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SPECIFICATION STYLES
____________________________________

Extensional: "pure definition"
 no implementation implications

Monolithic : Spec is tree of alternatives, i.e. expanded
Execution sequences are explicitly enumerated.

Constraint-oriented : Spec is parallel composition of processes.
Each process represents a constraint.
All processes (constraints) must be simultaneously satisfied.

Intensional: suggests an implement. architecture

State-oriented : Use of state variables or of processes that describe 
states

Resource-oriented : Processes correspond to implem. structure

Expansion Theorem (Milner):
Every  LOTOS specification can be  transformed step-by-step into a (pos-
sibly infinite!) monolithic (=expanded) one.



State-Oriented Style                

No use of parallel composition, explicit reference to 
system states. Two variants:

State-Oriented - 1st Variant
(used in paper by Vissers et al.)

(used in paper) Use variables for states: state changes are 
parameter changes. 

A(state) := [state = 0] -> actions ; A(1)
[]     [state = 1] -> actions ; A(0)

A(0)                 to initialize

useful when specification requires passing state names as 
parameters, comparing states of different components, and 
similar. 

                       



State-Oriented - 2nd Variant

 Use processes for states. State changes are invocations of 
processes. More concise, but perhaps inadequate in some 
cases (if we want to pass around state values).

state0 :=  actions;   state1
                       

state1 :=  actions;  state0

                        etc.

Specifying the QA_service in the ‘other’ State-Oriented 
style: 

• define a process for each state. 
• state transitions are actions, 
• state changes are invocations of processes.

awaitQ  := Q?x: question;   pending Q(x)
        pendingQ(x)  := A!x;  awaitA

awaitA  := A?y:answer;  pendingA(y)
pendingA(y)  := Q!y;  stop



Monolithic Style

Expanded view of the system.

Similar to second state-oriented style, but process names

do not necessarily have meaning of system state.



Resource-Oriented   or 
Implementation-Oriented Style.

Describes a system architecture in terms of communicating

processes. Processes corresponds to system modules.

Synchronization is usually two-way only, and models

implementation-level interprocess communication.

 

Hiding used to hide internal synchronization events.

The most intuitively appealing, close to implementation

level. 



Constraint-Oriented Style

Each process defines a set of constraints that

must be collectively satisfied by the whole system. 

High abstraction, no relation with implementation.

No use of hiding.

Synhcronization usually multi-way.

There are two types of constraints:

a) event sequence constraints

b) data value constraints



a) Event sequence Constraints

EXAMPLE. Defining the following partial order: actions

a, b, c can be executed in any order before action d.

                 



              
SPECIFYING PARTIAL ORDERING

BETWEEN EVENTS

a > d   and  b > d  and  c > d                                ( > :  precedes )

(NOTE:  NO ORDER SPECIFIED BETWEEN  a, b, c )

WE CAN SPECIFY THIS BY:
 
              a;  (b;c;d;stop [] c;b;d;stop)
           [] b;  (a;c;d;stop [] c;a;d;stop)
           [] c;  (a;b;d;stop [] b;a;d;stop)
                                 
              
OR, EQUIVALENTLY, BY THREE PARALLEL 
PROCESSES SYNCHRONIZING ON d

    ( a; d; stop ) | [d] | ( b; d; stop ) | [d] | (c; d; stop )

(PROCESSES:
      INTERLEAVE     W.R.T.  a, b, c
      SYNCHRONIZE      W.R.T.  d       )

e.g.         a d b    impossible        WHY?

  
      NOTE THE MULTI-WAY SYNCHRONIZATION



b) Data value constraints 

(by using selection predicates)

P := g ? x : int [x mod 2 = 0]; P

will only accept even numbers

Q := g ?y:int [y mod 3 = 0]; Q

will only accept multiples of 3

P ll Q will only accept  multiples of 6

P lll Q will accept sequences where each

 element is either a multiple of 2

or a multiple of 3

P [] Q will     have    to    decide    at   the 

beginning  whether  to act  like P

 or like Q.

P ll (P lll Q) will  accept  ?



  

Example of data constraints: 

the bounded buffer

process BB[input,output](n:nat) :=
        Bag[input,output] || Bound[input,output](n)
        where

                process Bag[input,output] :=
                        input ?x:elem;
                        (Bag[input,output]
                         ||| output !x; stop)
                endproc

                process Bound[input,output](n:nat) :=
                        (output ?x:elem; Bound[input,output](n+1)
                         [] [n>0] -> input ?x:elem; Bound[input,output](n-1))
                endproc



Two interpretations of ||

In the constraint-oriented style, the full synchronization 
operator takes the logical meaning of composition of 
logical constraints,

while in the resource-oriented style, the same operator
has the meaning of communication over shared
events.

Unfortunately, however, this operator cannot quite
achieve the meaning of the logical and operator: it
has been noted that in general (nondeterminism!)

A || A ≠ A

while instead in logic

A ∧  A = A



An input file of records (x,y)

P :=  g ?x:int ?y:int [x>3]; P

Q :=  g ?x:int ?y:int [y mod 2 = 0];  Q

Process P||Q will accept only sequences of records

such that the field x satisfies P, and field y satisfies Q

Process P|||Q will accept sequences of records such

that either field x satisfies P, or field y satisfies Q.

Note: unfortunately, it is impossible to hide a field from

one of the interacting processes.



Exiting

Suppose that we have several processes, each one checking a differ-
ent constraint.  One process dictates the exit condition.

P := g?x:int [x>5 and x<9];   P

[]  g!12;   exit

Q := ( g? x:int [x mod 3 = 0];  Q)  [>  exit

R  := ( g? x:int [x mod 2 = 0];   R)  [>  exit

Process  P ll Q ll  R  will accept only  6’s.  When a 12 is encountered, the
exit of  P  will force a rendez-vous of all processes on exit gate.  All dis-
ables will then occur, and all processes will exit.

P Q R

exit disable/exit disable/exit



Consider the following variant of the Example 4.1 in the paper by Visser et al.  It 
appears to be simpler, but unfortunately it contains two mistakes, corresponding to 
points of which the language user should be aware.  

process QA_service[Q,A]: noexit :=
hide CLQ, CLA in

((Q_entity[Q,CLQ] ||| A_entity[A,CLA])
|[CLQ,CLA]|
CL_service[CLQ,CLA])

where

process Q_entity [X,Y]: noexit :=
X ? x: question; Y !encode_q(x);
Y ?d:data; X !decode_a(d); stop

endproc

process A_entity [X,Y]: noexit :=
Y ?d:data; X !decode_q(d);
X ?y:answer; Y !encode_a(y); stop

endproc

process CL_service [X,Y]: noexit :=
X ?d1:data; Y !d1; Y ?d2:data; X !d2; stop

[] X ?d1:data; Y ?d2:data; Y !d1; X !d2; stop
[] X ?d1:data; Y ?d2:data; X !d2; Y !d1; stop
[] Y ?d2:data; X !d2; X ?d1:data; Y !d1; stop
[] Y ?d2:data; X ?d1:data; X !d2; Y !d1; stop
[] Y ?d2:data; X ?d1:data; Y !d1; X !d2; stop

endproc

endproc



RELATIONSHIP BETWEEN STYLES

Intensional

Extensional

Resource

State

Constraint

Monolithic

Arrows denote refinement relationship

State-oriented cannot be refined further



system complexity

    spec. size

monolithic

constraint 
resource

state

More structured styles, such as constraint and 
resource, contain state explosion thus lead 
to smaller spec sizes for complex systems. 



GATES AND ADDRESSES IN LOTOS

As in CSP and CCS, only a finite, statically defined set of gates can be

used in a specification. Dynamic gate creation is not possible.

How can a multiplicity of dynamically created interacting processes

be defined ?

A process can be replicated by recursive call:

process Connections  [Usr,Ctl]:  noexit  :=

Single_Connection   [Usr,Ctl] 

lll

i;    Connections [Usr, Ctl]



The gate name can be augmented by (one or more) values which

represent a sort of secondary interaction point names.

STATE SPLITTING!

E.g.

A: g !5  !3

B: g !5  ?x:int

synchronization can occur on (g, 5) and if it does x in B becomes 3.

A: g !3 !3

B: g !5 ?x:int

synchronization not possible.

A: g !3 !6

B: g !5 ?y:int   .  .  .  []  g !3 !x:int   .  .  .

synchronization  can occur with the second alternative on (g,3) and if

it does x becomes 6.

Specification of an unbounded number of interaction points becomes

possible with this techniques.



Specification level 

Processes A and B communicate via gate g.
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      A
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       B

 g

  Execution Level

The various instances of A’s and B’s still communicate via gate g.  

An interaction between A and B must state not only the gate g, but
also additional information to distinguish the several instances of A
and B.





Example showing that the secondary interaction point name can be
a parameter:

A[g](1)
ll
B[g](1)

where

process A[g](addr: CEPid): noexit :=
.  .  .
g !addr !3
.  .  .

endproc

process B[g](addr: CEPip): noexit :=
.  .  .
g !addr ?x:int
.  .  .

endproc

It can also be determined by an interaction:

g  ?addr: CEPid    .  .  .  .     A[g](addr)

Or a choice between a number of possible names can be expressed:

choice addr: CEPid  []  A[g](addr)



Example: POTS SPECIFICATION

WHAT ARE THE CONSTRAINTS

LOCAL CONSTRAINTS

Appropriate sequence of events at
each phone
(e.g. before dialing, one must pick up the handset)

END_TO_END CONSTRAINTS

Appropriate sequence of events
in  each connection 
(e.g. ringing at one end must follow dialing at 
the    other)

GLOBAL CONSTRAINTS

System-wide constraints
(e.g. no phone can be involved in two connections)



POTS Specification in LOTOS: The Top Level

     behavior 

        (

          Establish_Connections[S_Usr]

             ||

          Users_List_Handler [S_Usr](empty)

        )

    

      where

        process Establish_Connections[S_Usr]:noexit:=

        (

             Single_Connection[S_Usr]

              |||

             i; Establish_Connections[S_Usr]

        )

    

        where

            process Single_Connection[S_Usr]:noexit:=

            (

                ( Caller[S_Usr]

                   |||

                  Called[S_Usr]

                )

              ||

                (

                  Controller[S_Usr]

                  [>   Controller_Hang_Up[S_Usr]

                )

            )



 Establish_Connections

Controller

 POTS_System

 Establish_Connections  Users_List_Handler

Single_Connection

Caller Called

A graphical representation of the POTS specification’s  top levels

S_Usr



CONCLUSIONS

LOTOS provides powerful concepts for the specifica-

tion of distributed systems.

Systems can be specified in a number of ways, hence

emphasizing different aspects of system behavior.

By using concepts of behavior equivalence, it is possi-

ble in principle to change from an aspect to another.

Because LOTOS is executable, LOTOS specifications

can be used as abstract prototypes of systems.

Labelled transition systems can be used 

• as a basis for testing
• as a basis for validation activities such as model checking
• as a basis for implementation (translation LTS-> code)

Emphasize early stages of software development cy-
cle: design, design validation, derivation of implemen-
tation directly from design.

Prevent and detect software errors at the early stages 
of design.

De-emphasize late stages, when defect correction is 
more  complex.



Problems....

Sharp difference between data and behavior formalisms. 

Low expressiveness of the data formalism, e.g. in each data
type equality must be defined by equations

In the behavior part it is not possible to:

ask the question: in what state am I now? and pass the
b. ex. of that state

manipulate b.ex., pass them as parameters, and then
execute them (not reflective)

From the point of view of formal verification, it is not possible
to:

reason in terms of pre- and post-conditions: e.g. given
that the precondition and postcondition for A and B are
known, determine the pre- and post-conditions for
A |[...]| B (no compositionality, no Hoare logic)

reason in terms of fixpoints (no monotonicity because of
internal action) 

expression of nondeterminism by internal action is a problem



And more...

No explicit concept of time

(however this is only critical for the expression of

hard real-time)

However on the other hand: too general a formalism: 

designers need constrained templates, adapted

to specific domains.



Towards new generation specification 
languages

Define a set of combinators that can be applied to

both processes and data, seen as trees

e.g. behavior operators such as [], |[]| could also

be seen as data operators

to what extent can the linear logic operators be

adapted for this?

thus there would not be an essential difference

between the representation of data and process-

es

there would be a common underlying logic

BUT... language must be executable




