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Abstract 

The IS0 Reference Model of Open Distributed Processing (RM-ODP) consists of four parts: an Overview of the 
reference model, the Descriptive Model, the Prescriptive Model, and the Architectural Semantics. The four parts 
provide the concepts and rules of distributed processing to ensure openness between interacting distributed 
application components. Openness is a combination of characteristics: i.e. scalability, accessibility, heterogeneity, 
autonomy and distribution. 

The RM-ODP introduces the concept of viewpoint to describe a system from a particular set of concerns, and 
hence to deal with the complexity of distributed systems. While all the viewpoints are relevant to the description and 
design of distributed systems, the computational and engineering models are the ones that bear most directly on the 
design and implementation of distributed systems. From a distributed software engineering point of view, the 
computational and engineering viewpoints are again the most important; they reflect the software structure of the 
distributed application most closely. In this introductory paper, we concentrate on the computational and engineer- 
ing viewpoints. 
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1. Introduction 

The Reference Model for Open Distributed 
Processing (RM-ODP) is an architectural frarne- 
work for the integrated support of distribution, 
inter-working, inter-operability and portability of 
distributed applications. It provides an object-ori- 
ented reference model for building open dis- 
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tributed systems. It defines an architecture for 
distributed systems which enables multi-vendor, 
multi-domain, heterogeneous, networked-com- 
puting. 

RM-ODP is a meta-standard to coordinate 
and guide the development of application-specific 
ODP standards. While individual ODP standards 
enable inter-operability and portability of con- 
forming implementations, the RM-ODP enables: 

(1) choosing the suitable levels of abstraction 
for the specification of ODP systems; 

(2) using proper modelling concepts corre- 
sponding to abstraction levels; 
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(3) identifying and relating generic functions Part-l: IS0 10746-l/ITU-T X.901: Overview 
of ODP systems; and Part-2: IS0 10746-2/ITU-T X.902: Descriptive 

(4) selecting adequate formal description tech- 
niques (FDTs) and associated methods for 
expressing, refining, and validating specifi- 
cations of ODP systems. 

RM-ODP identifies several types of interfaces 

Model 
Part-3: IS0 10746-3/ITU-T X.903: Prescriptive 

Model 
Part-4: IS0 10746-4/ITU-T X.904: Architectural 

Semantics 
at which standardization may be required, and 
places constraints only at these interfaces. Thus 
the issue of heterogeneity is tackled by opening 
interfaces. It identifies the functionality of the 
distributed platform, the ODP Support Environ- 
ment (ODP-SE), required for the open and distri- 
bution-transparent interaction between applica- 
tion components. 

Part-l contains a motivational overview and 
guide to the use of RM-ODP. It explains the key 
concepts of the RM-ODP architecture. It intro- 
duces the concept of information distribution. 

The scope of ODP can be summarized as 
providing a framework for building open dis- 
tributed systems out of networked systems that 
are heterogeneous in nature. Heterogeneity can 
include: equipment heterogeneity, operating system 
heterogeneity, computational (programming or 
database) language heterogeneity, application het- 
erogeneity, and authority heterogeneity (e.g., where 
interaction between autonomous ownership do- 
mains is required). 

Part-2 gives precise definition of the concepts 
required to specify open distributed processing 
systems. It is a descriptive model. It contains 
basic modelling concepts such as object, interface, 
behaviour, state, interaction, etc.; specification 
concepts such as composition, decomposition, be- 
havioural compatibility, refinement, trace, tem- 
plate, type, class, etc.; and architectural concepts 
such as organizational concepts (group, configu- 
ration), properties of systems and objects (distri- 
bution transparency, quality of service) and nam- 
ing concepts. 

RM-ODP prescribes a methodology for the 
design of distributed systems by describing differ- 
ent abstraction levels called uiewpoints. The ODP 
framework of viewpoints is quite generic. A set of 
concepts, structures, and rules is given for each 
viewpoint, providing a language for specifying 
ODP systems in that viewpoint. 

Part-3 prescribes the ODP framework of view- 
points for the specification of ODP systems in 
different viewpoint languages. It contains the 
specification of characteristics that characterize a 
system as open distributed system. It is prescrip- 
tive in nature. 

RM-ODP is based on precise concepts and, as 
far as possible, on the use of formal description 
techniques (FDTs) for the specification of archi- 
tecture. 

Part-4 deals with “architectural semantics”, 
i.e., how the modelling concepts of Part-2 and 
viewpoint languages of Part-3 can be represented 
in a number of formal description techniques 
such as LOTOS, Estelle, SDL, and Z. None of 
the FDTs are completely suitable for the specifi- 
cation of concepts arising in all viewpoints. For 
example, Z is suitable for information modelling, 
SDL and LOTOS have been used for computa- 
tional and engineering modelling. 2. The structure of ODP RM 

The set of documents which comprise the ODP 
RM consists of four parts. ODP RM is currently 
an ITU-T and ISO/IEC/JTCl/SCZl/WG7 
Committee Draft, except for part-2 and part-3 
which are available as Draft International Stan- 
dard: 

All the parts of ODP RM are explained using 
the object-oriented paradigm. The object concept 
plays a central role in the modelling of ODP 
systems. An object stands for data abstraction, 
function encapsulation and modularity. However, 
different interpretations of the ODP modelling 
concept of an object are possible, i.e. a real-world 
thing, the subject of concern, a idealised thing, a 
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denotation of a model or program or the object 
itself as part of the real-world. 

3. The viewpoint approach of RM-ODP 

For any given information processing system, 
there are a number of user categories - or more 
accurately, a number of “roles” - that have an 
interest in the system. Examples include the 
members of the enterprise who use the system, 
the system analysts, who specify it, the system 
designers, who implement it, and the system ad- 
ministrators, who install it. Each role is interested 
in the same system, but their relative views of the 
system are different, they see different issues, 
they have different requirements, and they use 
different vocabularies (or languages) when de- 
scribing the system. RM-ODP attempts to recog- 
nize these different interests by defining different 
viewpoints. 

Rather than attempting to deal with the full 
complexity of distributed systems, the RM-ODP 
considers the system from different viewpoints or 
projections, each of which is chosen to reflect one 
set of design concerns. Each viewpoint represents 
a different abstraction of the original distributed 
system, without the need to create one large 
model describing it. 

The ODP framework of viewpoints partitions 
the concerns to be addressed in the design of 

distributed systems. A viewpoint leads to a repre- 
sentation of the system with emphasis on a spe- 
cific set of concerns, and the resulting representa- 
tion is an abstraction of the system, that is, a 
description which recognizes some distinctions 
(those relevant to the concern) and ignores others 
(those not relevant to the concern). Different 
viewpoints address different concerns, but there 
is a common ground between them. The frame- 
work of viewpoints must treat this common 
ground consistently, in order to relate viewpoint 
models and to make it possible to assert corre- 
spondences between the representations of the 
same system in different viewpoints. This frame- 
work allows the verification of both the complete- 
ness of the various descriptions and of the consis- 
tency between them. 

The ODP viewpoints can be used to structure 
the specification of a distributed system, and can 
be related to a design methodology. Design of the 
system can be regarded as a process that may be 
subdivided into phases related to different view- 
points. Each of the viewpoints can be used as 
problem analysis technique as well as a solution 
space of the relevant issues of the problem do- 
main. 

These viewpoints should not be seen as archi- 
tectural layers, but rather as different abstrac- 
tions of the same system, and should all be used 
to completely analyse the system. With this ap- 
proach, consistent and complete system models 

SYSTEM 

Fig. 1. Viewpoints: different projections on the system. 
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may be described and developed based on con- 
cepts and methods still to be designed for individ- 
ual viewpoints. 

RM-ODP defines the following five view- 
points. Together they provide the complete de- 
scription of the system: enteqrise viewpoint, in- 
formation viewpoint, computational viewpoint, en- 
gineering viewpoint, and technology viewpoint, see 
Fig. 1. The concerns addressed in each of the 
viewpoints are briefly sketched below: 

(1) Enterprise viewpoint: It is directed to the 
needs of the llsers of an information system. It 
describes the (distributed) system in terms of 
answering what it is required to do for the enter- 

prise or business. It is the most abstract of the 
ODP framework of viewpoints stating high level 
enterprise requirements and policies. 

(2) Information viewpoint: It focuses on the 
information content of the enterprise. The infor- 
mation modelling activity involves identifying in- 
formation elements of the system, manipulations 
that may be performed on information elements, 
and the information flows in the system. 

(3) Computational viewpoint: It deals with the 
logical partitioning of the distributed applications 
independent of any specific distributed environ- 
ment on which they run. It hides from the appli- 
cation designer the details of the underlying ma- 

Table 1 
Summary of ODP viewpoints 

Viewpoint Enterprise Information Computation Engineering Technology 

Areas of 
concern 

Main 
concepts 

Whom does 
it concern 

Language/ 
notation 

Role in 
software 
engineering 

Enterprise 
needs of IS; 
Objectives 
and roles of 
IS in the 
organization. 

Agents, arti- 
facts, com- 
munities, 
roles. etc. 

System pro- 
curers, cor- 
porate 
managers. 

Requirement 
description 
languages. 

Require- 
ment cap- 
ture and 
early design 
of distribu- 
ted system. 

Information 
models, 
information 
structures, 
information 
flows, 
information 
manipula- 
tion. 

Schemas, 
relations, 
integrity 
roles. etc. 

Information 
analysts 
system ana- 
lysts, infor- 
mation 
engineers. 

Application de- 
signers and program- 
mers. 

Entity-relati- Application pro- 
onship gramming environ- 
models, con- ments, tools, 
ceptual sche- programming lan- 
mas, etc. guages, etc. 

Conceptual 
design and 
information 
modelling. 

Software design and 
development. 

Logical parti- 
tioning of applica- 
tion, application 
components, com- 
ponent interfaces, 
component interac- 
tions; 
service-oriented 
view of distributed 
application. 

Computational 
object, computatio- 
nal interface, envi- 
ronment constraints, 
computational 
interactions, etc. 

Distributed platform infra- 
structure; distribution trans- 
parency, communication 
support, and other distribu- 
tion enabling, regulating, 
and hiding generic mecha- 
nisms; system-oriented 
view of distributed applica- 
tion. 

Basic engineering objects, 
transparency objects, pro- 
tocol object, nucleus, etc. 

Operating system de- 
signers, communication 
system designers, system 
designers. 

Distributed platforms, 
engineering support envi- 
ronments, etc. 

System design and 
development. 

Technological 
artifacts requi- 
red for reali- 
zing 
engineering 
mechanisms. 

Technological 
solutions cor- 
responding to 
engineering 
mechanisms 
and structures 

System inte- 
grators, 
system ven- 
dors. 

Technology 
mappings, 
identification 
of technical 
artifacts, etc. 

Technology 
identification, 
procurement, 
installation. 
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chine (distributed platform) that supports the ap- 
plication. 

(4) Engineering viewpoint: It addresses the is- 
sues of system support (platform) for distributed 
applications. It identifies the functionality of the 
distributed platform required for the support of 
the computational model. 

(5) Technology viewpoint: The technology 
model identifies possible technical artifacts for 
the engineering mechanisms, computational 
structures, information structures, and enterprise 
structures. 

A summary of ODP viewpoints is presented in 
Table 1. 

Using the five ODP viewpoints to examine 
system issues encourages a clear separation of 
concerns, which in turn leads to a better under- 
standing of the problems being addressed: de- 
scribing the role of the enterprise (enterprise 
viewpoint) independently of the way in which that 
role is automated; describing the information 
content of the system (information viewpoint) in- 
dependently of the way in which the information 
is stored or manipulated; describing the applica- 
tion programming environment (computation 
viewpoint) independently of the way in which that 
environment is supported; describing the compo- 
nents, mechanisms used to build systems inde- 
pendently of the machines on which they run; 
and describing the basic system hardware and 
software (technology viewpoint) independently of 
the role it plays in the enterprise. 

4. The ODP computational model 

The ODP computational model is a framework 
for describing the structure, specification and in- 
teractions of (components of) a distributed appli- 
cation on a (distributed) computing platform. 

The computational model is based on a dis- 
tributed-object model. It prescribes an object-ori- 
ented view of the distributed application. Appli- 
cations are collections of interacting objects. In 
this model, objects are the units of distribution, 
encapsulation, and failure. 

The computational model provides a set of The computational model is an “object world” 
basic (abstract) concepts and elements for the populated with concurrent (computational) ob- 
construction of a programming (specification) jects interacting with each other, in a dktribution- 
language for which the model does not provide transparent abstraction, by invoking operations at 
any syntax. Using the computational modelling their interfaces. An object can have multiple in- 
concepts, one can specify (program) a distributed terfaces and these interfaces define the interac- 
application without worrying about the details of tions that are possible with the object. 

ODP COMPUTATIONAL INIK4STRUC’TURE 

Fig. 2. ODP computational specification: an object world 
supported by distributed platform. 

the underlying distributed execution platform. 
The design principle of the computational model 
is to minimize the amount of engineering details 
that the application programmer is required to 
know, yet at the same time allowing the program- 
mer to exploit the benefits of distributed comput- 
ing. 

A computational specification of a distributed 
application consists of the composition of compu- 
tational objects (which represent application com- 
ponents) interacting, by operation invocations, at 
their interfaces. It identifies the activities that 
occur within the computational objects, and the 
interactions that occur at their interfaces, (com- 
putational interfaces), see Fig. 2. 

4.1. Computational model: a object-oriented view 
of distributed application 
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“Activity” is a unit of concurrency within an 
object. A collection of (computational) objects 
may have any number of activities threading 
through them. The state encapsulated by the 
object can be accessed and modified by the activi- 
ties executing the operations in the interfaces of 
that object. 

A distributed computation progresses by oper- 
ation invocations at object interfaces. The activity 
in an object (invoking object) can pass into an- 
other object (invoked object) by invoking opera- 
tions in the interface of the invoked object. Activ- 
ities carry the state of their computations with 
them, i.e., when an activity passes into an opera- 
tion it carries the parameters for that invocation, 
and returns carrying results. In the computational 
model, concurrency within an object and commu- 
nication between objects are separate concerns. 
While concurrency is modelled by the concept of 
activity, communication between object is mod- 
elled as (remote) invocation of an operation. 

4.2. Distribution issues and the computational 
model 

Computational specifications are intended to 
be distribution-transparent, i.e., written without 
regard to the specifics of a physically distributed, 
heterogeneous environment. However, the ex- 
pression of environment constraints in the compu- 
tational interface template provides a hint of the 
application requirements from the distributed 
platform, e.g., distribution transparencies, secu- 
rity mechanisms, specific resource requirements, 
etc.. 

At the computational level, user applications 
are unaware of how the underlying distributed 
platform is structured or how the distribution 
enabling and regulating mechanisms are realised. 

4.3. Elements of the computational model 

The design philosophy of the computational 
model has been to find the smallest number of 
concepts (elements) needed to describe dis- 
tributed computations and to propose a declara- 
tive approach to the formulation of each concept. 
This section is a brief introduction of some basic 

ODP computational model concepts. 

computational elements out of which the compu- 
tational specification of the distributed applica- 
tion is constructed. 

The basic elements of the computational model 
are: computational object, computational inter- 
face, interface invocation mechanisms such as 
computational operation, and the abstraction to 
model the communication between the computa- 
tional interfaces - binding object. 

Computational Object: The components of dis- 
tributed application are represented as computa- 
tional objects in the computational model. The 
computational objects are the units of (applica- 
tion) structure and distribution. The computa- 
tional objects model both the application compo- 
nents that perform information processing and 
those components that store the information. 

As shown in Fig. 3, a computational object 
template consists of a set of computational inter- 
face templates which the object can instantiate. 

Computational Interface: While computational 
objects are the units of structure and encapsula- 
tion of (application-specific) services, interfaces 
are the units of provision of services; they are the 
places at which objects can interact and obtain 
services. 

The distributed application components (mod- 
elled as computational objects) may be written in 
different (programming) languages and may run 
on heterogeneous environments. In order for a 
component to be constructed independently of 
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another component with which it is to interact, a 
precise specification of the interactions between 
them is necessary. The specification of interac- 
tion between computational objects, and of their 
requirements of interaction are captured by inter- 
face templates. The computational interfaces 
model different interaction concerns of an object. 

A computational object may support multiple 
computational interfaces which need not be of 
the same type. Interfaces of the same type may 
be provided by objects which are not of the same 
type. Each object may provide interfaces which 
are unlike those provided by the other object. 

In the ODP computational model two kinds of 
interfaces are identified: operational interfaces 
and stream interfaces. 

Operational Interface: The specification of op- 
erational interface template consists of: 

(1) Operation specification. 
(2) Behaviour specification. 
(3) Environment contract. 
The operation specification includes the oper- 

ation name together with the number, sequence, 
and type of arguments that may be passed in each 
operation invocation and its response(s). This is 
called operation signature. 

The behaviour specification defines the be- 
haviour exhibited at the interface. All possible 
orderings of operation invocations at or from the 
interface are specified. The behaviour constitutes 
the protocol part of the interface. 

Most interface specifications, to date, have 
concentrated on the syntactic requirements of the 
interface such as the operation signature. Aspects 
other than pure syntax are also important in 
facilitating the interaction between a pair of ob- 
jects. This additional semantic information falls 
into two categories: 

(a) Information affecting the way in which the 
infrastructure supports the interactions; this in- 
formation constrains the type of distribution 
transparencies, choice of communication proto- 
cols, etc. that must be placed in the interaction 
path between the interacting objects. 

(b) The behaviour (or the semantics) of the 
service offered at the interface; an interface is 
viewed as a projection of an object’s behaviour, 
seen only in terms of a specified set of observable 

actions. As a result, signature compatibility is less 
discriminating than interface compatibility. 

The environment contract in the computa- 
tional interface template defines the following 
attributes: 

(1) Distribution transparency requirement on 
operation invocation. 

(2) Quality of service (including communica- 
tion quality of service) attributes associated with 
the operations. 

(3) Temporal constraints on operations (e.g., 
deadlines). 

(4) Dependability constraints (e.g., availability, 
reliability, fault tolerance, security etc.) 

(5) Location constraints on interfaces (and 
hence their supporting objects). 

(6) Other environment constraints on opera- 
tions (e.g., those arising from enterprise and in- 
formation viewpoint). 

These attributes may be associated with indi- 
vidual operations or the entire interface. The 
environment contract is an important component 
of the computational interface template and has 
a direct relationship to the realized engineering 
structures and mechanisms. 

Stream Interface: The computational objects 
may perform the information processing task as 
well as act as containers of information. There is 
a need to model not only the interfaces which 
provide “service”, but also those interfaces which 
model “continuous” information flow. Such inter- 
faces are modelled, in the computational model, 
as stream interfaces. 

The stream interface is a set of information 
flows whose behaviour is described by a single 
action which continues throughout the life time 
of the interface. Information media such as voice 
and video inherently consist of a continuous se- 
quence of symbols. Such media are described as 
continuous and the term stream is used to refer 
to the sequence of symbols comprising such a 
medium. 

Examples include the flow of audio or video 
information in a multimedia application, or the 
continuous flow of periodic sensor readings in a 
process control application. The computational 
description does not need to be concerned with 
detailed mechanisms; the fact that the flow is 
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established and continues during the relevant pe- 
riod is enough. 

The template for a stream interface consists of 
Stream Signature: A specification of the type of 

each information flow contained in a stream in- 
terface and, for each flow, the direction in which 
the flow takes place. 

Environment Constraint : Continuous media 
have strict timing and synchronization require- 
ments. The environment constraints that are rele- 
vant to stream interfaces include synchronization 
and clocking properties, time constraints, priority 
constraints, throughput, jitter, delay, media- 
specific communication quality requirements, etc., 
in addition to the properties applicable to opera- 
tional interfaces. 

Role: A role for each information flow, e.g., a 
producer object or a consumer object. 

Binding Object: Interactions between computa- 
tional objects are only possible, when their inter- 
faces are bound. There is a concept of implicit 
and explicit binding in the computational model. 
When objects get implicitly bound in the compu- 
tational model, it is assumed that the underlying 
platform (the engineering infrastructure), will 
provide the service of checking the consistence 
between the interfaces to be bound. 

The computational objects are explicitly bound 
through a binding object. The template for the 
binding object specifies the interaction patterns 
between the bound computational objects. The 
binding object contains control interfaces which 
allow dynamic modification of number and types 
of objects involved in the binding. 

5. Engineering model 

The engineering model is an abstract model to 
express the concepts of the engineering view- 
point. It involves concepts such as operating sys- 
tems, distribution transparency mechanisms, 
communication systems (protocols, networks), 
processors, storage, etc. As the notions of proces- 
sor, memory, transport network play a more indi- 
rect role in a distributed system, the term “en- 
gineering model” is used here in a more general 
way to describe a framework oriented towards 
the organization of the underlying distributed in- 

frastructure and targeted to the application sup- 
port. It mostly focuses on what services may be 
provided to applications and what mechanisms 
should be used to obtain these services. The term 
platfomt is used to refer to the (configuration of) 
services offered to applications by the infrastruc- 
ture. 

The engineering model is still an abstraction of 
the distributed system, but it is a different ab- 
straction than the computational model. Distribu- 
tion is no longer transparent, but we still need 
not concern ourselves with real computers or with 
the implementations (technology) of mechanisms 
or services identified in the engineering model. 
The engineering model provides a machine-inde- 
pendent execution environment for distributed 
applications. 

Unlike the enterprise, information, and com- 
putational models which deal with the semantics 
of distributed applications, the engineering model 
is not concerned with the semantics of the dis- 
tributed application, except to determine its re- 
quirements for distribution. 

5.1. Engineering model: an object-based dktributed 
platform 

The ODP engineering model is an architec- 
tural framework for the provision of an object- 
based distributed platform. The set of basic ser- 
vices and mechanisms, identified in the engineer- 
ing model, are modelled as a collection of inter- 
acting objects which together provide support for 
the realization of interactions between distributed 
application components. 

The engineering model can be considered as 
an extended operating system spanning a network 
of interconnected computers. In the networked- 
operating system view of the model, the linked 
computers preserve much of their autonomy and 
are managed by their local operating systems 
which are enhanced with mechanisms to enable, 
regulate and (if desired) hide distribution. 

5.2. Engineering model: animation of computa- 
tional model 

The interest of the computational model is 
directly related to the existence of a mapping 
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enabling it to relate to engineering concerns. This 
means, for instance, being able to map computa- 
tional concepts onto the engineering structures. 

The engineering model provides an infrastruc- 
ture or a distributed platform for the support of 
the computational model. The model provides 
generic services and mechanisms capable of sup- 

computational model. The model is concerned 
with how an application, specified in the compu- 
tational model, may be engineered onto the dis- 
tributed platform. The selection of distribution 
transparency and communication (protocol) ob- 
jects, among many other support mechanisms, 
tailored to application needs, forms an important 

porting distributed applications specified in the task. 

Capsule Channel Node 

NODE-l 

Fig. 4. ODP engineering model: Organization of distributed infrastructure 
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The engineering model identifies the jimction- 
ality of basic system components that must be 
present, in some form or other, in order to sup- 
port the computational model. Hypothetically, 
there may be several engineering models for a 
particular computational environment, reflecting 
the use of different system components and 
mechanisms to achieve the same end. The issue 
in the computational model is what (interactions, 
distribution requirements); the engineering model 
prescribes solution as to how to realize these 
interactions, satisfying the stated requirements. 

5.3. Structure of engineering model 

The engineering model reveals the structure of 
the distributed platform, the ODP infrastructure 
which supports the computational model. The 
services or mechanisms which enable, regulate 
and hide distribution in the ODP infrastructure, 
are modelled as objects, called engineering ob- 
jects, which may support multiple interfaces. 

There are different kinds of engineering ob- 
jects in the engineering model corresponding to 
different distribution (enabling, regulating, hid- 
ing) functions required in a distributed environ- 
ment. This is illustrated in Fig. 4. Some engineer- 
ing objects correspond to the application func- 
tionality and are referred to as basic engineering 
objects while those which provide distribution 
functions are classified as transparency objects, 
protocol objects, support objects, etc. At a given 

host, the basic engineering objects belonging to 
an application may be grouped into clusters. A 
host may support multiple clusters in its address- 
ing domain, known as capsule. A capsule consists 
of clusters of basic engineering objects, a set of 
transparency objects, protocol objects and other 
local operating system facilities. 

From an engineering viewpoint, the ODP in- 
frastructure consists of interconnected autono- 
mous computer systems (hosts), which are called 
nodes. Each node supports a nucleus object and 
multiple capsules. The nucleus encapsulates com- 
puting, storage, and communication resources at 
a node. All the objects in the node share common 
processing, storage, and communication re- 
sources encapsulated in the nucleus object of the 
node. 

As mentioned before, the engineering model 
animates the computational model. The computa- 
tional-level interactions between a pair of compu- 
tational objects (or their interfaces) are sup- 
ported through channel structures in the engi- 
neering model. A channel binds basic engineering 
objects in different clusters, capsules, or nodes. 
The channel is a configuration of transparency 
objects, protocol objects, etc. which provide dis- 
tribution support. 

The services and mechanisms currently identi- 
fied in the engineering model are generic in na- 
ture and can support distribution requirements of 
applications in a broad range of enterprise do- 
mains (Telecoms, Office Information Systems, 
Computer Integrated Manufacturing, etc.). How- 

Table 2 
System abstractions in engineering model 

Engineering object System representation 

Node 

Nucleus 

Capsule The concept of address space in operating systems. 
Cluster The concept of “linked” modules to form an executable program image. 
BE0 The program module which may not be executed in isolation. 
Channel The run time “binding” between distributed BEOs 
Transparency Special purpose modules which enhance the operating system environment of the node 

object and can be dynamically linked into the distributed application program. 

Single computer system, network of workstations managed by a distributed operating system, 
any autonomous information processing system with independent nucleus resources 
and failure characteristics. 
Abstraction of an operating system providing processing, storage, and 
communication resources of a node. 
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ever, domain-specific supporting functions will be 
defined in the domain-specific engineering mod- 
els (which are the specialization of ODP engi- 
neering model). 

The following is a brief description of the 
engineering objects and structures currently iden- 
tified in the ODP engineering model. The objects 
and structures which are defined later in the text 
are italicized. Table 2 gives a relationship be- 
tween the engineering objects and the real world 
system. 

Basic Engineering Object : Basic Engineering 
Objects (BEOs) are the run time representation 
of computational objects (obtained through com- 
pilation, interpretation or through some other 
transformation of computational objects) which 
encapsulate application functionality. 

Cluster: A cluster is a configuration of basic 
engineering objects. Clusters are used to express 
related objects (which belong to the same appli- 
cation) that should be local to one another, i.e., 
those groups of objects that should always be on 
the same node at all times. 

Capsule: A capsule consists of clusters of basic 
engineering objects, transparency objects, and 

protocol objects bound to a common nucleus in a 
distinct address space from any other capsule. A 
capsule provides to its clusters access to the ob- 
jects in the channel and to the nucleus to which it 
is bound. 

Nucleus: A nucleus is an object that provides 
access to basic processing, storage, and communi- 
cation functions of a node for use by basic engi- 
neering objects, transparency objects, protocol ob- 
jects, bound together into capsules. A nucleus 
may support more than one capsule. A nucleus 
has the capability of interacting with other nuclei 
(through its communication function), providing 
the basis for inter-capsule and inter-node com- 
munication. 

Node: A node consists of one nucleus object, a 
node manager, and a set of capsules. All of the 
objects in a node share common processing, stor- 
age, and communications resources. 

Channel: A channel is a configuration of trans- 
parency objects, protocol objects, application spe- 
cific supporting objects, etc. providing a binding 
between a set of interfaces to basic engineering 
objects, through which interaction can occur. The 
structure of the channel is dependent on the 

Fig. 5. Simplified generic channel structure. 
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distribution function requirements of the interac- 
tion between basic engineering objects. 

Fig. 5 shows the client-half and server-half of a 
single channel object. If the objects being bound 
are on different nodes, there is still conceptually 
only one channel object created, i.e., there is not 
one channel object on one node and a different 
channel object on the other. 

Stub Object: An object which acts to a basic 
engineering object as a representative of another 
basic engineering object located in different clus- 
ters, thus contributing towards distribution trans- 
parency. Stub objects are bound to the basic 
engineering objects for the purpose of hiding 
certain aspects resulting from distribution (or 
heterogeneity). 

The stub objects have direct access to the basic 
engineering objects. The operation invocations on 
the interfaces of basic engineering objects are 
intercepted by stub objects to hide some aspects 
of distribution such as concurrency in the system 
or to modify the information exchanged between 
basic engineering objects, thus masking the het- 
erogeneity in the distributed system. 

Stub objects add further interactions and/or 
information to interactions between interacting 
basic engineering objects to support distribution 
transparency. As an example, a stub object may 
provide adaptation, such as marshalling and un- 
marshalling of operation parameters to enable 
transparent interactions between interfaces of ba- 
sic engineering objects. 

Examples of stub objects include access trans- 
parency object and concurrency transparency ob- 
ject discussed in the next section. 

Basic engineering objects are always directly 
bound to the stub objects. Stub objects within a 
channel can interact with one another using other 
objects in the channel, or via interaction with 
supporting objects outside of the channel. 

Binder Object: An object which controls and 
maintains the binding between interacting basic 
engineering objects, contributing towards the pro- 
vision of distribution transparency. 

Binder objects maintain the binding between 
basic engineering objects, even if they are mi- 
grated, reactivated at new location, or are repli- 
cated. Examples of binder objects include loca- 

tion transparency object, migration transparency 
object, replication transparency object, failure 
transparency object, and resource transparency ob- 
ject. 

Stub objects are bound to binder objects. 
Binder objects interact with one another to main- 
tain the integrity of the binding between the 
interacting basic engineering objects. Binder ob- 
jects in the channel can interact with one another 
using other objects in the channel, or via interac- 
tion with supporting objects outside the channel. 
Binder objects are interconnected by protocol 
objects. 

Protocol Object: An object which encapsulates 
communication protocol functionality for sup- 
porting communication between basic engineer- 
ing objects. A channel may be composed of a 
number of protocol objects corresponding to dif- 
ferent communication support requirements of 
interactions between basic engineering objects. 
Protocol objects interact with other protocol ob- 
jects to support interaction between basic engi- 
neering objects. 

Interceptor Object: An object which masks ad- 
ministrative and technology domain boundaries 
by performing transformation functions such as 
protocol conversion, type conversion etc. It en- 
ables interactions to cross administrative and 
communication domains, thus contributing to- 
wards federation transparency. 

Distribution Transparency : The following trans- 
parencies have been identified in the ODP engi- 
neering model, as important in distributed sys- 
tems. The concept of transparency is viewed as 
the corner stone of ODP architecture. A brief 
description of transparencies, based on the con- 
cept of client and server objects (or client and 
server interfaces) is outlined below: 

These transparency mechanisms provide an 
enhanced environment positioned on top of the 
low-level operating systems and communications 
facilities of the distributed platform, for the sup- 
port of distribution transparent programming en- 
vironment offered by the computational model. 

The technique for providing any transparency 
service is based on the single principle of replac- 
ing an original service by a new service which 
combines the original service with the trans- 
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parency service, and which permits clients to in- 
teract with it as if it were the original service. The 
clients need not be aware of how these combined 
services are achieved. 

Since the interactions between the objects oc- 
cur at their interfaces, these transparencies are 
applicable to individual interfaces or to specific 
operations of the interfaces. An interface may 
have a set of transparency requirements which 
may be different from those of other interfaces of 
the same object. 

A summary of transparency mechanisms is 
presented in Table 3. 

Access Transparency: It hides from a client 
object the details of the access mechanisms for a 
given server object, including details of data rep- 
resentation and invocation mechanisms (and vice 
versa). Access transparency hides the difference 
between local and remote provision of the ser- 
vice. 

Access transparency enables interworking 
across heterogeneous computer architectures, op- 
erating systems and programming languages. 

Concurrency Transparency: It hides from the 
client the existence of concurrent accesses being 
made to the server. Concurrency transparency 
hides the eff;?ccts due to the existence of concur- 
rent users of a service from individual users of 
the service. 

Location Transparency: It hides from a user 
(client) where the object (server) being accessed 
is located.. 

Migration Transparency: Migration trans- 
parency hides from the user of the service (client) 
the effects of the provider of the service moving 
from one location to another, during the provi- 
sion of the service (between successive operation 
invocations). 

Location transparency is a static transparency 
in the sense that it is assumed that once located 

Table 3 
ODP distribution transparencies 

Transparency Central issue 

Access The method of access to objects 
(invocation mechanism and data rep- 
resentation). 

Result of transparency 

Client need not be unaware of access 
mechanisms at the server interface. 

Concurrency Concurrent access to objects in the 
distributed system. 

Location 

Migration 

Replication 

Location of object in the distributed 
system. 
Dynamic re-location of objects during 
the “bind-session”. 
Multiple invocations on replicated 
objects, multiple responses, and con- 
sistency of replicated data. 

Clients are masked from the effects of 
concurrent access to the server inter- 
face. 
Clients are unaware of the physical 
location of the server. 
Clients are unaware of the dynamic 
migration of the server. 
Client invokes a replicated server 
group as if it were a single server. 
Distribution of request, collation of 
responses, consistency of data, and 

Resource 

Failure 

Federation 

Resource management policies of the 
node (deactivation and reactivation of 
objects). 
Partial failure of object in the node. 

Pan-organizational boundaries. 

membership changes are hidden. 
Client unaware of the deactivation 
and reactivation of the server. 

Client unaware of the failure of the 
server and its subsequent reactivation 
(possibly at another node). 
Clients unaware of interactions cross- 
ing administrative and technology 
boundaries. 
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the interface remains at its location (until the 
binding between the involved interfaces is bro- 
ken). Migration transparency is the dynamic case 
which arises if the server interface can move 
while the client object is interacting with it, with- 
out disturbing those interactions. 

Replication Transparency : Replication trans- 
parency, also known as group transparency, hides 
the presence of multiple copies of services and 
maintaining the consistency of multiple copies of 
data, from the users of the services. 

It enables a set of objects (their interfaces) 
organized as a replica group to be coordinated so 
as to appear to interacting objects (or their inter- 
faces) as if they were a single object (interface). 

There are two main aspects of replication 
transparency. The first hides the difference be- 
tween a replicated and a non-replicated provider 
of a service from users of that service, and the 
second hides the difference between replicated 
and non-replicated users of a service from 
providers of that service. 

Users are unaware of multiple providers of the 
service and need not concern about making mul- 
tiple operation invocation or dealing with multi- 
ple responses. 

Resource Transparency: It hides from a user 
(client) the mechanisms which manage allocation 
of resources by activating or passivating (server) 
objects as demand varies. It also implies the 
hiding of deactivation and reactivation of (server> 
objects from the clients. 

Resource transparency, also known as liueness 
transparency, masks the automated transfer of 
clusters from a capsule to a storage object and 
back again, to optimize the use of node’s nucleus 
resources (processor, memory, etc.). 

With resource transparency in place, clients 
can invoke operations on the server irrespective 
of whether the server is currently active or pas- 
sive. 

Failure Transparency: Failure transparency 
masks (certain) failure(s) and possible recovery of 
server objects from the client objects, thus provid- 
ing fault tolerance. 

Federation Transparency: Federation trans- 
parency hides the effects of operations crossing 
multiple administrative boundaries from the 

clients. It permits inter-working across multiple 
administration and technology domains. 

6. Conclusion 

Using the five ODP viewpoints to examine 
system issues encourages a clear separation of 
concerns, which in turn leads to a better under- 
standing of the problems being addressed: de- 
scribing the role of the enterprise (enterprise 
viewpoint) independently of the way in which that 
role is automated; describing the information 
content of the system (information viewpoint) in- 
dependently of the way in which the information 
is stored or manipulated; describing the applica- 
tion programming environment (computation 
viewpoint) independently of the way in which that 
environment is supported; describing the compo- 
nents, mechanisms used to build systems inde- 
pendently of the machines on which they run; 
and describing the basic system hardware and 
software (technology viewpoint) independently of 
the role it plays in the enterprise. 

The purpose of the RM-ODP framework of 
viewpoints is to position services relative to one 
another, to guide the selection of appropriate 
models of services, and to help in the placement 
of boundaries upon ODP. The framework of 
viewpoints is used to partition the concerns to be 
addressed when describing all facets of an ODP 
system, so that the task is made simpler. 
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