
Formal Modeling and Test Generation
Automation with Use Case Maps and LOTOS

Lëıla Charfi

Thesis submitted to the
School of Information Technology and Engineering

in partial fulfillment of
the requirements for the degree of

Master of Computer Science

under the auspices of the
Ottawa-Carleton Institute for Computer Science

University of Ottawa
Ottawa, Ontario, Canada

March, 2001

c© Lëıla Charfi, Ottawa, Canada, 2001

To my parents

i

Abstract

This thesis addresses the problem of formal modelling and test generation, from system
requirements represented in the form of Use Case Maps. In the first part of our thesis, we
present an existent development methodology based on Use Case Maps for the design of
the requirements and on LOTOS and SDL for the formal modeling of telecommunication
systems. We follow this methodology for the formal specification and validation of a tele-
phony system using LOTOS. In the second part of the thesis, we develop a method for the
automatic generation of LOTOS scenarios from Use Case Maps called Ucm2LotosTests. The
obtained scenarios can be used for the verification of the LOTOS specification built from
the same Use Case Maps and for conformance testing purposes at the implementation stage.
Finally, we propose a development methodology based on Use Case Maps for the design of
the requirements and on LOTOS for the formal modeling of the system. In addition, this
methodology offers a fast test generation process; it proposes the use of Ucm2LotosTests for
the automatic generation of LOTOS scenarios from requirements in UCM and of TGV for
the automatic generation of TTCN test suites from LOTOS. The methodology is illustrated
with a case study which is a telephony system providing the basic call feature.

ii

Acknowledgments

I would like to express my deepest gratitude to my supervisor Professor Luigi Logrippo
who provided guidance and support during this research, and improved the contents of this
thesis and its presentation.

I would also like to thank the members of the LOTOS research group for their useful dis-
cussions and ideas; in particular, I would like to thank Nicolas Gorse for his collaborative
work during the achievement of the Mitel project, and Jacques Sincennes, Daniel Amyot and
Rossana Andrade for their precious advice and suggestions.

I am also very thankful to Andrew Miga of Carleton University for his help on the reuse
of the UcmNav tool and the test generation automation performed during this thesis. Dr
Hubert Garavel of INRIA also helped us considerably with the use of the Caesar tool during
a week’s visit to our research group.

My deep thanks go to my parents and Mondher Ben Miled for their continuous support and
encouragement during the production of this thesis.

Finally, I would like to express my gratitude to the following funding sources: The University
Mission of Tunisia in North America, Mitel Corporation, Communication and Information
Technology Ontario, and the Natural Sciences and Engineering Research Council of Canada.

iii

Contents

1 Introduction 1
1.1 Introduction and Motivation . 1
1.2 Contributions of the Thesis . 2
1.3 Organization of the Thesis . 3

2 Review of Basic Methods and Notations 4
2.1 Introduction . 4
2.2 Overview of Use Case Maps . 5
2.3 Overview of LOTOS . 7

2.3.1 The Abstract Data Types Part . 8
2.3.2 The Control Part . 9
2.3.3 Specification Styles of Telephony Systems 12

2.4 Message Sequence Chart . 12
2.5 Specification and Description Language . 14
2.6 Tree and Tabular Combined Notation . 14
2.7 Conclusion . 16

3 Overview of Applicable Testing Theory and Existing Testing Tools 17
3.1 Introduction . 17
3.2 Software Testing Techniques . 18
3.3 Software Testing Phases . 19
3.4 Testing LOTOS Specifications . 20

3.4.1 Verification of LOTOS Specifications 21
3.4.2 Validation of LOTOS Specifications 22

3.5 Some Existing Test Generation Tools from Specifications 23
3.5.1 Structure of a Test Suite . 23
3.5.2 Test Suite Generation with TGV . 24
3.5.3 Test Generation and Execution with TorX 25

3.6 Conclusion . 25

4 LOTOS Specification of Telephony Features for a New PBX 26
4.1 Introduction . 26
4.2 Presentation of the Project . 26
4.3 General Overview of the Development Methodology 27
4.4 Presentation of the Telephony Features . 30

iv

4.5 Presentation of the Requirements . 31
4.6 UCM to LOTOS Transformation . 33

4.6.1 Analysis of the Requirements . 33
4.6.2 Graph Representation of the Features 33
4.6.3 UCM to LOTOS Mapping . 35
4.6.4 Specification of a Simplified Basic Call 36
4.6.5 Specification of the Other Features 40

4.7 LOTOS Specification of the Telecommunication System 40
4.7.1 Abstract Data Types . 40
4.7.2 Behavior of the Specification . 41
4.7.3 Process DEB . 43
4.7.4 Process Database . 44

4.8 Verification of the LOTOS Specification . 45
4.8.1 Test Scenarios . 45

4.9 Analysis of the Results . 48
4.9.1 Testing Results . 48
4.9.2 Cross-Validation . 48

4.10 Conclusion . 49

5 Ucm2LotosTests: Automatic LOTOS Test Generation From Use Case
Maps 50
5.1 Motivation . 50
5.2 Desired Behavior of the Ucm2LotosTests Functionality 51
5.3 Internal Representation of the UCMs in UCMNav 51
5.4 Design of the Ucm2LotosTests Functionality 52

5.4.1 UCM Route Generation . 52
5.4.2 UCM Routes to LOTOS Scenarios Transformation 59

5.5 Example of Test Generation with Ucm2LotosTests 62
5.6 Usefulness of Ucm2LotosTests . 62
5.7 Automatic Test Generation Issues . 63
5.8 Conclusion . 66

6 Proposition of a Development Methodology based on Fast Test Generation 68
6.1 Introduction . 68
6.2 Development Methodology based on UCMs and LOTOS 68
6.3 Advantages of the Methodology . 70
6.4 Case Study . 71

6.4.1 Introduction . 71
6.4.2 Requirements . 72
6.4.3 LOTOS Specification . 72
6.4.4 LOTOS Test Generation . 73
6.4.5 Testing the LOTOS specification . 73
6.4.6 TTCN Test Generation . 74

6.5 Limitations of the methodology . 75

v

6.6 Conclusion . 76

7 Conclusion 77
7.1 Contributions of the Thesis . 77
7.2 Future Work . 78

A Case Study Details 80
A.1 Presentation of the Requirements . 80
A.2 LOTOS Specification . 82
A.3 LOTOS scenarios generated with Ucm2LotosTests 97
A.4 TTCN test case example generated with TGV 102

vi

List of Figures

2.1 A simple UCM . 6
2.2 Some Use Case Maps notation . 7
2.3 A Message Sequence Chart and a corresponding LOTOS trace 13

3.1 A LOTOS specification and its corresponding LTS 21
3.2 Test generation using TGV . 24
3.3 On-the-fly testing with TorX . 25

4.1 The software development methodology approach 28
4.2 System architecture . 32
4.3 Hierarchical relationship between stubs of the BC map 34
4.4 Example of UCM to LOTOS transformation using the mapping rules 36
4.5 Process of flattening stubs . 37
4.6 BC map flattened into a simplified BC map without stubs 38
4.7 Graphical representation of the top-level specification 42
4.8 Message Sequence Chart of Scenario1 . 46
4.9 Message Sequence Chart of Scenario2 . 47
4.10 Message Sequence Chart of Scenario3 . 48

5.1 Example of UCM . 51
5.2 UCMNav internal representation of the UCM of Figure 5.1 52
5.3 Routes of a UCM . 53
5.4 Route generation with or-fork . 54
5.5 Route generation with or-join . 54
5.6 Route generation with or fork followed by or-join 54
5.7 Route generation with and fork . 55
5.8 Route generation with and join . 55
5.9 Route generation with and fork followed by and join 55
5.10 Route generation for the static stub . 56
5.11 Route generation for the dynamic stub . 56
5.12 Route generation for the loop . 56
5.13 Route generation for the waiting place . 57
5.14 Route generation for the timed waiting place 57
5.15 Mapping UCM to LOTOS for the default LOTOS scenarios generation . . . 60
5.16 Example of UCM route to LOTOS scenario generation using the default LO-

TOS scenarios generation . 60

vii

5.17 UCM to LOTOS elements transformation using a mapping M entered by the
user . 61

5.18 Mapping M entered by the user and used for the generation of the LOTOS
scenario of Figure 5.19 . 62

5.19 Example of UCM route to LOTOS scenario generation using the mapping M

of Figure 5.18 . 62
5.20 Possible mapping of the UCM elements of Figure 2.1 63
5.21 Automatic generation of 3 possible scenarios in LOTOS from a UCM 64
5.22 Possible mapping of the UCM elements of Figure 5.21 for white-box testing . 65
5.23 Automatic generation of rejected scenarios 66

6.1 New software development methodology approach based on fast test generation 69
6.2 Root map of the Basic Call map . 72
6.3 Scenario corresponding to a successful connection ending with caller hanging

up first . 73

A.1 Root map of the Basic Call map . 80
A.2 Root map of the Basic Call map . 81
A.3 Answer submap . 81
A.4 Hangup originating submap . 82
A.5 Hangup terminating submap . 82
A.6 UCM to LOTOS mapping . 83

viii

Chapter 1

Introduction

1.1 Introduction and Motivation

In the past few years, telephony systems have undergone big improvements and changes.
Increasingly complex features and increasing flexibility of use are offered to the customer.
Telecommunication companies are constantly improving their systems by making their net-
works more reliable, adding new features and giving to the customer more control and
freedom. Nevertheless, product reliability and time to market continue to be a source of
concern.

The ISO (International Organization of Standardization) and the ITU-T (International
Telecommunication Union International - Telecommunication Standardization Sector) have
proposed a number of Formal Description Techniques (FDTs) for the specification of complex
and reliable communicating systems. The main objective of FDTs is to allow the production
of unambiguous specifications and to provide a well-defined basis for validation of the design
and for conformance testing of implementations against the specification. In the telecom-
munication industry, processes using FDTs such as LOTOS, SDL and Estelle have proven
their usefulness for increasing the reliability of systems, decreasing their cost, and making
the design process more efficient.

In the development of telecommunication systems, we distinguish two stages:

- The requirements stage which represents the general behavior requirements for the
system. Use Case Maps (UCMs) are the main notation for this purpose.

- The formal modeling stage, also called specification stage which provides a specification
of the system using FDTs. The technique we use is LOTOS; however, other techniques
to do this are SDL, Estelle, etc.

This thesis has several motivations. The first motivation is to demonstrate, once again,
the usefulness of FDTs for the specification of telecommunication systems. This thesis is part
of a joint project between industrial and academic research groups. This project focuses on
industrial-strength tools to rapidly develop high quality telecommunications software. Our
effort in this project is concentrated towards accelerating the software lifecycle, having as the
main goal the fast validation of the telecommunication system under design using LOTOS
and its tools.

1

Another concern that we address in this thesis is test suite generation from the design of a
system. Some test generation tools based on formal specifications exist today. For instance,
some tools generate from LOTOS tests test cases that are executable by implementations.
The LOTOS tests are generally built manually. Our motivation in this thesis is to obtain
these LOTOS tests by automatic generation from requirements. Since UCM is a semi-formal
notation that represents scenario-based use cases and since it is already supported by a tool
(UcmNav), it could be the basis for test suite generation from requirements.

1.2 Contributions of the Thesis

In the context of telecommunication systems specification using formal methods, this thesis
presents three contributions:

First contribution: Design of a LOTOS model for a new Mitel PBX (Feasibility
study and case study)

In chapter 4, we first present a development methodology for telecommunication systems
essentially based on UCMs at requirements stage and LOTOS and SDL for formal model-
ing stage. Second, we describe the use of the development methodology presented for the
LOTOS specification of a Private Branch eXchange (PBX) with 7 telephony features. The
specification was manually generated from requirements in UCM form. After specifying
the system in LOTOS, some LOTOS scenarios describing the behavior of the system were
manually generated from the requirements and were used for validation purposes.

Second contribution: Automatic LOTOS scenario generation from UCMs (Re-
quirement engineering methodology)

In chapter 5, we propose and implement Ucm2LotosTests, a method for the automatic
LOTOS scenario generation from UCMs. The set of generated scenarios is used for validation
at the formal modeling stage and for conformance testing purposes at the implementation
stage. The set of generated scenarios is such that each UCM path is covered at least once.

Third contribution: Proposition of a new development methodology with fast
test suite generation

We propose in chapter 6 a slightly different development methodology from the one used in
chapter 4. This new methodology proposes the use of the UCMs notation at the requirement
stage, the use of the formal method LOTOS at the formal modeling stage, and the use of new
testing tools for validation and test suite generation purposes. The method Ucm2LotosTests
is proposed for the automatic generation of LOTOS scenarios from UCMs. The tool TGV is
proposed for the Tree and Tabular Combined Notation (TTCN) test suite generation from
LOTOS scenarios. Thus, using Ucm2LotosTests and TGV, this development methodology
proposes a fast test generation methodology that ensures coverage of all control flow described
in the UCM.

2

1.3 Organization of the Thesis

The six remaining chapters will cover the following issues:

Chapter 2: Review of Basic Methods and Notations
We give an overview of the Use Case Maps notation and of the LOTOS specification language
by describing their main operators and by giving examples in the context of telephony
systems. The other formal methods used in the fast Spec-to-Test project are : MSC, TTCN
and SDL. They are briefly presented.

Chapter 3: Overview of Applicable Testing Theory Concepts and Existing Test-
ing Tools
We review briefly some related testing methods and phases from the literature. Then some
existing tools for test suite generation from LOTOS are presented.

Chapter 4: LOTOS Specification of Telephony Features for a New PBX
This chapter presents the first contribution of the thesis. We describe the specification of a
LOTOS model from UCMs representing the architecture of a new PBX.

Chapter 5: Ucm2LotosTests: Automatic LOTOS Test Generation From Use
Case Maps
This chapter presents the second contribution of the thesis. It proposes an example of
automatic LOTOS scenario generation from UCMs. It is shown that this method assures
full coverage of the UCM paths.

Chapter 6: Proposition of a Development Methodology based on UCMs and
LOTOS
In this chapter, we propose a telecommunication system development methodology based
essentially on using UCMs for the requirements specification and on LOTOS for the design.
The advantages of this methodology are listed, particularly the fast and automatic test
suite generation based on the second contribution of the thesis. Some limitations are also
presented.

Chapter 7: Conclusion
This last chapter concludes the thesis; it reviews the contributions with their benefits and
limitations. Then some future work is proposed.

3

Chapter 2

Review of Basic Methods and
Notations

This chapter introduces basic methods and notations for feature design,
specification and validation of telecommunication systems: The UCM notation

used at the requirements stage, the LOTOS language used at the formal modeling stage,
the MSCs used to express test scenarios and TTCN, the test suite notation.

2.1 Introduction

Different methodologies for the design and specification of telephony systems are being used
by research and industrial groups. The methodology adopted in this thesis is based on the
use of the semiformal notation Use Case Maps (UCMs) [Bur96] [Bur98] at the requirements
stage, and the Language Of Temporal Ordering Specification (LOTOS) [BB87] [ISO89] at
the formal modeling stage.

UCMs is a recent notation, but it has already been adopted by some design groups to
capture requirements for telecommunication systems.

LOTOS has been used for years for the specification and validation of telephony systems
([FLS90], [FLS91]), hardware systems ([KVZ99]) and for the detection of telephony feature
interactions ([FL94], [Fac95], [Kam96], [SL95], [StL95], [Tuo96], [Tur98]). LOTOS-based
tools are numerous. They verify the LOTOS specification and generate tests for the purpose
of verifying the conformance of the implementation against the specification.

The use of LOTOS for the formal semantics of UCMs has been thoroughly studied in re-
cent years. Other formal methods, such as Petri nets and event structures, can be considered
as options [Amy94].

The combination of UCMs and LOTOS has been used to describe and validate telephony
systems and network protocols such as distributed systems [ALB99], Wireless Mobile ATM
networks [And00], General Packet Radio Services (GPRS) [AHL98], and telephony features
of a new PBX architecture [ACG00]. This thesis is within the framework of this latter work.

4

The following sections present an overview of the UCM notation, the LOTOS language,
the Message Sequence Chart (MSC) notation used to specify scenarios, and the Tree and
Tabular Combined Notation (TTCN) used to specify test suites. The Specification and De-
scription Language (SDL) is briefly presented.

2.2 Overview of Use Case Maps

Use Case Maps [Bur96] [Bur98] is a scenario based notation for gathering systems require-
ments. It describes causal relationships between activities of different components of the
system. Activities are represented by responsibilities which are generic and can represent
internal actions, tasks to perform, messages to send or receive and so on. Components
are also generic and can represent software entities (objects, processes, databases, servers,
functional entities, network entities, etc.) as well as non-software entities (users, actors, pro-
cessors, etc.). The causal relationships represent sequencing of activities, activities triggering
post-conditions or activities triggered by preconditions.

UCMs can represent either an abstract view of a system, or a more detailed one. It is
up to the UCMs designers to define the amount of detail provided in the UCMs, in terms of
actions performed and message exchanges.

The complete UCM notation elements are described in [Bur96] [Bur98]. In this thesis,
we will only introduce the ones that we used. In this section we present a simple UCM. More
complex ones are presented in chapter 4.

A UCM is represented by a top-level map, referred as a root map (it is represented in
Figure 2.1 by the simplifiedCallConnection map), and possible sub-maps. Sub-maps of
a map are referred to by stubs somewhere defined in this map. A stub is used to hide an
internal behavior inside the behavior of a current map. Two kinds of stubs are defined:

• static stub represented as a plain diamond. It refers to a sub-map.

• dynamic stub represented as a dashed diamond. It may refer to one of a set of sub-maps.
Each sub-map is referred to by a plug-in.

Each map includes one or several UCM paths that start with a start point and end with an
end point. A start point represents a precondition that triggers the path following it. An
end point represents a post-condition or a resulting effect from the actions performed in the
path.

The UCM in Figure 2.1 represents a simplified call connection between two users in-
terfaced by the components Phone1 and Phone2. The component Switch represents the
telephony network. This UCM is initiated in Phone1 by the start point offHook. A path
following this start point includes the responsibility dial in component Phone1 and by the
static stub checkCalleesStatus in component Switch. Inside this stub, the checkIdle

responsibility checks if the callee is idle or busy. The or-fork splits the path into two. Only
one of them can be chosen; in fact, a user can either be idle or busy but not in both states
at the same time. The busy case is represented by the [busy] condition and the Busy end
point of the stub, followed by the busyTone end point of the root map. The idle case is

5

Phone2SwitchPhone1

onHookonHook

Idle

Busy

[idle]

[busy]

checkIdle Idle

Busy

[idle]

[busy]

checkIdle

busyTone

offHook

dial

Phone1 Switch Phone2

Start Point Responsibility End Point Dymanic
stub
Static Component

stub

Phone2Phone1 Switch

onHookonHook

root map: SimplifiedCallConnection

checkCalleesStatus

disconnection

stubcheckCalleesStatus

offHook

Or-fork

disconnection stub: callerHangsUpFirst plug-in

disconnection stub: calleeHangsUpFirst plug-in

Figure 2.1: A simple UCM

6

represented by the [idle] condition and the Idle end point of the stub, followed by the
responsibility offHook and the dynamic stub disconnection of the root map.

This example introduces the basic UCM notation. The next section gives the definitions
of the other UCM notation used in this thesis.

Other UCM Notation Elements

In the previous section, we presented some UCM elements: responsibility, start point, end
point, static stub, dynamic stub, or fork, or fork condition and component. In this section,
we present additional UCM elements that were used in our project.

p

Indicates that several alternative
paths join in a single path.

Indicates that a single path is split
into many concurrent paths

Indicates that a path p is split into
two paths. One of them goes back to
p

DescriptionUCM elementDescriptionUCM element

timed
waiting
place

waiting_path

timeout_path

continuation

Put value in database

Get value from database

The path waiting_path can continue on the
path continuation if a timeout does not occur.
Otherwise, it continues on the timeout_path

Synchronization point for a scenario that
pauses until a triggering event is received

put value

get value

place
waiting

or join

and fork

Indicates that several concurrent
paths synchronize into a single
path

and join

loop

Figure 2.2: Some Use Case Maps notation

The UCMNav Tool

There currently exists only one tool that supports the UCM notation: the UCM Navigator
(UCMNav) [Mig98]. It creates and modifies UCMs, ensures their syntactical correctness and
generates their XML descriptions.

A new functionality of UCMNav was developed in this thesis and added to the tool. It
deals with the LOTOS scenario generation from a UCM. This work constitutes one of the
contributions of the thesis. It is detailed in chapter 5.

2.3 Overview of LOTOS

The Language Of Temporal Ordering Specification [ISO89] [BB87] is an FDT developed
within the ISO as a formal specification language for the purpose of describing and specifying
the different elements of OSI (Open System Interconnection) architecture such as services
and protocols. Nowadays, its use has been extended to other domains such as the design of
distributed systems.

LOTOS is a language for formal specification and formal modeling systems. By ’formal
specification’ we mean that it specifies the behavior of a system with a sound semantic basis.

7

By ’formal modeling’ we mean that a LOTOS specification is executable, thus it constitutes
an ’abstract model’ of the system.

A number of LOTOS tutorials exist in the literature ([LFH92], [BB87], [Toc89]). There-
fore, we limit ourselves to a very brief overview of the language and of its use in the context
of our research.

A LOTOS specification consists of two main parts: the Abstract Data Types (ADT) part
and the Control part, as follows:

specification systemName[gate1, ..., gateN]: <exit-behavior>

(* Abstract Data Type part: data types and value expressions *)

behavior

(* Control Part: system behavior *)

endspec

2.3.1 The Abstract Data Types Part

The ADT part defines the data types and value expressions needed to specify the behavior of
a system. It is based on the formal theory of algebraic abstract data types ACT-ONE [EM85].
The most commonly used predefined libraries are Boolean and NaturalNumber. The library
Boolean defines the constants true and false and defines the not operation that complements
a Boolean value. The NaturalNumber library defines positive numbers (including zero).

For instance, if we need to create a data type that represents different tones in a phone
such as the signals: dialTone, ringTone and busyTone, we would have an ADT as follows:

(* ADT *)
library Boolean endlib
type Tone is Boolean
sorts Tone

opns dialTone, (* dial tone *)
ringTone, (* phone is ringing *)
busyTone (* busy tone *)

: -> Tone
_ == _ : Tone, Tone -> Bool
_ <> _ : Tone, Tone -> Bool

eqns forall x, y: Tone ofsort Bool
x == x = true;
dialTone == ringTone = false;
dialTone == busyTone = false;
ringTone == dialTone = false;
ringTone == busyTone = false;
busyTone == dialTone = false;
busyTone == dialTone = false;

endtype
(* end ADT *)

8

There are some extended capabilities for specifying abstract data types, such as extension,
combination, conditional equations and renaming. But we won’t cover them in our tutorial.

2.3.2 The Control Part

The Control Part is the part of the specification that describes the internal behavior of
the system. It is defined by a behavior expression followed by possible process definitions. A
behavior expression is built by combining LOTOS actions by means of operators and possibly
instantiations of processes. By composition we mean sequence, choice or parallelism. A
possible structure of the control part of a LOTOS specification is:

behavior
(* General behavior of the system *)
<behavior expression> (* involving P1 and P2 *)

where

(* Processes definition *)
process P1 [<gateList>](<valueList>):<exit-behavior>:=

<behavior expression>
endproc

process P2 [<gateList>](<valueList>):<exit-behavior>:=
<behavior expression>

endproc

In this definition, <gateList> lists the gates through which the process will synchronize.
The notion of synchronization is introduced in the section defining the general parallel com-
position operator.

The specification of <exit-behavior> could either be exit to indicate that the process
terminates successfully, or noexit to indicate that the process cannot terminate. A fur-
ther extension of the <exit-behavior> allows for passing values to the next process using
<valueList>.

LOTOS Processes

A LOTOS process describes the behavior of a physical or logical entity in the system or
a function. It appears as a black-box to its environment. By black-box we mean that the
process internal behavior is hidden to the environment. The encapsulation provided by the
process concept makes this part of the language highly suitable for specifying communicating
objects in a telecommunication system. A process is also defined by a behavior expression.

LOTOS Gates

A process interacts with its environment by means of synchronization at common points
called gates. LOTOS gates may be used to model logical or physical interfaces between a
system and its environment. Values, specified by the ADT, may be passed and received at
these gates during synchronization.

9

LOTOS Actions

The basic units in a behavior expression are actions. They are atomic, instantaneous and
synchronous behaviors. Each action is associated with a gate, namely the gate at which the
event occurs.

Two types of actions exist in LOTOS. There are actions that need to synchronize with
the environment of the process in order to be executed; and there are internal actions, that
a process can execute independently. These are unobservable to the environment and are
represented by the internal action i (also called τ in process algebra).

The action denotation is structured, consisting of a gate name and an optional list of
data fields (called experiments). A possible structure of a LOTOS action with experiments
is:

gateName !valueSent ?valueReceived: valueType

Some examples of use of gates and experiments are shown in the section defining the general
parallel composition operator.

Choice Operator: []

To indicate that alternative sequences of events are possible, LOTOS provides the choice
operator: []. This latter is placed between two or more behavior expressions, and indicates
that either (or any) of the specified behaviors is possible. For example, the expression:

phone_to_user !ringTone; RingBehavior [] phone_to_user !busyTone; BusyBehavior

can either synchronize with phone to user !ringTone then behave like RingBehavior, or
synchronize with phone to user !busyTone then behave like BusyBehavior.

Parallel Composition Operators

Behavior expressions may be composed in parallel in three different ways. The simplest way
is through the interleave operator (|||), which indicates that the processes continue inde-
pendently and must agree to exit before the composition can exit. The parallel composition
|| requires strict synchronization on all non-hidden gates. The general parallel composition
operator |[<gateList>]| requires that the processes synchronize on all the gates of the
<gateList>.

General Parallel Composition Operator: |[<gateList>]|

An event occurs only if all processes that participate in it are ready for it. When an event
takes place, all the processes involved in that event synchronize and have a common view of
the event. This synchronization is interpreted as communication between these processes,
and permits values to be passed between them.

As shown in the action definition, LOTOS allows value passing during synchronization
on a gate. An action can offer a value !valueSent, or accept a value ?valueReceived. If
two processes synchronize on a gate, and both offer a value, it must be the same value in

10

order for the synchronization to occur. And if one offers a value and the other is waiting for
a value of the same type, then this value is passed from the first process to the second.

Example of synchronization on gates:

Process exampleSynchro[synchroGate]: exit
Process P1 [synchroGate]
|[synchroGate]|

Process P2 [synchroGate]
endproc

process P1[synchroGate]: exit
synchroGate ?val: ID !message;
...

endproc

process P2[synchroGate]: exit
synchroGate !1 ?msg: msgType;
...

endproc

In this example, processes P1 and P2 are sharing a gate: synchroGate. Each of them wants
to execute an action with this gate. If the value 1 is defined as a possible value of sort ID and
the value message as a possible value of sort msgType, then the two processes will execute
together the action synchroGate !1 !message;

Hiding Operator

hide <gateList> in Behavior is used to hide actions on gates in <gateList>, which be-
come internal for the environment. Thus these actions cannot synchronize with the environ-
ment.

Guarded Behavior

Once values have been passed in a behavior expression, we can impose conditions on further
execution using the guard construct. For example, in the LOTOS fragment below, the value
accepted at a gate phone to user must be ringTone for the RingBehavior to be executed,
and busyTone for the BusyBehavior to be executed.

phone_to_user? t: tone;
(
[t == ringTone] -> RingBehavior;

[]
[t == busyTone] -> BusyBehavior;

)

Enable and Disable Operators: >> and [>

Processes may be composed sequentially using the enable operator (>>). Given 2 processes,
P1 and P2, P1 >> P2 indicates that if and when P1 terminates with an exit, process P2 will
start.

11

The disable operator ([>) indicates that one process may interrupt another. For example,
P1 [> P2 indicates that process P2 may interrupt P1 at any point while P1 is executing or
before P1 starts. The interrupt can only occur if the first action of process P2 is enabled. If
the interrupt does occur, no further execution of P1 happens, and the execution continues
with the actions of P2. If P1 terminates unsuccessfully, P2 may execute, while if P1 terminates
successfully, the actions of process P2 cannot be executed anymore.

LOTOS provides a number of other constructs that will not be presented here since they
are not used in this thesis.

2.3.3 Specification Styles of Telephony Systems

Vissers, Scollo, v. Sinderen and Brinskma [VSS91] identify four major styles of specification.
The first two styles, called monolithic and constraint-oriented styles, are intended for the
early stages of design, while the state-oriented and resource-oriented styles are intended for
later stages of design.

Monolithic style is characterized by the absence of hidden actions and the lack of parallel
operators. The behavior of the specification is a choice ([]) between sequences of actions.
Therefore, specifications written in this style could be very long and hard to read. Thus,
this style is mostly used for debugging and test generation purposes.

Constraint-oriented style focuses on event sequencing and logical constraints as seen
from the external interaction points. It is useful for implementation-independent specifica-
tions.

State-oriented style where explicit system states are identified, e.g. by using state vari-
ables. Using this style may lead to increased readability of the specification in cases where
the informal specification uses the state concept. It may lead to LOTOS specifications that
can be implemented directly.

Resource-oriented style where the system is described by processes that represent dif-
ferent resources (or system components). The resources interact among themselves through
interfaces, each resource being defined by a temporal ordering of both internal and external
interactions. Interactions among internal modules are hidden. This style allows modularity
and parallel structures. Therefore, it is useful for implementation specification.

In our LOTOS specification (parts are shown in chapter 4), we used the resource-oriented
style in order to preserve the architectural model of the UCMs.

2.4 Message Sequence Chart

Message Sequence Chart [ITU96-2] is an ITU-T standard that is used to show sequences of
messages interchanged between system components and their environments. We call these

12

scenarios. Designers create MSCs to specify the system behavior or to specify the test
scenarios. These test scenarios are used for validation of the specification or during the
implementation stage. In our project, MSCs have been essentially used to express scenarios
used to validate the LOTOS specification. Lotos2msc and Msc2lotos converters [Ste00]
have been recently developed in order to generate LOTOS traces (definition in section 3.4)
directly from MSCs and vice versa. Both were used in the Fast Spec-to-Test project (details
in section 4.3). MSCs were manually generated from UCMs in the project. MSCs can be
created, edited and viewed by means of the MSC editor of the Tau toolset from Telelogic.

Lotos2msc Converter

In order to be able to convert a LOTOS trace into an MSC using Lotos2msc, a special format
of LOTOS actions representing messages exchange has to be adopted:

<orig_to_dest> !<instanceOrig> !<instanceDest> !<message>

This is best explained by an example. A LOTOS action representing a message offHook

going from the entity user1 of type user to the entity phone1 of type phone has to be
expressed as follows:

user_to_phone !user1 !phone1 !offHook;

It is expressed in the MSC by an arrow labeled offHook and going from the entity user1 to
the entity phone1. Figure 2.3 shows an example of an MSC and its corresponding LOTOS
trace.

phone_to_switch !phone2 !busy ;

user_to_phone !user1 !phone1 !offHook ;

phone_to_user !phone1 !user1 !dialTone ;

user_to_phone !user1 !phone1 ! !dial user2 ;

switch_to_phone !phone2 !connectReq ;

phone_to_switch !phone1 !connectReq ;

switch_to_phone !phone1 !busy ;

phone_to_user !phone1 !user1 !busyTone ;

switchuser

user1

phone

phone1

phone

phone2

user

user2

offHook

dialTone

dial [user2]

connectReq

connectReq

checkIdle

busy

busy

busyTone

Msc2lotos

Lotos2msc

offHook

A Message Sequence Chart

onHook

onHook

dialTone

A LOTOS trace

checkIdle;

offHook ;user_to_phone !user2 !phone2 !

;

dialTone ;

user_to_phone !user1 !phone1 ! ;onHook

phone_to_user !phone2 !user2 !

user_to_phone !user2 !phone2 onHook

Figure 2.3: A Message Sequence Chart and a corresponding LOTOS trace

Note that it is not necessary to write an instance name when there is only one instance of
a given entity. In fact, in the example of Figure 2.3, since there is only one instance of the
entity switch, no instance number is carried in messages involving the switch.

13

2.5 Specification and Description Language

Specification and Description Language (SDL) [ITU96-1] is an FDT designed for reactive,
concurrent, real-time, distributed, and heterogeneous system [AAL99]. It is used to describe
both the behavior and the structure of systems, from a high description level down to a
detailed design level. The behavior of a system is described by extended finite state machines
represented by processes. Processes work concurrently and communicate asynchronously
with each other by sending and receiving discrete messages called signals. Signals are also
the means by which SDL processes communicate with the environment.

A problem with the SDL language is that it enforces rigid system boundaries in the form
of processes and blocks. Although these are useful to represent system architecture, they
may cause difficulties in the early design stages when the system architecture is not quite
clear. LOTOS structure, which consists of only processes, is more flexible.

2.6 Tree and Tabular Combined Notation

Tree and Tabular Combined Notation (TTCN) [ISO92] is the standardized notation for
specifying test suites that was recommended by ISO/IEC 9646. TTCN is well known within
the telecommunications industry since it is widely used for conformance testing. Therefore,
in the second part of our thesis, we focused our interest on TTCN test suite generation tools
and on the possible automation of the test generation process (chapters 3 and 5). We will
give a brief overview of TTCN. A more complete tutorial can be found in [KW91]

A TTCN description specifies a whole test suite (a general definition of a test suite is
given in section 3.5.1). It consists of:

• a test suite overview: it is mainly a contents list of the test suite,

• a declaration part: it contains the definitions of all the message components that com-
prise the test suite: variables, timers, Points of Control and Observations (PCOs), and
test components,

• a constraint part: it consists of conditions on message parameters, i.e. default values
or value ranges which should be tested, and

• a dynamic part: it defines the test cases of a test suite in terms of trees of behavior.

As indicated by the name ’Tree and Tabular Combined Notation’, a TTCN test suite is
a collection of different tables. They are elements of the dynamic part.

Dynamic Part

A test case is generally composed of the following components:

- Test purpose: It describes the objective of the test case (expected behavior, verifica-
tion goal, etc).

14

- Test preamble: It contains the necessary steps to bring the Specification Under Tests
(SUT) into the desired starting state.

- Test body: It defines the test steps needed to achieve the test purpose.

- Test postamble: Used to put the SUT into a stable state after a test body is executed.

- Test Verdict: During test execution on a system, a test suite is carried out, resulting
in a verdict FAIL, (PASS), PASS or INCONCLUSIVE. FAIL occurs when the test does
not conform to the specification. (PASS) occurs when the purpose is reached but a
postamble is needed to go to the initial state, this could lead to a FAIL. The result is
PASS when the objective is reached and the system is in the initial state. Finally, it is
INCONCLUSIVE when the test case purpose cannot be achieved.

+---+
| Test Case Dynamic Behaviour |
+---+
| Test Case Name : scenario1 |
| Group : End2EndCall/ |
| Purpose : To test that if user2 is busy then user1 gets the busy |
| : tone when he tries to call user2. |
| Default : |
| Comments : |
+----+-----+-----------------------------+--------------------+--------+--------+
| Nr |Label| Behaviour Description | Constraints Ref | Verdict|Comments|
+----+-----+-----------------------------+--------------------+--------+--------+
1		user2 !offHook	scenario1_001		
2		user1 !offHook	scenario1_001		
3		user1 ?dialTone	scenario1_002		
4		user1 !dial	scenario1_003		
5		user1 ?busyTone	scenario1_004		
6		user1 !onHook	scenario1_005		
7		user2 ?dialTone	scenario1_002		
8		user2 !onHook	scenario1_005	PASS	
9		user2 ?dialTone	scenario1_002		
10		user1 ?dialTone	scenario1_002		
11		user1 !dial	scenario1_003		
12		user1 ?busyTone	scenario1_004		
13		user1 !onHook	scenario1_006		
14		user2 !onHook	scenario1_006	PASS	
15		user2 !onHook	scenario1_006		
16		user1 !onHook	scenario1_006	PASS	
17		user2 !onHook	scenario1_006		
18		user1 ?dialTone	scenario1_002		
19		user1 !dial	scenario1_003		
20		user1 ?busyTone	scenario1_004		
21		user1 !onHook	scenario1_006	PASS	
22		user1 ?callInProgress	scenario1_007	(INCONC)	
+----+-----+-----------------------------+--------------------+--------+--------+

A TTCN test suite is automatically generated from the composition of a formal specifica-
tion S (written for instance in LOTOS or in SDL) and a test T (generally presented in MSC

15

form). If the test T is a sequence, an alternative or a composition between sequences and
alternatives of actions, then the TTCN test suite is a bigger tree that includes T. The added
actions in a TTCN test suites are actions that can or cannot be executed on the specification
S. A verdict associated with these actions provides this information.

The most recent version of the TTCN language, TTCN-3 [GWW00], supports several
notations that are equivalent. One of them is a textual notation (TTCN-MP for TTCN
Machine Processible form). The test case presented above is an example of the dynamic
part of a TTCN test suite in MP format. It is part of a test suite that was generated from
an SDL specification and the MSC of Figure 2.3. A branch of the test case with a verdict
PASS corresponds to the sequence of message exchanges of the MSC. The other branches of
the test case correspond to other alternatives of message exchanges. Their verdicts show
whether or not the message sequencing is allowed in the SDL specification.

2.7 Conclusion

The chapter presented an overview of UCMs, LOTOS, MSC, SDL and TTCN. UCMs are
suitable for capturing requirements of distributed systems. LOTOS is a formal and unam-
biguous specification. In addition, LOTOS operators allows easily to specify a behavior of
distributed and communicating systems. A development methodology based on UCMs for
the description of the requirements and LOTOS for the specification of the system is adopted
in this thesis for the specification of telephony features of a PBX. It is detailed in chapter
4. MSCs are a graphical representation of scenarios. They are adopted in this thesis for
the description of the generated scenarios. Finally, TTCN is suitable for writing test suites.
In the development methodologies that we present in the thesis, this notation is adopted to
write test suites that will be executed on implementations.

16

Chapter 3

Overview of Applicable Testing
Theory and Existing Testing Tools

In this chapter, we present an overview of software
testing techniques and phases and two software testing

tools for LOTOS models: TGV and TorX.

3.1 Introduction

System failure in any industry can be very costly. One way to increase system reliability is to
perform software testing in combination with appropriate techniques to solve the identified
problems. One of the testing principles announced by Myers [Mye79] is:

Testing is the process of executing a program or system with the intent of finding errors.

Testing is usually carried out in a special environment by means of experimentation. It can
never be exhaustive for any realistic system of a very large or infinite number of allowed
behaviors since the time and effort that can be spent on it is always limited by practical and
economical considerations. As a result, as Pressman [Pre97] states (following a well-known
statement by Dijkstra):

Testing cannot show the absence of defects, it can only show that software errors are

present.

A thorough review of testing theory would be very long. We are limiting ourselves to
reviewing the concepts that are used in the thesis. We will discuss some software testing
techniques and phases. Then we will present some existing testing tools for LOTOS.

17

3.2 Software Testing Techniques

There are many ways to conduct software testing, but the most common techniques rely on
the following concepts [Pre97]:

1. Test Case Design Test cases should test the program by using inputs that could
be correct or incorrect, producing outputs that will reveal possible errors. Variables
should be tested using all possible values (for small ranges) or typical and out-of-bound
values (for larger ranges). They should also be tested using valid and invalid types and
conditions. Arithmetical and logical comparisons should be examined as well, again
using both correct and incorrect parameters.

2. White-Box Testing It is a test case design technique that relies on intimate knowl-
edge of the code. It determines all possible paths in a module1 and tests all logical
expressions.

Using white-box testing, the tester can guarantee that all independent paths within a
module have been covered at least once; examine all logical decisions on their true and
false sides; execute all loops at their boundaries and within their operational bounds;
and exercise internal data structures to assure their validity [Pre97].

3. Basis Path Testing It is a white-box technique first proposed by McCabe [Mcc76].
It allows the design of sets of test cases that examine each possible path in a program
by executing every branch in the program at least once during testing. It should be
monitored by coverage measurement.

4. Control Structure Testing It is a white-box technique that examines each possible
path through the program by executing each statement at least once. It includes basis
path testing (presented above), condition testing, branch testing, domain testing, data
flow testing and loop testing. These notions will not be explained in this thesis but we
understand by their names that they test the execution paths for every structure of a
program.

5. Black-Box Testing Unlike white-box testing, black-box testing focuses on the overall
functionality of the software. That is why it is the chosen technique for designing test
cases used for functional testing (definition in section 3.3). This technique allows the
functional testing to uncover faults like incorrect or missing functions, errors in any of
the interfaces, errors in data structures or databases and errors related to performance
and program initialization or termination.
The disadvantage of black-box testing is that in case of failure of a test, it is very hard
to find the errors since it is impossible to locate them by looking at the test.

6. Grey-Box Testing Between white-box and black-box testing is grey-box testing. This
technique does not test the internal behavior of the system entities and does not test
the external behavior of the system but focuses on the interactions between the entities.

1the term module is used to describe a logical division of the functionality of the system which contains
a set of strongly coupled functions and procedures.

18

3.3 Software Testing Phases

In order to construct a proper and thorough set of tests, the testing phases mentioned below
are generally performed in the order in which they are described. They use one or more
software testing techniques described in section 3.2.

Humphrey [Hum90] identifies the following software testing phases:

1. Unit Testing It is a process of testing the individual subprograms, subroutines, or
procedures in a program. That is, rather than initially testing the program as a whole,
testing focuses first on the smaller building blocks of the program.

2. Integration Testing It focuses on testing multiple modules working together.

3. Functional Testing It is a testing process that is black-box in nature. Its goal is to
take a user’s view of the system, and check that customer requirements have been met.
In particular, the actions and reactions of the system are considered from the user’s
viewpoint, to ensure that the system behaves as the user expects [PrW99]. In functional
testing, different classes of test scenarios are defined: Primary scenarios which test
the expected behavior of the system (success paths); Secondary scenarios which test
its unexpected behavior (fail paths, race conditions, etc.); Low yield scenarios which
describe situations and actions which are generally understood and are most likely to
pass; And high yield scenarios which are scenarios that are not well documented, and
therefore are not well understood and are most likely to fail [MaP01]. These definitions
are not developed further in this thesis.

4. Regression Testing When fixing an error or adding a new functionality in an existing
program, the code is modified. The modifications could be minor (adding, deleting or
modifying few lines of code), or major (adding, deleting or modifying modules of the
program). In both cases, the specification of the program may or may not be changed.
The objectives of regression testing are to insure that the modified parts of the soft-
ware system still satisfy their original unmodified requirements and that the previous
functionality of the software, which should not be affected by the modifications, has
indeed not been affected. Only those parts that are affected by the modification need
to be retested.

5. System Testing It is the final stage of the testing process. This type of test involves
examination of all the software components, of all the hardware components and of
any interfaces. It is designed to reveal bugs that cannot be attributed to individual
components. It concerns issues and behaviors that can only be exposed by testing the
entire integrated system or a major part of it.

6. Acceptance Testing It is the process of comparing the program to its initial require-
ments and to the current needs of its end users.

19

3.4 Testing LOTOS Specifications

Several tools for testing a LOTOS specification are available today. In this section we present
some testing techniques offered by the majority of the existing tools. We describe how they
are performed on specifications using the tool LOLA (LOtos LAboratory) [QPF88]. This
tool was used in this research to test our LOTOS specifications.

With relation to testing, a distinction is often drawn between the terms verification and
validation:

• Verification is used to describe any checking of a design that includes the internal
behavior of the system. Another definition from Boehm [Boe81] is:

Are we building the product right ?

• Validation applies only to confirm that end-to-end behavior requirements are met. The
definition from Boehm [Boe81] is:

Are we building the right product ?

Accordingly, we distinguish between verification and validation aspects in our testing method-
ology. The semantics of LOTOS is defined in terms of Labeled Transition Systems (LTSs).
Solving the problems of test derivation for LTSs therefore solves the problem for LOTOS
behaviors as well. In fact, testing a LOTOS specification is done by testing the LTS repre-
sentation of the specification behavior. An LTS can be considered as a special type of finite
state machine [HU79].

Definition Labeled Transition System
As defined in [Bri88], a Labeled Transition System (LTS) is a 4-tuple (S, A, T, s0), where :

1. S is a (countable) non empty set of states;

2. A is a (countable) set of visible actions a;

3. T = {−b →⊆ S×S|b ∈ A∪{i}} is a set of transitions, where i is the invisible action.

4. s0 is the initial state;

Let s denote a string of actions, s=aa1...an, and let ik be a string of k internal actions:
B-s→B’ is defined as follows: ∃ B1, ..., Bn | B − a1→B1 ... Bn−1-an→Bn = B′

B=s⇒ is defined as follows: ∃ ik0a1i
k1a2...anikn | B-ik0a1i

k1a2...anikn → B’
P=σ⇒ is defined as follows: ∃ P’ | P=σ⇒ P’
The set of traces of B, Tr(B) = {σ | B=σ⇒ }

Given a LOTOS specification of a system and its corresponding LTS, the state s0 is the
root of the LTS; it represents the behavior of the system when no action has been performed.
An element of the set S expresses a state in the LTS, which is a behavior in the LOTOS

20

offHook

onHook
talk

onHooktalk

dial

phone [offHook, onHook, dial, ring]:noexit

(* The user goes off hook *)offHook;

(
dial; (* He dials the callee’s number *)

talk; stop (* He talks with the callee *)

[]

talk; stop (* He talks with the caller *)
)

[> onHook; stop

A LOTOS specification

specification
behavior

endspec

(* Caller behavior *)

(* Callee behavior *)

(* Either user can hang up at any time *)

The corresponding LTS

Figure 3.1: A LOTOS specification and its corresponding LTS

specification. A transition from a state of the LTS to another represents the execution of a
LOTOS action transforming the behavior of the system. Actions can be external (visible) or
internal. A trace of the system is a sequence of external actions that the system can perform.

Figure 3.1 shows a simple LOTOS specification and its corresponding LTS. In the speci-
fication, offHook can be executed at first. No other actions are possible. This is represented
in the corresponding LTS by an action labeled offHook in the transition leaving the root
of the LTS and going to an other state. The LOTOS behavior between parentheses in the
specification can be disabled by the action onHook. The possible traces specified within the
brackets are talk, or dial then talk. The alternatives between these LOTOS actions are
expressed in the LTS by different transitions leading to different states.

When testing a LOTOS specification using a tool, the tool converts the specification into
an LTS. Verification and Validation is performed on this structure.

3.4.1 Verification of LOTOS Specifications

Interactive simulation is a verification technique used often to verify a LOTOS specification.
It is mainly used in the early stages of the design process. The interactive simulation is per-
formed by applying the step-by-step execution of the LTS corresponding to the specification.
This technique is considered as white-box testing (definition in section 3.2) since all possible
paths in each process of the LOTOS specification are tested.

LOLA was used in this research to perform step-by-step execution of our LOTOS spec-
ification using the Step option. A set of possible LOTOS actions is proposed after each
execution of an action. One action is chosen to go to a next state. The interactive simula-
tion stops when no further actions can be performed.

21

3.4.2 Validation of LOTOS Specifications

The validation of a specification is performed against initial requirements. This may be
regarded as a black-box testing (definition in section 3.2) since we are concerned only with
the observable behavior of the system.

Using the LOLA tool, we can perform the validation of a LOTOS specification by applying
the testexpand command on the specification. Inputs are the LOTOS specification and
LOTOS tests. The LOTOS tests are usually generated manually from the requirements (a
contribution of this thesis is the automation of this step).

We distinguish two types of tests:

• Tests that checkagainst expected behaviors of the system according to the requirements.
They are called acceptance tests,

• Tests that express faulty behaviors of the system. They are called rejection tests
[CaT95].

A LOTOS test (also called LOTOS scenario) is composed of a LOTOS behavior (most
commonly a sequence of LOTOS actions) followed by a special gate (for instance SUCCESS for
acceptance tests and REJECT for rejection tests). The LOTOS test and the current behavior
are composed in parallel, synchronizing on all the gates but the special gate.

The testExpand option is executed in LOLA as follows:

lola> testExpand special_gate TestProcess

LOLA analyses whether the execution of the test on the specification reaches the special
gate or not. Three types of results can be obtained:

- Must Pass: all possible executions are successful, they reach the special gate.

- May Pass: some executions are successful and some unsuccessful.

- Reject: all executions failed to reach the special gate.

In case the acceptance tests aren’t Must Pass or the rejection tests aren’t Reject, the spec-
ification is reviewed in order to correct its behavior since it has either unexpected deadlocks
or unwanted behaviors.

Feature Interaction Detection

The validation of telecommunication systems also checks for possible Feature Interactions.
The feature interaction problem represents the case where a feature isn’t working properly
according to its intent because of some unexpected interactions with other features in the
system.

An example of feature interaction involving Originating Call Screening (OCS) and Call
Forward Always (CFA) features (definitions in section 4.4) is as follows: user A has OCS to
user C. User B has CFA to C. When A calls B, the call is forwarded to C because of CFA,

22

but A should not talk to C because of OCS. Should C’s device ring because the call is meant
for B or should the call be denied because A isn’t allowed to talk to C?

The choice on how the system should behave is decided by the designers.
A feature interaction scenario involves the presence of two or more features in the system

and expresses a possible behavior of the system.
The application of our work to feature interaction detection is discussed briefly in section

4.8

Structural Coverage

Another way to validate a specification is structural coverage [AL00]. It consists in inserting
counters in different parts of the specification and measuring the structural coverage of a LO-
TOS specification against validation test suites. It is very useful since it detects incomplete
test suites and unreachable parts of the specification.

Model Checking

Model checking is also a form of validation. Desirable properties for the system expressed
in terms of temporal logic formulas can be checked on the LOTOS specification using the
LMC (Lotos Model Checker) tool [Gri92].

Note that structural coverage and model checking techniques were not used in this re-
search, so they are not discussed further.

3.5 Some Existing Test Generation Tools from Speci-

fications

Since we built specifications only in LOTOS, our interest in this section is focused on test
generation tools from LOTOS.

The TTCN language (definition in 2.6) has been defined for writing abstract test suites
and for performing conformance testing on existing implementations. It is now supported by
many test generation tools. Test generation tools from formal specifications are often used to
generate TTCN test suites for the purpose of testing the conformance of an implementation
against a specification.

3.5.1 Structure of a Test Suite

Conformance testing involves applying test suites. Test suites are used to describe control
and observation of the implementation under test and assign verdicts to test outcomes.

The structure of a test suite is hierarchical. It comprises a number of test cases and is
associated with a unique standardized test purpose.

A test case is a sequence of actions describing all the interactions occurring between an
Implementation Under Test (IUT) (i.e. an implementation which is being assessed on its

23

correctness by testing) and a tester which wants to verify that an implementation conforms
with the specification according to a test purpose. In an industrial context, test cases are
often described using TTCN. Some transitions are decorated with verdicts that could have
one of these values: (PASS), PASS, FAIL, INCONCLUSIVE (definitions in section 2.6).

The test cases may be grouped into test groups, which in turn may be grouped into larger
test groups. The test cases may also be decomposed into test steps and the test steps into
test events (or test sequences).

The area of test suite generation, especially concerning techniques based on formal spec-
ifications, is an area of active research and development.

3.5.2 Test Suite Generation with TGV

TGV (Test Generation with Verification technology) [FJJ96] is a tool dedicated to the auto-
matic generation of conformance tests based on formal techniques such as SDL and LOTOS.
It is part of CADP (CAESAR/ALDEBARAN Development Package) [FGM92], a toolset
that offers a wide range of functionalities, from interactive simulation (using the tool Cae-
sar) to the most recent formal verification techniques (using TGV) for formal languages such
as LOTOS.

As seen in Figure 3.2, an LTS is generated from a LOTOS specification using Caesar
within the CADP toolset. LOTOS test purposes (randomly generated from the LOTOS
specification or manually generated from the user’s requirements) are also converted into
LTSs within the CADP toolset. TGV takes as inputs the LTSs obtained from the LOTOS
specification and the formalized test purpose, and generates a more complex LTS decorated
with verdicts. The obtained test format is called Aldebaran format. An Aldebaran to TTCN
converter, Aut2ttcn, is used to obtain TTCN tests.

specification
LOTOS

Test purpose

Aldebaran

test case

TTCN

test case

CADP

TGV aut2ttcn

CADP

test purpose

of the formalized

LTS

specification

LTS of the

LOTOS

Figure 3.2: Test generation using TGV

TGV was used in the case study presented in section 6.4. Some problems encountered
while using this tool are discussed in section 6.5.

24

3.5.3 Test Generation and Execution with TorX

TorX [BFV99] is a tool dedicated to the test generation and execution from formal specifi-
cations. It allows on-the-fly testing for LOTOS and PROMELA, and batch test derivation
for SDL. On-the-fly test generation techniques perform the generation of tests cases from
the composition of a specification and a test purpose without complete generation of the
specification state space but only of the part that behaves like the test purpose. In addition
to test generation, TorX performs test execution on implementations.

offer input

observe output IUT

next input

check output TorX

Verdict:
PASS, FAIL or INCONCLUSIVE

Test purpose

Specification

Figure 3.3: On-the-fly testing with TorX

In case of test generation from a LOTOS specification (Figure 3.3), test purposes are
manually generated from requirements or automatically generated from the specification.
TorX applies the actions of a test purpose to the specification and the implementation and
observes the corresponding outputs. A verdict is generated from the comparison between
the specification and the implementation outputs.

3.6 Conclusion

The first part of the chapter discusses a number of commonly used telecommunications
software testing techniques and phases. While testing software, a combination of techniques
and phases is usually necessary to develop a good set of test cases against which the software
can be evaluated.

The second part of the chapter introduces two testing tools for LOTOS models: TGV
and TorX. The use of TGV is proposed in the development methodology presented in chapter
6 of the thesis.

25

Chapter 4

LOTOS Specification of Telephony
Features for a New PBX

This chapter describes in detail the steps
followed in the construction of a LOTOS model

from a UCM model of a telephony system.

4.1 Introduction

In this chapter, we describe our work in the Fast Spec-to-Test project. After presenting the
project, we will review the different phases of the development process that we achieved such
as the analysis of the requirements (in UCM form), the LOTOS specification of the telephony
system described in the UCMs, and the verification and validation of the specification using
manually generated scenarios from the UCMs.

4.2 Presentation of the Project

The Fast Spec-to-Test project was a collaborative project between Mitel Corporation and
the University of Ottawa. It was intended to build a formal model of a new generation
of a Private Branch eXchange (PBX) using a development methodology based on formal
methods such as: LOTOS, SDL, MSC and TTCN.

The principal aims of this project were to:

- Demonstrate the rapid and inexpensive formal modeling phase using Use Case Maps
to specify the requirements and using LOTOS or SDL (or both) to specify the formal
model of the system.

26

- Rapidly develop a set of test cases which will be used for conformance testing purposes
at the implementation stage. The set of test cases assures the full coverage of the UCM
paths.

Three teams were involved in the Fast Spec-to-Test project. The Mitel team provided the
set of requirements written in UCM form. Two teams from the University of Ottawa were in
charge of the formal modeling stage (or specification stage). The LOTOS team was working
on the early specification stage using LOTOS, and the SDL team on the late specification
stage using SDL.

The LOTOS team had to provide to the SDL team:

- Possible design errors found in the UCMs.

- Some non-existent design details that had to be created for the LOTOS specification.

- A set of MSCs that attempted to cover all the LOTOS specification. They were used
by the SDL team as an input to the SDL specification.

The work done by the LOTOS team is part of this thesis; therefore, it will be detailed
later on in this chapter.

4.3 General Overview of the Development Methodol-

ogy

A number of different specification languages and techniques are available today. They are
partially complementary and can be used in combination. The justification of the use of
several specification techniques is given in [AAL99]. The development methodology followed
in the Fast Spec-to-Test project is essentially based on the use of:

- Use Case Maps for the description of the telephony features at the requirements stage,

- LOTOS and SDL for features specification, verification and validation at the formal
modeling stage.

Several tools are used to link different phases of the formal modeling stage and to
transform different notations into others.

The starting point of this methodology are the UCMs as a semiformal description of the
features. Some plain English documentation (informal description of the features, roles of
the system components, etc.) can also be part of the requirements.

(1) From the UCMs, a LOTOS specification is derived. The translation from UCMs to LO-
TOS corresponds to the transformation and formalization of an abstract, semiformal
model into a less abstract, formal and executable one. First, the UCMs are analyzed.
Design errors can already be corrected at this stage. Second, a LOTOS specification
is derived following some UCM to LOTOS mapping rules presented in section 4.6.3.

27

Specification
and Validation of the

Verification

not part of the project

automatic path

manual path

Specification
and Validation of the

Verification

Product

MSCs(4)

(6)(5)

(1) (2) (3)

UCMs

SDL
specification

TTCN

Executable
Test Suites

Test Suites

LOTOS
specification

LOTOS
scenarios

LOTOS
scenarios MSCs

LOTOS-based

MSCs
SDL-based

(7)

(8)

(9)

(10)

(10)

(11)

(11) (12)

(13)

(14)

(15)

(16)(16)

Figure 4.1: The software development methodology approach

28

In this experience, the LOTOS specification that we obtained from the UCMs was
hand-prepared. However, some work has been done by Amyot to formalise the trans-
formation of a UCM map into a LOTOS specification [Amy94]. In addition, the au-
tomation of the transformation of UCMs into a skeleton of LOTOS specification is
currently being investigated within the LOTOS research group of the University of
Ottawa. This automation is not part of our work.

(2) LOTOS scenarios are manually generated from the UCMs in such a way as to cover
the UCM. LOTOS scenarios are useful for the validation of the specification against
the requirements and for the verification of conformance of the implementation against
the specification.

The method Ucm2LotosTests designed and implemented in this thesis (details in
chapter 5) automates this step of LOTOS scenario generation from UCMs.

(3) MSCs are manually generated from UCMs. They are used at different stages of the
development process.

(4) Using the Msc2lotos converter and its conventions, MSCs are automatically converted
into LOTOS traces.

(5) Verification of the detailed behavior of the LOTOS specification is performed using
step-by-step execution of the specification with the LOLA tool.

(6) LOTOS scenarios are executed on the specification for validation purposes. If the
execution is not successful, then the specification does not behave correctly and has to
be modified.

(7) Corrections are made to the specification in case of bad design.

(8) LOTOS traces are generated from the specification. They are added to the set of
LOTOS scenarios already generated in (2). This new set of tests is used to validate
the SDL specification and to test the implementation.

(9) Using the Lotos2msc converter and its conventions, LOTOS scenarios are automatically
converted into MSCs. We call these MSCs LOTOS-based MSCs.

(10) An SDL specification is built from the MSCs.

(11) Verification and Validation of the SDL specification is carried out using the Tau toolset.

(12) A set of MSCs that covers the complete SDL specification is generated with the Tau
toolset. We call these MSCs SDL-based MSCs.

(13) Cross-validation is performed between the LOTOS-based MSCs and the SDL-based
MSCs. The differences found are discussed and possible changes on the SDL specifica-
tion are made.

29

(14) TTCN test suites are generated from the SDL specification using the Autolink tool
integrated in the Tau toolset.

(15) TTCN test suites are transformed into executable ones.

(16) Implementation code is generated and conformance testing of the product is performed
by executing the tests generated in (15) on the product.

One of the most important features of this methodology is that it uses more than one
formal method to model the design (LOTOS, SDL and MSC). Therefore, using the cross-
validation strategy (13), the specification obtained is most likely to have the expected be-
havior. The results of the cross-validation on the Fast Spec-to-Test project are presented in
section 4.9.2.

4.4 Presentation of the Telephony Features

A feature is a collection of services packaged together that can be commercialized. 7 telephony
features are part of the project. They are listed below:

• Basic Call (BC): It represents the basic call connection between two users interfaced
by their access devices. An access device is most commonly a phone. The BC feature
includes the connection request by a caller and the answer of the callee.

• Call Forward On Busy (CFO): User A has CFO to user B means that when A is busy,
the incoming calls are forwarded to B.

• Call Forward Always (CFA): User A has CFA to user B means that each time A has an
incoming call, this call is forwarded to B.

• Outgoing Call Screening (OCS): User A has OCS for user B means that its outgoing
calls to B are blocked.

• Call Hold (CH): It enables a user to place the current call on hold, and/or retrieve the
held calls.

• Call Transfer (CT): It allows a user to place a call on hold, then to dial and consult
with a third party, then to transfer the second party to the third party.

• Call Pickup (CP): It allows a user within a group of users in a same local network
to answer a call connection request made to the group of users from his own access
device. If more than one party in the group attempts to pick up the call, the call
will be completed to the first party seizing the call, and other parties will receive the
reorder tone.

30

4.5 Presentation of the Requirements

The requirements of the system to specify in LOTOS describe the behavior of the 7 features
presented in section 4.4. They were described in UCM form. The set of UCMs contains:

- 28 static stubs,

- 29 dynamic stubs,

- 49 plug-ins.

The terms originating and terminating will be used later on in this chapter. An originating
component (or party) is a component (or a party) from the caller side. Terminating ones
are from the callee (or called party) end.

The Features

The BC map (Basic Call map), which deals with the basic call connection request, is common
to the UCMs of all the features. Either they include it or they are part of it. The BC map
has several plug-ins and different plug-ins are executed depending on the features as follows:

- The BC feature is defined in the BC map. Its behavior is represented in the default
plug-ins of the stubs composing the BC map.

- The CT feature is defined by a map containing the BC stub (which points to the BC
map).

- The CP feature is also defined by a map containing the BC stub.

- The CH feature is represented by a map with, as a precondition, the BC map.

- The CFA and CFO features are defined by the BC map. But, at a certain point, a
plug-in that redirects the call to a third party is chosen against a default one used for
the BC.

- The OCS feature is defined by the BC map with a choice of plug-ins dealing with the
failure of the BC between the two parties.

All the features either contain the BC feature or are part of it. The BC feature was the first
one to be modeled in LOTOS. The specification of the other features was built on top of the
BC model.

The Architecture

The architecture of the system, as presented in the requirements, is defined by the following
entities:

31

• Device Element Block (DEB): it represents the physical end point of a call. It could
be an actual telephone, a computer, or some other device. It is the only entity of the
system that interacts with the user (or the customer).

• Communicating Entity Block (CEB): it represents a user’s profile in the system. It
has information about restrictions and privileges of the user.

• Logical Element Block (LEB): it represents the logical endpoint of a call in the switch.
Typically, this is described as a role in an organization, e.g. the Director of sales.

• Call Object (CO): It is an intermediary component between LEBs that participate in
a call. It is dynamically created when an originating LEB wants to communicate with
a terminating LEB during a call connection request.

DEB
terminating

DEB
originating

static component

dynamic component

originating

terminating

direct communication

from the call initiation side

from the call destination side

CEB
originating

CEB
terminating

Legend:

LEB

CO

LEB
terminating

originating

Figure 4.2: System architecture

As specified in the UCMs, a call between two ends involves seven components as shown in
Figure 4.2. A call is initiated by an originating user through a DEB (this DEB will be the
originating DEB for this call). The call connection request to a second party (or terminating
party) is propagated to the originating LEB. A CO is dynamically created to connect the
originating LEB to the terminating LEB. The call connection request is propagated to the
terminating DEB. If the terminating end accepts the call, then the two parties establish a
connection through the 7 entities involved in the call. In connections like the three-way call-
ing, a third party is involved in the connection so another DEB, CEB and LEB are involved
in the call.

Note that DEB, CEB and LEB are now called respectively DA (Device Agent), PA
(Personal Agents) and FA (Functional Agents). However in this thesis we use the terminology
that was prevalent at the time we did the bulk of our work.

32

4.6 UCM to LOTOS Transformation

The UCM to LOTOS transformation was performed following multiple steps:

1. Analysis of the UCMs by looking at the decomposition of the maps into stubs and at
the components involved in each map.

2. Representation in a graph of the decomposition of the UCM maps and the stubs into
stubs/plug-ins.

3. Establishment of mapping rules between UCM and LOTOS elements.

4. Specification of a LOTOS model for a simplified behavior of the BC feature.

5. Specification of a LOTOS model for the 7 features described in section 4.5.

The following sections are going into more details about the LOTOS specification con-
struction from the simplified BC specification to the specification of the 7 features.

4.6.1 Analysis of the Requirements

After analyzing the requirements, some syntax errors (i.e. unlabeled UCMs) and inconsisten-
cies in the UCMs were found. The UCM designers had to fix them before the corresponding
LOTOS specification could be started.

The UCMs were very complex, and deep in terms of sub-map encapsulation (up to 5 lev-
els). Moreover, many stubs were repeatedly used in different maps. The graph representation
presented in the next section allowed us to have a better idea of the UCMs composition into
stubs.

4.6.2 Graph Representation of the Features

In order to have a picture of the hierarchy and the sequential order between the stubs of the
UCMs, we built a graph as follows:

- In the graph, a feature and a static stub are represented by rectangles, a dynamic stub
by a diamond and a plug-in by an ellipse.

- Features are represented on the top of the graph,

- In the UCM representation of a feature, the latter is composed by a sequence of stubs;
this list is presented at the level below the one of the feature in the graph. The
sequential order of the stubs is shown as a number on the label on each arrow linking
the feature to each stub composing it.

- If a stub S is static, the level below it in the graph represents the sequence of stubs
involved in S. The sequential order of the stubs is represented by the incremental labels
i on the arrows linking S to each stub.

33

- If a stub S is dynamic, the level below it in the graph represents the alternative plug-ins
for S. If the arrow leading to the stub S is i, then the arrows going from S to each
alternative plug-in is i.j, where j is different for each plug-in. This way, from the
representation of a stub S in a graph, we can know which stubs/plug-ins are composed
in sequence and which are alternatives in S.

CEBOriginatingBasicCallFeature OriginatorFindCE

Login

2

2

OriginatorFindCEDfaultPlug-in

ValidateProcessReject

2.12.22.3

DEBOriginatingBCFeatureOriginatorFindLEOriginatorBasicCallSetupBasicCallFailed

13 2456

BasicCall

Figure 4.3: Hierarchical relationship between stubs of the BC map

Figure 4.3 represents a part of the graphical representation of the BC feature. We under-
stand that the BC map contains 6 stubs. One of them is static: OriginatorBasicCallSetup
(in fact, it is rectangular). The others are dynamic (they are diamonds). The dynamic
stub OriginatorFindCE contains one plug-in OriginatorFindCEDefaultPlugIn (it is el-
liptic). The Figure shows that this plug-in has one static stub Login that has 3 static
stubs: Validate followed by Process and then Reject. The sequential order of the stubs
is represented by the arrow labels 2.1, 2.2, 2.3.

The graph of Figure 4.3 is automatically generated using the tool Graphviz [Att99]. This
tool generates graphs from text files. A part of the Graphviz input file corresponding to the
graph of Figure 4.3 is shown below:

digraph BasicCall {
name="Basic Call Feature Graph" node [style=empty];

BasicCall -> DEBOriginatingBCFeature
-> DEBOriginatingBCFeatureDefaultPlugIn [style=bold color=red label=1];

BasicCall -> OriginatorFindCE
-> OriginatorFindCEDefaultPlugIn

-> Login [style=bold color=red label=2];
Login
-> Validate [style=bold color=red label=2.1];
Login
-> Process [style=bold color=red label=2.2];
Login
-> Reject [style=bold color=red label=2.3];

BasicCall -> CEBOriginatingBCFeature

34

-> CEBOriginatingBCFeatureDefaultPlugIn [style=bold color=red label=3];

BasicCall -> ...
}

The graph representation of all the stubs/plug-ins composing the UCMs helped us to
build a LOTOS specification by making sure that it followed the architectural behavior in
the UCMs.

4.6.3 UCM to LOTOS Mapping

The transformation from the semi-formal notation UCMs to the formal language LOTOS is
not straightforward. Some mapping rules that transform UCM into LOTOS elements were
set up for this purpose. The mapping presented below is partially based on previous work
by Amyot [Amy94].

- start point It is most generally a LOTOS action having the start point’s label. It
could also be a sequence of actions, a guarded behavior, or nothing if the start point’s
label is empty.

- end point It is most generally a LOTOS exit action carrying a value having the end
point’s label. It could also be an action or sequence of actions, or nothing if the end
point’s label is empty.

- responsibility A LOTOS action having the responsibility’s label or sequence of ac-
tions.

- or-fork LOTOS choice operator [] preceding each branch that represents a path on
the right side of the or-fork.

- and-fork Parallel composition operator preceding each branch that represents a path
on the right side of the and-fork.

- or-join, and-join Enable operator (>>).

- components C1, C2 Processes C1 and C2. If there is a direct UCM path from C1
to C2 in the map then processes C1 and C2 communicate through the gate C1 to C2.

- static stub, plug-in Process having the stub’s label. Responsibilities in the stub
must be in the process gate list.

- dynamic stub Process having the stub’s label and composed of processes representing
each plug-in of this dynamic stub.

- alternative between plug-ins []

- timed waiting place [] between sequences of actions representing each alternative
UCM path from the timed waiting place.

35

- access to database The database is represented by a LOTOS process. Each LOTOS
action in this process corresponds to an action performed on the database of the UCM.

Figure 4.4 shows an example of a UCM and a derived LOTOS specification using the
mapping presented above. The Login plug-in and the Validate, Process and Reject stubs
are represented in LOTOS by processes of the same name. The causal relationship among
the 3 stubs is represented by the enable operator (>>). The or-fork is represented by the
choice operator ([]). The query updateDEdatabase to the database associatedCEdatabase
is represented by the action Datachannel !updateDEDatabase and the query storeCE by
the action Datachannel !storeCE. The end points registered and rejected are respec-
tively represented by the actions exit(registered) and exit(rejected). We have not
shown for simplicity the components DEB and CEB. These would have to be defined as
processes, containing the actions above. In section 4.7.2 we will show additional details of
this specification.

[Lvalidate, Lprocess, Lreject, Datachannel

]: exit(data):=

[Lvalidate] >>

[Lprocess] >>

 DataChannel !updateDEDatabase;

process Login

Lvalidate

Lprocess

(

 Lreject [Lreject] >> exit(rejected)

 []

 DataChannel !storeCE;

 exit(registered)

)

endproc

storeCE

associatedCE

reject

rejected

associatedCE
database

database

database
updateDE

DEB CEB

Validate Process

Reject

Login plug-in Login process

registered

Figure 4.4: Example of UCM to LOTOS transformation using the mapping rules

Using the UCM to LOTOS mapping rules presented above, as Figure 4.4 shows, we were
able to build (manually) the Login process corresponding the the UCMs of the Login plug-in.

It should be noted that recent work has provided an algorithm, which has been imple-
mented, to translate UCMs into LOTOS skeletons. However, this did not exist at the time
we did our research.

4.6.4 Specification of a Simplified Basic Call

We have modeled the simplified BC using four related UCMs:

36

• SimplifiedBasicCall: UCM representing the originating party that attempts to initiate
a call (Figure 4.6(b)). In order to get this simple UCM, we flattened all the stubs of
the BC map (Figure 4.6(a)); this way, we were able to represent in one map all the
design details that are hidden by the stubs of the BC map.

The process of flattening stubs is the process of replacing the stubs of a map by their
internal behavior. Figure 4.5 shows examples of how static and dynamic stubs are
flattened, but it doesn’t cover all the possible behaviors of stubs.

a

e

a
b

e

a

e

b

c

d d

c

b

c

b

d

a

b

c

b

d

e

d

(a) Flatening a static stub

(b) Flatening a dynamic stub

Figure 4.5: Process of flattening stubs

• Answer: This UCM is a post condition of the SimplifiedBasicCall UCM. It starts when
a phone rings on the terminating side. Its scenario is as follows: If the terminating
party answers, then the phone stops ringing, the connection timer is released, and the
connection is established.

• HangUpOrig: It represents the termination of a call from the originating party.

• HangUpTerm: It represents the termination of a call from the terminating party.

After building the simplified BC UCM, the transformation into a LOTOS model was per-
formed. We had to think about several points, especially how to represent the responsibili-
ties, the timed waiting places, the entities DEB, CEB, LEB and CO and the communication
between them in the LOTOS specifications.

37

aquire
dial

string

originatorFindCE originatorFindLE findCalleeAdresssuccess

failed failed

failedfailed
successsuccess

failed

failed

busy

ringing success

failed

DEB Originating

DEB Terminating

success

restart

success failed

Released

failed

NotifyDevice

terminatorFindCEterminatorFindDEring

success

CEB Originating LEB Originating

LEB TerminatingCEB Terminating

CO

createCall

find2ndPartyLE

success

DEB Originating

DEB Terminating

CEB Originating LEB Originating

LEB TerminatingCEB Terminating

origFindCEDEBOrigBCF CEBOrigBCF origFindLE origBCF

NotifyDevice

BCFail failed

success

failed

success

CO

dial
aquire

string

failed failed failed failed

BC map with stubs (b)(a) BC map without stubs

Figure 4.6: BC map flattened into a simplified BC map without stubs

Representation of the Entities and their Intercommunication

The DEBs, CEBs and LEBs are represented in the LOTOS model as processes. A process
DEB is identified by its name (of sort DebID). The processes CEB and LEB are identified by
both their names (of sort CebID and LebID) and their instances (of sort Instance). In fact,
CEBs and LEBs could be involved in more than one call. In this case, different instances of
the same process are created to manage each call.

Whenever a LEB originating wants to communicate with LEB terminating, a Call Object
is created to be able to receive messages from the LEB origin and forward it to the LEB
destination. This is due to the fact that a LEB does not know the location of the other
LEBs. So the CO plays the interface between LEBs. The process CO is identified by an
instance (of sort Instance).

In our LOTOS specification, two entities communicate through a LOTOS gate if there
is a path in the UCMs that goes directly from one entity to another. From Figure 4.6, the
DEB communicates only with the CEB, the CEB communicates with both the DEB and the
LEB, the LEB with the CEB and the CO, and the CO with the LEBs. This communication
between different components is represented in LOTOS by a synchronization through gates
between processes DEB, CEB, LEB, and CO.

We decided to make these processes communicate through unidirectional gates as follows:

- a DEB communicates with CEBs through gates DE to CE and CE to DE,

- a CEB communicates with DEBs through DE to CE and CE to DE and with LEBs
through CE to LE and LE to CE,

- a LEB communicates with CEBs through LE to CE and CE to LE and with a CO
through LE to CO and CO to LE.

38

The choice of having two unidirectional gates between two processes instead of one bi-
directional gate was made because of two reasons: first, in order for LOTOS traces to conform
to Lotos2msc’s conventions; in fact, the tool needs to know, from the two entities involved
in a message exchange, which is the sender and which is the receiver (more detail about
Lotos2msc’s conventions are described in section 2.4).

Representation of the Timed Waiting Place in LOTOS

Since we cannot represent time in LOTOS, the part of the UCM map containing a timed wait-
ing place is represented in LOTOS by a process containing a choice between two sequences
of actions. One sequence of actions represents the system behavior when the timeout expires
and the other represents the system behavior when the timeout does not expire.

The UCM map of Figure 4.6 contains a timed waiting place. The corresponding LOTOS
process is as follows:

process WaitForAnswerFromCaller[CO_to_LE, Timeout
](leb:LebID, lebInst:Instance,

ceb:CebID, cebInst:Instance,
co:Instance): exit(Data):=

CO_to_LE !co !leb !lebInst !answerInd;
exit(success)
[]
Timeout;
exit(restart)

endproc

The sequence of actions CO to LE !co !leb !lebInst !answerInd; exit(success)

corresponds to the UCM path describing the case where the timeout does not expire (success
path in Figure 4.6). The sequence of actions Timeout; exit(restart) corresponds to the
UCM path describing the case where the timeout expires (restart path in Figure 4.6).

Dealing with the Difference of Abstraction Level between UCMs and LOTOS

UCMs are abstract and are not meant to be very detailed. For this purpose, they are suit-
able for requirement specification. On the other hand, LOTOS specifications can be very
detailed; they represent the interactions among system components in terms of message
passing, rendezvous and synchronization. One of the reasons for this difference is that LO-
TOS specifications are executable, UCMs are not. When transforming UCMs into LOTOS,
messages and other design details are added into the specification. This step was done by
our team in full interaction with the UCMs designers in order to represent faithfully the
system’s expected behavior.

One simple example of addition of new information in the LOTOS specification is the
transformation of the responsibility aquireDialString in the BC map (see Figure 4.6) by
a LOTOS compositions with the following visible actions from the environment:

USER_to_DE !userA !debA0 !offHook;

DE_to_USER !debA0 !userA !dialTone;

USER_to_DE !userA !debA0 !dial !2002;

39

4.6.5 Specification of the Other Features

The LOTOS model obtained from the simplified BC UCM (explained in section 4.6.4) was
extended to the specification of the 6 other features (discussed in section 4.4). The LOTOS
specification built for the Basic Call feature was enhanced by the addition of:

- New LOTOS processes, each one corresponds to a stub in the UCMs.

- New message types. In fact, new messages have to be added in order to express all
message exchanges in the system with the 7 features.

- New users, involved in multi-user scenarios.

Some further details about the construction of the specification are presented in the next
section.

4.7 LOTOS Specification of the Telecommunication Sys-

tem

In this section, we will describe the LOTOS model built from the UCMs of the 7 features.
We will describe its ADT part, its top-level specification, the process DEB that describes the
behavior of the entity DEB and the process Database that describes the actions performed
to or from the database.

4.7.1 Abstract Data Types

12 types were created in the specification. The values defined in the data types are used
as experiments in the LOTOS actions. In our LOTOS specification, these values are sent
with the messages going through the system entities. They transport information about the
sender and the receiver’s identity, and about the user and the call’s status.

Data Values of type Data express the status of the user or the call. For instance, the busy

value of a message received from a user expresses a user in the busy state. The connectReq

value of a message sent from a CO to a LEB expresses a connection call request.

Instance Values of type Instance express different instances of CEBs, LEBs and COs. A
first instance of a process is used to manage the first call made in the system. Incrementally
new instances of processes are created for each new call to manage.

UserID It was decided to have 4 users in the system which was found to be sufficient to
represent all scenarios that interested us. We defined the UserId data type with four possible
values: userA, userB, userC and userD.

40

DialString Each user has a phone number of type DialString. The four possible values
are 2001, 2002, 2003 and 2004.

DebID is the DEB type. Each value of type DebID represents a user’s access device. A
value nodeb is added to represent a non-existent DEB for a user.

CebID is the CEB type. Each value of type CebID represents a user’s CEB. A value
noceb is added to represent an inexistent CEB for a user.

LebID is the LEB type. Each value of type LebID represents a user’s LEB. A value noleb
is added to represent an inexistent LEB for a user.

DataComm It represents the type of messages sent to and received from the database.

FeatureID is the feature type. The values of FeatureID are: CFO, CFA, OCS, CH, CT,
CP.

FArg It represents a variable or a set of variables of type DialString. This data type is
used to check what are the enabled features for a user.

FeatureSet It represents a couple of types (FeatureID, FArg) used to enable a feature for
a user. A possible value is (CFA, (2001, 2002)). It means that the feature CFA is set up
from the phone 2001 to the phone 2002.

Database This data type is used to express the access to the database.

4.7.2 Behavior of the Specification

The LOTOS specification is described by a top-level behavior followed by process definitions.
The top-level behavior of the specification was built based on the system architecture in
Figure 4.2.

Two more gates, DE to CO and CO to DE, were added to the specification, in fact, in some
UCMs, a direct path links the CO to the DEB.

One process Database represents all the databases; one gate DataChannel is a shared
gate between all the entities. Every access to the database is performed through this gate.

The corresponding LOTOS behavior is as follows:

behavior
hide
(* Agreed-upon interfaces *)

CO_to_LE, (* from Call Object to LEB *)
LE_to_CO, (* from LEB to Call Object *)
LE_to_CE, (* from LEB to CEB *)
CE_to_LE, (* from CEB to LEB *)

41

Database

DataChannel

DEBs

CO_to_DE

DE_to_CO

CEBs LEBs

DE_to_CE

CE_to_DE

CE_to_LE

LE_to_CE

LE_to_CO

CO_to_LE

COs

Figure 4.7: Graphical representation of the top-level specification

CE_to_DE, (* from CEB to DEB *)
DE_to_CE, (* from DEB to CEB *)
DE_to_CO, (* from DEB to Call Object *)
CO_to_DE, (* from Call Object to DEB *)

(* other interfaces, to access the database *)
DataChannel, (* DEB, CEB, LEB components and Database *)

(* special interface, for dynamic creation of call objects *)
CreateCall (* between LEB and Call Object *)

in
(

(
(

((* Instantiates four concurrent DEB entities *)
DEB[DE_to_USER, USER_to_DE, DE_to_CE, CE_to_DE, DE_to_CO, CO_to_DE,

HoldingTimeOut, DataChannel](debA0, userA, 2001)
|||

DEB[DE_to_USER, USER_to_DE, DE_to_CE, CE_to_DE, DE_to_CO, CO_to_DE,
HoldingTimeOut, DataChannel](debB0, userB, 2002)

|||
DEB[DE_to_USER, USER_to_DE, DE_to_CE, CE_to_DE, DE_to_CO, CO_to_DE,

HoldingTimeOut, DataChannel](debC0, userC, 2003)
|||

DEB[DE_to_USER, USER_to_DE, DE_to_CE, CE_to_DE, DE_to_CO, CO_to_DE,
HoldingTimeOut, DataChannel](debD0, userD, 2004)

)
|[DE_to_CE, CE_to_DE]|

(
(* Instantiates four concurrent CEB entities *)
CEB[CE_to_DE, DE_to_CE, CE_to_LE, LE_to_CE, DataChannel](cebA, 0 of Instance)
|||

CEB[CE_to_DE, DE_to_CE, CE_to_LE, LE_to_CE, DataChannel](cebB, 0 of Instance)
|||

CEB[CE_to_DE, DE_to_CE, CE_to_LE, LE_to_CE, DataChannel](cebC, 0 of Instance)
|||

CEB[CE_to_DE, DE_to_CE, CE_to_LE, LE_to_CE, DataChannel](cebD, 0 of Instance)
)

42

|[LE_to_CE, CE_to_LE]|
(

(* Instantiates two concurrent LEB entities *)
LEB[LE_to_CO, CO_to_LE, LE_to_CE, CE_to_LE, CreateCall,

DataChannel, RingingTimeOut](lebA, 0 of Instance)
|||

LEB[LE_to_CO, CO_to_LE, LE_to_CE, CE_to_LE, CreateCall,
DataChannel, RingingTimeOut](lebB, 0 of Instance)

)
)

|[CreateCall, LE_to_CO, CO_to_LE, DE_to_CO, CO_to_DE]|

(* Creates Call Objects dynamically *)
CallObjectCreator[CreateCall, LE_to_CO, CO_to_LE, CO_to_DE, DE_to_CO, DataChannel

](0 of Instance)
)

|[DataChannel]|

(* Process which holds all databases. *)
DatabaseInit[Init, DataChannel]

)

4.7.3 Process DEB

The DEB, as mentioned before, represents the access device. It represents the interface
between the telephony network and the user. All the user’s actions (from the call origination
to the call termination) are inputs of the DEB.

The DEB is either a DEB originating, if it receives a call request coming from a user, or
a DEB terminating, if it receives a call request coming from a DEB.

process DEB[DE_to_USER, (* communication between the DEBs and the user *)
USER_to_DE,
DE_to_CE, (* communication between the DEBs and the CEBs *)
CE_to_DE,
DE_to_CO, (* communication between the DEBs and the COs *)
CO_to_DE,
HoldingTimeOut,
DataChannel (* communication between the DEBs and the database *)

] (deb:DebID, user:UserID, lds:DialString): exit:=

hide NewCEB, SetBusy, HandleOnHook, IncomingCall in (
(* Process managing possible incoming calls if busy *)
AlertDevice[CO_to_DE, DE_to_CO, CE_to_DE, DE_to_CE, DE_to_USER, HandleOnHook,

SetBusy, IncomingCall] (user, deb, 0 of Instance, success of Data)
|[HandleOnHook, SetBusy, IncomingCall]|
(
(* Process containing DEB basics (simple calls management) *)
BasicDEB [DE_to_USER, USER_to_DE, DE_to_CE, CE_to_DE, DE_to_CO, CO_to_DE, NewCEB,

SetBusy, IncomingCall, HandleOnHook, HoldingTimeOut, DataChannel]

43

(deb, user, lds)
|||

DEBRedirectOccured[NewCEB, CE_to_DE, DE_to_USER
] (user, deb, noceb of CebID, 0 of Instance)

)) endproc

4.7.4 Process Database

The UCMs involve different databases. Our LOTOS specification represents the access
to these databases as a single process with multiple synchronization points. The process
Database is executed whenever an access to the database is made. What follows is a part of
the process Database.

process Database[Init, DataChannel](db:Database):exit:=
(* new Initialisation of the database while test running *)
DatabaseInit[Init, DataChannel]
[] (* getCE, gives the corresponding CEB for a DEB *)

(* cebA is debA0’s correspondant CEB *)
DataChannel !getCE !debA0 !cebA; Database[Init, DataChannel](db)
[]

(* cebB is debB0’s corresponding CEB *)
DataChannel !getCE !debB0 !cebB; Database[Init, DataChannel](db)
[]

(* cebC is debC0’s corresponding CEB *)
DataChannel !getCE !debC0 !cebC; Database[Init, DataChannel](db)
[]

(* cebD is debD0’s corresponding CEB *)
DataChannel !getCE !debD0 !cebD; Database[Init, DataChannel](db)
[]

(* No corresponding CEB for any other DEB *)
DataChannel !getCE ?deb:DebID !failure [(deb <> debA0) and (deb <> debB0) and

(deb <> debC0) and (deb <> debD0)];
Database[Init, DataChannel](db)
[]
...
[]

(* Database Query: returns "true" iff UserID is subscribed to FeatureID *)
DataChannel ?u:UserID ?f:FeatureID !true [isFeatureSubscribed(u, f, db)];
Database[Init, DataChannel](db)
[]

DataChannel ?u:UserID ?f:FeatureID !false [not(isFeatureSubscribed(u, f, db))];
Database[Init, DataChannel](db)
[]

exit
endproc (* Database *)

44

4.8 Verification of the LOTOS Specification

The LOLA tool (described in section 3.4) was used for the verification and validation of
the specification. First, we performed step-by-step execution of the specification in order to
verify if the sequences of internal actions and message exchanges between the components
correspond to the expected behavior of the system. Second, we performed validation against
the user’s requirements. The observable behavior of the LOTOS model is validated against
the initial requirements. A set of test scenarios is generated for this purpose. In this sec-
tion we develop the generation of different kinds of LOTOS scenarios to test the specification.

In this work, LOTOS test scenarios were manually generated from the requirements.
They intended to cover all possible behaviors in the system. The scenario-based testing
phase was performed using functional test scenarios (which describe only interactions be-
tween the user and the system). The scenarios were generated by sets, using the following
decomposition:

• Basic System Properties: They focus on testing the basic properties that the system
must fulfill.

• Individual Features Properties: They consist on verifying the expected behavior
of the system when there is only one feature activated.

• Feature Interaction Scenarios: They focus on detecting possible incorrect behavior
of the system when more than one feature is activated (a formal definition of feature
interaction is presented in section 3.4).

4.8.1 Test Scenarios

Basic System Properties

We generated 9 scenarios that test the basic properties of the system. One of them is shown
below. It is shown in LOTOS form below and in MSC form in Figure 4.8. It represents a
user A trying to call a user B, then getting connected with him. The call ends with A hanging
up first. The scenario ends with B getting the dial tone and hanging up.

process Scenario1[USER_to_DE, DE_to_USER, Init, scenario1]: noexit:=
(* initialisation of the database using default values *)
Init !emptyDB;
USER_to_DE !userA !debA0 !offHook; (* A goes offHook *)
DE_to_USER !debA0 !userA !dialTone; (* A gets dialTone *)
USER_to_DE !userA !debA0 !dial !2002; (* A dials B *)
DE_to_USER !debA0 !userA !callInProgress; (* A gets callInProgress *)
DE_to_USER !debB0 !userB !ringingOn; (* B gets ringingOn *)
DE_to_USER !debA0 !userA !ringBackTone; (* A gets ringBackTone *)
USER_to_DE !userB !debB0 !offHook; (* B goes offHook *)
DE_to_USER !debB0 !userB !ringingOff; (* B gets ringingOff *)
DE_to_USER !debA0 !userA !toneOff; (* A gets toneOff *)
DE_to_USER !debA0 !userA !voiceOn !2002;

45

DE_to_USER !debB0 !userB !voiceOn !2001; (* parties talk *)
USER_to_DE !userA !debA0 !onHook; (* A goes onHook *)
DE_to_USER !debA0 !userA !voiceOff !2002;
DE_to_USER !debB0 !userB !voiceOff !2001;
DE_to_USER !debB0 !userB !dialTone; (* B gets dialTone *)
USER_to_DE !userB !debB0 !onHook; (* B goes onHook *)
DE_to_USER !debB0 !userB !toneOff; (* B gets toneOff *)
scenario1; stop (* success *)

endproc

offHook

dial[userB]

ringingOn

offHook

ringingOff

toneOff

dialTone

callInProgress

ringBackTone

user user

userA userB

voiceOn [userB]

voiceOn [userA]

debA

deb deb

debB

onHook

voiceOff [userB]

voiceOff [userA]

dialTone

onHook

toneOff

Figure 4.8: Message Sequence Chart of Scenario1

Individual Features Properties

We generated 14 scenarios to test the features individually: 2 for OCS, 3 for CFA, 1 for
CFB, 4 for CH, 2 for CR, 2 for CT and 1 for CP.

Scenario2 of Figure 4.9 verifies the correctness of the CH feature. It describes a user A
trying to call a user B, then A obtains communication with B. After that, A puts B on hold
and calls a user C then talks to him. C hangs up. A gets then the dial tone, he switches
afterwards back to B. After the talk AB hangs up, A gets the dial tone then hangs up.

46

offHook

dial[userB]

ringingOn

ringingOff

toneOff

dialTone

callInProgress

ringBackTone

user user

userA userB

voiceOn [userB]

voiceOn [userA]

voiceOff [userA]

dialTone

voiceOff [userB]

user

userC

ringingOn

ringBackTone

ringingOff

offHook

dial[userC]

offHook

hold

voiceOff [userB]

onHook

voiceOff [userB]

voiceOff [userC]

dialTone

hold

toneOff

voiceOn [userA]

voiceOn [userB]

onHook

toneOff

toneOff

voiceOff [userB]

voiceOn [userC]

callInProgress

voiceOff [userA]

dialTone

onHook

toneOff

deb

debA

deb deb

debCdebB

Figure 4.9: Message Sequence Chart of Scenario2

47

Feature Interaction Scenarios

In our project, the feature interaction problem (defined in section 3.4.2) was solved at the
requirements stage: priorities between features were established. When a user has 2 or more
features activated, the scenario of the call will follow the behavior of the highest priority
activated feature. LOTOS scenarios were built to verify that this mechanism works correctly.

It was decided that the OCS feature has a higher priority than the CFA feature. Scenario3
of Figure 4.10 verifies that when OCS and CFA are involved, the system follows OCS be-
havior. This scenario involves 3 users: A, B and C. User A has OCS for C. User B has CFA to
C. When A tries to call B, he gets forwarded to C due to CFA then gets the fast busy tone
because he is not allowed to call C due to OCS to C.

user user

userA userBdebA

deb deb

debB

Database

Init [specificDB]

offHook

dial[userB]

dialTone

callInProgress

redirectTone

fastBusyTone

onHook

toneOff

Figure 4.10: Message Sequence Chart of Scenario3

4.9 Analysis of the Results

4.9.1 Testing Results

A total of 33 scenarios were generated to test the specification. Some unexpected deadlocks
and unwanted behaviors were corrected. Then all the tests were executed again on the
specification. No other errors were found.

4.9.2 Cross-Validation

The cross-validation step (Figure 4.1) was performed after both the LOTOS team and the
SDL team had built their specifications and had generated sets of scenarios that verified the
specifications, with the intention of covering all possible behaviors of the specified system.
It is intended to make sure that the SDL-based scenarios are complete and to add scenarios
if this is not the case. After this step, a set of TTCN test cases was to be generated from

48

the complete SDL-based scenarios and the SDL specification to test the implementation.
This step consists of comparing the LOTOS-based and the SDL-based scenarios. In order
to be able to compare these scenarios, the two teams agreed to present them on the same
format, the MSC format. The SDL-based MSCs were automatically generated from the SDL
model using the Tau toolset. The LOTOS-based MSCs were automatically translated from
LOTOS scenarios using the Lotos2msc converter. After comparing the two sets of scenarios,
two major kinds of differences were discovered:

• Missing messages: MSCs for identical scenarios produced by the two teams were differ-
ent. The SDL team represented the part of the scenario when two parties are talking
by a talk state in the MSC. The LOTOS team represented it as a period starting
with the reception by the users of messages voiceOn and ending with the reception of
messages voiceOff. It was concluded that the scenarios are equivalent and that the
difference of representation of the talk state does not make any scenario wrong. No
changes were made to the specifications nor to the scenarios.

• Missing Scenarios: The set of LOTOS-based scenarios had 3 less scenarios than the
set of SDL-based ones to test the CT feature, 1 more scenario to test the BC feature,
and 1 more scenario to test the CH feature. These differences were due to some lack of
clarity in the requirements. It was decided to add to the SDL specification the missing
CH scenario.

4.10 Conclusion

The use of two formal methods (LOTOS and SDL) for the formal modeling stage was very
productive. In fact, the cross-validation allowed to correct some design errors or misunder-
standings of the requirements and to come up with an SDL model that, as far as we could
tell, represents the expected system behavior. The automatic TTCN test suite generation
from SDL allowed to generate rapidly a set of TTCN test suites that was used to validate
the implementation by testing its conformance to the specification.

The use of only one formal method for the formal modeling stage can also be considered.
In fact, chapter 6 proposes a development methodology based on UCMs at the requirements
stage and LOTOS at formal modeling stage. Executable tests suites can be automatically
generated using Ucm2LotosTests, a method developed in this thesis (it is explained in
chapter 5), in combination with the TGV tool for the TTCN test suites generation. The
exclusive use of SDL for the formal modelling stage is an other option that allows the rapid
generation of TTCN tests [PUW00].

49

Chapter 5

Ucm2LotosTests: Automatic LOTOS
Test Generation From Use Case Maps

This chapter describes the design of Ucm2LotosTests,
a new functionality added in UCMNav tool for the automatic

LOTOS scenarios generation from UCMs.

5.1 Motivation

UCMs are used to describe requirements and high-level designs with graphical scenarios.
Such scenarios can serve as a basis for validation of systems against their requirements by
ensuring that detailed designs and implementations conform to the original UCM description.

As seen in the development methodology presented in chapter 4, a LOTOS specifica-
tion is validated by executing LOTOS scenarios. The set of LOTOS scenarios is manually
generated from the UCMs. The same LOTOS scenarios can be used for conformance test-
ing purposes at the implementation stage. Our goal is to automate the LOTOS scenarios
generation from UCMs. Thus, the validation of the LOTOS specification can be performed
faster, and the set of automatically generated scenarios is more complete than in a manual
generation where the tester can miss some scenarios.

In our context, the traditional question “How much testing is enough?” will be answered
by: “When all the UCM paths are covered!”. By coverage of the UCM paths we mean
generation of tests that verify these paths.

Since UCMs are supported by the UCMNav tool (Section 2.2), the automatic test gen-
eration from UCMs can be carried out by using their internal representation in UCMNav.

50

Generally, a LOTOS specification built from UCMs is less abstract and represents a
more realistic behavior of the system to be designed than the one in the UCMs. In fact, it
is impossible to think of a fully automatic transformation from UCMs to LOTOS scenarios
without the participation of the user to fill in the missing information in the UCMs. The
automatic generation method that we implemented allows the interaction with the user
during this process.

5.2 Desired Behavior of the Ucm2LotosTests Function-

ality

UCMNav is the tool that supports the UCM notation. It creates, edits and modifies UCMs.
Our goal was to add a new feature to it called Ucm2LotosTests that generates a set of
LOTOS scenarios from a UCM map. The Ucm2LotosTests functionality appears in the
option list of a start point in a UCM map. The execution of this functionality generates text
files; each file corresponds to a LOTOS scenario generated from the UCM triggered by the
selected start point.

Ucm2LotosTests generates also scenarios corresponding to two or more start points. In
this case, it generates LOTOS scenarios corresponding to the UCM paths triggered by all
the selected start points.

5.3 Internal Representation of the UCMs in UCMNav

In UCMNav, the data structures used to store the UCM map are based on a variation of a
standard graph grammar called a hypergraph. Basically, a hypergraph is a graph described
by a collection of nodes connected together by hyperedges.

The internal representation of a UCM map is a list of connected hyperedges. An example
of UCM is shown in Figure 5.1. Its corresponding internal representation in shown in Figure
5.2.

switch

checkIfIdle

onHook

onHook

dialoffHook

offHook

phoneA phoneB

Figure 5.1: Example of UCM

The implementation of UCMNav was performed using Object-Oriented design. Each
UCM element (definition in section 2.2) is implemented as a class with methods that cor-
respond to possible actions on the element. These classes are sub-classes of the class
Hyperedge. The classes being used to implement Ucm2LotosTests are: Start (for the

51

N1 N2 Legend:

Ni: node

START: start hyperedge
START "offHook"

RESP "dial" RESP "checkIfIdle" RESP "offHook"

COMP "phoneA" COMP "switch" COMP "phoneB"

N5N3
N6

END "onHook" END "onHook"

RESP: responsibility hyperedge

ORFORK: or_fork hyperedge

END: end point hyperedge

COMP: component hyperedge

ORFORK

N4

Figure 5.2: UCMNav internal representation of the UCM of Figure 5.1

implementation of start point), Result (for end point), Synchronization (for and fork and
and join), Stub (for static and dynamic stub), Responsibility, OrFork, OrJoin and Loop.

5.4 Design of the Ucm2LotosTests Functionality

The design of Ucm2LotosTests is composed of two steps:

• UCM Route Generation: This step deals with the generation of a set of scenarios from
a UCM. The generated scenarios are called UCM routes. Each of them is a sequence of
UCM elements that exist in the UCM. Routes are automatically generated depending
on the visited UCM elements (details in section 5.4.1). The set of generated routes
should cover all the paths of the UCM.

• UCM Routes to LOTOS Scenarios generation: This step is performed after the route
generation is carried out. It transforms each generated route into a LOTOS scenario.
It is done in interaction with the user: For each UCM element in the generated route,
the UCM to LOTOS mapping is requested (details in section 5.4.2).

5.4.1 UCM Route Generation

UCM Route, UCM Segment

In this section we introduce the notion of UCM route (or route) and UCM segment (or
segment). A route is a UCM that is limited to start points, end points, conditions in or forks,
responsibilities, and forks, and and joins. A route does not contain or forks, or joins, or
stubs. Our algorithm generates sets of routes from UCMs, by eliminating or forks, or joins
and stubs. This is defined in detail in the following algorithm.

A segment in a UCM is any part of a UCM route. It is generally composed of sequences
of UCM elements that exist in the UCM route. Contrary to routes, segments are not obliged
to have start and end points.

The UCM of Figure 5.3 (a) has two UCM routes (Figure 5.3 (b)). Each of them is
composed of many possible UCM segments. One possible segment is the responsibility a

followed by the responsibility b.

52

A UCM

a

e
route 1

route 2

e

b [c1]

[c2]

d

f

g

a b [c1]
d

a b [c2] f
g

(a) Corresponding routes(b)

Figure 5.3: Routes of a UCM

UCM Route Generation

Given a UCM, the route generator visits every UCM element and generates its corresponding
UCM segment (following the algorithm detailed below). After visiting all the elements, a set
of UCM routes is obtained from the composition of the generated UCM segments.

During the process, the route generator can have multiple paths to visit individually. In
this case, a stack is used to store the entry of each path that the route generator will visit
after visiting the current one.

The route generator proceeds as follows when visiting the UCM elements. Figures 5.4 to
5.14 present the UCMs as compositions of UCM segments (labeled a to f) without specifying
the composition of these segments in order to treat general UCM behaviors:

• Start point The start point of a UCM triggers the route generator. This latter includes
the start point into the route being generated, and then goes to the next UCM element
in the current path.

If two or more start points trigger the route generator, this latter processes the route
generation for one of the start points and puts the others in a stack. After finishing
the route generation of the path following the current start point, it does the same
processing for the remaining start points in the stack.

• Responsibility When a responsibility is visited, the route generator adds it to the
route that is being generated, then goes to the next UCM element in the current path.

• End point When the route generator reaches an end point, it checks if this end point
is included in a stub. If it is the case, it follows what comes after the stub. If not,
it checks if the current path is part of a parallel branch (started by an and fork). In
this case, it goes back to the beginning of the parallel branch, to follow the remaining
parallel paths. If neither of the two cases is true, then the end of the UCM is reached.
In this case, the UCM route being generated is now complete.

53

• Or fork (Figure 5.4) When an or fork is visited, the route generator follows each path
on the right side of the or fork after adding its corresponding or fork condition to the
route being generated. Then, it generates different routes for each followed path. Each
route is composed of the path on the left side of the or fork followed by one of the paths
on the right side of this or fork. Thus, the number of generated routes corresponds to
the number of paths on the right side of the or fork.

a

b
[c1] [c1]a b

[c2]
d

a [c2] d

Figure 5.4: Route generation with or-fork

• Or join (Figure 5.5) When an or join is visited, the route generator follows the path
on the right side of the or join. When it reaches the end of it, it generates a route
corresponding to the path visited on the left side followed by the one on the right side
of the or join.

a

b

c
a c

b c

Figure 5.5: Route generation with or-join

The route generator as defined for the or fork and or join will generate routes as shown
in Figure 5.6 when a UCM contains an or join after an or fork.

a

a

a
[c1]

b

d

e

[c2]

eb[c1]

ed[c2]

Figure 5.6: Route generation with or fork followed by or-join

• And fork (Figure 5.7) When an and fork is visited, the route generator follows all the
paths on the right side of it, one by one, then integrates all of them in the route to
generate. This means that the generated route has the same behavior as the one of
the UCM.

54

a
b

c
a

b

c

Figure 5.7: Route generation with and fork

• And join (Figure 5.8) When a and join is visited, the route generator checks if all the
paths on the left side of the and join were already visited. If it is not the case, then
it visits the remaining paths, else it groups all the generated routes into one and adds
the right side of the and join to it. The obtained route is identical to the UCM.

a

b
c

a

b
c

Figure 5.8: Route generation with and join

The route generator as defined for the and fork and and join will generate routes as
shown in Figure 5.9 when a UCM contains an and join after an and fork.

a
b

c
a

b

c
d d

Figure 5.9: Route generation with and fork followed by and join

• Static stub (Figure 5.10) The route generator visits the start point of the stub and
then proceeds to add the subsequent elements it visits to the route it is generating.
When an end point of the stub is reached, the route generator accesses the path
continuation in the upper level and continues ahead with the route generation.

• Dynamic stub (Figure 5.11) A different route is generated for each plug-in of the
dynamic stub. The route generation of each plug-in processes identically as the one
for a static stub. There will be as many sets of routes as there are plug-ins in this
dynamic stub.

• Loop (Figure 5.12) A convention for the coverage of the loop by tests was adopted. We
chose to cover the loop at most once. Therefore, two possible routes can be generated:
one route that does not go through the loop and one route that goes through it once.

55

a b c e

a

a b d

b c

d
f

e

f

a cb a b c

Figure 5.10: Route generation for the static stub

a c

b1 b2

a c

a c

b1

b2

Figure 5.11: Route generation for the dynamic stub

a b d

c

a b d

a b c d

Figure 5.12: Route generation for the loop

56

• Waiting place (Figure 5.13) When a waiting place is visited, the route generator goes
to the next UCM element in the current path.

a b ba

Figure 5.13: Route generation for the waiting place

• Timed Waiting Place (Figure 5.14) When a timer is visited, two routes are gener-
ated. One of them contains the continuation path and the other contains the timeout
path.

ca
a c

a b

continuation path

timeout path b

Figure 5.14: Route generation for the timed waiting place

• When a visited UCM element is not one of the UCM elements mentioned above, the
route generator goes directly to the next UCM element in the current path.

Summary of the Route Generator

The following pseudocode provides a summary of the major steps involved in the UCM
route generation. Each class corresponding to a UCM elements mentioned above has the
method GenerateLOTOS(hyperedge) that performs its route generation. When a visited
UCM element is any of those mentioned above, the method GenerateLOTOS(hyperedge) of
the class Hyperedge is executed.

Start::GenerateLOTOS(hyperedge)
// implements the route generation for a start point

addInRoute(hyperedge) // start point is added to the route being generated
next(hyperedge) // next UCM element is visited

endMethod

Result::GenerateLOTOS(hyperedge)
// implements the route generation for the end point

addInRoute(hyperedge) // end point is added to the route being generated
if (existsNext(hyperedge)) // end point is not the last element in a path

next(hyperedge) // access to the UCM element following it
elseif inStub(hyperedge) // end point is in a sub-map

nextInUpperLevel(hyperedge) // access to the path linked to the end point

57

else return(route) // end point is the last element in a path, a route is generated
endIf

endMethod

Responsibility::GenerateLOTOS(hyperedge)
// implements the route generation for the responsibility

addInRoute(hyperedge) // responsibility is added to the route
next(hyperedge) // next UCM element is visited

endMethod

OrJoin::GenerateLOTOS(hyperedge)
// implements the route generation for the or_join

next(hyperedge) // next UCM element is visited
endMethod

OrFork::GenerateLOTOS(hyperedge)
// implements the route generation for the or_fork

if (nonVisited(hyperedge)) // first pass on the or_fork
addInRoute(hyperedge->condition) // one condition of the or_fork is added to the route
pushInStack(hyperedge, conditionList) // the other conditions are stored
next(hyperedge->condition) // next UCM element of the current or_fork branch is visited

else // or_fork is already visited
element <- popConditionFromStack() // one condition is retrieved from stack
addInRoute(element)
next(element)

endIf
endMethod

Synchronization::GenerateLOTOS(hyperedge)
// implements the route generation for the and_fork, and_join

if (nonVisited(hyperedge)) // current or_join first time visited
tempList <- addOrJoin() // add or_join in a temporary list tempList
pushInStack(hyperedge, conditionList) // all possible paths from or_join stored
next(hyperedge->condition) // first possible path from or_join is visited

elseIf (nonEmptyStack())
element <- popConditionFromStack() // access to a remaining non visited path from or_join
tempList <- addInRoute(element) // add path to tempList
next(element)

else // all paths from or_join are visited
tempList <- addAndJoin() // add and_join to tempList
addInRoute(tempList) // add tempList to route

endIf
endMethod

Stub::GenerateLOTOS(hyperedge)
// implements the route generation for the static and dynamic stub

if (nonVisited(hyperedge))
addInRoute(hyperedge->plugIn->entry)// each start point in current plug-in is added in route
pushInStack(hyperedge, plugInList) // store all plug-ins in stack
next(hyperedge->plugIn->entry) // access to next start point in plug-in

else
currentPlugIn <- popPlugInFromStack()// retrieve next plug-in
addInRoute(currentPlugIn->entry) // access to each start point of plug-in

58

next(element) // next UCM element is visited
endIf

endMethod

Hyperedge::GenerateLOTOS(hyperedge)
// implements the route generation for the hyperedge

next(hyperedge) // next UCM element is visited
endMethod

Coverage of UCMs by the Generated Routes

The way the UCM route generator is designed, all possible paths and elements of a UCM
are visited. Thus, the obtained UCM routes cover all the paths of the UCM.

5.4.2 UCM Routes to LOTOS Scenarios Transformation

After the UCM route generation is carried out, a LOTOS scenario is generated for each
UCM route. We define two ways to generate LOTOS scenarios:

- Default LOTOS scenarios generation: The LOTOS scenario generation for the UCM
routes is performed without user intervention. This way is not intended to be used
frequently. The generated LOTOS scenarios give an idea of the routes that cover
a UCM, but they do not constitute acceptable traces of LOTOS specifications since
LOTOS design details are not present in the scenarios.

- LOTOS scenarios generation with user intervention: During the generation process,
inputs from the user are requested. This way is the one to be chosen by the LOTOS
specification designers to get LOTOS scenarios that constitute acceptable traces of
LOTOS specifications.

Default LOTOS Scenarios Generation

A UCM route is a composition of UCM elements, and a LOTOS scenario is a composition
of LOTOS elements. In order to generate the correct LOTOS behavior from a route, we set
up some mapping rules to transform, in a deterministic way, each UCM route into a LOTOS
scenario that expresses the same behavior of the system. These mapping rules define the
corresponding LOTOS element to each UCM element. A UCM route is only composed by
start points, end points, conditions in or forks, responsibilities, and forks and and joins. In
this case, by defining the appropriate LOTOS mapping of each of these UCM elements, we
are able to generate a LOTOS scenario that corresponds to the entire UCM route.

It was decided that the mapping rules are as follows: A UCM element that is a start
point, an end point, a conditions or a responsibility is mapped into a LOTOS action having
its label. The other possible UCM elements in a route are mapped into LOTOS actions and
operators as shown in Figure 5.15.

Figure 5.16 shows an example of automatic transformation of a UCM route into a LOTOS
scenario.

59

r1

s1

e1

[c1]

b
d

c

a
b

c

da
b

c

responsibility

start point

condition

end point

or_join followed by

and_join

and_join

LOTOS action r1

LOTOS action s1

LOTOS action

LOTOS action

LOTOS behavior

LOTOS behavior

LOTOS behavior

e1

c1

(b; exit ||| c; exit) >> d; exit

Corresponding LOTOS statementUCM route composition

a; (b; exit ||| c; exit) >> d; exit

a; (b; exit ||| c; exit)and_fork

Figure 5.15: Mapping UCM to LOTOS for the default LOTOS scenarios generation

Switch

offHook

dial

[busy]

checkIdle

onHook

Phone1 Phone2 Scenario

offHook;

dial;

busy;

checkIdle;

busyTone

endScenario

onHook;

busyTone;from a UCM route

LOTOS scenario

Automatically generated

Figure 5.16: Example of UCM route to LOTOS scenario generation using the default LOTOS
scenarios generation

60

LOTOS Scenarios Generation with User’s Intervention

UCMs are an abstract view of the system while the LOTOS specification is closer to the real
system behavior in terms of actions performed and message exchanges between components.
For these reasons, in order to be able to generate, from UCMs, LOTOS scenarios that have
the details of the LOTOS specification, the user’s participation is requested to fill in the lack
of information between the UCMs and the already built LOTOS specification.

The user who participates in the test generation is generally the designer of the LOTOS
specification. The same mapping used to build the LOTOS specification from the UCMs is
used here to generate LOTOS scenarios from the same UCMs.

It is requested of the user to provide mapping for responsibilities, start points, end points
and conditions of the UCMs. The other possible UCM elements in a route (and fork and
and join) are automatically mapped into LOTOS elements using the mapping rules presented
in Figure 5.15. We obtain the mapping rules of Figure 5.17.

The mapping provided by the user is a LOTOS behavior. This LOTOS behavior is either
an action, or a sequence of actions, or a choice or parallel composition between actions or
sequences of actions. It is not composed of processes. It is up to the users to define the
corresponding mappings depending on the way they designed the LOTOS specifications from
the given UCMs.

r1

s1

e1

[c1]

b
d

c

a
b

c

da
b

c

responsibility

start point

condition

end point

or_join followed by

and_join

and_join

M(r1)

M(s1)

M(e1)

M(c1)

M(a); (M(b); exit ||| M(c); exit)

UCM route composition Corresponding LOTOS behavior

M(a); (M(b);exit ||| M(c); exit) >> M(d); exit

(M(b); exit ||| M(c); exit) >> M(d);exit

and_fork

Figure 5.17: UCM to LOTOS elements transformation using a mapping M entered by the
user

Figure 5.19 shows an example of automatic transformation of a UCM route into a LOTOS
scenario using the mapping M presented in Figure 5.18.

If the user wants to generate scenarios representing only the external behavior of the
system, no mapping is provided to each UCM element representing an internal action in the

61

system. For instance, the checkIdle responsibility and the [busy] conditions of Figure 5.19
are not translated into LOTOS elements (see Figure 5.18) since they are internal actions to
the Switch component.

Phone1 user_to_phone !user1 !phone1 !offHook;

resp

resp

dial

offHook

Switch

Phone1 user_to_phone !user1 !phone1 !dial !user2;

start point
phone_to_user !phone1 !user1 !dialTone;

checkIdle

Phone1end pointonHook user_to_phone !user1 !phone1 !onHook;

condition Switch

busyTone end point Switch phone_to_user !phone1 !user1 !busyTone;

[busy]

UCM to LOTOS mappingName Element Component

Figure 5.18: Mapping M entered by the user and used for the generation of the LOTOS
scenario of Figure 5.19

Scenario

user_to_phone !user1 !phone1 !offHook;

phone_to_user !phone1 !user1 !dialTone;

user_to_phone !user1 !phone1 !dial !user2;

phone_to_user !phone1 !user1 !busyTone;

user_to_phone !user1 !phone1 !onHook;

endScenario

Phone1 Switch

offHook

dial checkIdle

onHook

[busy]

Phone2

busyTone

LOTOS scenario
generation using the

mapping M

Figure 5.19: Example of UCM route to LOTOS scenario generation using the mapping M of
Figure 5.18

5.5 Example of Test Generation with Ucm2LotosTests

The Ucm2LotosTests execution on the UCM map of Figure 2.1 generated 3 possible scenarios
(see Figure 5.21): Scenario1 represents the case where the called party is busy, Scenario2
represents the case where the caller hangs up first after talking to the called party and
Scenario3 represents the case where the called party hangs up first. The corresponding
LOTOS scenarios were generated using the mapping of Figure 5.20.

5.6 Usefulness of Ucm2LotosTests

The generated LOTOS scenarios with Ucm2LotosTests are useful for validation purposes,
because of the fact that they are automatically derived from the UCMs, so they describe
expected behaviors of the system. They can be considered as acceptance tests (definition

62

Phone1 user_to_phone !user1 !phone1 !offHook;

resp

resp

dial

offHook

Switch

Phone1 user_to_phone !user1 !phone1 !dial !user2;

start point
phone_to_user !phone1 !user1 !dialTone;

checkIdle

Phone1end pointonHook user_to_phone !user1 !phone1 !onHook;

condition Switch[idle] phone_to_user !phone2 !user2 !ring;

offHook start point Phone2

onHook start point Phone1 user_to_phone !user1 !phone1 !onHook;
phone_to_user !phone2 !user2 !discTone;

end point Phone2

onHook start point Phone2

user_to_phone !user2 !phone2 !onHook;

onHook end point Phone1

user_to_phone !user2 !phone2 !onHook;
phone_to_user !phone1 !user1 !discTone;

user_to_phone !user1 !phone1 !onHook;

condition Switch

busyTone end point Switch phone_to_user !phone1 !user1 !busyTone;

[busy]

phone_to_user !phone1 !user1 !ringBack;

user_to_phone !user2 !phone2 !offHook;

onHook

UCM to LOTOS mappingName Element Component

Figure 5.20: Possible mapping of the UCM elements of Figure 2.1

in 3.4.2) of the system. In this case, when they are executed on a LOTOS specification
that is built from the same UCMs, if they do not pass, then it can be concluded that the
specification does not behave as expected and has to be corrected.

These scenarios can be used for several purposes. First, they can be used in order to test
whether the specification exhibits the behaviors that are specified in the UCM requirements.
Second, they can be used for white-box, grey-box or black-box testing of implementations.
Scenarios like the ones in Figure 5.21 are used for black-box testing since they include only
message exchanges between the environment and the system. In fact, all the LOTOS actions
of the obtained scenarios are messages sent from a user to a phone (using the user to phone

gate) or from a phone to a user (using the phone to user gate).

If we want to generate scenarios for white-box testing, we have to provide the internal
actions of the system in the mapping. For instance, if we want to perform white-box test-
ing on the system described in Figure 5.21, we can provide the mapping of Figure 5.22.
The LOTOS actions in bold are the ones that represent the internal actions, such as the
message exchanges between the switch and the phones (represented by the LOTOS actions
phone to switch and switch to phone). However, white-box and grey-box testing are not
discussed further in this thesis.

5.7 Automatic Test Generation Issues

The scenarios generated with our method are supposed to represent the expected behavior
of the system. Therefore, when they are composed in parallel with the LOTOS specification

63

Scenario1

user_to_phone !user1 !phone1 !offHook;

phone_to_user !phone1 !user1 !dialTone;

phone_to_user !phone1 !user1 !busyTone;

user_to_phone !user1 !phone1 !onHook;

endScenario

user_to_phone !user1 !phone1 !dial !user2;

Scenario2

user_to_phone !user1 !phone1 !offHook;

phone_to_user !phone1 !user1 !dialTone;

user_to_phone !user1 !phone1 !dial !B;

phone_to_user !phone2 !user2 !ring;

phone_to_user !phone1 !user1 !ringBack;

user_to_phone !user1 !phone1 !onHook;

user_to_phone !user2 !phone2 !offHook;

endScenario

user_to_phone !user2 !phone2 !onHook;

phone_to_user !phone2 !user2 !discTone;

user_to_phone !user1 !phone1 !offHook;

phone_to_user !phone1 !user1 !dialTone;

user_to_phone !user1 !phone1 !dial !B;

phone_to_user !phone2 !user2 !ring;

phone_to_user !phone1 !user1 !ringBack;

user_to_phone !user2 !phone2 !offHook;

endScenario

Scenario3

user_to_phone !user2 !phone2 !onHook;

phone_to_user !phone1 !user1 !discTone;

user_to_phone !user1 !phone1 !onHook;

onHookonHook

Phone1 Switch Phone2

onHook onHook

Phone1 Switch Phone2

scenario
generation

LOTOS

checkIdle

[busy]

[idle]

checkCalleesStatusStub

idle

busyTone

disconnection stub

disconnection stub calleeHangUpFirst

callerHangUpFirst

idle idle

Phone1 Phone2Switch

offHook

dial

[busy]

checkIdle

onHook busyTone

Phone1 Phone2Switch

offHook

dial checkIdle

offHook

onHookonHook

[idle]

Phone1 Switch Phone2

checkCalleesStatus

disconnection

offHook

dial

offHook

SimplifiedCallConnectionroot map:

onHook

generation
route
UCM

Phone1 Phone2Switch

offHook

dial checkIdle

[idle]
offHook

onHookonHook

Figure 5.21: Automatic generation of 3 possible scenarios in LOTOS from a UCM

64

Phone1 user_to_phone !user1 !phone1 !offHook;

resp

resp

dial

offHook

Switch

Phone1 user_to_phone !user1 !phone1 !dial !user2;

start point
phone_to_user !phone1 !user1 !dialTone;

checkIdle

condition Switch[busy]

switch_to_phone !phone2 !checkIdle;

phone_to_switch !phone2 !busy;

onHook start point Phone1 user_to_phone !user1 !phone1 !onHook;

busyTone end point Switch
phone_to_user !phone1 !user1 !busyTone;
switch_to_phone !phone1 !busy;

onHook end point Phone1 user_to_phone !user1 !phone1 !onHook;

[idle] condition Switch

phone_to_user !phone1 !user1 !ringBack;
phone_to_user !phone2 !user2 !ring;
switch_to_phone !phone2 !incomingCall;

offHook start point Phone2

phone_to_user !phone2 !user2 !discTone;

switch_to_phone !phone2 !disc;

user_to_phone !user2 !phone2 !offHook;

onHook end point Phone2 user_to_phone !user2 !phone2 !onHook;

onHook start point Phone2 user_to_phone !user2 !phone2 !onHook;

phone_to_switch !phone1 !disc;

phone_to_user !phone1 !user1 !discTone;

onHook end point Phone1 user_to_phone !user1 !phone1 !onHook;

phone_to_switch !phone2 !disc;

switch_to_phone !phone1 !disc;

UCM to LOTOS mappingName Element Component

Figure 5.22: Possible mapping of the UCM elements of Figure 5.21 for white-box testing

65

during validation, if there are deadlocks, then the specification is checked for unwanted
behaviors but not the scenarios.

In some cases, Ucm2LotosTests generates scenarios that do not express a valid behavior
of the system, and therefore are rejected by the specification (definition in 3.4.2).

Such cases may occur when the UCMs behavior depends on data values. Since the UCMs
do not include a data model, behaviors depending on data values may not be properly
generated in the test generation process. The example in figure 5.23 presents the case were
four scenarios are automatically generated with Ucm2LotosTests from a UCM, but only two
of them represent the expected behavior of the system. The other two are rejected by the
specification.

a
[n>0] b

d
[n>2] e

g

a

[n<0] c

d

[n<2] f

g

[n>2]

[n<2][n<0]

[n>0]
b

c

d
e

ga

A UCM map Automatically generated UCM routes

a
e

g

c
[n<0]

[n>2]
d

a
[n>0]

d g
b

f[n<2]

Rejected scenarios

Figure 5.23: Automatic generation of rejected scenarios

This problem is being addresses by the UCM community, with the inclusion of a data
model in UCMs.

For the time being, one way to address this problem is the manual analysis of the gen-
erated scenarios in order to know which are the acceptance scenarios and which are the
rejection ones. The two sets of scenarios can be used for validation purposes. If a specifi-
cation conforms to its requirements, the first set of scenarios is expected to be successfully
executed with the specification and the second set is expected to be rejected. If this is not
the case then the specification has to be corrected and validated again.

Another issue is how to test the case where a stub calls itself in the UCM. This presents
implementation problems (e.g. fixing the number of times that recursion is executed) and
so we assume that such recursion is not present in our UCMs.

5.8 Conclusion

In this chapter, we presented the design of the new functionality Ucm2LotosTests imple-
mented for the automatic generation of LOTOS scenarios from UCMs. The generated sce-

66

narios assure the full coverage of the UCMs, and they can be used for white-box, grey-box
and black-box testing.

In the next chapter, we propose a development methodology for the design of telecom-
munication systems that integrates this functionality for fast validation of specifications and
automatic TTCN test suite generation from requirements.

67

Chapter 6

Proposition of a Development
Methodology based on Fast Test
Generation

This chapter proposes a new development methodology based on UCMs
for the requirements stage and on LOTOS for the formal modeling stage
and it proposes an automatic TTCN test suite generation from UCMs.

6.1 Introduction

In chapter 4, we introduced a software development methodology based on UCMs for the
requirements, and on LOTOS and SDL for the formal modeling stage. LOTOS was first
used at the early specification stage to specify a system from UCMs, and to detect design
errors. Then, SDL was used for the late specification stage. Finally, TTCN test suites were
automatically generated from the SDL specification using the tool Tau.

In this chapter, we propose a new development methodology. It proposes new ways of
testing the system being designed by using the Ucm2LotosTests functionality designed in this
thesis and the TGV tool applied on LOTOS. Advantages and limitations of this development
methodology are presented later on in this chapter.

6.2 Development Methodology based on UCMs and

LOTOS

Figure 6.1 presents the essential phases of the development methodology:

68

UCMs

and validation of the
Verification

specification

UCM

routes

LOTOS

scenarios

LOTOS
specification

Test suite

generation with TGV

(1)

(3) (3)

(4)

(5) (5)

(2)a

(2)b

manual path

automatic path

(5)

(6)

Aldebaran

test cases

TTCN

test cases

Figure 6.1: New software development methodology approach based on fast test generation

69

(1) The requirements of a system designed in UCMs are transformed into a LOTOS be-
havior. This is done by following a general mapping rule presented in section 4.6.3.
The UCM elements are mapped into LOTOS statements. The correspondence between
each UCM element and each LOTOS statement is called: mapping M.

(2) Ucm2LotosTests is applied to the UCMs to generate the set of LOTOS scenarios that
cover the UCMs. First ((2)a), the UCM routes are generated. Second ((2)b), they are
translated into LOTOS scenarios using the mapping M that has been chosen to build
the LOTOS specification from UCMs in (1) (details in chapter 5).

(3) The verification and validation of the LOTOS specification is performed using the tool
Caesar (which is part of the CADP toolset introduced in section 3.5.2). Simulation of
the specification and validation against the generated scenarios is performed (details
on verification and validation of LOTOS specifications are presented in section 3.4).

(4) Corrections may be made to the specification if any of the executions of the LOTOS
scenarios on it are unsuccessful.

(5) Aldebaran test cases are generated from the LOTOS specification and the LOTOS
scenarios using the tool TGV introduced in section 3.5.2.

(6) TTCN test cases are obtained from the Aldebaran test cases using the tool Aut2ttcn.

It is important to note that our methodology is based on the assumption that the UCM
themselves are correct. This may not be the case in practice, and similar methods to the
ones considered here could be used to validate the UCMs [Amy01], however, this is outside
of the scope of this thesis.

The main differences between our methodology and the one presented in chapter 4 is:

- The first methodology uses LOTOS and SDL at the formal modeling stage, but the
second uses only LOTOS.

- In the first methodology, TTCN test suite generation is performed from SDL using the
tool Tau, but in the second, it is obtained from LOTOS using the tool TGV.

6.3 Advantages of the Methodology

The development methodology presented above has several advantages. In the next section,
we will demonstrate these advantages by means of a simple case study. These advantages
are:

- Use of UCMs, which is a semi formal and scenario-oriented notation. It has been found
to be very useful to express requirements. Requirements written in UCM are precise,
though semi-formal, and acceptable to developers due to the ease of learning the UCM
notation.

70

- Use of LOTOS which is well suited for the formal specification of telecommunication
systems.

- Fast test scenario generation using Ucm2LotosTests method which allows to generate
LOTOS scenarios that cover all the UCMs.

- Automatic generation of abstract test suites from requirements expressed by UCMs,
using Ucm2LotosTests and TGV.

6.4 Case Study

6.4.1 Introduction

In this section we propose an example of specification and verification of a system using the
presented methodology. We will present:

- The UCM requirements of the system to specify,

- The LOTOS specification manually built from the requirements,

- One of the automatically generated LOTOS scenarios from the UCMs using Ucm2LotosTests,

- Validation of the LOTOS specification with the tool Caesar, using the generated black-
box scenarios,

- Automatic generation of TTCN test suites using TGV.

This case study was built in order to demonstrate the usefulness and benefits of our devel-
opment methodology and to experiment with the tools it proposes to use (Ucm2LotosTests,
Caesar and TGV).

We were interested in applying the design methodology to the telephony system presented
in chapter 4. This was not possible because of two problems:

- The LOTOS specification built from the telephony system requirements was not sup-
ported by the tool Caesar because of its very large number of states.

- The LOTOS test generation from the UCMs using Ucm2LotosTests was not successful.
This was due to the fact that some stubs of the UCMs were recursive (i.e. they call
themselves). Ucm2LotosTests is unable to generate tests in the presence of this type
of recursion..

Therefore, the decision was taken to work with a smaller set of UCMs. The UCMs
of the Basic Call (BC) feature were extracted from the complete set of requirements of
the telephony system presented in chapter 4. From these UCMs, a specification and test
scenarios were generated. The steps followed for carrying out our process in this new system
with one feature are detailed in the next sections.

71

6.4.2 Requirements

The UCMs of the example that we discuss here are the UCMs of the basic call feature of
the PBX design discussed in chapter 4. The root map of the basic call feature is shown in
Figure 6.2.

DEB Terminating CEB Terminating

DEB Originating CEB Originating LEB Originating

CO

LEB Terminating

failed

BasicCall

failed success

Answer

HangUp

Figure 6.2: Root map of the Basic Call map

6.4.3 LOTOS Specification

A LOTOS specification was manually and quickly built from the UCMs of the BC feature.
The mapping rules presented in section 4.6.3 were followed. The top level of the specification
is shown below.

behavior
(

(
(

DEB [DE_to_USER, USER_to_DE, DE_to_CE, CE_to_DE](origDEB of DebID)
|||

DEB [DE_to_USER, USER_to_DE, DE_to_CE, CE_to_DE](destDEB of DebID)
)

|[DE_to_CE, CE_to_DE]|
(

CEB [CE_to_DE, DE_to_CE, CE_to_LE, LE_to_CE](origCEB of CebID)
|||

CEB [CE_to_DE, DE_to_CE, CE_to_LE, LE_to_CE](destCEB of CebID)
)

|[LE_to_CE, CE_to_LE]|
(

LEB [LE_to_CO, CO_to_LE, LE_to_CE, CE_to_LE](origLEB of LebID)
|||

LEB [LE_to_CO, CO_to_LE, LE_to_CE, CE_to_LE](destLEB of LebID)

72

)
|[CreateCall, LE_to_CO, CO_to_LE]|

CallObjectCreator[CreateCall, LE_to_CO, CO_to_LE](0 of Instance)
)

|[getCE, FindLE, Find2ndPartyLE, FindCE, FindDE]|

Database[getCE, FindLE, Find2ndPartyLE, FindCE, FindDE]
)

The top-level behavior of the specification is the same as the top level specification built
for the system with all the features included, since the physical and logical components are
the same. However, since only the Basic Call feature is specified in this LOTOS model, only
the relevant processes are specified.

6.4.4 LOTOS Test Generation

From the UCMs (root map is shown in Figure 6.2), Ucm2LotosTests automatically generated
10 tests. The mapping provided during the test generation is the one used to built the
LOTOS specification.

A scenario representing a successful connection between two users is shown in figure 6.3
in MSC form. It shows user A dialing, user B ringing and user A receiving ring back. B
then goes off hook. A goes on hook, causing dial tone to be received by B which then goes
on hook.

offHook

dial[userB]

ringingOn

offHook

dialTone

callInProgress

ringBackTone

user user

userA userBdebA

deb deb

debB

onHook

dialTone

onHook

Figure 6.3: Scenario corresponding to a successful connection ending with caller hanging up
first

6.4.5 Testing the LOTOS specification

Testing the LOTOS specification for BC was performed using the tool Caesar. Verification
of the specification was performed using the step-by-step execution utility of the tool; And

73

validation of the specification was performed by executing the generated scenarios on the
specification.

The 10 tests were executed on the specification. All executions were successful, although
we cannot state that the whole LOTOS specification was covered by the tests. Thus, we
cannot make sure that all behaviors of the specification are correct. However, we can make
sure that the specification behaves as expected in the requirements since all the behaviors
present in the requirements are verified in the specification by executing the 10 generated
scenarios on it.

6.4.6 TTCN Test Generation

As explained in section 3.5.2, the tool TGV generates Aldebaran test cases from a LOTOS
specification and a LOTOS scenario, and the tool Aut2ttcn converts Aldebaran test cases
into TTCN test cases. We used the tool TGV to obtain Aldebaran test cases from our
LOTOS specification and the 10 generated LOTOS scenarios. Then, when we tried passing
the Aldebaran test cases through the converter Aut2ttcn, we realized that the Aldebaran
format expected by the converter is slightly different from the format of the automatically
generated tests by TGV. We had to modify the Aldebaran files by modifying information of
the headers of the files and the format of the test steps that compose the test cases. From the
manually modified Aldebaran files, we were able to obtain TTCN test cases using Aut2ttcn.

We believe that, at the time we are writing this thesis, there is a new version of Aut2ttcn
that takes as input Aldebaran tests that have the same format as the ones automatically
generated by TGV.

The following is the TTCN test corresponding to the LOTOS scenario represented in
Figure 6.3 in MSC form. As seen in this example, there are no FAIL verdicts and other
alternatives of the system behavior are absent. This is due to the fact that TGV doesn’t
generate the behavior of the system where the scenario fails. This TTCN format includes
the field Constraints Ref that identifies with a unique name each action performed in the
system. For instance the action offHook is identified by the name scenario1 001.

+---+
| Test Case Dynamic Behaviour |
+---+
| Test Case Name : scenario1 |
| Group : EndToEndCalls/ |
| Purpose : User1 successfully calls User2 and User1 hangs up first |
| Default : |
| Comments : |
+----+-----+---------------------------+----------------------+--------+--------+
| Nr |Label| Behaviour Description | Constraints Ref | Verdict|Comments|
+----+-----+---------------------------+----------------------+--------+--------+
1		user1 !offHook	scenario1_001		
2		user1 ?dialTone	scenario1_002		
3		user1 !dial	scenario1_003		
4		user1 ?callInProgress	scenario1_004		
5		user2 ?ringingOn	scenario1_005		
6		user1 ?ringBackTone	scenario1_006		

74

7		user2 !offHook	scenario1_001		
8		user1 !onHook	scenario1_007		
9		user2 ?dialTone	scenario1_002		
10		user2 !onHook	scenario1_007	PASS	
11		user2 !onHook	scenario1_007	(INCONC)	
12		user1 !onHook	scenario1_007	PASS	
13		user1 ?ringBackTone	scenario1_006		
14		user2 ?ringingOn	scenario1_005		
15		user2 !offHook	scenario1_001		
16		user1 !onHook	scenario1_007		
17		user2 ?dialTone	scenario1_002		
18		user2 !onHook	scenario1_007	PASS	
19		user2 !onHook	scenario1_007	(INCONC)	
20		user1 !onHook	scenario1_007	PASS	
+----+-----+---------------------------+----------------------+--------+--------+

The generated TTCN tests can be used by testers to test the conformance of the imple-
mentation against the specification.

6.5 Limitations of the methodology

Despite the advantages of this methodology, we encountered some limitations:

Limitations on the generated tests using Ucm2LotosTests

If the LOTOS specification obtained from the UCMs is much more detailed than the UCMs,
the automatically generated tests with Ucm2LotosTests are not guaranteed to cover the
LOTOS specification. More tests may need to be manually generated to cover other behaviors
in the specification [AmL00].

Limitations of Caesar

- A first problem with Caesar is that it requires a particular specification style, which
excludes certain types of recursions.

- Another problem is the state explosion, which exists with any tool. This problem is
a challenging one and is not of a transitory nature. However efficient the tool, and
whether it is for LOTOS, SDL, or other techniques, complex systems will challenge it
with an extremely large number of states. The solution we have adopted was to sim-
plify the specification, especially to reduce the number of processes. More satisfactory
techniques to deal with this problem will have to be developed over time.

In order to understand these problems better, we should clarify the advantages and limita-
tions of the Caesar tool. Caesar is a very efficient state exploration tool for LOTOS. However,
it requires the use of a particular LOTOS style. Our specifications were initially developed
by using the tool Lola, which is less restrictive. When the decision was taken to use Caesar,
which is capable of generating LTS and interfaces with the tool TGV, unfortunately Caesar

75

could not handle some of the LOTOS constructs that were used in our specifications. This
problem would not exist if Caesar had been used from the very beginning of this work.

Limitations of TGV

The TGV tool does not directly generate TTCN test suites from LOTOS; rather, it generates
tests in Aldebaran format. From Aldebaran tests, TTCN test suites are generated using the
Aut2ttcn converter. Details on how TGV works are given in section 3.5.2. In many cases, the
generated tests in Aldebaran format have to be manually modified in order for the Aut2ttcn
converter to be able to transform them into TTCN tests.

6.6 Conclusion

In our case study, a set of LOTOS tests were automatically generated to quickly validate
the specification. We believe that this methodology can be further developed and eventually
applied to real industrial systems, leading to partial automation of test case generation for
such systems.

76

Chapter 7

Conclusion

This thesis is in the context of formal modeling and test generation of telecommunication
systems using UCMs and LOTOS. The essential steps followed in this work are the descrip-
tion of system requirements using the semi-formal notation UCMs, and the formal modeling
of the system using the language LOTOS.

7.1 Contributions of the Thesis

The thesis provides a number of contributions. These were announced in section 1.2. Some
additional concluding remarks follow.

UCM to LOTOS Formal Modeling (Chapter 4)

This research is in the framework of an explanatory project towards a new development
methodology for telecommunication systems which is part of a joint project between the
University of Ottawa and Mitel Corporation. The proposed methodology is based on UCMs
for designing the requirements of a system, and on LOTOS and SDL for specifying the
system at the formal modeling stage. For testing purposes, this methodology proposes the
use of the Tau toolset in order to generate TTCN test suites from SDL. This methodology
proposes the cross-validation step, usually performed at the end of the formal modeling phase
of the development process. This step takes advantage of the use of two formal languages
to specify the system and verify that they behave the same way. Some design errors and
inconsistencies can be found using this technique.

A first contribution of our work was to perform the formal modelling stage in LOTOS as
mentioned in the presented methodology. For this purpose,

• We defined mapping rules transforming each UCM element into a specific LOTOS
operator or statement according to their meanings,

• We built a LOTOS model using the mapping rules that we defined. The obtained LO-
TOS specification using this mapping has the desired behavior of the system specified
in UCMs.

77

• We manually generated black-box tests from the UCMs and showed how these tests
can be used to validate the specification.

Automatic LOTOS Test Generation from UCMs (Chapter 5)

One of the motivations of this thesis was the fast test generation from models specified in
LOTOS and UCMs. We proposed and implemented a new functionality in the tool UCMNav
called Ucm2LotosTests. This new functionality generates a set of LOTOS scenarios from
UCMs. The execution of Ucm2LotosTests is performed with interaction with the user who
will provide the correspondence between UCM and LOTOS elements. The generated LOTOS
scenarios cover all the paths in the UCMs. They can be used as a way to validate the LOTOS
specification built from the same UCMs, and as an input of the tool TGV that is used by
testers to generate TTCN test suites.

New Development Methodology Proposing a Fast Test Generation (Chapter 6)

The thesis describes a second development methodology for specifying telecommunication
systems. This methodology proposes the use of UCMs at requirements stage, and the use of
LOTOS at the formal modeling stage. In addition, it proposes new techniques to conduct
validation and testing when using LOTOS. It proposes, first, the use of Ucm2LotosTests, a
new functionality of UCMNav tool implemented in the thesis, which generates automatically
a set of LOTOS scenarios from UCMs. This set is complete in the sense that it covers all
the paths in the UCM. Second, the methodology proposes the use of the tools TGV and
Aut2ttcn to generate automatically TTCN test suites from LOTOS scenarios. These test
suites are used for conformance testing purposes at the implementation stage. As explained
in the case study in section 6.4.6, we had problems using the tool Aut2ttcn since the version
we had available didn’t accept the format of the automatically generated Aldebaran tests
from TGV.

We applied this development methodology to a case study. It allows the automatic
generation of tests that will cover the UCMs; Such tests verify the expected behavior of the
system in the LOTOS specification. Finally, they are transformed into TTCN tests and are
ready to be executed on implementations. However, this methodology currently encounters
some problems due to shortcomings in the tools (section 6.5).

7.2 Future Work

Further work can be done to improve the quality of design, tests and to permit the reuse of
the already specified systems. Several suggestions would be:

Improving Ucm2LotosTests

Ucm2LotosTests is not able to generate tests from UCMs presenting recursive stubs. This
inconvenience can be corrected by checking if the visited stubs have already been covered.
In this case, the user can choose to generate or not tests that cover the stubs again.

78

Furthermore, it was decided in the design of the Ucm2LotosTests that, in case a UCM
path contains a loop, only two tests would be generated: one test covering the path that does
not include the loop, and one that covers one pass in the loop. An improvement to the test
generation of Ucm2LotosTests in case of presence of loops would be to allow the generation
of tests that cover the loop more than once. The user could decide on the number of times
a loop would be covered by tests.

Automatic Generation of LOTOS specifications from UCMs

The implementation of the Ucm2LotosTests functionality allows the automatic LOTOS test
generation from UCMs. However, the specification of a LOTOS model from UCMs is still a
manual step. The automation of this step is an open research subject. The UCM to LOTOS
mapping rules presented in the thesis for the production of our LOTOS specification can be
automated but we cannot insure that the newly obtained LOTOS specification would reflect
the behavior of the system to specify. The main issues of this automation deal with the
difference of abstraction between a system designed with UCMs and specified with LOTOS.

Regression Testing with Ucm2LotosTests

During the development process of software, the requirements could change. This implies
that a specification in progress has to be retested against new requirements. By applying
regression testing techniques, we can avoid retesting the untouched parts of a system after
the modifications. This technique can be applied to Ucm2LotosTests. This latter could be
applied to a UCM, then to its modification and generate different sets of tests:

• a set of tests that cover the untouched UCM paths,

• a set of tests that cover the modified UCM paths,

• a set of tests that cover the new UCM paths.

All of these can be considered to be regression tests.

Improvements on Caesar, TGV and Aut2ttcn

It was mentioned in the thesis that the use of TGV for TTCN test generation from LOTOS
is performed necessitate the compliance of the LOTOS specification with Caesar require-
ments. This is inconvenient when the specification is built with a different tool. One way to
avoid this inconvenience is to modify the TGV tool so that it could be applied to any kind
of LOTOS specifications. Shortcomings were also identified in the Aut2ttcn tool, however
these appear to belong to the programming, rather than to the conceptual domain.

The problems we have dealt with in this thesis have many aspects and implications, both
of theoretical and practical significance. We believe that a positive contribution was given
in the directions that we were able to pursue.

79

Appendix A

Case Study Details

This appendix gives details of the case study presented in section 6.4. This case study was
used to illustrate the development methodology presented in chapter 6. The case study
presents the specification and validation of the basic call feature designed in the project
described in chapter 4.

A.1 Presentation of the Requirements

The requirements corresponding to the design of the basic call feature were presented in
UCM form. They are described by 9 maps.

Figure A.1 is the root map of the UCMs of the system. It is a sequence of three stubs,
the BC stub (Figure A.2), the Answer stub (Figure A.3) and the HangUp stub. The two
possible plugins are shown inFigure A.4 and A.5.

DEB Terminating CEB Terminating

DEB Originating CEB Originating LEB Originating

CO

LEB Terminating

failed

BasicCall

failed success

Answer

HangUp

Figure A.1: Root map of the Basic Call map

Figure A.2 describes the Basic Call connection request initiated in the DEB originating.
Figure A.3 describes the system behavior when the callee answers the call connection

request through the DEB terminating.

80

DEB Terminating CEB Terminating

aquire
dial

string

DEB Originating CEB Originating LEB Originating

origFindCE origFindLE origBCF

NotifyDevice

BCFail

success

failed

success CO

LEB Terminating

failed failedfailed

Figure A.2: Root map of the Basic Call map

DEB Terminating CEB Terminating

DEB Originating CEB Originating LEB Originating

CO

LEB Terminating

ProcessTermAnswer

ConnectParties

ReleaseLEBFeatureTimersProcessOrigAnswer

Figure A.3: Answer submap

81

Figure A.4 describes the termination of the call from the caller end (through the DEB

originating).

DEB Terminating CEB Terminating

DEB Originating CEB Originating LEB Originating

CO

LEB Terminating

HandleReleaseCall

HandleOnHook

HandleReleaseDevice

Figure A.4: Hangup originating submap

Figure A.5 describes the termination of the call from the callee end (through the DEB

terminating).

DEB Terminating CEB Terminating

DEB Originating CEB Originating LEB Originating

CO

LEB Terminating

HandleOnHook

HandleReleaseCall

HandleReleaseDevice

Figure A.5: Hangup terminating submap

A.2 LOTOS Specification

A LOTOS specification describing the Basic Call connection was built from the UCMs of
the system (parts are shown in section A.1) following the UCM to LOTOS mapping rules
presented in section 4.6.3. The start points, the responsibilities, the conditions and the end
points of the UCMs were mapped into LOTOS actions as presented in Figure A.6.

82

Phone1 user_to_phone !user1 !phone1 !offHook;

resp

resp

dial

offHook

Switch

Phone1 user_to_phone !user1 !phone1 !dial !user2;

start point
phone_to_user !phone1 !user1 !dialTone;

checkIdle

condition Switch[busy]

switch_to_phone !phone2 !checkIdle;

phone_to_switch !phone2 !busy;

onHook start point Phone1 user_to_phone !user1 !phone1 !onHook;

busyTone end point Switch
phone_to_user !phone1 !user1 !busyTone;
switch_to_phone !phone1 !busy;

onHook end point Phone1 user_to_phone !user1 !phone1 !onHook;

[idle] condition Switch

phone_to_user !phone1 !user1 !ringBack;
phone_to_user !phone2 !user2 !ring;
switch_to_phone !phone2 !incomingCall;

offHook start point Phone2

phone_to_user !phone2 !user2 !discTone;

switch_to_phone !phone2 !disc;

user_to_phone !user2 !phone2 !offHook;

onHook end point Phone2 user_to_phone !user2 !phone2 !onHook;

onHook start point Phone2 user_to_phone !user2 !phone2 !onHook;

phone_to_switch !phone1 !disc;

phone_to_user !phone1 !user1 !discTone;

onHook end point Phone1 user_to_phone !user1 !phone1 !onHook;

phone_to_switch !phone2 !disc;

switch_to_phone !phone1 !disc;

UCM to LOTOS mappingName Element Component

Figure A.6: UCM to LOTOS mapping

83

The important parts of the specification are as follows:

1. Lines 22 through 66 define the data type Data used to represent the possible values of
the messages exchanged between entities of the system.

2. Lines 68 through 77 define the data type User used to represent different users in the
system.

3. Lines 79 through 91 define the data type DEB used to represent different DEBs in the
system.

4. Lines 93 through 105 define the data type CEB used to represent different CEBs in the
system.

5. Lines 108 through 120 define the data type LEB used to represent different LEBs in the
system.

6. Lines 122 through 132 define the data type DialString used to represent different
strings to enter when dialing.

7. Lines 134 through 186 describe the behavior of the specification, which consists of the
process Database synchronizing with a behavior containing DEBs, CEBs and LEBs
and a CallObjectCreator synchronizing on their shared gates.

8. Lines 188 through 260 define the process which specifies the Database behavior.

9. Lines 262 through 382 define the process which specifies the DEB behavior.

10. Lines 384 through 440 define the process which specifies the CEB behavior.

11. Lines 442 through 497 define the process which specifies the LEB behavior.

12. Lines 500 through 569 define the process which specifies the CO behavior.

13. Lines 571 through 658 define the process describing the internal behavior of the stubs
included in the maps of BasicCall and Answer stubs.

01 (* *************************************** *)
02 (* Specification of the Basic Call Feature *)
03 (* *************************************** *)
04 specification BasicCall[CO_to_LE, LE_to_CO,
05 LE_to_CE, CE_to_LE,
06 CE_to_DE, DE_to_CE,
07 DE_to_USER, USER_to_DE,
08 (* Responsabilities *)
09 AcquireDialedString, validate,
10 processs, reject,
11 updateDEDatabase, storeCE,
12 Ring, getCE,
13 FindLE, FindDE,
14 FindCalleeAddress, CreateCall,

84

15 FindCE, Timeout,
16 Find2ndPartyLE, ProcessTerminatorAnswer,
17 ProcessOriginatorAnswer, ConnectParties,
18 HandleReleaseDevice, HandleOnHook,
19 HandleReleaseCall
20]: exit
21
22 library
23 Boolean, NaturalNumber
24 endlib
25
26 (* Type Data, used to represent the possible values of the
27 * messages exchanged between entities of the system. *)
28 type Data is Boolean
29 sorts Data
30 opns offHook (*! constructor *), (* offHook from the environment *)
31 onHook (*! constructor *), (* onHook from the environment *)
32 dialToneOn (*! constructor *), (* dial tone on *)
33 dial (*! constructor *), (* dial string indication *)
34 digitReceived (*! constructor *), (* ack from the deb of the digit collection *)
35 ring (*! constructor *), (* ring signal, for the caller *)
36 ringBackOn (*! constructor *), (* caller receive the ring back *)
37 ringBackOff (*! constructor *), (* caller receives answer *)
38 ringingOn (*! constructor *), (* ringing signal *)
39 busyToneOn (*! constructor *), (* busy signal, for the caller *)
40 busyInd (*! constructor *), (* busy signal, for the system *)
41 connectReq (*! constructor *), (* connect Request *)
42 connectInd (*! constructor *), (* connect Indication *)
43 connectResp (*! constructor *), (* connect response *)
44 connectConf (*! constructor *), (* connect confirmation *)
45 answerReq (*! constructor *), (* answer notification *)
46 answerInd (*! constructor *), (* answer indication *)
47 disconnectReq (*! constructor *), (* disconnection Request *)
48 disconnectInd (*! constructor *), (* disconnection Indication *)
49 registered (*! constructor *), (* registered in the CE DB *)
50 rejected (*! constructor *), (* rejected from the CE DB *)
51 result (*! constructor *), (* success or failure *)
52 success (*! constructor *), (* success notification *)
53 failure (*! constructor *), (* failure notification *)
54 restart (*! constructor *) (* restart notification *)
55 : -> Data
56 _ == _ : Data, Data -> Bool
57 _ <> _ : Data, Data -> Bool
58
59 eqns forall x,y: Data
60 ofsort Bool
61 x <> y = not(x == y)
62 endtype
63 (* instances of CEBs, LEBs and COs *)
64 type Instance is NaturalNumber renamedby
65 sortnames Instance for Nat
66 endtype
67

85

68 type UserID is Boolean
69 sorts UserID
70 opns caller (*! constructor *),
71 callee (*! constructor *) :-> UserID
72 _ == _ : UserID, UserID -> Bool
73 _ <> _ : UserID, UserID -> Bool
74
75 eqns forall x,y: UserID ofsort Bool
76 x <> y = not(x == y)
77 endtype
78
79 (* DEB: Device Entity Block : phone1, phone2, ... *)
80 type DebID is Boolean
81 sorts DebID
82 opns phone1 (*! constructor *), (* originating DEB *)
83 phone2 (*! constructor *), (* terminating DEB *)
84 nodeb (*! constructor *)(* no deb found *)
85 :-> DebID
86 _ == _ : DebID, DebID -> Bool
87 _ <> _ : DebID, DebID -> Bool
88
89 eqns forall x,y: DebID ofsort Bool
90 x <> y = not(x == y)
91 endtype
92
93 (* CEB: Communicating Entity Block : terminating, originating, ... *)
94 type CebID is Boolean
95 sorts CebID
96 opns terminating (*! constructor *), (* originating CEB *)
97 originating (*! constructor *), (* terminating CEB *)
98 noceb (*! constructor *) (* no ceb found *)
99 :-> CebID
100 _ == _ : CebID, CebID -> Bool
101 _ <> _ : CebID, CebID -> Bool
102
103 eqns forall x,y: CebID ofsort Bool
104 x <> y = not(x == y)
105 endtype
106
107
108 (* LEB: Location Entity Block *)
109 type LebID is Boolean
110 sorts LebID
111 opns ottawa (*! constructor *), (* originating LEB *)
112 montreal (*! constructor *),(* terminating LEB *)
113 noleb (*! constructor *)(* no leb found *)
114 :-> LebID
115 _ == _ : LebID, LebID -> Bool
116 _ <> _ : LebID, LebID -> Bool
117
118 eqns forall x,y: LebID ofsort Bool
119 x <> y = not(x == y)
120 endtype

86

121
122 (* Possible dial strings *)
123 type DialString is Boolean
124 sorts DialString
125 opns termNum (*! constructor *),
126 origNum (*! constructor *) :-> DialString
127 _ == _ : DialString, DialString -> Bool
128 _ <> _ : DialString, DialString -> Bool
129
130 eqns forall x,y: DialString ofsort Bool
131 x <> y = not(x == y)
132 endtype
133
134 behavior
135 (
136 (
137 ((* DEB entities *)
138 DEB[DE_to_USER, USER_to_DE, DE_to_CE, CE_to_DE,
139 validate, processs, reject, updateDEDatabase, storeCE,
140 Ring, getCE, ProcessOriginatorAnswer, HandleOnHook,
141 HandleReleaseDevice, ProcessTerminatorAnswer
142] (phone1 of DebID)
143
144 |||
145
146 DEB[DE_to_USER, USER_to_DE, DE_to_CE, CE_to_DE,
147 validate, processs, reject, updateDEDatabase, storeCE,
148 Ring, getCE, ProcessOriginatorAnswer, HandleOnHook
149 HandleReleaseDevice, ProcessTerminatorAnswer
150](phone2 of DebID)
151)
152
153 |[DE_to_CE, CE_to_DE]|
154
155 ((* CEB entities *)
156 CEB[CE_to_DE, DE_to_CE, CE_to_LE, LE_to_CE,
157 FindLE, FindDE](terminating of CebID, 0 of instance)
158 |||
159
160 CEB[CE_to_DE, DE_to_CE, CE_to_LE, LE_to_CE,
161 FindLE, FindDE](originating of CebID, 0 of instance)
162)
163
164 |[LE_to_CE, CE_to_LE]|
165
166 ((* LEB entities *)
167 LEB[LE_to_CO, CO_to_LE, LE_to_CE, CE_to_LE, FindCalleeAddress,
168 CreateCall, FindCE, Timeout](montreal of LebID, 0 of instance)
169 |||
170
171 LEB[LE_to_CO, CO_to_LE, LE_to_CE, CE_to_LE, FindCalleeAddress,
172 CreateCall, FindCE, Timeout](ottawa of LebID, 0 of instance)
173)

87

174
175 |[CreateCall, LE_to_CO, CO_to_LE]|
176
177 CallObjectCreator[CreateCall, LE_to_CO, CO_to_LE, Find2ndPartyLE,
178 ConnectParties, HandleReleaseCall](0 of Instance)
179
180)
181
182 |[getCE, FindLE, Find2ndPartyLE, FindCE, FindDE, updateDEDatabase, storeCE]|
183
184 Database[getCE, FindLE, Find2ndPartyLE, FindCE, FindDE, updateDEDatabase, storeCE]
185)
186 where
187
188 process Database[getCE, FindLE, Find2ndPartyLE, FindCE, FindDE, UpdateDEDatabase, StoreCE]
189 :exit:=
191 (
192 (* a DEB wants to Find its CEB, login code could be added *)
193 (
194 getCE !phone1 !originating; exit
195 []
196 getCE !phone2 !terminating; exit
197 []
198 getCE ?deb: DebID !failure [(deb <> phone2) and (deb <> phone1)]; exit
199)
200
201 []
202
203 (* a DEB wants to update the DE database by adding the new CE *)
204
205 UpdateDEDatabase ?deb:DebID ?ceb:CebID; exit
206
207 []
208
209 (* a DEB wants to store the new CE *)
210
211 StoreCE ?deb:DebID ?ceb:CebID; exit
212
213 []
214
215 (* a CEB wants to Find its LEB *)
216 (
217 FindLE !originating !ottawa; exit
218 []
219 FindLE !terminating !montreal; exit
220 []
221 FindLE ?ceb:CebID !failure [(ceb <> originating) and (ceb <> terminating)]; exit
222)
223
224 []
225
226 (* a Call Object wants to Find the terminating LEB *)
227 (

88

228 Find2ndPartyLE !termNum !montreal; exit
229 []
230 Find2ndPartyLE !origNum !ottawa; exit
231 []
232 Find2ndPartyLE ?ds:DialString !failure [(ds <> termNum) and (ds <> origNum)]; exit
233)
234
235 []
236
237 (* a LEB wants to Find a corresponding CEB *)
238 (
239 FindCE !termNum !terminating; exit
240 []
241 FindCE !origNum !originating; exit
242 []
243 FindCE ?ds:DialString !failure [(ds <> termNum) and (ds <> origNum)]; exit
244)
245
246 []
247
248
249 (* a CEB wants to Find its DEB, policies can be added *)
250 (
251 FindDE !originating !phone1; exit
252 []
253 FindDE !terminating !phone2; exit
254 []
255 FindCE ?ceb:CebID !failure [(ceb <> originating) and (ceb <> terminating)]; exit
256)
257
258 (* And we replicate the process to be able to continue *)
259) >> Database[getCE, FindLE, Find2ndPartyLE, FindCE, FindDE, UpdateDEDatabase, StoreCE]
260 endproc
261
262 process DEB[DE_to_USER, USER_to_DE, DE_to_CE, CE_to_DE,
263 AcquireDialedString, Ring, getCE, ProcessOriginatorAnswer,
264 ProcessTerminatorAnswer, HandleReleaseDevice
265 HandleOnHook](deb:DebID): exit:=
266 (
267 (* env chooses to use this DEB and logs in *)
268 USER_to_DE !caller !deb !offHook;
269 DE_to_USER !deb !caller !dialToneOn;
270 (
271 ((* management of the incoming calls *)
272 CE_to_DE ?ceb:CebID ?cebInst:Instance !deb !connectInd;(* busy tone *)
273 DE_to_CE !deb !ceb !cebInst !busyToneOn; exit
274 []
275 HandleReleaseDevice; exit (* onHook *)
276 []
277 HandleOnHook; exit
278)
279
280 |[HandleReleaseDevice, HandleOnHook]|

89

281
282 ((* management of call *)
283 USER_to_DE !caller !deb !dial ?ds: DialString;
284 DE_to_USER !deb !caller !digitReceived;
285 (
286 OriginatorFindCE[getCE](deb, result) >>
287 accept ceb: CebID, result:Data in
288 (
289 [result == success] ->
290 (
291 DE_to_CE !deb !ceb ?cebInst:Instance !connectReq !ds;
292 (
293 (
294 CE_to_DE !ceb !cebInst !deb !failure;
295 DE_to_USER !deb !caller !dialToneOn; exit
296)
297 []
298 (
299 CE_to_DE !ceb !cebInst !deb !connectConf;
300 DE_to_USER !deb !caller !ringBackOn;
301 CE_to_DE !ceb !cebInst !deb !answerInd;
302 ProcessOriginatorAnswer;
303 DE_to_USER !deb !caller !ringBackOff;
304 (* parties are talking together *)
305 (
306 (
307 CE_to_DE !ceb !cebInst !deb !disconnectInd;
308 HandleReleaseDevice;
309 DE_to_USER !deb !caller !dialToneOn;
310 USER_to_DE !caller !deb !onHook; exit
311)
312 []
313 (
314 USER_to_DE !caller !deb !onHook;
315 HandleOnHook;
316 DE_to_CE !deb !ceb !cebInst !disconnectReq; exit
317)
318)
319)
320)
321)
322 []
323 [result == failure] -> DE_to_USER !deb !caller !dialToneOn; exit
324)
325)
326)
327)
328 []
329 (* Incoming Call from a CEB *)
330 CE_to_DE ?ceb:CebID ?cebInst:Instance !deb !connectInd;
331 (
332 Ring;
333 (

90

334 DE_to_USER !deb !callee !ringingOn;
335 DE_to_CE !deb !ceb !cebInst !connectResp; (* ringing *)
336 USER_to_DE !callee !deb !offHook; (* env answers *)
337 ProcessTerminatorAnswer;
338 DE_to_CE !deb !ceb !cebInst !answerReq;
339 (
340 (
341 USER_to_DE !callee !deb !onHook; (* onHook, end of the call *)
342 HandleOnHook;
343 DE_to_CE !deb !ceb !cebInst !disconnectReq; exit
344)
345 []
346 (
347 CE_to_DE !ceb !cebInst !deb !disconnectInd; (* onHook, end of the call *)
348 HandleReleaseDevice;
349 DE_to_USER !deb !caller !dialToneOn;
350 USER_to_DE !caller !deb !onHook; exit
351)
352)
353)
354)
355)
356 (* Recall of the process to be able to be used again *)
357 >> DEB[DE_to_USER, USER_to_DE, DE_to_CE, CE_to_DE, AcquireDialedString,
358 Ring,
359 getCE, ProcessOriginatorAnswer, ProcessTerminatorAnswer,
360 HandleReleaseDevice, HandleOnHook](deb)
361
362 endproc
363
364 process CEB[(* comms with DEB *) CE_to_DE, DE_to_CE,
365 (* comms with LEB *) DE_to_CE, CE_to_LE, LE_to_CE,
366 (* Responsabilities*) FindLE,FindDE](ceb:CebID, cebInst:Instance): exit:=
367 (* originating CEB receives a request from an originating DEB *)
368 DE_to_CE ?deb:DebID !ceb !cebInst !connectReq ?ds:DialString;
369 (
370 (
371 OriginatorFindLE[FindLE] (ceb) >>
372 accept leb: LebID, result: Data in
373 (
374 [result == success] -> (* Find LE succeeded *)
375 CE_to_LE!ceb!cebInst!leb?lebInst:Instance!connectReq!ds;(* contact LE and ds *)
376 LE_to_CE !leb !lebInst !ceb !cebInst ?result:Data;(* receive result notification *)
377 CE_to_DE !ceb !cebInst !deb !result; (* and pass it back to the DEB *)
378 (
379 [result == connectConf] ->
380 (
381 LE_to_CE !leb !lebInst !ceb !cebInst !answerInd;
382 CE_to_DE !ceb !cebInst !deb !answerInd;
383 (
384 (
385 DE_to_CE !deb !ceb !cebInst !disconnectReq;
386 CE_to_LE !ceb !cebInst !leb !lebInst !disconnectReq; exit

91

387)
388 []
389 (
390 LE_to_CE !leb !lebInst !ceb !cebInst !disconnectInd;
391 CE_to_DE !ceb !cebInst !deb !disconnectInd; exit
392)
393)
394)
395)
396 []
397 [result == failure] -> (* Find LE failed *)
398 CE_to_DE !ceb !cebInst !deb !failure; exit (* pass it back to the DEB *)
399)
400)
401)
402
403 []
404
405 (* terminating CEB receives a request from a terminating LEB *)
406 LE_to_CE ?leb:LebID ?lebInst:Instance !ceb !cebInst !connectInd;
407 (
408 TerminatorFindDE[FindDE](ceb) >>
409 accept deb: DebID, result: Data in
410 (
411 [result == success] -> (* FindDE succeeded *)
412 (
413 CE_to_DE !ceb !cebInst !deb !connectInd; (* Contact the DEB *)
414 DE_to_CE !deb !ceb !cebInst ?result:Data; (* receive result notification *)
415 CE_to_LE !ceb !cebInst !leb !lebInst !result;(* and pass it back to the LEB *)
416 (
417 [result == connectResp] ->
418 (
419 DE_to_CE !deb !ceb !cebInst !answerReq;
420 CE_to_LE !ceb !cebInst !leb !lebInst !answerReq;
421 (
422 (
423 LE_to_CE !leb !lebInst !ceb !cebInst !disconnectInd;
424 CE_to_DE !ceb !cebInst !deb !disconnectInd; exit
425)
426 []
427 (
428 DE_to_CE !deb !ceb !cebInst !disconnectReq;
429 CE_to_LE !ceb !cebInst !leb !lebInst !disconnectReq; exit
430)
431)
432)
433)
434)
435 []
436 [result == failure] -> (* Find DE failed *)
437 CE_to_LE !ceb !cebInst !leb !lebInst !failure; exit
438)
439)

92

440 endproc
441
442 process LEBs[(*comms with Call Object*) LE_to_CO, CO_to_LE,
443 (*comms with CEB*) LE_to_CE, CE_to_LE,
444 (*Responsabilities*) FindCalleeAddress, CreateCall, FindCE, Timeout]
445 (leb:LebID, lebInst:Instance): exit:=
446 (* LEB receives a request from a CEB *)
447 CE_to_LE ?ceb:CebID ?cebInst:Instance !leb !lebInst !connectReq ?ds:DialString; (
448 (
450 (* Entering STATIC stub OriginatorBasicCallSetup *)
451 OriginatorBasicCallSetup[LE_to_CO, CO_to_LE, LE_to_CE, CE_to_LE,
452 FindCalleeAddress, CreateCall, FindCE, Timeout](leb, lebInst, ceb, cebInst, ds)
453 >> accept result:Data, co:Instance in (
454 LE_to_CE !leb !lebInst !ceb !cebInst !result; ((* pass result to the CEB *)
455 (
456 [result == answerInd] -> (
457 CE_to_LE !ceb !cebInst !leb !lebInst !disconnectReq;(* disconnectReq from CEB *)
458 LE_to_CO !leb !lebInst !co !disconnectReq; exit
459 []
460 CO_to_LE !co !leb !lebInst !disconnectInd;(* disconnectInd from CallObj *)
461 LE_to_CE !leb !lebInst !ceb !cebInst !disconnectInd; exit
462)
463)
464 []
465 ([result <> answerInd] -> exit)
466)
467)
468)
469)
470
471 []
472
473 (* LEB receives a request from a Call Object *)
474 CO_to_LE ?co:Instance !leb !lebInst !connectInd ?ds:DialString; (
475 (
476 LEBTerminatingBasicCallSetup[LE_to_CO, CO_to_LE, LE_to_CE, CE_to_LE, FindCE
477](leb, lebInst, co, ds) >> accept result:Data, ceb:CebID, cebInst:Instance in (
478 LE_to_CO !leb !lebInst !co !result; (
479 (
480 [result == connectResp] -> (
481 CE_to_LE !ceb !cebInst !leb !lebInst !answerReq;
482 LE_to_CO !leb !lebInst !co !answerReq; (
483 CE_to_LE !ceb !cebInst !leb !lebInst !disconnectReq;(* disconnectReq from CEB *)
484 LE_to_CO !leb !lebInst !co !disconnectReq; exit
485 []
486 CO_to_LE !co !leb !lebInst !disconnectInd; (* disconnectInd from CallObj *)
487 LE_to_CE !leb !lebInst !ceb !cebInst !disconnectInd; exit
488)
489)
490)
491 []
492 ([result <> connectResp] -> exit)
493)

93

494)
495)
496)
497 endproc
498
499 process CallObject[LE_to_CO, CO_to_LE, Find2ndPartyLE,
500 ConnectParties, HandleReleaseCall
501](co:Instance): exit:=
502 (* we receive a request from a LEB *)
503 LE_to_CO ?lebO:LebID ?lebOInst:Instance !co !connectReq ?ds:DialString; (
504 Find2ndPartyLE[Find2ndPartyLE](ds) >> accept result:Data, lebT:LebID in (
505 [result == failure] -> (
506 CO_to_LE !co !lebO !lebOInst !failure; exit
507)
508 []
509 [result == success] -> (
510 OriginatorBasicCallTerminate[LE_to_CO, CO_to_LE,
511 ConnectParties, HandleReleaseCall
512](co, lebO, lebOInst, lebT, ds)
513 >> accept result:Data, lebTInst:Instance in (
514 [result == connectResp] -> (
515 CO_to_LE !co !lebO !lebOInst !connectConf;
516 LE_to_CO !lebT !lebTInst !co !answerReq;
517 ConnectParties;
518 CO_to_LE !co !lebO !lebOInst !answerInd; (
519 LE_to_CO !lebT !lebTInst !co !disconnectReq;
520 CO_to_LE !co !lebO !lebOInst !disconnectInd;
521 HandleReleaseCall; exit
522 []
523 LE_to_CO !lebO !lebOInst !co !disconnectReq;
524 CO_to_LE !co !lebT !lebTInst !disconnectInd;
525 HandleReleaseCall; exit
526)
527)
528 []
529 [result <> connectResp] -> exit
530)
531)
532)
533)
534 endproc
535
536 process CallObjectCreator[CreateCall, LE_to_CO, CO_to_LE, Find2ndPartyLE,
537 ConnectParties, HandleReleaseCall](inst:Instance):exit:=
538 CreateCall !inst; (
539 CallObject[LE_to_CO,CO_to_LE,Find2ndPartyLE,ConnectParties,HandleReleaseCall](inst)
540 |||
541 (
542 let inst:Instance = succ(inst) in (
543 CreateCall !inst;
544 CallObject[LE_to_CO,CO_to_LE,Find2ndPartyLE,ConnectParties,HandleReleaseCall](inst)
545 |||
546 (

94

547 let inst:Instance = succ(inst) in (CreateCall !inst;
548 CreateCall !inst; CallObject[LE_to_CO,CO_to_LE,Find2ndPartyLE,
549 ConnectParties,HandleReleaseCall](inst)
550 |||
551 (
552 let inst:Instance = succ(inst) in (
553 CreateCall !inst; CallObject[LE_to_CO,CO_to_LE,Find2ndPartyLE,
554 ConnectParties,HandleReleaseCall](inst)
555 |||
556 (
557 let inst:Instance = succ(inst) in (
558 CreateCall !inst; CallObject[LE_to_CO,CO_to_LE,Find2ndPartyLE,
559 ConnectParties,HandleReleaseCall](inst)
560)
561)
562)
563)
564)
565)
566)
567)
568)
569 endproc
570
571 (* --------------------------------- DEB plug-ins -----------------------------*)
572 process OriginatorFindCE[getCE] (deb: DebID, result: Data): exit(CebID, Data):=
573 (* registered == true in the ucm, CE found in other words *)
574 getCE !deb ?ceb: CebID; exit(ceb, success)
575 []
576 (* registered == false *)
577 getCE !deb !failure; exit(noceb, failure)
578 endproc
579
580 (* ------------------------------ CEB originating plug-ins ----------------------*)
581 process OriginatorFindLE[FindLE](ceb:CebID): exit(LebID, Data):=
582 FindLE!ceb?leb:LebID;exit(leb,success) [] FindLE?ceb:CebID!failure;exit(noleb,failure)
583 endproc
584
585 (* --------------------------------- LEB terminating plug-ins ------------------*)
586 process TerminatorFindDE[FindDE] (ceb: CebID): exit(DebID, Data):=
587 FindDE !ceb ?deb:DebID; (* FindDE succeeded *) exit(deb, success)
588 []
589 FindDE !ceb !failure; (* Find DE failed *) exit(nodeb, failure)
590 endproc
591
592 (* --------------------------------- LEB plug-ins -----------------------------*)
593 process LEBTerminatingBasicCallSetup[LE_to_CO, CO_to_LE, LE_to_CE, CE_to_LE, FindCE
594](leb:LebID,lebInst:Instance,co:Instance,ds:DialString)
595 : exit(Data, CebID, Instance):=
596
597 TerminatorFindCE[FindCE](ds) >> accept result:Data, ceb:CebID in (
598 [result == failure] -> exit(failure, noceb, 0 of Instance)
599 []

95

600 [result == success] ->
601 (
602 LE_to_CE !leb !lebInst !ceb ?cebInst:Instance !connectInd;
603 CE_to_LE !ceb !cebInst !leb !lebInst ?result:Data; (
604 [result == connectResp] -> exit(connectResp, ceb, cebInst)
605 []
606 [result == failure] -> exit(failure, ceb, cebInst)
607 []
608 [result == busyInd] -> exit(busyInd, ceb, cebInst)
609)
610)
611)
612 endproc
613
614 process TerminatorFindCE[FindCE](ds: dialString): exit(Data, CebID):=
615 FindCE !ds ?ceb:CebID; exit(success, ceb) [] FindCE !ds !failure; exit(failure, noceb)
616 endproc
617
618 process OriginatorBasicCallSetup[(* comms with Call Object *) LE_to_CO, CO_to_LE,
619 (* comms with CEB *) LE_to_CE, CE_to_LE,
620 (* Responsabilities *) FindCalleeAddress, CreateCall,
621
622 FindCE, Timeout
623](leb:LebID, lebInst:Instance,
624 ceb:CebID, cebInst:Instance, ds:DialString)
625 : exit(Data, Instance):=
626 FindCalleeAddress; (* take care of resp FindCalleeAddress *)
627 CreateCall ?co:Instance; LE_to_CO !leb !lebInst !co !connectReq !ds; (
628 CO_to_LE !co !leb !lebInst !connectConf; ((* connection succeeded *)
629 LE_to_CE !leb !lebInst !ceb !cebInst !connectConf;
630 WaitForAnswer[CO_to_LE, LE_to_CE, Timeout](leb, lebInst, ceb, cebInst, co)
631 >> accept result :Data in (
632 [result == answerInd] -> (
633 exit(answerInd, co)
634)
635)
636)
637 []
638 CO_to_LE !co !leb !lebInst !failure; (* connection failed *) exit(failure, co)
639)
640 endproc
641
642 process WaitForAnswer[CO_to_LE, LE_to_CE, Timeout
643](leb:LebID, lebInst:Instance, ceb:CebID, cebInst:Instance,
644 co:Instance) : exit(Data):=
645 CO_to_LE !co !leb !lebInst !answerInd; exit(answerInd) [] Timeout; exit(failure)
646 endproc
647
648 (* Call Object plug-ins *)
649 process Find2ndPartyLE[Find2ndPartyLE](ds:DialString): exit(Data, LebID):=
650 Find2ndPartyLE!ds ?lebT:LebID; exit(success,lebT) [] Find2ndPartyLE!ds !failure;
651 exit(failure,noleb)
652 endproc

96

653
654 process OriginatorBasicCallTerminate[LE_to_CO,CO_to_LE,ConnectParties,HandleReleaseCall
655](co:Instance, lebO:LebID, lebOInst:Instance,
656 lebT:LebID, ds:DialString): exit(Data, Instance):=
657 CO_to_LE !co !lebT ?lebTInst:Instance !connectInd !ds;
658 LE_to_CO !lebT !lebTInst !co ?result:Data; exit(result, lebTInst)
659 endproc

A.3 LOTOS scenarios generated with Ucm2LotosTests

From the requirements presented in section A.1, the Ucm2LotosTests functionality was used
to generate LOTOS scenarios following the mapping of Figure A.6. The obtained LOTOS
scenarios are shown below.

Scenario1 describes a call connection request from a user who doesn’t have a CEB.

process Scenario1[USER_to_DE, DE_to_USER, scenario1]: noexit:=
USER_to_DE !caller !phone1 !offhook;
DE_to_USER !phone1 !caller !dialtone;
USER_to_DE !caller !phone1 !dial !termNum;
DE_to_USER !phone1 !caller !digitreceived;
getCE !phone1 !noCEB;
DE_to_USER !phone1 !caller !busyTone;
USER_to_DE !caller !phone1 !onHook;
scenario1; stop

endproc

Scenario2 describes a call connection request from a user who doesn’t have a LEB.

process Scenario2[USER_to_DE, DE_to_USER, scenario2]: noexit:=
USER_to_DE !caller !phone1 !offhook;
DE_to_USER !phone1 !caller !dialtone;
USER_to_DE !caller !phone1 !dial !termNum;
DE_to_USER !phone1 !caller !digitreceived;
getCE !phone1 !originating;
DE_to_CE !phone1 !originating !0 of instance !connectreq !termnum;
findLE !originating !noleb;
CE_to_DE !originating !0 of instance !phone1 !failure;
DE_to_USER !phone1 !caller !busyTone;
USER_to_DE !caller !phone1 !onHook;
scenario2; stop

endproc

Scenario3 describes a call connection request to a user who doesn’t have a LEB.

process Scenario3[USER_to_DE, DE_to_USER, scenario3]: noexit:=
USER_to_DE !caller !phone1 !offhook;
DE_to_USER !phone1 !caller !dialtone;
USER_to_DE !caller !phone1 !dial !termNum;
DE_to_USER !phone1 !caller !digitreceived;
getCE !phone1 !originating;
DE_to_CE !phone1 !originating !0 of instance !connectreq !termnum;
findLE !originating !ottawa;

97

CE_to_LE !originating !0 of instance !ottawa !0 of instance !connectreq !termnum;
findCalleeAddress;
createCall !0 of instance;
LE_to_CO !ottawa !0 of instance !0 of instance !connectreq !termnum;
find2ndPartyLE !termnum !noleb;
DE_to_USER !phone1 !caller !busyTone;
USER_to_DE !caller !phone1 !onHook;
scenario3; stop

endproc

Scenario4 describes a call connection request to a user who doesn’t have a CEB.

process Scenario4[USER_to_DE, DE_to_USER, scenario4]: noexit:=
USER_to_DE !caller !phone1 !offhook;
DE_to_USER !phone1 !caller !dialtone;
USER_to_DE !caller !phone1 !dial !termNum;
DE_to_USER !phone1 !caller !digitreceived;
getCE !phone1 !originating;
DE_to_CE !phone1 !originating !0 of instance !connectreq !termnum;
findLE !originating !ottawa;
CE_to_LE !originating !0 of instance !ottawa !0 of instance !connectreq !termnum;
findCalleeAddress;
createCall !0 of instance;
LE_to_CO !ottawa !0 of instance !0 of instance !connectreq !termnum;
find2ndPartyLE !termnum !montreal;
CO_to_LE !0 of instance !montreal !0 of instance !connectind !termnum;
findCE !termnum !noceb;
DE_to_USER !phone1 !caller !busyTone;
USER_to_DE !caller !phone1 !onHook;
scenario4; stop

endproc

Scenario5 describes a call connection request to a user who doesn’t have a DEB.

process Scenario5[USER_to_DE, DE_to_USER, scenario5]: noexit:=
USER_to_DE !caller !phone1 !offhook;
DE_to_USER !phone1 !caller !dialtone;
USER_to_DE !caller !phone1 !dial !termNum;
DE_to_USER !phone1 !caller !digitreceived;
getCE !phone1 !originating;
DE_to_CE !phone1 !originating !0 of instance !connectreq !termnum;
findLE !originating !ottawa;
CE_to_LE !originating !0 of instance !ottawa !0 of instance !connectreq !termnum;
findCalleeAddress;
createCall !0 of instance;
LE_to_CO !ottawa !0 of instance !0 of instance !connectreq !termnum;
find2ndPartyLE !termnum !montreal;
CO_to_LE !0 of instance !montreal !0 of instance !connectind !termnum;
findCE !termnum !terminating;
LE_to_CE !montreal !0 of instance !terminating !0 of instance !connectind;
findDE !terminating !nodeb;
DE_to_USER !phone1 !caller !busyTone;
USER_to_DE !caller !phone1 !onHook;
scenario5; stop

endproc

98

Scenario6 describes a call connection request to a user who is busy.

process Scenario6[USER_to_DE, DE_to_USER, scenario6]: noexit:=
USER_to_DE !caller !phone1 !offhook;
DE_to_USER !phone1 !caller !dialtone;
USER_to_DE !caller !phone1 !dial !termNum;
DE_to_USER !phone1 !caller !digitreceived;
getCE !phone1 !originating;
DE_to_CE !phone1 !originating !0 of instance !connectreq !termnum;
findLE !originating !ottawa;
CE_to_LE !originating !0 of instance !ottawa !0 of instance !connectreq !termnum;
findCalleeAddress;
createCall !0 of instance;
LE_to_CO !ottawa !0 of instance !0 of instance !connectreq !termnum;
find2ndPartyLE !termnum !montreal;
CO_to_LE !0 of instance !montreal !0 of instance !connectind !termnum;
findCE !termnum !terminating;
LE_to_CE !montreal !0 of instance !terminating !0 of instance !connectind;
findDE !terminating !phone2;
CE_to_DE !terminating !0 of instance !phone2 !connectind;
DE_to_CE !phone2 !terminating !0 of instance !busytoneon;
CE_to_LE !terminating !0 of instance !montreal !0 of instance !busytoneon;
le_to_co !montreal !0 of instance !0 of instance !busytoneon;
CO_to_LE !0 of instance !ottawa !0 of instance !busytoneon;
LE_to_CE !ottawa !0 of instance !originating !0 of instance !busytoneon;
CE_to_DE !originating !0 of instance !phone1 !busytoneon;
DE_to_USER !phone1 !caller !busyTone;
USER_to_DE !caller !phone1 !onHook;
scenario6; stop

endproc

Scenario7 describes a call connection request to a user who is not responding.

process Scenario7[USER_to_DE, DE_to_USER, scenario7]: noexit:=
USER_to_DE !caller !phone1 !offhook;
DE_to_USER !phone1 !caller !dialtone;
USER_to_DE !caller !phone1 !dial !termNum;
DE_to_USER !phone1 !caller !digitreceived;
getCE !phone1 !originating;
DE_to_CE !phone1 !originating !0 of instance !connectreq !termnum;
findLE !originating !ottawa;
CE_to_LE !originating !0 of instance !ottawa !0 of instance !connectreq !termnum;
findCalleeAddress;
createCall !0 of instance;
LE_to_CO !ottawa !0 of instance !0 of instance !connectreq !termnum;
find2ndPartyLE !termnum !montreal;
CO_to_LE !0 of instance !montreal !0 of instance !connectind !termnum;
findCE !termnum !terminating;
LE_to_CE !montreal !0 of instance !terminating !0 of instance !connectind;
findDE !terminating !phone2;
CE_to_DE !terminating !0 of instance !phone2 !connectind;
ring;
DE_to_USER !phone2 !callee !ringingon;
DE_to_CE !phone2 !terminating !0 of instance !connectresp;

99

CE_to_LE !terminating !0 of instance !montreal !0 of instance !connectresp;
LE_to_CO !montreal !0 of instance !0 of instance !connectresp;
CO_to_LE !0 of instance !ottawa !0 of instance !connectconf;
LE_to_CE !ottawa !0 of instance !originating !0 of instance !connectconf;
CE_to_DE !originating !0 of instance !phone1 !connectconf;
DE_to_USER !phone1 !caller !ringbackon;
timeout;
DE_to_USER !phone1 !caller !busyTone;
USER_to_DE !caller !phone1 !onhook;
scenario7; stop

endproc

Scenario8 describes a call between two users. The caller hangs up first.

process Scenario8[USER_to_DE, DE_to_USER, scenario8]: noexit:=
USER_to_DE !caller !phone1 !offhook;
DE_to_USER !phone1 !caller !dialtone;
USER_to_DE !caller !phone1 !dial !termNum;
DE_to_USER !phone1 !caller !digitreceived;
getCE !phone1 !originating;
DE_to_CE !phone1 !originating !0 of instance !connectreq !termnum;
findLE !originating !ottawa;
CE_to_LE !originating !0 of instance !ottawa !0 of instance !connectreq !termnum;
findCalleeAddress;
createCall !0 of instance;
LE_to_CO !ottawa !0 of instance !0 of instance !connectreq !termnum;
find2ndPartyLE !termnum !montreal;
CO_to_LE !0 of instance !montreal !0 of instance !connectind !termnum;
findCE !termnum !terminating;
LE_to_CE !montreal !0 of instance !terminating !0 of instance !connectind;
findDE !terminating !phone2;
CE_to_DE !terminating !0 of instance !phone2 !connectind;
ring;
DE_to_USER !phone2 !callee !ringingon;
DE_to_CE !phone2 !terminating !0 of instance !connectresp;
CE_to_LE !terminating !0 of instance !montreal !0 of instance !connectresp;
LE_to_CO !montreal !0 of instance !0 of instance !connectresp;
CO_to_LE !0 of instance !ottawa !0 of instance !connectconf;
LE_to_CE !ottawa !0 of instance !originating !0 of instance !connectconf;
CE_to_DE !originating !0 of instance !phone1 !connectconf;
DE_to_USER !phone1 !caller !ringbackon;
USER_to_DE !callee !phone2 !offhook;
processterminatoranswer;
DE_to_CE !phone2 !terminating !0 of instance !answerreq;
CE_to_LE !terminating !0 of instance !montreal !0 of instance !answerreq;
LE_to_CO !montreal !0 of instance !0 of instance !answerreq;
connectparties;
CO_to_LE !0 of instance !ottawa !0 of instance !answerind;
LE_to_CE !ottawa !0 of instance !originating !0 of instance !answerind;
CE_to_DE !originating !0 of instance !phone1 !answerind;
USER_to_DE !caller !phone1 !onhook;
handleonhook;
DE_to_CE !phone1 !originating !0 of instance !disconnectreq;
CE_to_LE !originating !0 of instance !ottawa !0 of instance !disconnectreq;

100

LE_to_CO !ottawa !0 of instance !0 of instance !disconnectreq;
CO_to_LE !0 of instance !montreal !0 of instance !disconnectind;
handlereleasecall;
LE_to_CE !0 of instance !terminating !0 of instance !disconnectind;
CE_to_DE !terminating !0 of instance !phone2 !disconnectind;
de_to_user !phone2 !callee !dialTone;
user_to_de !callee !phone2 !onhook;
scenario8; stop

endproc

Scenario9 describes a call between two users. The callee hangs up first.

process Scenario9[USER_to_DE, DE_to_USER, scenario9]: noexit:=
USER_to_DE !caller !phone1 !offhook;
DE_to_USER !phone1 !caller !dialtone;
USER_to_DE !caller !phone1 !dial !termNum;
DE_to_USER !phone1 !caller !digitreceived;
getCE !phone1 !originating;
DE_to_CE !phone1 !originating !0 of instance !connectreq !termnum;
findLE !originating !ottawa;
CE_to_LE !originating !0 of instance !ottawa !0 of instance !connectreq !termnum;
findCalleeAddress;
createCall !0 of instance;
LE_to_CO !ottawa !0 of instance !0 of instance !connectreq !termnum;
find2ndPartyLE !termnum !montreal;
CO_to_LE !0 of instance !montreal !0 of instance !connectind !termnum;
findCE !termnum !terminating;
LE_to_CE !montreal !0 of instance !terminating !0 of instance !connectind;
findDE !terminating !phone2;
CE_to_DE !terminating !0 of instance !phone2 !connectind;
ring;
DE_to_USER !phone2 !callee !ringingon;
DE_to_CE !phone2 !terminating !0 of instance !connectresp;
CE_to_LE !terminating !0 of instance !montreal !0 of instance !connectresp;
LE_to_CO !montreal !0 of instance !0 of instance !connectresp;
CO_to_LE !0 of instance !ottawa !0 of instance !connectconf;
LE_to_CE !ottawa !0 of instance !originating !0 of instance !connectconf;
CE_to_DE !originating !0 of instance !phone1 !connectconf;
DE_to_USER !phone1 !caller !ringbackon;
USER_to_DE !callee !phone2 !offhook;
processterminatoranswer;
DE_to_CE !phone2 !terminating !0 of instance !answerreq;
CE_to_LE !terminating !0 of instance !montreal !0 of instance !answerreq;
LE_to_CO !montreal !0 of instance !0 of instance !answerreq;
connectparties;
CO_to_LE !0 of instance !ottawa !0 of instance !answerind;
LE_to_CE !ottawa !0 of instance !originating !0 of instance !answerind;
CE_to_DE !originating !0 of instance !phone1 !answerind;
USER_to_DE !callee !phone2 !onhook;
handleonhook;
DE_to_CE !phone2 !terminating !0 of instance !disconnectreq;
CE_to_LE !terminating !0 of instance !montreal !0 of instance !disconnectreq;
LE_to_CO !montreal !0 of instance !0 of instance !disconnectreq;
CO_to_LE !0 of instance !ottawa !0 of instance !disconnectind;

101

handlereleasecall;
le_to_ce !montreal !0 of instance !terminating !0 of instance !disconnectind;
ce_to_de !terminating !0 of instance !phone1 !disconnectind;
de_to_user !phone1 !caller !dialTone;
user_to_de !caller !phone1 !onhook;
scenario9; stop

endproc

A.4 TTCN test case example generated with TGV

From the LOTOS scenarios automatically generated using Ucm2LotosTests, we generated
TTCN test suites using TGV and aut2ttcn. The TTCN test case generated from Scenario
1 is shown below.

+---+
| Test Case Dynamic Behaviour |
+---+
| Test Case Name : scenario1 |
| Group : |
| Purpose : |
| Default : |
| Comments : |
+----+-----+---------------------------+----------------------+--------+--------+
| Nr |Label| Behaviour Description | Constraints Ref | Verdict|Comments|
+----+-----+---------------------------+----------------------+--------+--------+
1		user1 !offHook	scenario1_001		
2		user1 ?dialTone	scenario1_002		
3		user1 !dial	scenario1_003		
4		user1 ?digitReceived	scenario1_004		
5		getCE !noceb	scenario1_005		
6		user1 ?busyTone	scenario1_006		
7		user1 !onHook	scenario1_007	PASS	
8		user1 !onHook	scenario1_007	PASS	
9		user1 !onHook	scenario1_007	PASS	
10		user1 !onHook	scenario1_007	PASS	
11		user1 !onHook	scenario1_007	PASS	
+----+-----+---------------------------+----------------------+--------+--------+

102

Bibliography

[AAL99] D. Amyot, R. Andrade, L. Logrippo, J. Sincennes, and Z. Yi. Formal Methods
for Mobility Standards. IEEE 1999 Emerging Technology Symposium on Wireless
Communications & Systems, Dallas (TX), USA, April 1999. Editor: Traci King,
Samsung Telecommunications America. Publisher: Steve Bootman, Hitachi Tele-
com.

[ACG00] D. Amyot, L. Charfi, N. Gorse, T. Gray, L. Logrippo, J. Sincennes, B. Stepien T.
Ware. Feature Description and Feature Interaction Analysis with Use Case Maps
and LOTOS. Proceedings of the Sixth International Workshop on Feature Interac-
tions in Telecommunications and Software Systems, Glasgow, May 2000.

[AHL98] D. Amyot, N. Hart, L. Logrippo, and P. Forhan. Formal Specification and Vali-
dation using a Scenario-Based Approach: The GPRS Group-Call Example. Objec-
Time Workshop on Research in OO Real-Time Modeling, Ottawa, Canada, January
1998.

[ALB99] D. Amyot, L. Logrippo, R.J.A. Buhr, and T. Gray. Use Case Maps for the Capture
and Validation of Distributed Systems Requirements. Fourth International Sympo-
sium on Requirements Engineering, Limerick, Ireland, June 1999.

[AL00] D. Amyot, L. Logrippo. Structural Coverage for LOTOS IFIP TC6/WG6.1 13th
International Conference on Testing of Communicating Systems (TestCom 2000),
Ottawa, August 2000.

[AmL00] D. Amyot, L. Logrippo. Use Case Maps and LOTOS for the Prototyping and
Validation of a Mobile Group Call System Computer Communications 23(8), 2000.

[Amy94] D. Amyot. Formalization of Timethreads Using LOTOS. M.Sc. Thesis, University
of Ottawa, 1994.

[Amy01] D. Amyot. Specification and Validation of Telecommunications Systems with Use
Case Maps and LOTOS. PhD. Thesis, University of Ottawa, 2001.

[And00] R. Andrade. Applying Use Case Maps and Formal Methods to the Development
of Wireless Mobile ATM Networks. The Fifth NASA Langley Formal Methods
Workshop, Williamsburg, Virginia, USA, June 2000.

103

[Att99] AT&T, 1999. Graphviz - Graph Drawing Software.
http://www.research.att.com/sw/tools/graphviz/

[BB87] T. Bolognesi, E. Brinksma. Introduction to the ISO Specification Language LOTOS.
Computer Networks and ISDN systems 14, pages 25-59, 1987.

[BFV99] A. Belifante, J. Feenstra, R. G. de Vries, J. Tretmans. Formal Test Automation:
A Simple Experiment. IFIP TC6 12th International Worshop on Testing of Com-
municating Systems, Budapest, 1999.

[Boe81] B. W. Boehm. Software Engineering Economics. Prentice-Hall, 1981.

[Bri88] E. Brinskma. A Theory for the Derivation of Tests. In P. H. J. van Eijk, C. A.
Vissers, and M. Diaz, editors, The Formal Description Technique LOTOS, pages
235-247. Elsevier Science Publishers B. V., 1989.

[Bur96] R. J. A. Buhr and R. S. Casselman. Use Case Maps for Object-Oriented Systems.
Prentice-Hall, 1996.

[Bur98] R. J. A. Buhr. Use Case Maps as Architectural Entities for Complex Systems. IEEE
Transactions on Software Engineering, Special Issues on Scenario Management. Vol.
24, No. 12, pages 1131-1155, 1998.

[CaT95] R. H. Carver and K. C. Tai. Test Sequence Generation from Formal Specifications
of Distributed Programs. 15th International Conference on Distributed Computing
Systems, pages 360-367, May 1995.

[EM85] B. Ehrig, B. Mahr. Fundamentals of Algebraic Specifications. Springer-Verlag, 1985.

[Fac95] M. Faci. Detecting Feature Interactions in Telecommunications Systems Designs.
PhD. Thesis, University of Ottawa, 1999.

[FGM92] J-C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodŕıguez, and J. Sifakis. A
Toolbox for the Verification of LOTOS Programs. Proceedings of the 14th Interna-
tional Conference on Software Engineering ICSE’14 (Melbourne, Australia), pages
246-259, 1992.

[FJJ96] J-C. Fernandez, C. Jard, T.Jeron and C. Viho. Using On-the-fly Verification Tech-
niques for the Generation of Test Suites CAV’96, Conference on Computer Aided
Verification, New Jersey, 1996.

[FL94] M. Faci, L. Logrippo. In: L.G. Bouma and H. Velthuijsen. Specifying Features and
Analyzing their Interactions in a LOTOS Environment. (eds.) Feature Interactions
in Telecommunications Systems. IOS Press, 1994 (Proc. of the 2nd International
Workshop on Feature Interactions in Telecommunications Systems, Amsterdam)
pages 136-151.

104

[FLS90] M. Faci, L. Logrippo, B. Stepien. Formal Specification of Telephone Systems in
LOTOS. In E. Brinksma, G. Scollo, and C. A. Vissers, editors, Protocol Specifi-
cation, Testing and Validation, IX, pages 25-34, Elsevier Science Publishers B. V.,
1990.

[FLS91] M. Faci, L. Logrippo, B. Stepien. Formal Specification of Telephone Systems in LO-
TOS: The Constraint-Oriented Approach. Computer Networks and ISDN Systems
21 (1991) 53-67.

[Gri92] B. Ghribi. A Model Checker for LOTOS M.Sc. Thesis, University of Ottawa, 1992.

[GWW00] J. Grabowski, A. Wiles, C. Willcock, D. Hogrefe. On the design of the new testing
language TTCN-3. IFIP TC6/WG6.1 13th International Conference on Testing of
Communicating Systems (TestCom 2000), Ottawa, August 2000.

[HU79] J. E. Hopcroft, J. D. Ullman. Introduction to Automata Theory, Language and
Computation. Addison-Wesley. 1979.

[Hum90] W. S. Humphrey. Managing Software Process. Addison-Wesley. 1990.

[ISO89] ISO 8807 International Standard: Information Processing Systems - Open Systems
Interconnection - LOTOS - A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Organization for Standardiza-
tion, Geneve, 1989.

[ISO92] ISO/IEC. Open Systems Interconnection - Conformance Testing Methodology and
Framework - part 3 - The Tree and Tabular Combined Notation (TTCN). ISO/IEC
IS 9646-3, Geneve, 1992.

[ITU96-1] ITU-T recommendation Z. 100. Specification and Description Language (SDL).
ITU, Geneva, 1996.

[ITU96-2] ITU-T recommendation Z. 120. Message Sequence Chart (MSC). ITU, Geneva,
1996.

[Kam96] J. Kamoun. Formal Specification and Feature Interactionn Detection in the Intel-
ligent Network. M.Sc. Thesis, University of Ottawa, 1996.

[KVZ99] H. Kahlouche, C. Viho, M. Zendri. Hardware testing using a communication proto-
col conformance testing tool. Proceedings of the Fifth International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, Amsterdam,
the Netherlands, March 1999.

[KW91] J. Kroon, A. Wiles. A Tutorial on TTCN. Proceedings of the 11thInternational
IFIP WG 6.1 Symposium on Protocol, specification, Testing and Verification, 1991.

[LFH92] L. Logrippo, M. Faci, M. Haj-Hussein. An Introduction to LOTOS: Learning by
Examples. Computer Networks & ISDN Systems, Vol.23, No. 5, pages 325-342,
1992.

105

[MaP01] N. Mansourov, R. L. Probert. Improving time-to-market using SDL tools and tech-
niques. Computer Networks, 35, pages 667-691, 2001.

[Mcc76] T. McCabe. A Software Complexity Measure. IEEE Trans. Software Engineering,
vol. 2, December 1976.

[Mig98] A. Miga. Application of Use Case Maps to System Design with Tool Support.
M.Eng. Thesis, Dept. of Systems and Computer Engineering, Carleton University,
Ottawa, Canada, 1998. http://www.UseCaseMaps.org/UseCaseMaps/ucmnav/

[Mye79] G. J. Myers. The art of software testing. John Wiley & Sons. 1979.

[Pre97] R.S. Pressman. Software Engineering, A Practitioner’s Approach. McGraw Hill.
1997.

[PrW99] R. L. Probert, A. W. Williams. Fast Functional Test Generation using an SDL
model. Proceedings of the 12th annual International Workshop on the Testing of
Communicating Systems (IWTCS ’99), Budapest Hungary, September 1999, pp.
299-315.

[PUW00] R. L. Probert, H. Ural, A. W. Williams. Rapid generation of functional tests using
MSCs, SDL and TTCN. Cpmputer Communications, 24, pages 374-393, 2001.

[QPF88] J. Quemada, S. Pavon, A. Fernandez. Transforming LOTOS specifications with
LOLA: The Parametrized Expansion. In: K. J. Turner (Ed), Formal Description
Techniques, I, IFIP/North Holland, pages 45-54, 1988.

[SL95] B. Stepien and L.Logrippo. Feature interaction detection by using backward reason-
ing with LOTOS. S.T. Vuong and S.T. Chanson. Protocol Specification, Testing
and Verification XIV. Chapman & Hall, pages 71-86, 1995.

[Ste00] B. Stepien. Lotos2Msc Converter - User’s Manual. University of Ottawa LOTOS
group, January 2000.

[StL95] B. Stepien and L. Logrippo. Representing and Verifying Intentions in Telephony
Features Using Abstract Data Types. IFW’95, Kyoto, Japan.

[Toc89] A. J. Tocher. LOTOS and the Formal Specification of Communication Standards:
An Example. Formal Methods: Theory and Practice, Chapter 2, edited by P. N.
Scharbach, BP Research, 1989.

[Tuo96] R. Tuok. Modeling and Derivation of Scenarios for a Mobile Telephony System in
LOTOS. M.Sc. Thesis, University of Ottawa, 1996.

[Tur98] K. J. Turner. Validating Architectural Feature Description using LOTOS. Fifth
International Workshop on Feature Interactions in Telecommunications Software
systems, IOS Press.

106

[VSS91] C. A. Vissers, G. Scollo, M. v. Sinderen, and E. Brinskma. Specification Styles in
Distributed Systems Design and Verification. Theoretical Computer Science, 89:
179-206, 1991.

107

