Figure 18, shows an unauthorized flow where there 
is no data flow from J to A, where J represents PulseDetect (Sally) and A represents 
Nurse1wkstn. 

Figure 16. Entities correspondence in the simulation.



J. Cybersecur. Priv. 2024, 4 490

J. Cybersecur. Priv. 2024, 4, x FOR PEER REVIEW 23 of 27 
 

The table of Figure 16 gives the meaning of the hostnames presented in the topology 
of Figure 15. 

 
Figure 16. Entities correspondence in the simulation. 

The simulations that were done aimed to test the integrity and secrecy requirements; 
in other words, it was tested that by using our labeling tables and derived routing tables, 
data flows would only arrive at authorized entities. The case of multiple flows was also 
tested. Parameters such as the performance of the controller, scalability, etc. have been 
tested in other SDN-related work already mentioned, see Asadollahi et al. [32], Islam, and 
Refat [35]. 

After implementation, the data flow in the network was simulated. We use the ping 
command to see if the results match the security requirements expressed by our partial 
order. Figures 17 and 18 show examples of the results obtained. 

In Figure 17, we can see some results for a defined scenario. We have a connection 
established between entities in the case of authorized data flow J to B, where J represents 
PulseDetect(Sally) and B represents Nurse2Wkstn. 

 
Figure 17. Simulation result of an authorized flow. 

Another scenario, presented in Figure 18, shows an unauthorized flow where there 
is no data flow from J to A, where J represents PulseDetect (Sally) and A represents 
Nurse1wkstn. 

Figure 17. Simulation result of an authorized flow.

J. Cybersecur. Priv. 2024, 4, x FOR PEER REVIEW 24 of 27 
 

 
Figure 18. Simulation result of an unauthorized flow. 

The multi-flow solution was also tested according to this method. 

9. Efficiency and Scalability 
For efficiency and scalability evaluation, it is important to note that the overhead im-

posed by our method will occur only when the routing tables have to be updated; this 
means at network initialization and whenever events such as administrative decisions or 
event-driven policies cause network reconfigurations; otherwise, for normal operation, 
the network will run as any SDN network. 

As we have seen, labels can be assigned by administrators or may be calculated from 
Channel or CF relations, which may mean capability lists or access control matrices. In [21], 
Stambouli and Logrippo presented a method for calculating labels based on such infor-
mation. They showed that a worst-case estimate of label calculation time is for an algo-
rithmic complexity that is cubic on the number of entities in the network (thus excluding 
exponential complexity). MATLAB simulations yielding estimates were also given in that 
paper. It was shown in those simulations that for a network of 10,000 entities, the partial 
order can be found and the labels calculated in about 1.5 min, raising to about 10 min for 
20,000 entities, and after that rising rapidly to 1.75 h for 100,000 entities. 

These times can improve with more efficient programs and faster computers. Re-
search on efficient graph computations is continuously progressing. Consider also that 
many IoT networks can be partitioned into partially independent slices, as they are called 
in 5G or domains. In practice, many slices or domains can be smaller than the mentioned 
10,000 entities, and reconfigurations may affect only some of them. 

If, on the other hand, a CF relation must be calculated from labels, this also can be 
done efficiently by setting membership tests, using the relation CF(x,y) iff Lab(x) ⊆ Lab(y) 
[20]. Finally and most importantly, in many practical cases, policies and configurations 
are set up in such a way that global recalculations are unnecessary since only limited and 
already planned local changes will occur, with minimal overhead. Due to the many dif-
ferent contexts in which our method can be used, more detailed efficiency considerations, 
as well as the adaptation of the method to each context, are left to future research. As a 
practical example, we may think of a network with 10,000 entities that need to be updated 
once a day, leading to an overhead of 1.5 min a day. 

10. Conclusions 
We have shown that it is feasible to use SDN routing in IoT contexts for implementing 

data security requirements of secrecy, integrity, and conflicts, as we have defined them in 
Section 3. In the implementation method we propose, data are automatically labeled ac-
cording to their source, and SDN routing tables will be constructed so that they will be 
forwarded only to entities meant to receive them; other data will be dropped. We have not 
explicitly mentioned the property of availability in this paper; however, availability follows 
from the fact that every entity that is allowed to receive some data will receive it by the 
effect of SDN routing. 

Previous research [21,36] has shown that, for any network, it is possible to efficiently 
calculate labels for the entities in such a way that data flows are determined by the label 
inclusion relationship. In this paper, it was shown how the labels can be used to construct 
forwarding tables for SDN controllers that will control data transfers, accordingly, thus 
ensuring data security. We have proposed a network organization based on cloud 

Figure 18. Simulation result of an unauthorized flow.

In Figure 17, we can see some results for a defined scenario. We have a connection
established between entities in the case of authorized data flow J to B, where J represents
PulseDetect(Sally) and B represents Nurse2Wkstn.

Another scenario, presented in Figure 18, shows an unauthorized flow where there is
no data flow from J to A, where J represents PulseDetect (Sally) and A represents Nurse1wkstn.

The multi-flow solution was also tested according to this method.

9. Efficiency and Scalability

For efficiency and scalability evaluation, it is important to note that the overhead
imposed by our method will occur only when the routing tables have to be updated; this
means at network initialization and whenever events such as administrative decisions or
event-driven policies cause network reconfigurations; otherwise, for normal operation, the
network will run as any SDN network.

As we have seen, labels can be assigned by administrators or may be calculated
from Channel or CF relations, which may mean capability lists or access control matrices.
In [21], Stambouli and Logrippo presented a method for calculating labels based on such
information. They showed that a worst-case estimate of label calculation time is for
an algorithmic complexity that is cubic on the number of entities in the network (thus
excluding exponential complexity). MATLAB simulations yielding estimates were also
given in that paper. It was shown in those simulations that for a network of 10,000 entities,
the partial order can be found and the labels calculated in about 1.5 min, raising to about
10 min for 20,000 entities, and after that rising rapidly to 1.75 h for 100,000 entities.

These times can improve with more efficient programs and faster computers. Research
on efficient graph computations is continuously progressing. Consider also that many
IoT networks can be partitioned into partially independent slices, as they are called in
5G or domains. In practice, many slices or domains can be smaller than the mentioned
10,000 entities, and reconfigurations may affect only some of them.

If, on the other hand, a CF relation must be calculated from labels, this also can be done
efficiently by setting membership tests, using the relation CF(x,y) iff Lab(x) ⊆ Lab(y) [20].
Finally and most importantly, in many practical cases, policies and configurations are set
up in such a way that global recalculations are unnecessary since only limited and already
planned local changes will occur, with minimal overhead. Due to the many different
contexts in which our method can be used, more detailed efficiency considerations, as well



J. Cybersecur. Priv. 2024, 4 491

as the adaptation of the method to each context, are left to future research. As a practical
example, we may think of a network with 10,000 entities that need to be updated once a
day, leading to an overhead of 1.5 min a day.

10. Conclusions

We have shown that it is feasible to use SDN routing in IoT contexts for implementing
data security requirements of secrecy, integrity, and conflicts, as we have defined them
in Section 3. In the implementation method we propose, data are automatically labeled
according to their source, and SDN routing tables will be constructed so that they will be
forwarded only to entities meant to receive them; other data will be dropped. We have not
explicitly mentioned the property of availability in this paper; however, availability follows
from the fact that every entity that is allowed to receive some data will receive it by the
effect of SDN routing.

Previous research [21,36] has shown that, for any network, it is possible to efficiently
calculate labels for the entities in such a way that data flows are determined by the label
inclusion relationship. In this paper, it was shown how the labels can be used to construct
forwarding tables for SDN controllers that will control data transfers, accordingly, thus
ensuring data security. We have proposed a network organization based on cloud concepts
with application entities and data entities (or servers, databases). We have demonstrated
our method by using a simple ‘hospital’ example that was simulated using standard SDN
simulation tools. We envisage future systems where security administrators will be able to
configure secure data flows by composing graphs such as the ones presented in our figures
at various levels of abstraction or granularity. Reconfigurations can also be done on such
graphs, and labels and routing tables can be computed and updated automatically using
our method.

Routing is taken care of by external SDN routers that will not burden the IoT devices.
The use of our method will not affect the normal execution of SDN, except for the mentioned
recalculation of labels and routing tables when reconfigurations are done.

Using our approach, it is possible to significantly enhance technologies like Google
B4 WAN, Microsoft Azure, and the GENI testbed cited in Section 3.2 for implementing
security requirements.

With respect to the literature reviewed in Section 10, we note the following contri-
butions to our work: Instead of using the lattice model, we use the partial order model,
applicable to any network; we represent secrecy and integrity policies with a single mecha-
nism, based on the use of a simple labeling method; we develop a generic SDN framework;
we show how different data flows can be defined in a single network; we have methods for
network reconfiguration; and finally, we have done an implementation and a simulation of
our sample SDN-enabled network.

It should be pointed out, however, that our approach is feasible only for networks
where the centralized planning we have envisaged is possible. In more decentralized
systems, SDN may not be feasible, and it may be necessary to use established methods based
on encryption agreed upon among entities. And even in the case of centralized control,
encryption may be necessary to protect from covert channels, since data are transmitted
clearly. The combined use of our method with encryption will be the appropriate solution
in most cases, depending on the organization of the network, its applications, and the
expected security threats and risks. We leave these topics for future research.

Furthermore, we have provided a generic method only, and we have shown how
the general data flow could be organized. For the proposed method to become practical,
it will require the creation of a suitable administrative model; this is the subject of our
ongoing research. IoT networks can be very complex, and their design must take into
consideration many different requirements, including security requirements that have not
been considered here.



J. Cybersecur. Priv. 2024, 4 492

Author Contributions: Conceptualization, A.S. and L.L.; Methodology, A.S. and L.L.; Validation,
A.S.; Formal analysis, A.S. and L.L.; Writing—original draft, A.S.; Writing—review & editing, A.S.
and L.L.; Supervision, L.L.; Project administration, L.L.; Funding acquisition, L.L. All authors have
read and agreed to the published version of the manuscript.

Funding: Discovery grant of the Natural Sciences and Engineering Research Council of Canada—No
grant number.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: We thank Ahmed Karmouch for introducing us to the possibilities of SDN for
network security and Yvon Andrianirina for technical information on SDN tools. We also thank the
anonymous referees for comments that have led to improvements in our explanations. This work was
partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bishop, M. Computer security, Art and Science, 2nd ed.; Pearson Addison-Wesley: Boston, MA, USA, 2019.
2. Alaba, F.A.; Othman, M.; Hashem, I.A.T.; Alotaibi, F. Internet of Things security: A survey. J. Netw. Comput. Appl. 2017, 88, 10–28.

[CrossRef]
3. Singh, J.; Pasquier, T.; Bacon, J. Securing tags to control information flows within the Internet of Things. In Proceedings of the

International Conference on Recent Advances in Internet of Things, RIoT 2015, Singapore, 7–9 April 2015; pp. 1–6.
4. Qiang, G.; Quan, G.; Yu, B.; Yang, L. Research on security issues of the Internet of Things. Int. J. Future Commun. Netw. 2013, 6,

1–10. [CrossRef]
5. Landwehr, E. Privacy research directions. Comm. ACM 2016, 59, 29–31. [CrossRef]
6. Etalle, S.; Hinrichs, T.L.; Lee, A.J.; Trivellato, D.; Zannone, N. Policy Administration in Tag-Based Authorization. In Foundations

and Practice of Security, Proceedings of the 5th International Symposium, FPS 2012, Montreal, QC, Canada, 25–26 October 2012; Springer:
Berlin/Heidelberg, Germany, 2013; Springer LNCS; pp. 162–179.

7. Hinrichs, T.; Garrison, W., III; Lee, A.; Saunders, S.; Mitchell, J. TBA: A Hybrid of Logic and Extensional Access Control Systems.
In International Workshop on Formal Aspects in Security and Trust; Springer: Berlin/Heidelberg, Germany, 2011; Volume 7140,
pp. 198–213.

8. Sandhu, R. Lattice-based access control models. IEEE Computer 1993, 26, 9–19. [CrossRef]
9. Burke, Q.; Mehmeti, F.; George, R.; Ostrowski, K.; Jaeger, T.; La Porta, T.F.; McDaniel, P. Enforcing Multilevel Security Policies in

Unstable Networks. IEEE Trans. Netw. Serv. Manag. 2022, 19, 2349–2365. [CrossRef]
10. Xie, R.-N.; Li, H.; Shi, G.-Z.; Guo, Y.-C.; Niu, B.; Su, M. Provenance-based data flow control mechanism for Internet of things.

Trans. Emerg. Telecommun. Technol. 2021, 32, e3934.
11. Al-Haj, A.; Aziz, B. Enforcing Multilevel Security Policies in Database-Defined Networks using Row-Level Security. In Proceedings

of the 2019 International Conference on Networked Systems (NetSys 2019), Marrakech, Morocco, 18–21 March 2019; pp. 1–6.
12. Denning, D.E. A lattice model of secure information flow. Commun. ACM 1976, 19, 236–243. [CrossRef]
13. Wang, A.; Mei, X.; Croft, J.; Caesar, M.; Godfrey, B. Ravel: A database-defined network. In Proceedings of the Symposium on

SDN Research, Santa Clara, CA, USA, 14–15 March 2016; pp. 1–7.
14. Fernandes, E.; Paupore, J.; Rahmati, A.; Simionato, D.; Conti, M.; Prakash, A. Flowfence: Practical data protection for emerging

IOT application frameworks. In Proceedings of the USENIX Security Symposium, Austin, TX, USA, 10–12 August 2016;
pp. 531–548.

15. Celik, B.; Babun, L.; Kumar, A.; Aksu, H.; Tan, G.; McDaniel, P.; Uluagac, A. Sensitive information tracking in commodity IoT. In
Proceedings of the 27th {USENIX}. Security Symposium ({USENIX} Security 18, 2018), Baltimore, MD, USA, 15–17 August 2018;
pp. 1687–1704.

16. Chi, H.; Zeng, Q.; Du, X.; Luo, L. PFirewall: Semantics-Aware Customizable Data Flow Control for Smart Home Privacy
Protection. arXiv 2021, arXiv:2101.10522.

17. Khan, M.A. A survey of security issues for cloud computing. J. Netw. Comput. Appl. 2016, 71, 11–29. [CrossRef]
18. Kalkan, K.; Zeadally, S. Securing Internet of Things with Software Defined Networking. IEEE Commun. Mag. 2017, 56, 186–192.

[CrossRef]
19. Bell, D.E.; La Padula, L. Secure Computer Systems: Unified Exposition and Multics Interpretation. Mitre Corp. Report MTR-2997

Rev. 1, March 1976. Available online: https://link.springer.com/referenceworkentry/10.1007/978-1-4419-5906-5_811 (accessed
on 23 January 2021).

20. Logrippo, L. Multi-level models for data security in networks and in the Internet of things. J. Inf. Secur. Appl. 2021, 58, 102778.
[CrossRef]

21. Stambouli, A.; Logrippo, L. Data flow analysis from capability lists, with application to RBAC. Inf. Process. Lett. 2019, 141, 30–40.
[CrossRef]

https://doi.org/10.1016/j.jnca.2017.04.002
https://doi.org/10.14257/ijfgcn.2013.6.6.01
https://doi.org/10.1145/2856451
https://doi.org/10.1109/2.241422
https://doi.org/10.1109/TNSM.2022.3176820
https://doi.org/10.1145/360051.360056
https://doi.org/10.1016/j.jnca.2016.05.010
https://doi.org/10.1109/MCOM.2017.1700714
https://link.springer.com/referenceworkentry/10.1007/978-1-4419-5906-5_811
https://doi.org/10.1016/j.jisa.2021.102778
https://doi.org/10.1016/j.ipl.2018.09.001


J. Cybersecur. Priv. 2024, 4 493

22. Huang, D.; Chowdhary, A.; Pisharody, S. Software-Defined Networking and Security. From Theory to Practice; CRC Press: Boca Raton,
FL, USA, 2019.

23. Sushant, J.; Alok, K.; Subhasree, M.; Bogdan, A.; Mat, F.; Paul, S.; Jennifer, Z. B4: Experience with a Globally Deployed Software
Defined WAN. ACM SIGCOMM Comput. Commun. Rev. 2013, 43, 3–14.

24. Minlan, Y.; Jennifer, R.; Michael, F.; Jia, W. Software Defined Networking for Cloud Developers. In Proceedings of the USENIX
Conference on Networked Systems Design and Implementation, San Jose, CA, USA, 28–30 April 2010.

25. Mark, B.; Jeffrey, C.; Lawrence, L.; Akihiro, N.; Max, O.; Charles, S.; Jospeh, Y. GENI: A Federated Testbed for Innovative Network
Experiments. Comput. Netw. 2014, 61, 5–23.

26. Stergiou, C.; Psannis, K.E.; Kim, B.G.; Gupta, B. Secure Integration of Internet-of-Things and Cloud Computing. Future Generation
Comput. Syst. 2013, 78, 964–975. [CrossRef]

27. Atlam, H.F.; Wills, G.B. Intersections between IoT and distributed ledger. Adv. Comput. 2019, 115, 73–113.
28. Roy, W.; Bill, S.; Scott, J. Enabling the Internet of Things. Computer 2014, 48, 28–35.
29. El-Garoui, L.; Pierre, S.; Chamberland, S. A New SDN-Based Routing Protocol for Improving Delay in Smart City Environments.

Smart Cities 2020, 3, 1004–1021. [CrossRef]
30. de Assunção, M.D.; Carpa, R.; Lefèvre, L.; Glück, O.; Boryło, P.; Lasoń, A.; Szymański, A.; Rzepka, M. Designing and building

SDN testbeds for energy-aware traffic engineering services. Photonic Netw. Commun. 2017, 34, 396–410. [CrossRef]
31. Available online: https://www.lifewire.com/how-many-devices-can-share-a-wifi-network-818298 (accessed on 10 November

2023).
32. Asadollahi, S.; Goswami, B.; Sameer, M. Ryu controller’s scalability experiment on software defined networks. In Proceedings

of the 2018 IEEE International Conference on Current Trends in Advanced Computing (ICCTAC 2018), Bangalore, India, 1–2
February 2018; pp. 1–5.

33. RYU Project Team. RYU SDN Framework-RYU Project Team, 2014. Available online: https://osrg.github.io/ryu-book/en/html/
preface.html (accessed on 15 June 2021).

34. Ola, S.; Imad, E.; Ayman, K.; Ali, C. SDN controllers: A comparative study. In Proceedings of the 18th Mediterranean
Electrotechnical Conference (MELECON 2016), Lemesos, Cyprus, 18–20 April 2016; pp. 1–6.

35. Islam, M.T.; Islam, N.; Refat, M.A. Node to Node Performance Evaluation through RYU SDN Controller. Wireless Pers. Commun.
2020, 112, 555–570. [CrossRef]

36. Logrippo, L.; Stambouli, A. Configuring data flows in the Internet of Things for security and privacy requirements. In Proceedings
of the 11th In-ternational Symposium on Foundations and Practice of Security, Montreal, QC, Canada, 13–15 November 2018;
Springer LNCS 11358. pp. 115–130.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.future.2016.11.031
https://doi.org/10.3390/smartcities3030050
https://doi.org/10.1007/s11107-017-0709-9
https://www.lifewire.com/how-many-devices-can-share-a-wifi-network-818298
https://osrg.github.io/ryu-book/en/html/preface.html
https://osrg.github.io/ryu-book/en/html/preface.html
https://doi.org/10.1007/s11277-020-07060-4

	Introduction and Motivation 
	Related Work 
	Preliminaries 
	Data Security Concepts 
	Software-Defined Networking (SDN) 

	Our System Design 
	Network Configurations and Graphic Representation 
	Labeling Tables, Forwarding Tables, and Data Flow Control Policy Enforcement 

	Example 
	The Basic Configuration and Its Implementation 
	Introducing the Networking Layer 

	Network Reconfigurations 
	Networks with Multiple Data Flows 
	Simulation and Implementation of the Controller 
	Efficiency and Scalability 
	Conclusions 
	References

