
s -- --
!!!iEl I”s”DN SYSTEMS

ELSEVIER Computer Networks and ISDN Systems 27 (1995) 1215-1229

The IS0 Reference Model for Open Distributed Processing:
an introduction

Kazi Farooqui a, Luigi Logrippo a, Jan de Meer b, *
a Department of Computer Science, University of Ottawa, Ottawa KIN 6N5, Canada

b Research Institute for Open Communication Systems Berlin (GMD-FOKUS), Hardenbergplatz 2, D-10623 Berlin, Germany

Abstract

The IS0 Reference Model of Open Distributed Processing (RM-ODP) consists of four parts: an Overview of the
reference model, the Descriptive Model, the Prescriptive Model, and the Architectural Semantics. The four parts
provide the concepts and rules of distributed processing to ensure openness between interacting distributed
application components. Openness is a combination of characteristics: i.e. scalability, accessibility, heterogeneity,
autonomy and distribution.

The RM-ODP introduces the concept of viewpoint to describe a system from a particular set of concerns, and
hence to deal with the complexity of distributed systems. While all the viewpoints are relevant to the description and
design of distributed systems, the computational and engineering models are the ones that bear most directly on the
design and implementation of distributed systems. From a distributed software engineering point of view, the
computational and engineering viewpoints are again the most important; they reflect the software structure of the
distributed application most closely. In this introductory paper, we concentrate on the computational and engineer-
ing viewpoints.

Keywords: Standardisation; Distributed processing; Viewpoint models; Architectural semantics; Specification pro-
cess; Openness

1. Introduction

The Reference Model for Open Distributed
Processing (RM-ODP) is an architectural frarne-
work for the integrated support of distribution,
inter-working, inter-operability and portability of
distributed applications. It provides an object-ori-
ented reference model for building open dis-

* Corresponding author. E-mail: jdm@fokus.berlin.gmd.
d4OO.de

tributed systems. It defines an architecture for
distributed systems which enables multi-vendor,
multi-domain, heterogeneous, networked-com-
puting.

RM-ODP is a meta-standard to coordinate
and guide the development of application-specific
ODP standards. While individual ODP standards
enable inter-operability and portability of con-
forming implementations, the RM-ODP enables:

(1) choosing the suitable levels of abstraction
for the specification of ODP systems;

(2) using proper modelling concepts corre-
sponding to abstraction levels;

0169-7552/95/$09.50 0 1995 Elsevier Science B.V. All rights reserved
SSDI 0169-7552(95)00087-5

1216 II Farooqui et al. /Computer Networks and ISDN Systems 27 (1995) 1215-1229

(3) identifying and relating generic functions Part-l: IS0 10746-l/ITU-T X.901: Overview
of ODP systems; and Part-2: IS0 10746-2/ITU-T X.902: Descriptive

(4) selecting adequate formal description tech-
niques (FDTs) and associated methods for
expressing, refining, and validating specifi-
cations of ODP systems.

RM-ODP identifies several types of interfaces

Model
Part-3: IS0 10746-3/ITU-T X.903: Prescriptive

Model
Part-4: IS0 10746-4/ITU-T X.904: Architectural

Semantics
at which standardization may be required, and
places constraints only at these interfaces. Thus
the issue of heterogeneity is tackled by opening
interfaces. It identifies the functionality of the
distributed platform, the ODP Support Environ-
ment (ODP-SE), required for the open and distri-
bution-transparent interaction between applica-
tion components.

Part-l contains a motivational overview and
guide to the use of RM-ODP. It explains the key
concepts of the RM-ODP architecture. It intro-
duces the concept of information distribution.

The scope of ODP can be summarized as
providing a framework for building open dis-
tributed systems out of networked systems that
are heterogeneous in nature. Heterogeneity can
include: equipment heterogeneity, operating system
heterogeneity, computational (programming or
database) language heterogeneity, application het-
erogeneity, and authority heterogeneity (e.g., where
interaction between autonomous ownership do-
mains is required).

Part-2 gives precise definition of the concepts
required to specify open distributed processing
systems. It is a descriptive model. It contains
basic modelling concepts such as object, interface,
behaviour, state, interaction, etc.; specification
concepts such as composition, decomposition, be-
havioural compatibility, refinement, trace, tem-
plate, type, class, etc.; and architectural concepts
such as organizational concepts (group, configu-
ration), properties of systems and objects (distri-
bution transparency, quality of service) and nam-
ing concepts.

RM-ODP prescribes a methodology for the
design of distributed systems by describing differ-
ent abstraction levels called uiewpoints. The ODP
framework of viewpoints is quite generic. A set of
concepts, structures, and rules is given for each
viewpoint, providing a language for specifying
ODP systems in that viewpoint.

Part-3 prescribes the ODP framework of view-
points for the specification of ODP systems in
different viewpoint languages. It contains the
specification of characteristics that characterize a
system as open distributed system. It is prescrip-
tive in nature.

RM-ODP is based on precise concepts and, as
far as possible, on the use of formal description
techniques (FDTs) for the specification of archi-
tecture.

Part-4 deals with “architectural semantics”,
i.e., how the modelling concepts of Part-2 and
viewpoint languages of Part-3 can be represented
in a number of formal description techniques
such as LOTOS, Estelle, SDL, and Z. None of
the FDTs are completely suitable for the specifi-
cation of concepts arising in all viewpoints. For
example, Z is suitable for information modelling,
SDL and LOTOS have been used for computa-
tional and engineering modelling. 2. The structure of ODP RM

The set of documents which comprise the ODP
RM consists of four parts. ODP RM is currently
an ITU-T and ISO/IEC/JTCl/SCZl/WG7
Committee Draft, except for part-2 and part-3
which are available as Draft International Stan-
dard:

All the parts of ODP RM are explained using
the object-oriented paradigm. The object concept
plays a central role in the modelling of ODP
systems. An object stands for data abstraction,
function encapsulation and modularity. However,
different interpretations of the ODP modelling
concept of an object are possible, i.e. a real-world
thing, the subject of concern, a idealised thing, a

X Farooqui et al. /Computer Networks and ISDN Systems 27 (1995) 1215-1229 1217

denotation of a model or program or the object
itself as part of the real-world.

3. The viewpoint approach of RM-ODP

For any given information processing system,
there are a number of user categories - or more
accurately, a number of “roles” - that have an
interest in the system. Examples include the
members of the enterprise who use the system,
the system analysts, who specify it, the system
designers, who implement it, and the system ad-
ministrators, who install it. Each role is interested
in the same system, but their relative views of the
system are different, they see different issues,
they have different requirements, and they use
different vocabularies (or languages) when de-
scribing the system. RM-ODP attempts to recog-
nize these different interests by defining different
viewpoints.

Rather than attempting to deal with the full
complexity of distributed systems, the RM-ODP
considers the system from different viewpoints or
projections, each of which is chosen to reflect one
set of design concerns. Each viewpoint represents
a different abstraction of the original distributed
system, without the need to create one large
model describing it.

The ODP framework of viewpoints partitions
the concerns to be addressed in the design of

distributed systems. A viewpoint leads to a repre-
sentation of the system with emphasis on a spe-
cific set of concerns, and the resulting representa-
tion is an abstraction of the system, that is, a
description which recognizes some distinctions
(those relevant to the concern) and ignores others
(those not relevant to the concern). Different
viewpoints address different concerns, but there
is a common ground between them. The frame-
work of viewpoints must treat this common
ground consistently, in order to relate viewpoint
models and to make it possible to assert corre-
spondences between the representations of the
same system in different viewpoints. This frame-
work allows the verification of both the complete-
ness of the various descriptions and of the consis-
tency between them.

The ODP viewpoints can be used to structure
the specification of a distributed system, and can
be related to a design methodology. Design of the
system can be regarded as a process that may be
subdivided into phases related to different view-
points. Each of the viewpoints can be used as
problem analysis technique as well as a solution
space of the relevant issues of the problem do-
main.

These viewpoints should not be seen as archi-
tectural layers, but rather as different abstrac-
tions of the same system, and should all be used
to completely analyse the system. With this ap-
proach, consistent and complete system models

SYSTEM

Fig. 1. Viewpoints: different projections on the system.

1218 K Farooqui et al. /Computer Networks and ISDN Systems 27 (1995) 1215-1229

may be described and developed based on con-
cepts and methods still to be designed for individ-
ual viewpoints.

RM-ODP defines the following five view-
points. Together they provide the complete de-
scription of the system: enteqrise viewpoint, in-
formation viewpoint, computational viewpoint, en-
gineering viewpoint, and technology viewpoint, see
Fig. 1. The concerns addressed in each of the
viewpoints are briefly sketched below:

(1) Enterprise viewpoint: It is directed to the
needs of the llsers of an information system. It
describes the (distributed) system in terms of
answering what it is required to do for the enter-

prise or business. It is the most abstract of the
ODP framework of viewpoints stating high level
enterprise requirements and policies.

(2) Information viewpoint: It focuses on the
information content of the enterprise. The infor-
mation modelling activity involves identifying in-
formation elements of the system, manipulations
that may be performed on information elements,
and the information flows in the system.

(3) Computational viewpoint: It deals with the
logical partitioning of the distributed applications
independent of any specific distributed environ-
ment on which they run. It hides from the appli-
cation designer the details of the underlying ma-

Table 1
Summary of ODP viewpoints

Viewpoint Enterprise Information Computation Engineering Technology

Areas of
concern

Main
concepts

Whom does
it concern

Language/
notation

Role in
software
engineering

Enterprise
needs of IS;
Objectives
and roles of
IS in the
organization.

Agents, arti-
facts, com-
munities,
roles. etc.

System pro-
curers, cor-
porate
managers.

Requirement
description
languages.

Require-
ment cap-
ture and
early design
of distribu-
ted system.

Information
models,
information
structures,
information
flows,
information
manipula-
tion.

Schemas,
relations,
integrity
roles. etc.

Information
analysts
system ana-
lysts, infor-
mation
engineers.

Application de-
signers and program-
mers.

Entity-relati- Application pro-
onship gramming environ-
models, con- ments, tools,
ceptual sche- programming lan-
mas, etc. guages, etc.

Conceptual
design and
information
modelling.

Software design and
development.

Logical parti-
tioning of applica-
tion, application
components, com-
ponent interfaces,
component interac-
tions;
service-oriented
view of distributed
application.

Computational
object, computatio-
nal interface, envi-
ronment constraints,
computational
interactions, etc.

Distributed platform infra-
structure; distribution trans-
parency, communication
support, and other distribu-
tion enabling, regulating,
and hiding generic mecha-
nisms; system-oriented
view of distributed applica-
tion.

Basic engineering objects,
transparency objects, pro-
tocol object, nucleus, etc.

Operating system de-
signers, communication
system designers, system
designers.

Distributed platforms,
engineering support envi-
ronments, etc.

System design and
development.

Technological
artifacts requi-
red for reali-
zing
engineering
mechanisms.

Technological
solutions cor-
responding to
engineering
mechanisms
and structures

System inte-
grators,
system ven-
dors.

Technology
mappings,
identification
of technical
artifacts, etc.

Technology
identification,
procurement,
installation.

K. Farooqui et al. /Computer Networks and ISDN Systems 27 (1995) 1215-1229 1219

chine (distributed platform) that supports the ap-
plication.

(4) Engineering viewpoint: It addresses the is-
sues of system support (platform) for distributed
applications. It identifies the functionality of the
distributed platform required for the support of
the computational model.

(5) Technology viewpoint: The technology
model identifies possible technical artifacts for
the engineering mechanisms, computational
structures, information structures, and enterprise
structures.

A summary of ODP viewpoints is presented in
Table 1.

Using the five ODP viewpoints to examine
system issues encourages a clear separation of
concerns, which in turn leads to a better under-
standing of the problems being addressed: de-
scribing the role of the enterprise (enterprise
viewpoint) independently of the way in which that
role is automated; describing the information
content of the system (information viewpoint) in-
dependently of the way in which the information
is stored or manipulated; describing the applica-
tion programming environment (computation
viewpoint) independently of the way in which that
environment is supported; describing the compo-
nents, mechanisms used to build systems inde-
pendently of the machines on which they run;
and describing the basic system hardware and
software (technology viewpoint) independently of
the role it plays in the enterprise.

4. The ODP computational model

The ODP computational model is a framework
for describing the structure, specification and in-
teractions of (components of) a distributed appli-
cation on a (distributed) computing platform.

The computational model is based on a dis-
tributed-object model. It prescribes an object-ori-
ented view of the distributed application. Appli-
cations are collections of interacting objects. In
this model, objects are the units of distribution,
encapsulation, and failure.

The computational model provides a set of The computational model is an “object world”
basic (abstract) concepts and elements for the populated with concurrent (computational) ob-
construction of a programming (specification) jects interacting with each other, in a dktribution-
language for which the model does not provide transparent abstraction, by invoking operations at
any syntax. Using the computational modelling their interfaces. An object can have multiple in-
concepts, one can specify (program) a distributed terfaces and these interfaces define the interac-
application without worrying about the details of tions that are possible with the object.

ODP COMPUTATIONAL INIK4STRUC’TURE

Fig. 2. ODP computational specification: an object world
supported by distributed platform.

the underlying distributed execution platform.
The design principle of the computational model
is to minimize the amount of engineering details
that the application programmer is required to
know, yet at the same time allowing the program-
mer to exploit the benefits of distributed comput-
ing.

A computational specification of a distributed
application consists of the composition of compu-
tational objects (which represent application com-
ponents) interacting, by operation invocations, at
their interfaces. It identifies the activities that
occur within the computational objects, and the
interactions that occur at their interfaces, (com-
putational interfaces), see Fig. 2.

4.1. Computational model: a object-oriented view
of distributed application

1220 R Farooqui et al. /Computer Networks and ISDN Systems 27 (1995) 1215-1229

“Activity” is a unit of concurrency within an
object. A collection of (computational) objects
may have any number of activities threading
through them. The state encapsulated by the
object can be accessed and modified by the activi-
ties executing the operations in the interfaces of
that object.

A distributed computation progresses by oper-
ation invocations at object interfaces. The activity
in an object (invoking object) can pass into an-
other object (invoked object) by invoking opera-
tions in the interface of the invoked object. Activ-
ities carry the state of their computations with
them, i.e., when an activity passes into an opera-
tion it carries the parameters for that invocation,
and returns carrying results. In the computational
model, concurrency within an object and commu-
nication between objects are separate concerns.
While concurrency is modelled by the concept of
activity, communication between object is mod-
elled as (remote) invocation of an operation.

4.2. Distribution issues and the computational
model

Computational specifications are intended to
be distribution-transparent, i.e., written without
regard to the specifics of a physically distributed,
heterogeneous environment. However, the ex-
pression of environment constraints in the compu-
tational interface template provides a hint of the
application requirements from the distributed
platform, e.g., distribution transparencies, secu-
rity mechanisms, specific resource requirements,
etc..

At the computational level, user applications
are unaware of how the underlying distributed
platform is structured or how the distribution
enabling and regulating mechanisms are realised.

4.3. Elements of the computational model

The design philosophy of the computational
model has been to find the smallest number of
concepts (elements) needed to describe dis-
tributed computations and to propose a declara-
tive approach to the formulation of each concept.
This section is a brief introduction of some basic

ODP computational model concepts.

computational elements out of which the compu-
tational specification of the distributed applica-
tion is constructed.

The basic elements of the computational model
are: computational object, computational inter-
face, interface invocation mechanisms such as
computational operation, and the abstraction to
model the communication between the computa-
tional interfaces - binding object.

Computational Object: The components of dis-
tributed application are represented as computa-
tional objects in the computational model. The
computational objects are the units of (applica-
tion) structure and distribution. The computa-
tional objects model both the application compo-
nents that perform information processing and
those components that store the information.

As shown in Fig. 3, a computational object
template consists of a set of computational inter-
face templates which the object can instantiate.

Computational Interface: While computational
objects are the units of structure and encapsula-
tion of (application-specific) services, interfaces
are the units of provision of services; they are the
places at which objects can interact and obtain
services.

The distributed application components (mod-
elled as computational objects) may be written in
different (programming) languages and may run
on heterogeneous environments. In order for a
component to be constructed independently of

K. Farooqui et al. /Computer Networks and ISDN System 27 (1995) 1215-1229 1221

another component with which it is to interact, a
precise specification of the interactions between
them is necessary. The specification of interac-
tion between computational objects, and of their
requirements of interaction are captured by inter-
face templates. The computational interfaces
model different interaction concerns of an object.

A computational object may support multiple
computational interfaces which need not be of
the same type. Interfaces of the same type may
be provided by objects which are not of the same
type. Each object may provide interfaces which
are unlike those provided by the other object.

In the ODP computational model two kinds of
interfaces are identified: operational interfaces
and stream interfaces.

Operational Interface: The specification of op-
erational interface template consists of:

(1) Operation specification.
(2) Behaviour specification.
(3) Environment contract.
The operation specification includes the oper-

ation name together with the number, sequence,
and type of arguments that may be passed in each
operation invocation and its response(s). This is
called operation signature.

The behaviour specification defines the be-
haviour exhibited at the interface. All possible
orderings of operation invocations at or from the
interface are specified. The behaviour constitutes
the protocol part of the interface.

Most interface specifications, to date, have
concentrated on the syntactic requirements of the
interface such as the operation signature. Aspects
other than pure syntax are also important in
facilitating the interaction between a pair of ob-
jects. This additional semantic information falls
into two categories:

(a) Information affecting the way in which the
infrastructure supports the interactions; this in-
formation constrains the type of distribution
transparencies, choice of communication proto-
cols, etc. that must be placed in the interaction
path between the interacting objects.

(b) The behaviour (or the semantics) of the
service offered at the interface; an interface is
viewed as a projection of an object’s behaviour,
seen only in terms of a specified set of observable

actions. As a result, signature compatibility is less
discriminating than interface compatibility.

The environment contract in the computa-
tional interface template defines the following
attributes:

(1) Distribution transparency requirement on
operation invocation.

(2) Quality of service (including communica-
tion quality of service) attributes associated with
the operations.

(3) Temporal constraints on operations (e.g.,
deadlines).

(4) Dependability constraints (e.g., availability,
reliability, fault tolerance, security etc.)

(5) Location constraints on interfaces (and
hence their supporting objects).

(6) Other environment constraints on opera-
tions (e.g., those arising from enterprise and in-
formation viewpoint).

These attributes may be associated with indi-
vidual operations or the entire interface. The
environment contract is an important component
of the computational interface template and has
a direct relationship to the realized engineering
structures and mechanisms.

Stream Interface: The computational objects
may perform the information processing task as
well as act as containers of information. There is
a need to model not only the interfaces which
provide “service”, but also those interfaces which
model “continuous” information flow. Such inter-
faces are modelled, in the computational model,
as stream interfaces.

The stream interface is a set of information
flows whose behaviour is described by a single
action which continues throughout the life time
of the interface. Information media such as voice
and video inherently consist of a continuous se-
quence of symbols. Such media are described as
continuous and the term stream is used to refer
to the sequence of symbols comprising such a
medium.

Examples include the flow of audio or video
information in a multimedia application, or the
continuous flow of periodic sensor readings in a
process control application. The computational
description does not need to be concerned with
detailed mechanisms; the fact that the flow is

1222 K Farooqui et al. /Computer Networks and ISDN Systems 27 (1995) 1215-1229

established and continues during the relevant pe-
riod is enough.

The template for a stream interface consists of
Stream Signature: A specification of the type of

each information flow contained in a stream in-
terface and, for each flow, the direction in which
the flow takes place.

Environment Constraint : Continuous media
have strict timing and synchronization require-
ments. The environment constraints that are rele-
vant to stream interfaces include synchronization
and clocking properties, time constraints, priority
constraints, throughput, jitter, delay, media-
specific communication quality requirements, etc.,
in addition to the properties applicable to opera-
tional interfaces.

Role: A role for each information flow, e.g., a
producer object or a consumer object.

Binding Object: Interactions between computa-
tional objects are only possible, when their inter-
faces are bound. There is a concept of implicit
and explicit binding in the computational model.
When objects get implicitly bound in the compu-
tational model, it is assumed that the underlying
platform (the engineering infrastructure), will
provide the service of checking the consistence
between the interfaces to be bound.

The computational objects are explicitly bound
through a binding object. The template for the
binding object specifies the interaction patterns
between the bound computational objects. The
binding object contains control interfaces which
allow dynamic modification of number and types
of objects involved in the binding.

5. Engineering model

The engineering model is an abstract model to
express the concepts of the engineering view-
point. It involves concepts such as operating sys-
tems, distribution transparency mechanisms,
communication systems (protocols, networks),
processors, storage, etc. As the notions of proces-
sor, memory, transport network play a more indi-
rect role in a distributed system, the term “en-
gineering model” is used here in a more general
way to describe a framework oriented towards
the organization of the underlying distributed in-

frastructure and targeted to the application sup-
port. It mostly focuses on what services may be
provided to applications and what mechanisms
should be used to obtain these services. The term
platfomt is used to refer to the (configuration of)
services offered to applications by the infrastruc-
ture.

The engineering model is still an abstraction of
the distributed system, but it is a different ab-
straction than the computational model. Distribu-
tion is no longer transparent, but we still need
not concern ourselves with real computers or with
the implementations (technology) of mechanisms
or services identified in the engineering model.
The engineering model provides a machine-inde-
pendent execution environment for distributed
applications.

Unlike the enterprise, information, and com-
putational models which deal with the semantics
of distributed applications, the engineering model
is not concerned with the semantics of the dis-
tributed application, except to determine its re-
quirements for distribution.

5.1. Engineering model: an object-based dktributed
platform

The ODP engineering model is an architec-
tural framework for the provision of an object-
based distributed platform. The set of basic ser-
vices and mechanisms, identified in the engineer-
ing model, are modelled as a collection of inter-
acting objects which together provide support for
the realization of interactions between distributed
application components.

The engineering model can be considered as
an extended operating system spanning a network
of interconnected computers. In the networked-
operating system view of the model, the linked
computers preserve much of their autonomy and
are managed by their local operating systems
which are enhanced with mechanisms to enable,
regulate and (if desired) hide distribution.

5.2. Engineering model: animation of computa-
tional model

The interest of the computational model is
directly related to the existence of a mapping

I2 Farooqui et al. /Computer Networks and ISDN Systems 27 (1995) 1215-1229 1223

enabling it to relate to engineering concerns. This
means, for instance, being able to map computa-
tional concepts onto the engineering structures.

The engineering model provides an infrastruc-
ture or a distributed platform for the support of
the computational model. The model provides
generic services and mechanisms capable of sup-

computational model. The model is concerned
with how an application, specified in the compu-
tational model, may be engineered onto the dis-
tributed platform. The selection of distribution
transparency and communication (protocol) ob-
jects, among many other support mechanisms,
tailored to application needs, forms an important

porting distributed applications specified in the task.

Capsule Channel Node

NODE-l

Fig. 4. ODP engineering model: Organization of distributed infrastructure

1224 K Farooqui et al. /Computer Networks and ISDN Systems 27 (1995) 1215-1229

The engineering model identifies the jimction-
ality of basic system components that must be
present, in some form or other, in order to sup-
port the computational model. Hypothetically,
there may be several engineering models for a
particular computational environment, reflecting
the use of different system components and
mechanisms to achieve the same end. The issue
in the computational model is what (interactions,
distribution requirements); the engineering model
prescribes solution as to how to realize these
interactions, satisfying the stated requirements.

5.3. Structure of engineering model

The engineering model reveals the structure of
the distributed platform, the ODP infrastructure
which supports the computational model. The
services or mechanisms which enable, regulate
and hide distribution in the ODP infrastructure,
are modelled as objects, called engineering ob-
jects, which may support multiple interfaces.

There are different kinds of engineering ob-
jects in the engineering model corresponding to
different distribution (enabling, regulating, hid-
ing) functions required in a distributed environ-
ment. This is illustrated in Fig. 4. Some engineer-
ing objects correspond to the application func-
tionality and are referred to as basic engineering
objects while those which provide distribution
functions are classified as transparency objects,
protocol objects, support objects, etc. At a given

host, the basic engineering objects belonging to
an application may be grouped into clusters. A
host may support multiple clusters in its address-
ing domain, known as capsule. A capsule consists
of clusters of basic engineering objects, a set of
transparency objects, protocol objects and other
local operating system facilities.

From an engineering viewpoint, the ODP in-
frastructure consists of interconnected autono-
mous computer systems (hosts), which are called
nodes. Each node supports a nucleus object and
multiple capsules. The nucleus encapsulates com-
puting, storage, and communication resources at
a node. All the objects in the node share common
processing, storage, and communication re-
sources encapsulated in the nucleus object of the
node.

As mentioned before, the engineering model
animates the computational model. The computa-
tional-level interactions between a pair of compu-
tational objects (or their interfaces) are sup-
ported through channel structures in the engi-
neering model. A channel binds basic engineering
objects in different clusters, capsules, or nodes.
The channel is a configuration of transparency
objects, protocol objects, etc. which provide dis-
tribution support.

The services and mechanisms currently identi-
fied in the engineering model are generic in na-
ture and can support distribution requirements of
applications in a broad range of enterprise do-
mains (Telecoms, Office Information Systems,
Computer Integrated Manufacturing, etc.). How-

Table 2
System abstractions in engineering model

Engineering object System representation

Node

Nucleus

Capsule The concept of address space in operating systems.
Cluster The concept of “linked” modules to form an executable program image.
BE0 The program module which may not be executed in isolation.
Channel The run time “binding” between distributed BEOs
Transparency Special purpose modules which enhance the operating system environment of the node

object and can be dynamically linked into the distributed application program.

Single computer system, network of workstations managed by a distributed operating system,
any autonomous information processing system with independent nucleus resources
and failure characteristics.
Abstraction of an operating system providing processing, storage, and
communication resources of a node.

K. Farooqui et al. /Computer Networks and ISDN Systems 27 (1995) 1215-1229 1225

ever, domain-specific supporting functions will be
defined in the domain-specific engineering mod-
els (which are the specialization of ODP engi-
neering model).

The following is a brief description of the
engineering objects and structures currently iden-
tified in the ODP engineering model. The objects
and structures which are defined later in the text
are italicized. Table 2 gives a relationship be-
tween the engineering objects and the real world
system.

Basic Engineering Object : Basic Engineering
Objects (BEOs) are the run time representation
of computational objects (obtained through com-
pilation, interpretation or through some other
transformation of computational objects) which
encapsulate application functionality.

Cluster: A cluster is a configuration of basic
engineering objects. Clusters are used to express
related objects (which belong to the same appli-
cation) that should be local to one another, i.e.,
those groups of objects that should always be on
the same node at all times.

Capsule: A capsule consists of clusters of basic
engineering objects, transparency objects, and

protocol objects bound to a common nucleus in a
distinct address space from any other capsule. A
capsule provides to its clusters access to the ob-
jects in the channel and to the nucleus to which it
is bound.

Nucleus: A nucleus is an object that provides
access to basic processing, storage, and communi-
cation functions of a node for use by basic engi-
neering objects, transparency objects, protocol ob-
jects, bound together into capsules. A nucleus
may support more than one capsule. A nucleus
has the capability of interacting with other nuclei
(through its communication function), providing
the basis for inter-capsule and inter-node com-
munication.

Node: A node consists of one nucleus object, a
node manager, and a set of capsules. All of the
objects in a node share common processing, stor-
age, and communications resources.

Channel: A channel is a configuration of trans-
parency objects, protocol objects, application spe-
cific supporting objects, etc. providing a binding
between a set of interfaces to basic engineering
objects, through which interaction can occur. The
structure of the channel is dependent on the

Fig. 5. Simplified generic channel structure.

1226 K Farooqui et al. /Computer Networks and ISDN Systems 27 (1995) 1215-1229

distribution function requirements of the interac-
tion between basic engineering objects.

Fig. 5 shows the client-half and server-half of a
single channel object. If the objects being bound
are on different nodes, there is still conceptually
only one channel object created, i.e., there is not
one channel object on one node and a different
channel object on the other.

Stub Object: An object which acts to a basic
engineering object as a representative of another
basic engineering object located in different clus-
ters, thus contributing towards distribution trans-
parency. Stub objects are bound to the basic
engineering objects for the purpose of hiding
certain aspects resulting from distribution (or
heterogeneity).

The stub objects have direct access to the basic
engineering objects. The operation invocations on
the interfaces of basic engineering objects are
intercepted by stub objects to hide some aspects
of distribution such as concurrency in the system
or to modify the information exchanged between
basic engineering objects, thus masking the het-
erogeneity in the distributed system.

Stub objects add further interactions and/or
information to interactions between interacting
basic engineering objects to support distribution
transparency. As an example, a stub object may
provide adaptation, such as marshalling and un-
marshalling of operation parameters to enable
transparent interactions between interfaces of ba-
sic engineering objects.

Examples of stub objects include access trans-
parency object and concurrency transparency ob-
ject discussed in the next section.

Basic engineering objects are always directly
bound to the stub objects. Stub objects within a
channel can interact with one another using other
objects in the channel, or via interaction with
supporting objects outside of the channel.

Binder Object: An object which controls and
maintains the binding between interacting basic
engineering objects, contributing towards the pro-
vision of distribution transparency.

Binder objects maintain the binding between
basic engineering objects, even if they are mi-
grated, reactivated at new location, or are repli-
cated. Examples of binder objects include loca-

tion transparency object, migration transparency
object, replication transparency object, failure
transparency object, and resource transparency ob-
ject.

Stub objects are bound to binder objects.
Binder objects interact with one another to main-
tain the integrity of the binding between the
interacting basic engineering objects. Binder ob-
jects in the channel can interact with one another
using other objects in the channel, or via interac-
tion with supporting objects outside the channel.
Binder objects are interconnected by protocol
objects.

Protocol Object: An object which encapsulates
communication protocol functionality for sup-
porting communication between basic engineer-
ing objects. A channel may be composed of a
number of protocol objects corresponding to dif-
ferent communication support requirements of
interactions between basic engineering objects.
Protocol objects interact with other protocol ob-
jects to support interaction between basic engi-
neering objects.

Interceptor Object: An object which masks ad-
ministrative and technology domain boundaries
by performing transformation functions such as
protocol conversion, type conversion etc. It en-
ables interactions to cross administrative and
communication domains, thus contributing to-
wards federation transparency.

Distribution Transparency : The following trans-
parencies have been identified in the ODP engi-
neering model, as important in distributed sys-
tems. The concept of transparency is viewed as
the corner stone of ODP architecture. A brief
description of transparencies, based on the con-
cept of client and server objects (or client and
server interfaces) is outlined below:

These transparency mechanisms provide an
enhanced environment positioned on top of the
low-level operating systems and communications
facilities of the distributed platform, for the sup-
port of distribution transparent programming en-
vironment offered by the computational model.

The technique for providing any transparency
service is based on the single principle of replac-
ing an original service by a new service which
combines the original service with the trans-

K. Farooqui et al. /Computer Networks and ISDN Systems 27 (1995) 1215-1229 1227

parency service, and which permits clients to in-
teract with it as if it were the original service. The
clients need not be aware of how these combined
services are achieved.

Since the interactions between the objects oc-
cur at their interfaces, these transparencies are
applicable to individual interfaces or to specific
operations of the interfaces. An interface may
have a set of transparency requirements which
may be different from those of other interfaces of
the same object.

A summary of transparency mechanisms is
presented in Table 3.

Access Transparency: It hides from a client
object the details of the access mechanisms for a
given server object, including details of data rep-
resentation and invocation mechanisms (and vice
versa). Access transparency hides the difference
between local and remote provision of the ser-
vice.

Access transparency enables interworking
across heterogeneous computer architectures, op-
erating systems and programming languages.

Concurrency Transparency: It hides from the
client the existence of concurrent accesses being
made to the server. Concurrency transparency
hides the eff;?ccts due to the existence of concur-
rent users of a service from individual users of
the service.

Location Transparency: It hides from a user
(client) where the object (server) being accessed
is located..

Migration Transparency: Migration trans-
parency hides from the user of the service (client)
the effects of the provider of the service moving
from one location to another, during the provi-
sion of the service (between successive operation
invocations).

Location transparency is a static transparency
in the sense that it is assumed that once located

Table 3
ODP distribution transparencies

Transparency Central issue

Access The method of access to objects
(invocation mechanism and data rep-
resentation).

Result of transparency

Client need not be unaware of access
mechanisms at the server interface.

Concurrency Concurrent access to objects in the
distributed system.

Location

Migration

Replication

Location of object in the distributed
system.
Dynamic re-location of objects during
the “bind-session”.
Multiple invocations on replicated
objects, multiple responses, and con-
sistency of replicated data.

Clients are masked from the effects of
concurrent access to the server inter-
face.
Clients are unaware of the physical
location of the server.
Clients are unaware of the dynamic
migration of the server.
Client invokes a replicated server
group as if it were a single server.
Distribution of request, collation of
responses, consistency of data, and

Resource

Failure

Federation

Resource management policies of the
node (deactivation and reactivation of
objects).
Partial failure of object in the node.

Pan-organizational boundaries.

membership changes are hidden.
Client unaware of the deactivation
and reactivation of the server.

Client unaware of the failure of the
server and its subsequent reactivation
(possibly at another node).
Clients unaware of interactions cross-
ing administrative and technology
boundaries.

1228 K Farooqui et al. /Computer Networks and ISDN Systems 27 (1995) 1215-1229

the interface remains at its location (until the
binding between the involved interfaces is bro-
ken). Migration transparency is the dynamic case
which arises if the server interface can move
while the client object is interacting with it, with-
out disturbing those interactions.

Replication Transparency : Replication trans-
parency, also known as group transparency, hides
the presence of multiple copies of services and
maintaining the consistency of multiple copies of
data, from the users of the services.

It enables a set of objects (their interfaces)
organized as a replica group to be coordinated so
as to appear to interacting objects (or their inter-
faces) as if they were a single object (interface).

There are two main aspects of replication
transparency. The first hides the difference be-
tween a replicated and a non-replicated provider
of a service from users of that service, and the
second hides the difference between replicated
and non-replicated users of a service from
providers of that service.

Users are unaware of multiple providers of the
service and need not concern about making mul-
tiple operation invocation or dealing with multi-
ple responses.

Resource Transparency: It hides from a user
(client) the mechanisms which manage allocation
of resources by activating or passivating (server)
objects as demand varies. It also implies the
hiding of deactivation and reactivation of (server>
objects from the clients.

Resource transparency, also known as liueness
transparency, masks the automated transfer of
clusters from a capsule to a storage object and
back again, to optimize the use of node’s nucleus
resources (processor, memory, etc.).

With resource transparency in place, clients
can invoke operations on the server irrespective
of whether the server is currently active or pas-
sive.

Failure Transparency: Failure transparency
masks (certain) failure(s) and possible recovery of
server objects from the client objects, thus provid-
ing fault tolerance.

Federation Transparency: Federation trans-
parency hides the effects of operations crossing
multiple administrative boundaries from the

clients. It permits inter-working across multiple
administration and technology domains.

6. Conclusion

Using the five ODP viewpoints to examine
system issues encourages a clear separation of
concerns, which in turn leads to a better under-
standing of the problems being addressed: de-
scribing the role of the enterprise (enterprise
viewpoint) independently of the way in which that
role is automated; describing the information
content of the system (information viewpoint) in-
dependently of the way in which the information
is stored or manipulated; describing the applica-
tion programming environment (computation
viewpoint) independently of the way in which that
environment is supported; describing the compo-
nents, mechanisms used to build systems inde-
pendently of the machines on which they run;
and describing the basic system hardware and
software (technology viewpoint) independently of
the role it plays in the enterprise.

The purpose of the RM-ODP framework of
viewpoints is to position services relative to one
another, to guide the selection of appropriate
models of services, and to help in the placement
of boundaries upon ODP. The framework of
viewpoints is used to partition the concerns to be
addressed when describing all facets of an ODP
system, so that the task is made simpler.

Acknowledgements

This research was funded in part by the
Telecommunications Research Institute of On-
tario and the European RACE II project R2088
“Tools for Protocol and Advanced Service Verifi-
cation in IBL Environments (TOPIC)“.

References

[l] Draft Recommendation ITU-T X.901,%0 10746-l: Ba-
sic Reference Model of Open Distributed Processing-
Part-l: Overview.

I2 Farooqui et al. /Computer Networks and ISDN Systems 27 (1995) 1215-1229 1229

El International Standard ITU-T X.902/ISO 10746-2: Basic
Reference Model of Open Distributed Processing-Part-2:
Descriptive Model.

131 International Standard ITU-T X903/ISO 10746-3: Basic
Reference Model of Open Distributed Processing-Part-3:
Prescriptive Model.

141

151

Draft Recommendation ITU-T X.904/ISO 10746-4: Ba-
sic Reference Model of Open Distributed Processing-
Part-4: Architectural Semantics.
Proceedings of the IFIP TC6 / WG6.4 International Work-
shop on Open Distributed Processing (October 19911,
North-Holland 1992.

t61

171

Proceedings of the International Conference on Open Dis-
tributed Processing (September 1993), Berlin.
Proceedings of the First Telecommunication Information
Networking Architecture Workshop, (TINA 901, Lake Mo-
honk, New York, USA, June 1990.

[S] Proceedings of the Second Telecommunication Information

Networking Architecture Workshop, (TINA 911, Chantilly,
France, March 1991.

[9] Proceedings of the Third Telecommunication Information
Networking Architecture Workshop, (TINA 921, Narita,
Japan, January 1992.

[lo] Proceedings of the Fourth Telecommunication Information
Networking Architecture Workshop, (TINA 93), L’Aquila,
Italy, September 1993.

Kazi Farooqui received the Bachelors
degree in Electronics and Communi-
cation Engineering from Jawaharlal
Nehru Technological University, Hy-
derabad, India in 1984 and a Masters
degree in Computer Science from
University of Roorkee, India in 1987
specializing in Computer Network
Architectures, Communication Proto-
cols, and Open System Interconnec-
tion.

After obtaining the bachelors de-
gree he worked for the Defence R&D Laboratory, Hyderabad
on scientific software development and later for the Indian
Institute of Technology, Bombay on a UN sponsored project,
ERNET, and also for CMC Limited, New Delhi on various
networking and OS1 software development projects.

.Currently he is pursuing Ph.D. in Computer Science at
University of Ottawa. His research interests include Commu-
nication Protocols, Object-Oriented Distributed Systems,
Open Distributed Processing, Programmability and Open Dis-
tributed Platforms for Intelligent Networks.

He is a Member. of the Institute of Electrical and Elec-
tronic Engineers.

I&i Logrippo received his “laurea”
from the University of Rome (Italy) in
1961. Until 1967, he worked with
Olivetti, General Electric, and

Siemens as a programmer and sys-
tems analyst. From 1967 to 1969 he
was a Research Associate at the Insti-
tute for Computer Studies, University
of Manitoba, where he obtained a
M.S.c in computer science in 1969.
He then obtained a Ph.D. in com-
puter science at the University of Wa-

terloo in 1974. Since 1973, he has been with the University of
Ottawa, where he is now an Associate Professor. He has
published in parallel program schema theory, computer-as-
sisted analysis of music, software Methodology, and data
communications protocols. His current research interest in-
clude Software methodolgy (specification, verification, formal
development from specifications, and testing techniques). Data
Communications Protocols (the same subjects with applica-
tion to protocols), and standardization of Open Systems Inter-
connection. He has participated in the design of the language
LOTOS, and currently is pursuing research on its application.

Jan de Mew is a member of the ACM
since ‘76 and of the IEEE and the
German Society for Informatics (GI)
since ‘89. After he got his Bachelor’s
of Electronics in ‘72 and his Master’s
of computer science in ‘79 he began
to work on the design and implemen-
tation of Computer Networks, first at
the Hahn-Meitner Institute for Nu-
clear Research (HMI), and later at
the National Research Centre GMD,
both in Berlin. Since ‘83, he has been

involved in the formal specification of Communication Proto-
cols. Also in ‘83 he became a member of the German Stan-
dardization Institute (DIN), and volunteered for the working
groups WGItOSI) and WG7(0DP) of the International Stan-
dardization Organization (ISO). Since ‘91 he has been chair-
ing both groups at DIN. Since ‘87 he is the head of the System
Engineering and Methods research group of the FOKUS-In-
stitute of the GMD in Berlin. At HMI he was involved in the
implementation of the first computer network in Germany
based on the IS0 reference model for Open Interconnected
Systems. At GMD-FOKUS he is responsible for R & D
projects of ESPRIT and RACE dealing with formal specifica-
tion and tooling for Network Performance and Quality of
Service Specification, Testing and Verification. He partici-
pates actively in the various IFIP conferences PSTV, FORTE,
IWPTS and ICODP.

