
Revised version of paper submitted for publication in March 2020

Multi-level models for data security
in networks and in the Internet of things

Luigi Logrippo
Université du Québec en Outaouais, University of Ottawa

luigi@uqo.ca

Abstract. Data flow control for security is a mature research area in computer security, and its established re-
sults can be adapted to the newer area of data security in the Internet of things or the Cloud. This paper takes
a fundamental approach to the problem. It shows that, under reflexivity and transitivity assumptions, any net-
work of communicating entities can be seen as a partial order of equivalence classes of entities, which is a
simplification and generalization of current theory based on the lattice concept, where lattices are generated
by labelling. Networks of communicating entities can be created in many ways, including routing, access control
policies (possibly involving labeling), etc. Their intrinsic partial orders are necessary and sufficient for data
security, hence in any such network entities will have greater or lower secrecy or integrity according to their
position in the partial order. It is shown how complex labeling systems, capable of expressing many types of
security requirements, can be constructed to assign entities to their appropriate positions in network partial
orders. Established paradigms in data security, such as conflicts, conglomerates, aggregation, are introduced in
examples. Then it is shown how entities can be added, removed or relocated in such partial orders, as a result
of authorized user or administrative action, or of policies. Security requirements can be maintained through
such transformations. Efficient algorithms exist to implement these concepts, they are applications of transitive
closure algorithms and strongly connected component algorithms.

Keywords: Data flow control; data security; data secrecy; data confidentiality; data integrity; multi-layer
systems; mandatory access control; security labeling systems; Chinese Wall; Brewer-Nash; data aggregation;
data conglomeration, Internet of things.

1. Introduction
This paper presents some basic concepts that underlie many models for data security. We
deal with ‘entities’ that can model subjects or users in organizational networks, or databases,
or ‘things’ in the Internet of things (IoT) or in the Cloud, or any entities that can hold data,
send or receive them through data ‘channels’, which can be any means by which data can be
transferred. A reflexive, transitive CanFlow relation models the fact that data can reach cer-
tain entities in a network from certain others, directly or indirectly through channels. This
relation is shown to define preorders of entities or partial orders of components (the latter
representing classes of equivalent entities). On this basis, the relation can be used to define
basic concepts of secrecy (also called confidentiality in the literature) and integrity. We con-
sider also network state changes or transformations, caused by introduction of new entities,
removal of entities, or relocation of entities. Data security methods based on labelling are
presented as a special case. The efficiency of relevant algorithms is discussed. Several exam-
ples are introduced.

Note that we only deal with data flow, and not with ‘information flow’ in this paper. The
latter can occur as the combined effect of data flows and inferences [15], and inferences are
not considered here.

2. Previous work and contributions
The literature in this subject is extensive, in the order of hundreds of significant papers. It
appeared starting in the 1970s, and especially in the 1980s and 90s. Much of it is textbook

2

material [11 Sect. 5.3]. This literature cannot be cited here properly, and so we limit our-
selves to reviewing the papers that have most directly influenced our work. At that time, the
main method for data flow security in organizations was Mandatory access control (MAC)
implemented by Multi-level access control methods (MLS) based on labeling. These meth-
ods were found to be applicable also to operating systems and, to some extent, to program-
ming languages. However MLS methods were considered to be inflexible and their useful-
ness was considered to be limited to high-security applications, such as the military, and so
interest in them waned. We show in our papers that the applicability of MLS is general and
we use the early literature as the basis of our work. More recently, interest in this topic has
been revived because of the issue of data flow security in the Cloud and, most recently, in the
Internet of things (IoT). Several basic concepts are shared among these two topics [52,12].

 Bell and La Padula [7] developed a fairly complex theory of data flow security based on
partial orders of subjects and objects, system states, and state transitions caused by transi-
tion rules triggered by data access requests. Denning [14] proposed a theory based on lat-
tices of security classes (or labels) assigned to processes and objects, and on restricting data
flows according to the order relations in the lattices. Our work belongs to this second line of
thought, except that we show that the concept of partial order is sufficient to develop a data
flow security theory, independent of labeling.

Simon Foley is the author who has most extensively written on data flow policies. Some
of his papers on the subject are references [17 to 26], with [20,21] being two research re-
ports summarizing his early research. These papers include much useful theory, examples
and discussion that have inspired our work. Using the lattice model with labelling, Foley con-
sidered both intransitive data flow relations, noted ↝, and transitive ones, noted ↦. Foley
also considered many types of specialized data security requirements, a few of which will be
considered here.

Sandhu [48,47] presented the applicability of lattice-based models with labelling for in-
formation flow security, considering secrecy, integrity and conflict requirements. He demon-
strated the use of his model for representing several data flow security policies. Again, his
theory and examples were very influential for us. Our treatment of the Chinese wall policy is
consistent with his observations, on this topic see also [51].

This valuable body of work remains to be revisited in the context of the IoT and the Cloud.
Coming to our times, although the literature on security in the IoT and the Cloud has been

abundant, few papers address the specific problems of data security, i.e. secrecy and integrity
in those contexts. Several authors propose the use of variants of Role based access control
(RBAC)[16] or Attribute based access control (ABAC) [29], which address access control and
not data flow security directly. Data flow security is the main objective of this paper, because
for real data security it is necessary to control where data can eventually end up [14].

Bacon and her team [5,43,44,52] correctly insist on the importance of data flow control in
the Cloud and the IoT. They present a IFC (information flow control) architecture and a tool,
CamFlow (Cambridge flow control architecture), that implements it, including support for
application management and auditing, through operating-system and middleware support.
Their work is based on labeling methods to represent both security and integrity require-
ments and includes methods for label upgrades and downgrades. The concepts presented
here are consistent with their approach but constitute a more general theory of data flow
security that they could use.

3

Paper [32] present a method for data flow security in the IoT based on the lattice model,
and concepts of readers and writers. Our model is consistent with theirs, but simpler and
more general. In fact, their examples are easily resolved in our formalism. Related research
by the same group, presenting the use of labels for data flow control in the Cloud, is in [40].

The authors of [4] propose a data-base method for configuring Software Defined Net-
works (SDN) with data flow paths that comply with given secrecy and integrity policies. We
conjecture that a similar method can be used to implement the method proposed here.

This paper should be read with some background knowledge of previous work by the au-
thor and collaborators. Briefly, paper [34] uses graph theory to show that partial orders and
multi-level models are necessary and sufficient models for designing data secrecy systems
in networks that can be represented by directed graphs. Paper [53] shows that efficient al-
gorithms exist to obtain partial order models for given access control matrices or Role based
access control (RBAC) [16] permission lists; also it shows that, as a consequence, Label-
based access control models can be obtained for any network with access control rules to
data that can be specified (or translated into) access control matrices. These two papers use
the concepts of subjects and objects and the CanRead and CanWrite relations [33]. Paper
[35] unifies the concepts of subjects and objects into the concept of entity, and the CanRead
and CanWrite relations into the CanFlow relation. It shows, by using two examples, how the
partial order this last relation implies can be used in order to design multi-layer secure net-
works in the IoT.

This new paper simplifies and strengthens the above-mentioned conceptual models. Our
Property 1, showing the relation between the partial order of entities in any network and the
data flow direction, is independent of labeling, and holds in any reflexive, transitive network
(Sect. 4). It is then shown how basic secrecy and integrity requirements can be defined in
terms of data flows and partial orders (Sect. 5); a method is given to design networks that
satisfy such requirements. When labeling is brought in in our model (Sect. 6), it is shown that
secrecy and integrity requirements, together with other types of requirements such as con-
flicts, conglomerates, aggregates, can be represented by using composite labels that deter-
mine the place of entities in partial orders. This paper also shows how our model can be
extended to express network transformations, expressing administrative, policy or user de-
cisions that change the CanFlow relation; security requirements can be maintained through
such transformations (Sect. 7), by allowing only certain labels. The available algorithms that
can be used to support this method are reviewed and shown to be efficient in Section 8.

3. Preorders, partial orders and Schröder’s theorem
A preorder (also known as quasi-order) is a transitive, reflexive relation. A partial order is a
transitive, reflexive, antisymmetric relation. An equivalence is a transitive, reflexive, sym-
metric relation. Binary relations are represented here as digraphs, using bidirectional ar-
rows where relations are symmetric. Partial orders are represented as directed acyclic
graphs (DAGs) although by definition these should be antireflexive, as well as antisymmetric.
To reduce cluttering, reflexivity will not be represented.

A crucial role will be played in this work by a basic result well known in order theory,
relation theory and graph theory. Since this result is attributed to Ernst Schröder by Birkhoff
[10 footnote to Th. 3], we call it Schröder’s theorem. We give here an informal account of its
proofs, in the two theories that will be used in this paper.

4

In order or relation theory, given a preorder relation ≲ over a set, consider the set of
equivalence classes generated by the symmetries in ≲. These equivalence classes are in a
partial order relation (since the symmetries have been encapsulated in equivalence classes).
Further, let us denote this partial order relation with the symbol ⊑, and let [x] be the equiv-
alence class of set elements equivalent to x under ≲ : we have x≲y iff [x]⊑ [y] [10 Th. 3, 27
Sect. 2.2].

Similarly, in digraph theory, if ≲ is represented by the edges of a digraph, then consider
the maximally strongly connected subgraphs of this digraph (we call them the components,
representing equivalence classes), and condense each of them in a single node. The resulting
condensed digraph is acyclic. There is a directed path between nodes in two components in
the original digraph iff there is a directed path between the two components in the con-
densed digraph [28 Chapt.3, 6 Sect. 1.5]. Paths in the compressed digraph represent the re-
lation ⊑.

There are algorithms which, given a partial order or digraph, can calculate the partial or-
der ⊑ or the corresponding condensed digraph, see Sect. 8. These are called strongly con-
nected components algorithms. Since the set of equivalence classes in a preorder is uniquely
defined, the result of these algorithms is uniquely defined.

We write [x]≡[y] if [x] ⊑ [y] and [y] ⊑ [x]. We write [x] ⊏ [y] if [x] ⊑ [y] but [y] ⊑ [x] is
false. Comparing set elements in partial orders, we use the term level, where
level(x)<level(y) iff [x] ⊏ [y]. When partial orders are represented by digraphs, then
level(x)<level(y) iff there is a directed path from node [x] to node [y] in the condensed
graph. We say that [x] is maximal in a partial order (a sink) if for all [y], [x]⊑[y] implies [x]
≡ [y] and is minimal (a source) if for all [y], [y]⊑[x] implies [x] ≡ [y] . Following the usual
terminology for MLS models [11] we write that equivalence class [y] dominates equivalence
class [x] iff [x] ⊑ [y] and in this case we also say that entity y dominates entity x.

There will be some mention of efficient algorithms in this paper. This term will be taken
in its usual meaning in complexity theory: algorithms that run in linear or polynomial time
are considered to be efficient [3 Introduction].

4. Networks, preorders and partial orders
Definition 1: A network N is a finite set of entities with a binary relation Channel.

Thus a network can be fully defined by a Boolean matrix. Variables for entities will be
written with the letters x, y, z…, constants (used in the examples) by names with upper-case
initials. In the first part of this paper, networks are considered to be fixed at a given state
[11 Sect. 2.1]. The primitive relation Channel(x,y) expresses the fact that, in the network un-
der consideration, there is a data transfer channel from x to y. In our network graphs (see
Fig. 1(a), this relation is represented by directed arrows, and bidirectional arrows represent
symmetrical Channel relations. Our concept of entity is generic and can be used to model
many types of security entities such as subjects, users, roles, objects, data bases or IoT enti-
ties. Similarly, channels can be taken to be data transfer authorizations or communication
links. The Channel relation can be used to model any data transfer possibility, e.g.:

1. Read and write authorizations expressed in Access control matrices [11 Chapter 2] or
RBAC permission lists [16 Sect. 3.2.2, 41] can be represented as Channel relations. In
fact, this should be possible for any access control system, even complex ones such as
Attribute-based access control (ABAC) [29] because at any given state the system

5

must be able to decide whether access is authorized or not. If, in a given state, entity
(subject) x can read or in any way receive data from entity (object) y, then Chan-
nel(y,x) is true in the network modeling that state, while Channel(x,y) is true if x can
write on, or in any way send data, to y.

2. In particular, in access control systems of the Multi-level family (MLS) based on label-
ling, the sets of entities are mapped into partially ordered sets of labels. For a given
mapping, access control authorizations, thus Channel relations, between entities exist
according to the ordering of labels. Conventionally, the direction of channels is to-
wards the top of the partial order. There are channels from entities at a secrecy level
to entities at the same or higher level, but not in the opposite direction. Similarly, in
integrity models [9] there are channels from entities at a certain level of integrity to
entities at an equal or lower level of integrity.

3. Distributed networks have routing relations that can be defined as Channel relations
in our sense. Software defined networks (SDN) [8,4] provide an ideal method for im-
plementing the theory presented in this paper, because the routing is controlled by
centralized software.

4. Encryption can be interpreted as creating channels between entities. For example, it
could be said that Channel(x,y) is true iff y can decrypt what it receives from x.

5. Covert channels [11 Sect. 17.1,31] can also be represented as Channel relations, if it is
desired to examine the effects of their possible existence on data secrecy and integrity
in a network.

6. Directional communication in social networks: for example, a user can have a folder of
photos defined as an entity with channels towards certain friends.

7. Communication possibilities involving entities representing human users can be mod-
eled by Channel relations.

Variations and combinations are known of these methods, and the literature is vast. We
assume that, for any given method at any given network state, the Channel relation is well
defined.

Definition 2: The CanFlow relation for a network, written CF(x,y), is the reflexive and
transitive closure of the Channel relation.

 Thus CF can also be fully defined by a Boolean matrix. CF(x,y) means that data can flow
from entity x to entity y. In principle, the Channel and CanFlow relations could be identical.
However in practice the first could be more easily determined from the data transfer meth-
ods mentioned in the points above. Also, at the network design stage, channels may have to
be physically implemented, thus may have costs and so their number may have to be kept
low.

If data can flow in both directions between any two entities in a set of entities, then all the
entities in the set can be considered to be equivalent, in the sense that they can contain the
same data.

Definition 3: We say that entities x and y are data equivalent iff CF(x,y) and CF(y,x).

We continue to use the notation of Sect. 3. By its reflexivity and transitivity, CF is a preor-
der relation, as the relation ≲ above, and partitions the set of entities into equivalence clas-
ses by the data equivalence relation. By Schröder’s theorem there is a partial order relation
between these equivalence classes Formally:

6

Property 1: CF(x,y) iff [x]⊑[y]
Proof. Directly by Schröder’s theorem and Defs. 2 and 3.

In this sense, in any network data can flow (CF relation) upwards only, starting from the
lowest-level entities that can hold them to the highest-level entities, or from sources to sinks.

Our graphical representation of equivalence classes will be by double-sided rectangles,
and arrows between them will represent the ⊑ relation, see Fig.1(b).

(a) (b)

Figure 1: (a) A network of entities and (b) its partial order of equivalence classes

Example 1. Fig. 1(a) could be read as a IoT network, perhaps implemented by a combina-
tion of the methods mentioned above, with two classes of sensors: Sensor A and sensors
B,C,D. The first is isolated, but the last three work together, perhaps to complement each
other’s data. The nodes above might represent various types of processing nodes. We see
here several security concerns, some of which could be:

• Initially, the data from A and B,C,D should be kept separate;
• I is supposed to work only on B,C,D’s data while E,F,G,H use data from all sensors.

The partial order or condensed digraph of Fig. 1(b) can be obtained from the network of
Fig. 1(a) by executing a strongly connected component algorithm.

To go from a partial order such as (b) to a channel graph such as (a) different methods
can be used, such as:

Partial order implementation Method 1:
1) According to Property 1, define a CF relation between entities x and y such as [x]⊑[y].
2) This CF relation can be directly used as a Channel relation; it can also be transitively

reduced to obtain a reduced Channel relation.
Partial order implementation Method 2:
1) For each equivalence class in a partial order, create channels between its entities in

any way that establishes a CF relation between all pairs of them: this results in a set of
strongly connected digraphs.

2) For each pair of equivalence classes such as [x] ⊏ [y], create the additional channels
that are sufficient in order to establish a CF relation between at least one entity in [x]
and one entity in [y] .

Method 1 is short and elegant, but may lead to channel configurations that are impossible
to implement, given the existing network infrastructure. In practice, it may be necessary to
take into consideration pre-existing channels, cost constraints etc. and this will be easier
with method 2. Once the construction is complete, especially if it is done manually, it can be
validated by using a strongly connected component algorithm to obtain the partial order of

7

the constructed digraph and checking that it is isomorphic to the initially given partial order
digraph.

Canonical label-based networks, described in Sect. 6, are also implementations of partial
orders with label-based access control rules.

5. Secrecy (confidentiality), integrity and design from requirements
Data security is often defined as having (at least) the two aspects of secrecy (also called con-
fidentiality) and integrity [47]. The relation CF can be used to express a concept of secrecy,
taking CF(x,y) to mean that x is a secret of x and y, or that x is visible to x and y (equivalently,
y can know x or y is in the area of x in the terminology of [34, 53]). Similarly, CF can be used
to express a basic concept of integrity. If CF(x,y) we can say that the integrity of y can be
affected by data from x. Data integrity in security has had several, but related, definitions
[50]. Our definition corresponds to what in [50] is called information flow integrity, for
which the main historical reference is [9].

Definition 4: Secrecy and integrity of entities. We say that x is less secret but has more
integrity than y if [x] ⊏ [y], and we say that x is more secret and has less integrity than y if
[y] ⊏ [x].

On this basis, for any network, it is possible to determine:
• What are the most secret and least secret entities: the most secret are those in the

maximal equivalence classes or levels in the partial order (the sinks), because data
cannot escape from them; the least secret are those in the minimal equivalence classes
or levels (the sources), because their data can flow to levels above them.

• What are the entities with the highest and lowest integrity: the highest integrity be-
longs to the entities in the sources, since no extraneous data can flow into them; the
lowest are in the sinks, for the converse reason.

So the levels of secrecy and integrity are inversely correlated.
By following these principles, some related problems can be solved:
• Given a number of datasets with secrecy and integrity requirements, it is possible to

design a network where these are satisfied if the datasets can be placed in a partial
order that satisfies the requirements; using this partial order, a suitable network can
be constructed, possibly with one entity per data set.

• If a network already exists and the partial order is given, then it must be checked
whether the entities and channels in the network implement the required partial or-
der, or a larger one. If so, the datasets can be placed in the appropriate entities.

8

Figure 2: Secrecy and integrity diagrams for the network of Fig. 1.

Example 2. The network of Fig.1 can be seen as a solution for the following security re-
quirements:

• Secrecy: A’ s data should only be visible to E,F,G,H and J,K; B,C,D ’s data should be visi-
ble to all except A; I’s data should only be visible to J,K, and the same holds for the data
from E,F,G,H; J,K ‘s data should be top-secret.

• Integrity: A’ s data, as well as data from B,C,D should be top-integrity; A’ s data can
affect only the integrity of E,F,G,H or J,K, etc.; J,K will by consequence have bottom
integrity.

Fig. 2 shows secrecy and integrity diagrams for this network. They can be read as super-
posed to the digraphs of Figs. 1(a) or (b). All these diagrams contain the same information,
however the secrecy diagram shows more clearly where the data originate, while the integ-
rity diagram shows more clearly where they can go. For complex networks, it will be useful
to create them.

Other examples can be found in [34,35]; namely in [34] it is shown by example how, given
dataflow requirements in an organization, it is possible to assign labels to subjects and ob-
jects to obtain a MLS that implements the requirements.

6. Label-based access control and requirements
The use of labels is a time-honored method for assigning entities to security levels. It well
predates the Bell-La Padula model [7], since the latter was devised to formalize practices
well established in the military and other high-security enterprises such as banks and gov-
ernment. This method is used in access control, where a distinction is made between subjects
and objects, reading and writing. We reduce these four concepts to the two concepts of enti-
ties and channels between entities. We show in this section how several types of label-based
requirements can be represented in our theory. Network requirements or policies define
partially ordered sets of labels and the mapping from the set of entities to the set of labels,
thus the allowed data flows. Labels are tuples whose elements are elements of partially or-
dered domains. Domains can be any partially ordered sets. In the examples of this paper, we
consider two types of domains:

• Elementary domains, such as security or integrity levels, with partial order relations
understood in security theory

A

E,F,G,H

B,C,D

I
J,K

Secrecy diagram

A

E,F,G,H,
A,B,C,D

B,C,D

I,B,C,D

ALL

Integrity diagram

9

• Domain sets, for which the elements can be data categories and the partial order re-
lation is set inclusion [11 Sect. 5.2.1].

By the following ‘canonical’ construction and in Sect. 6 we will see that the former can be
reduced to the latter. For now, we define a partial order between labels which is the coordi-
nate wise partial order of the product of the partial orders of the domains.

Definition 5: A label is a tuple of elements, each taken from a partially ordered set. A set
of labels is said to be uniform if all tuples are of the same cardinality and corresponding ele-
ments in the tuples are taken from the same domains. A network is said to be label-based if
for each entity x in the network, the function Lab(x) is defined in the same uniform set of
labels.

The set of labels, being the product of partial orders, is also a partial order, which induces
a partial order on the set of entities. Entities assigned to the same labels are equivalent. So
[x]⊑[y] iff Lab(x)≤Lab(y). By Property 1, CF(x,y) iff Lab(x)≤Lab(y). If a label is a simple set,
Lab(x)≤Lab(y) iff Lab(x)⊆Lab(y), and so CF(x,y) iff Lab(x)⊆Lab(y). These relations are con-
sistent with the conventional theory of data security, which are based on the domination
relation.

Partially ordered label sets will be represented by DAGs with hexagonal nodes. Edges rep-
resent the ≤ relation between labels, and also the ⊑ relation between equivalence classes of
entities with those labels.

For any network (whether label-based or not), it is possible to construct a label-based
network that has the same partial order of equivalence classes, and where labels are simple
domain sets, in fact simple sets of entity names, as follows.

Definition 6: A canonical label-based network is a label-based network where each label
is a set of entity names in the network. For an entity x , y ∊ Lab(x) iff [y]⊑[x].

Such label-based networks are said to be ‘canonical’ because they exist and are unique for
any network (because of the uniqueness of the partial order of entities in any network).
They can be computed efficiently using strongly connected component algorithms, see Sect.
8.

Note that in such networks one can see, in each entity’s label, the provenance of the data
that can end up in the entity [38,42] (we use here a very basic concept of provenance). We
can take an entity name such as A in a label as denoting the data category of data originating
from the entity labeled A.

Example 3. The canonical label-based network for the network of Fig. 1 is given in Fig. 3.
The notation: B,C,D: <{B,C,D}> in a double-sided rectangle means that entities B,C,D are in
the same data equivalence class and for each the label is the set {B,C,D}. This labeling ex-
presses explicitly the safety and integrity of each entity in the network.

10

Figure 3: Canonical label-based network for the network of Fig. 1

The following examples show how conflicts, aggregations, conglomerates, numerical re-

quirements and other types of requirements can be represented with different types of la-
beling.

Example 4: Conflicts. The typical example of conflicts are policies specifying that no entity
is allowed to contain data from organizations in conflict of interest [47,19,24] . Using labels
that are simple category sets, ordered under the subset relation, we can say for example that
no label is allowed to contain the subset {Bank1,Bank2}. This could be said to be a ‘static
Brewer-Nash or Chinese wall policy’, whereas the real Chinese wall policy is of a dynamic
type, having been devised in order to prevent reaching such labels as a result of network
transformations. This will be demonstrated in Example 11, Sect. 7.2. Note that it can be spec-
ified that there is no conflict in the presence of other entities, e.g. {Bank1,Bank2,CentralBank}
could be allowed. One practical situation for this is the case where the Central Bank has to
investigate possible collusion between the two banks, then some employees of the Central
Bank will have to be assigned this label.

Example 5: Conglomeration. We have conglomerates when several combinations of data
categories should be considered to be bound together, in the sense that if one of them is part
of a flow, then the others must be included also. This was considered in [22,24], in a different
context. In our model, conglomerates can be taken care of by the opposite mechanism as
conflicts, i.e. by the requirement that whenever an entity name appears in a label, then all its
conglomerates should also appear. For example, if entities Company1 and Company2 are the
two parts of a conglomerate, then each of them could be labeled <{Com1,Com2}> and this
pair should appear together in all labels. Another type of conglomeration is the asymmetrical
one where Company1 can appear alone, while Company2 must appear in combination with
Company1, then Company1 could be labeled <{Com1}> while Company2 could be labeled
<{Com1,Com2}>. Flow is allowed from the first to the second, but not vice-versa. This can
be useful if Company2 controls Company1 . See Example 11 in Sect. 7.2.

Example 6: Aggregation. With aggregation it is possible to specify that certain combina-
tions of data categories have higher secrecy classification than others; usually this is a con-
sequence of the fact that certain inferences are possible with those combinations
[49,22,24,37,13,19]. The following example shows how aggregations can be specified with
labels. Consider a network with five levels of security: Public (P), Unclassified (U), Confiden-
tial (C), Secret (S), TopSecret (T), with P<U<C<S<T. There are three data categories, X, Y,
Z. Taken by itself, each data category is at secrecy level P. However {X,Y} is U, {Y,Z} is C, {X,Z}
is S and {X,Y,Z} is T. The label set and partial order corresponding to these classifications are
shown in Fig. 4.

B,C,D: <{B,C,D}>A:<{A}>

E,F,G,H:
<{E,F,G,H,A,B,C,D}>

I:<{I,B,C,D}>

J,K:
<{J,K,E,F,G,

H,A,B,C,D, I}>

11

Figure 4: Partially ordered label set for aggregation example

Example 7: Cardinality requirements. Typical is a requirement that no entity should have
in its label more than n different categories [22]. This can be immediately implemented.

Example 8: Simultaneous consideration of secrecy and integrity levels. As above, for se-
crecy we use two classifications: Public, Secret. Let us abbreviate them as P and S with P<S.
For integrity, we have three classifications: I1, I2, I3. I1 is the highest integrity level while I2
and I3 are lower but are mutually incomparable. Flow is allowed from high to low integrity
level, thus we have: I1<I2 and I1< I3. The set of labels for this example is the product of
these two partial orders. Fig. 5 shows all possible labels for these policies. So each entity in
the network will have a label indicating its secrecy and integrity level and the partial order
shown in the figure describes the data flow relationships between the entities. A network’s
policies could use only some of the six labels.

Figure 5: Partially ordered label set for combined secrecy and integrity example

Example 9: Simultaneous consideration of secrecy and integrity levels with data catego-
ries. In the following example, we consider not only secrecy and integrity requirements, but
also requirements based on data categories. Fig. 6 shows six entities with their labels. We
have three secrecy levels ordered Pub<Clas<Sec and two integrity levels ordered Cert<Gen.
We also have three data categories, Fin, Med, Oth (Financial, Medical, Other). Labels can con-
tain subsets of this set, according to the allowed content of the corresponding entities. The
set of all possible labels has 48 elements, and we will not show it. We only show the equiva-
lence classes of the entities in the table with their data flows. The equivalence classes have
only one element, with the exception of the equivalence class of the two elements E1 and E6,
both mapping on the label <Pub,Gen,{Fin}>. For example, we see that data of category Other
are visible only to (are a secret of) entities E3 and E5. However E3 can only get Public or
Certified data of this category, while E5 can get Public or Classified data, also Certified or
Generic data in this category.

P,{X}

U,{X,Y}

P,{Y} P,{Z}

C,{Y,Z}

S,{X,Z}

T,{X,Y,Z}

I1,P

I2,PI3,P I1,S

I2,SI3,S

12

Figure 6: Labels and data flows for security, integrity and categories

Much more sophisticated options are possible, because of the many possibilities of label
purposes and combinations. Each of Foley’s papers cited above contains a number of exam-
ples of various security requirements realized through labeling. Going back to the example
given for conflicts above, for Bank1 two entities could be created, one with Bank1’s secret
data, not to be shared with anyone, and one with Bank1’s public data, to be shared with all
other entities, including Bank2. A more complicated scheme would be to split a bank in three
entities: one secret, one confidential for data to share with allied companies, and one public.
The confidential level could be split further in several sub-levels, one for each collaborating
company. And so on. Each of these possibilities yields a partial order of labels.

The product of different partial orders used above can be uniformed to only one partially
ordered set by using the concept of category. In Example 9 one can replace ‘secrecy levels’
by ‘secrecy categories’, with {Pub}⊂{Pub,Clas}⊂{Pub,Clas,Sec}. For integrity, we have
{Cert}⊂{Cert,Gen}. This is justified because Classified entities can also contain Public data
and so on, and similarly for integrity. Then we have a product of three partial orders that are
all sets of data categories with inclusion. These can be merged into one single partial order
of sets of categories with inclusion. So the label for E2 becomes
<{Pub,Clas,Sec,Cert,Fin,Med}>. These new labels yield the same partial order as the one in
Fig. 6. This observation is further justified by the canonical labeling construction, that is gen-
eral and where each label is a simple category set.

Note that, in all the examples above, the use of the lattice model would require adding
unnecessary and even unwanted entities and labels, such as labels containing conflicting
data categories. Label-based requirements can be enforced through network transfor-
mations by stipulating that only allowed labels are reachable, we will see this in Sect. 7.3.

7. State changes or transformations in networks
7.1 Addition, removal, relocation of entities

State changes, i.e. state transitions or transformations, can occur in networks for a variety of
reasons, the most common of which are user or administrative action, but also changes of
environmental variables including time- or location- dependent ones, according to policies.
There is abundant literature showing that state changes can lead to security breaches, not
only in Discretionary Access Control models, but also in MLS. A controversy on the Bell-La
Padula model led to the definition of ‘tranquility principle’. This is now textbook material [11
Sect. 5.3]. At this point, we will only say that for any security network, rigorous policies and

Entity Secrecy Level Integrity Level Data categories

E1 Pub Gen Fin

E2 Sec Cert Fin, Med

E3 Pub Cert Oth

E4 Clas Cert Fin

E5 Clas Gen Fin, Oth

E6 Pub Gen Fin

E2:
<Sec,Cert,{Fin,Med}>

E5:
<Clas, Gen, {Fin,Oth}>

E1,E6:
<Pub,Gen, {Fin}>

E4:
<Clas,Cert,{Fin}>

E3:
<Pub,Cert,{Oth}>

13

auditing mechanisms must exist, establishing prerequisites and checks for safe transfor-
mations. Data purging will be mentioned in Sects. 7.2 and 7.3.

We consider an unbounded set of network states N0, N1 … Each Ni is a network with its
entities xi, yi …., Channeli and CFi relations, and partial order ⊑i. So entities keep their names
through state changes but their indexes represent the current state. Transformations are de-
fined on partial orders, where the data flow relations are more clearly represented. Three
transformations are considered, as follows:

Definition 7: Network transformations.
We say that
1) x is added in Ni+1 if there is no [xi] but there is [x i+1]
2) x is removed in Ni+1 if there is an [xi] but no [xi+1]
3) x is relocated in Ni+1 with respect to Ni if there are [xi] ,[xi+1] ,[yi], [yi+1] such that the

relation between [xi] and [yi] is different as the relation between [xi+1] and [yi+1].

Because of the global nature of partial order relations, additions and removals of entities
may cause relocations of other entities. Relocations can also be caused by the creation or
removal of channels. Relocation of one entity causes relocation of others. Since the result of
each transformation is a network, each non-identical transformation yields a new partial or-
der of equivalence classes of entities, with new ⊑ and CF relations. By extension of the pre-
vious result, within each network we can only have ‘upward’ data flows in the network’s
partial order:

Property 2: For all i, CFi(xi,yi) iff [xi] ⊑i [yi].
Proof: The proof of Property 1 holds for each Ni.

Note that if lattices instead of partial orders are used to model networks and transfor-
mations, the transformation of a lattice will not necessarily yield a lattice, and then the lattice
structure will have to be recovered in some way.

We do not discuss in this paper who can ask for transformations or what policies might
be used to allow or deny them.

Example 10. We go back to Fig. 1, and we take this as our N0. We relocate entity A to the
top and entity I to the bottom of the partial order, giving the partial order of equivalence
classes shown in Fig. 7(c). Fig. 7(d) presents a possible implementation of this partial order.
It was obtained by the partial order implementation method 2 of Sect. 4, re-using most chan-
nels in the initial configurations and adding some. The channel from D to K has become op-
tional because of transitivity. This is our Ni for i>0. The secrecy of A has been increased to
the maximum but its integrity has been decreased to the minimum. The converse has been
done for I. (Unfortunately this example is not consistent with the interpretation we have
given of Fig. 1(a) earlier, but we use it to reduce the number of figures.)

14

(c)

(d)

Figure 7: Network transformations through partial orders

Note that the figures can be read in the opposite direction, to illustrate opposite transfor-
mations from (d) to (a).

We assume that the network administrator maintains the Channeli, CFi and ⊑i matrices
for the current state i.

7.2 Data flows over transformations
We assume that each entity can ‘remember’ data from a state to the next, thus causing inter-
state flows. Note that we need not be concerned about entities that have been added, nor
about entities that have been removed: the former have no memory of previous flows and
the latter cannot pass it on.

The interstate flow relation will be denoted by CFS. We take this to be a transitive relation,
but anti-reflexive and anti-symmetric.

In particular, data can flow between two entities in adjacent states
• if they can flow between the entities in the first state (the destination entity will then

remember the data in the next state),
• or if they can flow to an intermediate entity in the first state, from which they can flow

to the other one in the next state.
Essentially, the flow can be direct for an entity by memory, or indirect through other en-

tities that can carry data from a state to the next. Fig. 4 illustrates the two possibilities, one
in continuous lines and the other in dashed lines. Thinner lines represent ‘memory through
states’ (relation CFS) and thicker lines represent flows within states (relation CF).

Figure 8: Interstate data flow

These intuitions are captured by the following:

Definition 8: CFS(xi,yi+1) =def CFi(xi,yi) or for some z (CFi(xi,zi) and CFi+1(zi+1,yi+1)), or equiv-
alently: CFS(xi,yi+1) =def [xi] ⊑i [yi] or for some z ([xi]⊑i [zi] and [zi+1] ⊑i+1 [yi+1])

A,J,K

E,F,G,H

B,C,D

I

A

B C D

E

F

GH

J K

I

xi

yi

zi zi+1

yi+1

State i State i+1

15

The definition holds not only for distinct x,y,z but also for all combinations of: x=y or x=z or
y=z.

This does not ensure data security because entities may be relocated by transformations,
and the data they contain may be exposed by new data flows in following states. E.g. [xi] ⊑i

[yi] could be true but [xi+1] ⊑i+1 [yi+1] false. Security policies may require that, if a transfor-
mation creates the possibility of certain new data flows for an entity, then the entity may
have to ‘forget’ some of the data that might have flown to it earlier. The desired security
properties can be preserved by using known mechanisms called data purging, sanitizing or
declassification. This is a complex problem, among others in practice it is not sufficient to
remove data with certain labels, since entities may have the capability of processing the data
received, so that these are no longer easily traceable to their source, unless full-fledged prov-
enance labeling is used [38,42]. A survey on this problem is [46], an early discussion on it
with theory and examples can be found in [24], paper [44] discusses it in Cloud and IoT con-
texts, while paper [39] provides interesting examples. We consider only purging here. With
reference to the example of Figs. 1 and 7, we see that the flow from entities B,C,D, to entity I
is true before and false after the transformation. So the data that may have flown to I from
these entities might have to be purged from I. We say ‘might’ because in some situations this
might not be required, e.g. if we suppose that I will henceforth only flow to B,C,D. In some
cases, the policy might be to simply require that a record be kept of data that might have
been brought in from entities that are no longer accessible, possibly in order to identify fu-
ture conflicts. We will see this in Example 11.

It can be supposed that purging is done instantly in state transitions.
The above discussion is informal and tentative because we are not introducing in this pa-

per a formalism to express policies or requirements of this type.

7.3 State transformations in label-based systems
State changes or transformations in label-based systems with the lattice model have been
considered by many authors, among which [47,19,22,23,26]. For consideration of the Cloud
context, see [43]. For the transformation in Figs. 1 and 7, if a canonical label-based system is
used, the names of entities B,C,D disappear from the label of I; on the other hand, the label of
A goes to contain the names of all entities.

Our theory is consistent with established theory, which considers that new flows are the
result of changes in entity’s labels. We have seen that in label-based security networks, the
CF relations are determined by the partial orders of label sets. Let us write Labi(xi) to denote
the label of x in state i. If CFi(xi,yi) is false but CFi+1(x i+1,y i+1) must be true, then Labi(xi) ≤
Labi(yi) is false and Labi+1(x i+1) ≤ Labi+1(y i+1) must be made true. If labels are simple cate-
gory sets, then Labi(xi) ⊆ Labi(yi) is false and Labi+1(x i+1) ⊆ Labi+1(y i+1) must be made true.
The reverse reasoning holds for removing flows. Purging policies may require that an entity
be purged of all data of the removed categories. This is particularly clear with canonical la-
beling.

As noted in [23,24,46], on the basis of a defined partial order of labels, the ‘high and low
water mark’ principle [55] is applied. Entities can be allowed to move up and down in the
label partial order, which establishes their boundaries, i.e. high and low water marks. Data
can flow according to the label partial order. The following example illustrates this.

Example 11. We will see how two types of requirements can be expressed simultaneously
by using our method: conflicts and conglomerates, see Sect. 6. In this example, labels are

16

simple category sets, which, as mentioned in Sect. 6, are general. They are partially ordered
by the ‘set inclusion’ relation.

We have two banks, two companies and a data server. The following security require-
ments must be observed:

1) Separation of data (conflict) has to be observed between the two banks, the two com-
panies, and Bank2 with Company 2. With some obvious abbreviations, these require-
ments are expressed by forbidding labels containing the following subsets: {B1,B2},
{C1,C2}, {B2,C2}. Maintaining this requirement over state transitions will lead to main-
taining a policy similar to Chinese wall, i.e. not identical to it as usually defined, but
addressing the same concern of making it impossible for an entity to contain data orig-
inating from certain combinations of entities, see also Ex. 4 in Sect. 6.

2) In addition, both banks need data from the server, thus whenever one of B1 or B2 ap-
pears in a label, this must be in combination (conglomerate) with S.

The resulting partial order of allowed labels is shown in Fig. 9. Note that if the lattice
model was used, some labels contradicting the requirements would have to be included, and
then it would have to be said that they cannot be reached.

The purging policy will be as follows: if and when CF(x,y) becomes false, then one of the
following has to be done: purging data that might have flown from x to y and removing x
from the label of y, or not purging and leaving x in the label of y. In this second case, the
resulting labels will not be canonical.

A possible sequence of transformations for this system is as follows, see Fig. 10 (mention-
ing only some significant steps).

Figure 9. Partially ordered set of allowed labels for Example 11.

{}

{S}{C2} {C1}

{B1,S} {C2,S}

{B1,C2,S} {B1,S,C1} {S,C1,B2}

{S,C1} {S,B2}

17

(a)

(b)

(c)

(d)

Figure 10: Transformations for Example 11

(a) We take this as the starting state: we have a Server with data flows towards two banks
in conflict of interests.

(b) Company1 comes in and a data flow is created from it to Server and extending to the
two banks. To do this, C1 is added to the labels of Server and the two banks.

(c) Company2 comes in, and is in conflict of interest with Company1 and Bank2, but not
with Bank1. It is decided that Company2 should work with Bank1. To do this while
avoiding creating a label containing the forbidden combination {C1,C2}, C1 is removed
from the label of Bank1, the flow from Company1 to Bank1 is lost, and Company1 data
are purged from Bank1. Since Server keeps C1 in the label, the flow from it to Bank1
is also lost, but Bank1 keeps S in its label and does not purge Server data. Then C2 is
added to the label of Bank1, giving {B1,S,C2}. This opens a data flow from Company2
to Bank1. We still have the flow from Company1 to Bank2 through Server. Note that
S has been kept in Bank1’ s label to remember that Bank1 might still have previously
acquired Server data, which it might continue to need. This can be useful e.g. if in the
future Bank1 requests to access data sets in conflict with Server.

(d) It is decided to give Server in exclusive use to Bank1. To avoid the forbidden label
combination {C1,C2}, C1 is removed from the label of Server , and Company1 data are
purged from it. {B1,C2} is then added to the label of Server. This makes Bank1 and
Server equivalent, they are now connected by a bidirectional flow and Company2 data
can flow to them.

The two remaining unidirectional flows can now be made bidirectional, by appropriate
label changes. This would transform the system into two equivalence classes of entities, one

Bank1:<{B1,S}> Bank2:<{B2,S}>

Server:<{S}>

Bank1:<{B1,S,C1}> Bank2:<{B2,S,C1}>

Server: <{S,C1}>

Comp1: <{C1}>

Bank1:
<{B1,S,C2}>

Bank2:
<{B2,S,C1}>

Server:
<{S,C1}>

Comp1:<{C1}>

Comp2:
<{C2}>

Bank1,
Server:

<{B1,S,C2}>

Bank2:
<{B2,S,C1}>

Comp1:<{C1}>Comp2:<{C2}>

18

containing Bank1, the Server and Company2, and the other containing Bank2 and Company2.
This having been done, all entities will be at their high-water mark. They can only evolve by
descending.

Note that the label transformations in this example have followed the partial order of Fig.
9, in upwards or downwards directions, and so the system’s data security requirements have
been respected.

In the above example, we have assumed that all requirements and label sets are known in
advance. In a real system, however, these may change. For example, at state (a) it is possible
that the label set be limited to {},{S},{B1,S},{B2,S}. At successive states, new categories may
come in, possibly with new requirements. With the inclusion of category C1, that carries no
requirements, the set of labels is increased with the following possibilities: {C1}, {S,C1},
{B1,S,C1}, {B2,S,C2}. The inclusion of category C2 with its conflict requirements leads to the
labels in Fig. 9. New requirements may create exceptions with respect to previous ones, e.g.
we have mentioned in Example 4 that the combination {B1,B2} may be allowed in the pres-
ence of some new category, such as the CentralBank. This subject requires further study.

As already mentioned in Sect. 6, many types of requirements or policies can be expressed
by using labels, and so this method is powerful, in fact probably more powerful than it has
ever been used in practice.

8. Algorithms
As mentioned, we consider the ideal case where there is a central administrator who main-
tains the Channel, CF and ⊑ matrices. The useful algorithms, mentioned so far, are:

a) Transitive closure algorithm of a digraph, whose complexity is approximatively O(n3)
[2].

b) Transitive reduction algorithm, which has the same time complexity, in fact it turns
out to be essentially the same algorithm as a) [2].

c) Strongly connected component algorithms, such as [54]. These algorithms also yield
the partial order of the components that they find. Their complexity is O(n+m)

d) Digraph isomorphism algorithms. Several papers exist claiming ‘quasi-polynomial’ ef-
ficiency with various O-formulae where log(n) is in the exponent. The most current
survey appears to be [56].

In the above: n is the number of entities, m the number of channels and O is the order of
complexity; only time complexity has been considered.

These algorithms can be used respectively for:
a) Obtaining the CF relation from a Channel relation.
b) Reducing a CF relation to yield a reduced number of channels.
c) Finding the equivalence classes and their partial order (⊑ relation) from a CF rela-

tion.
d) Determining whether two partial order graphs are isomorphic. In our method, an ap-

plication of this algorithm is in the process of checking whether an implementation is
correct with respect to a given partial order digraph, see Implementation methods in
Sect. 4.

Research continues in graph algorithms and papers exist claiming complexity measures
better than the ones mentioned above. This summary discussion has the only goal of showing
that, except for d), the computations needed can be done with efficient algorithms not ex-
ceeding polynomial, in fact cubic, complexity. So for operations a) to c), we can retain O(n3)

19

as the worst-case order of complexity. This is not reassuring, because it means that for a
network of 103 entities, the order of complexity of the algorithm to be executed is O(109).
But these are all internal calculations in one computer, the administrator’s. Simulation runs
to solve a closely related problem were given in [53] and were shown to execute efficiently.
Also, it may be possible to adapt for use in this area the extremely efficient graph processing
programs that have been developed for use in computational biology and other research ar-
eas.

We have mentioned that beyond this, one can devise implementation methods for opti-
mizing according to some criteria the Channel relation. New physical channels may have to
be opened or some existing ones may have to be closed. Some of the needed channels may
be already available, perhaps by transitivity, others may have to be created with varying
costs. Channels can be more or less efficient with respect to Quality of service requirements.
So implementations will involve the consideration of various requirements, costs and
weights. However in general, networks do not need to be reduced or optimized, on the con-
trary often redundancy is considered to be beneficial.

In practice, maintaining global matrices as mentioned above may be unfeasible and then
it will be necessary to devise decentralized and ‘on the fly’ methods. These are unlikely to
produce optimized networks by any criteria, however as just mentioned this is rarely im-
portant.

9. Discussion
We have mentioned that, following [14], much of the research on data flow control for secu-
rity uses the lattice model based on labeling. However, as mentioned at the beginning of Sect.
4, networks are rarely designed as lattices with labeling, also the essential properties of lat-
tices, such as the existence of unique upper and lower bounds, are seldom used to reason
about security properties. We have shown that, with the same reflexivity and transitivity as-
sumptions of [14], any network can be seen as a partial order of equivalence classes of enti-
ties. The literature mentions that partial orders can be transformed into lattices by adding
fictitious and even impossible entities and labels, however this is not necessary, since a data
security theory and practical solutions with efficient algorithms can be built for the simpler
partial order model, with or without labeling.

Let us take a critical look at our two basic assumptions. Reflexivity seems to be an easy
assumption, as normally entities have access to their own data and if there is data flow par-
titioning within an entity, then the entity can be conceptually split in several. Concerning
transitivity, much research in security networks makes the transitivity assumption, starting
with [14]. This assumption can be defended on two grounds. First, it is a pessimistic assump-
tion that can lead to over-protected networks, often a useful property in security. Second,
non-transitivity may be modeled in transitive networks by splitting some entities in two or
more, some with outgoing edges and some without, and dividing the data accordingly. Non-
transitive security networks have been motivated and studied in several papers, among oth-
ers in the mentioned work of Foley and also in [45]. Non-transitive flow assumptions are
important in security, because in some cases it is necessary to assume that some data will
not be passed on, see below. This question is related to the question of transitivity of trust in
social and other networks [30, 1].

Multi-layer security theory is often concerned with hidden channels. As mentioned, these
can be seen as augmenting the Channel relation and so modifying a perceived partial order,

20

which is a well-known vulnerability of access control and data flow control systems. Our
conceptual framework does not correct these vulnerabilities but can model them.

Long associated with Mandatory access control, label-based security systems and lattices,
the theory of Multi-level security has been shown in this paper to be applicable to any reflex-
ive and transitive data flow network, including organizational networks and IoT networks,
with or without labelling. Property 1, in its ‘lattice’ definition [14] is postulated to be a nec-
essary condition for data security, but in fact is true, in our ‘partial order’ definition, for all
networks. The consequence is that secure entities, with respect to both secrecy and integrity,
exist and can be efficiently found in any network that has a number of levels that is sufficient
to implement the required partial order.

In many organizations, data flow issues are dealt with by specializing data bases and rig-
idly regulating channels between them. For example, there may be separate data bases for
financial data, for personnel data, and so on. In the method we propose, flows can be open or
closed according to administrative decisions, for specific categories of data. This enables
more flexible organization-wide and time-dependent data flow policies.

We have in this paper developed a formalism to reason about data flows among entities
that can contain data. We have not developed a formalism to reason about the data them-
selves, with their own security requirements and classifications. In fact, much of the existing
data flow security and access control theory considers data only implicitly. We have seen
that for the placement of data, it is necessary to determine the structure of the network,
which can be done efficiently with strongly connected component algorithms, and place data
accordingly. For secrecy, this means necessarily placing data in entities that are dominated
only by entities that are authorized to get them. For integrity, this means necessarily placing
data in entities that dominate only entities that are authorized to receive them. For example,
if only two levels are available, then the lower should contain the data that must have higher
integrity and lower security, and the upper the data that must have lower integrity and
higher security. We have mentioned that network transformations may require policies to
purge or declassify data, but we have not formalized these.

This theory would be inadequate if it allowed dataflows in one direction only. Several par-
tial orders can be defined to coexist for a given set of entities at each state. Paper [35] pre-
sents an example where two partial orders must coexist: one to carry orders from clients to
providers, and a second one to carry billing data in the opposite direction. As well, in many
organizations and in the military, field data flow from the field to the command, and direc-
tives flow from the command to the field. This can be achieved by extending our approach,
probably by introducing the concept of trusted entity, which has a long history in data secu-
rity [7,39]. For our purposes, trusted entities could be defined to purge, to hold or to trans-
form certain data when their position in the network’s partial orders changes. Certain data
flows through such entities may have to be defined to be intransitive, contradicting for them
the hypothesis mentioned above. Different policies will have to be used for different appli-
cations.

The practical usefulness of our method can also be questioned in cases where data flow
relations can change rapidly over time [36], as can happen for example in Attribute-based
access control (ABAC) and telecommunications networks. However it will be always true
that at each state there will be a partial order of components that establishes certain data
flow relations. Hence it is necessary to determine what data flow relations must be kept in-

21

variant and plan transformations accordingly [26]. For example, entities designated to con-
tain the most secret data should remain at the top layer, while entities representing data
gathering devices such as detectors or sensors should probably be kept at the lowest layer.

Research is necessary on these points.

10. Conclusions
As indicated in the literature review section, the bases for the theory discussed in this paper
have been known for decades, however in this and previous papers we have presented the
novel view that, under reasonable assumptions, all networks can be seen as intrinsically lay-
ered and thus layering for data security always exists and can be found. The early theory has
therefore a reach that was unsuspected by its authors, since it acquires significance beyond
lattices and labels. The main contribution of this paper is to present a simplified and coherent
conceptualization for these ideas, with the concepts for its application in several areas, such
as organizational data security systems and in the Internet of things or the Cloud. Few papers
exist with results in the topic of data security in the IoT, and we hope to have shown that our
approach generalizes and simplifies previous findings. Labeling methods are described and
it is shown how, in the framework of this theory, they can model well-established data secu-
rity paradigms, such as secrecy, integrity, conflicts, conglomerates, aggregates, as they could
in the lattice-based theory. We have also shown how it is possible to describe network state
transitions involving creation, removal and relocation of entities. Finally, it has been shown
that efficient algorithms to implement this theory and methods exist, which opens the door
for software tools to support several of the design and administration activities mentioned
in this paper.

Acknowledgment. This research was funded in part by a grant of the Natural Sciences and
Engineering Research Council of Canada. The author is grateful to his PhD student, Abdel
Stambouli, for useful discussions, and to his colleague Jurek Czyzowicz, always ready to an-
swer questions on partial orders and algorithms.

References
1. M.Adelmayer, M. Walterbusch, P. Biermanski, F. Teuteberg. Trust transitivity and trust

propagation in cloud computing ecosystems. Proc. 26th European Conf. on Inform. Sys-
tems (ECIS2018).

2. A.V. Aho, M.R. Garey, J.D. Ullman. The transitive reduction of a directed graph. SIAM J.
Comput. 1(2), 1972, 131-137.

3. A.V. Aho, J.E. Hopcroft, J.D. Ullman. The design and analysis of computer algorithms. Ad-
dison-Wesley, 1974.

4. A. Al-Haj, B. Aziz. Enforcing multi-level security policies in data-base defined networks
using row-level security. Proc. Intern. Conf. on Networked Systems (NetSys2019), 1-6.

5. J. Bacon, D. Evans, D.M.Eyers, M. Migliavacca, P.Pietzuch, B.Shand. Enforcing end-to-end
application security in the Cloud. Proc. Middleware 2010, LNCS 6452, 293–312

6. J.Bang-Jensen, G.Z.Gutin. Digraphs – Theory, algorithms and applications. Springer, 2nd
Edition, 2009.

7. D.E. Bell, L.J. La Padula. Secure computer systems: unified exposition and Multics inter-
pretation. MTR-2997, Mitre Corp., Bedford, Mass., 1976.

22

8. S. Bera, S. Misra, A.V. Vasilakos. Software-defined networking for Internet of things: A
survey. IEEE Internet of Things Journal 4(6), 2017, 1994-2008.

9. K.J. Biba, Integrity considerations for secure computer systems. TR-3153. Mitre Corp.
Bedford, Mass., 1977.

10. G. Birkhoff. Lattice Theory, American Mathematical Society, 1967.
11. M. Bishop. Computer security, Art and science. Addison-Wesley, 2003.
12. A. Botta, W. de Donato, V. Persico, A. Pescapé. On the integration of Cloud computing and

Internet of things. Proc. Intern. conf. on Future Internet of things and Cloud (FiCloud
2014), IEEE Comp. Soc., 23-30.

13. F. Cuppens. A modal logic framework to solve aggregation problems. In: Database Secu-
rity V: Status and Prospects, North-Holland,1992, 315-332.

14. D.E. Denning. A lattice model of secure information flow. Comm. ACM 19(5), 1976, 236-
243.

15. D.E. Denning, P.J. Denning. Data Security. Computer Surveys, 11(3), 1979, 227-249.
16. D.F. Ferraiolo, D.R. Kuhn, R. Chandramouli. Role-based access control. 2nd Ed. Artech

House, 2007.
17. S.N. Foley. A universal theory of information flow. Proc. 1987 IEEE Symp. on Security and

Privacy, 1987, 116–121.
18. S.N. Foley. A model for secure information flow. Proc. Symp. on Security and Privacy,

1989. IEEE Comp. Soc. 248-258.
19. S.N.Foley. Secure information flow using security groups. Proc. Computer Security Foun-

dations Workshop III, 1990, 62-72.
20. S.N. Foley. Lattices for security policies. Royal Signals and Radar Establishment, Malvern,

Report No. 90005, 1990.
21. S.N. Foley. Unifying information flow policies. Royal Signals and Radar Establishment,

Malvern, Report No. 90020, 1990.
22. S.N. Foley. A taxonomy for information flow policies and models. Proc. 1991 Symp. on

Res. in security and privacy. IEEE, 98-108.
23. S.N. Foley. Separation of duties using High water mark. Proc. Comput. Security Founda-

tions Worksh., IEEE, 1991.
24. S.N. Foley. Aggregation and separation as noninterference properties. Journal of Com-

puter Security, 1(2):159–188, 1992.
25. S.N. Foley. Reasoning about confidentiality requirements. Proc. Comput. Security Foun-

dations Worksh. VII, IEEE, 1994, 150-160.
26. S.N Foley, L. Gong, X. Qian. A security model of dynamic labeling providing a tiered ap-

proach to verification. Proc. 1996 IEEE Symp. On Security and Privacy, 142-153.
27. R. Fraïssé. Theory of relations. North-Holland, 1986.
28. F. Harary, R.Z. Norman, D. Cartwright. Structural models: an introduction to the theory of

directed graphs. Wiley, 1965.
29. V.C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, K. Scarfone. Guide to At-

tribute Based Access Control (ABAC) Definition and considerations. NIST Special Publi-
cation 800-162, 2014.

30. J. Huang, M.S. Fox, S, Mark. An ontology of trust: formal semantics and transitivity. Proc.
8th Intern. Conf. on Electronic Commerce (ICEC 2006), ACM Press, 259-270.

23

31. J. Jaskolka, R. Khedri, Q. Zhang. On the necessary conditions for covert channel existence:
A state-of-the-art survey. Proc. 3rd Intern. Conf. on Ambient Systems, Networks and Tech-
nologies (ANT 2012). Elsevier Procedia Computer Science 10(2012), 458-465.

32. S. Khobragade, N. V. Narendra Kumar, R. K. Shyamasundar. Secure synthesis of IoT via
readers-writers flow model. Proc. Intern. Conf. on Distrib. Computing and Internet Techn.
(ICDCIT 2018), LNCS 10722, 86–104.

33. L. Logrippo. Logical method for reasoning about access control and data flow control
models. Proc. 7th Intern. Symp. on foundations and practice of security (FPS 2014). LNCS
8930, 205-220.

34. L. Logrippo. Multi-level access control, directed graphs and partial orders in flow control
for data secrecy and privacy. Proc. of the 10th Intern. Symp. on Foundations and Practice
of Security (FPS 2017), LNCS 10723 (2018), 111-123.

35. L. Logrippo, A. Stambouli. Configuring data flows in the Internet of Things for security
and privacy requirements. Proc. 11th International Symp. on Foundations and Practice
of Security (FPS 2018). Springer LNCS Vol. 11358, 115-130.

36. P. Matousek, J. Rab, O. Rysavy, M. Sveda. A Formal Model for Network-Wide Security Anal-
ysis. Proc. 15th Ann. IEEE Intern. Conf. and Workshop on the Engineering of Computer
Based Systems (ECBS 2008), 171-181.

37. C. Meadows. Extending the Brewer-Nash model to a multilevel context. Proc. 1990 IEEE
Symp. on security and privacy, IEEE Computer Society, 95-102.

38. L. Moreau. The foundations for provenance on the Web. Foundations and trends in web
science. 2(2-3), 2010, 99-241

39. A. C. Myers, B. Liskov. Protecting privacy using the decentralized label model. ACM Trans.
on Software Eng. and Methodology, 9(4), 2000, 410-442.

40. N.V. Narendra Kumar, R. Shyamasundar. Realizing purpose-based privacy policies suc-
cinctly via Information-Flow Labels. Proc. Big Data and Cloud Computing (BDCloud'14),
753-760.

41. S. Osborn. Information flow analysis for RBAC system. Proc. 7th ACM Symp. on Access
control models and technologies (SACMAT ‘02), 163-68.

42. J. Park, D. Nguyen, and R. Sandhu. A provenance-based access control model. Proc. Intern.
Conf. on Privacy, Security and Trust, IEEE, 2012, 137-144.

43. T. Pasquier, J. Singh, D. Eyers, J. Bacon. CamFlow: Managed Data-Sharing for Cloud Ser-
vices. IEEE Trans. on Cloud Computing, 5(3) 2017, 472-484.

44. T. Pasquier, J. Bacon, J. Singh, D. Eyers. 2016. Data-Centric Access Control for Cloud Com-
puting. Proc. 21st ACM Symp. on Access Control Models and Technologies (SACMAT '16),
81-88.

45. J. Rushby. Noninterference, transitivity and channel-control security policies. Technical
Report, SRI International, May 2005.

46. A. Sabelfeld, D. Sands. Dimensions and principles of declassification. Proc. 18th IEEE
Computer Security Foundations Worksh. (CSFW’05), 255-271.

47. R.S. Sandhu. Lattice-based enforcement of Chinese Walls. Computers & Security Vol.
11(8), 1992, 753-763.

48. R.S. Sandhu. Lattice-based access control models. IEEE Computer 26(11), 1993, 9–19.
49. R.S. Sandhu, S. Jajodia. Data and database security and controls. Handbook of Information

Security Management, Auerbach Publishers, 1993, 481-499.

24

50. R.S. Sandhu. On five definitions of data integrity. In Database Security VII: Status and Pro-
spects, North-Holland, 1994, 257-267.

51. A. Sharifi, M.V. Tripunitara. Least-restrictive enforcement of the Chinese wall security
policy. Proc. 18th ACM Symp. on access control methods and technologies (SACMAT
2013), ACM, 61-72.

52. J. Singh, T.Pasquier, J.Bacon, H.Ko, D.Eyers. Twenty security considerations for cloud-sup-
ported Internet of Things. IEEE Internet of Things Journal, 3(3) (2016), 269-284.

53. A. Stambouli, L. Logrippo. Data flow analysis from capability lists, with application to
RBAC. Information Processing Letters, 141(2019), 30-40.

54. R. E. Tarjan. Depth-first search and linear graph algorithms, SIAM Journ. on Computing,
1(2) (1972), 146–160.

55. C. Weissman. Security controls in the ADEPT-50 time sharing system. Proc. 1969 AFIPS
fall joint computer conf. AFIPS Press, 119-133.

56. Wikipedia. Graph isomorphism problem. Consulted December, 2019.

