
6SHFLILFDWLRQ�DQG�9DOLGDWLRQ

RI�7HOHFRPPXQLFDWLRQV�6\VWHPV�

ZLWK�8VH�&DVH�0DSV�DQG�/2726

E\

'DQLHO�$P\RW

7KHVLV�VXEPLWWHG�WR�WKH

)DFXOW\�RI�*UDGXDWH�DQG�3RVWGRFWRUDO��6WXGLHV

LQ�SDUWLDO�IXOILOOPHQW�RI

WKH�UHTXLUHPHQWV�IRU�WKH�GHJUHH�RI

3K�'��LQ�&RPSXWHU�6FLHQFH

XQGHU�WKH�DXVSLFHV�RI�WKH

2WWDZD�&DUOHWRQ�,QVWLWXWH�IRU�&RPSXWHU�6FLHQFH

6FKRRO RI ,QIRUPDWLRQ 7HFKQRORJ\ DQG (QJLQHHULQJ �6,7(�

8QLYHUVLW\ RI 2WWDZD

2WWDZD� 2QWDULR� &DQDGD

� 'DQLHO $P\RW� 6HSWHPEHU ����

Abstract
avioral

services,

 these

onse-

first

ts in

 a com-

re par-

nd them.

m-wide

many

e gen-
The functional modeling of telecommunications systems requires an early emphasis on beh

aspects. In the first stages of common development processes, telecommunications features,

and functionalities are defined in terms of informal requirements and visual descriptions. As

descriptions grow and evolve, they quickly become error-prone and difficult to understand. C

quently, designs can hardly be checked or validated against such descriptions.

This thesis proposes an innovative methodology named Specification-Validation Approach

with LOTOS and UCMs (SPEC-VALU E), which tackles these problems using two notations. The

notation, called Use Case Maps (UCMs), is used to capture and integrate functional requiremen

terms of causal scenarios. Scenarios describing system views, uses, and services are becoming

mon method of capturing functional requirements of reactive and distributed systems. They a

ticularly appropriate to represent behavioral aspects so that various stakeholders can understa

In addition to these general properties of scenarios, UCMs can help reasoning about syste

functionalities at a high level of abstraction. Integrating UCMs together also helps avoiding

undesirable interactions, usually resulting from the composition of different scenarios, before th

eration of prototypes.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS i

 Abstract

h-level

al test-

cting

orts

nalysis

ge of

e con-

ll ser-

l), and
The second notation is the formal specification language LOTOS. It will be shown that UCM

scenarios bound to architectural components can be translated into high-level LOTOS specifications.

In turn, these specifications can be used as prototypes to animate UCMs and to validate hig

designs against requirements systematically through numerous techniques, including function

ing based on UCMs. LOTOS possesses powerful testing concepts and tools that excel at dete

errors and undesirable interactions. LOTOS represents a judicious formalism here because it supp

many UCM constructs directly, and it complements most of UCM’s weak areas related to the a

of systems.

SPEC-VALU E introduces theories and techniques for constructing LOTOS specifications from

UCMs, for deriving validation test cases from UCMs, and for measuring the structural covera

LOTOS specifications achieved during validation. An ongoing example is used to illustrate thes

cepts: the Tiny Telephony System. The thesis validates the SPEC-VALU E methodology through its

application to various telecommunications systems (Group Communication Server, Group-Ca

vice of GPRS, feature interactions, agent-based simplified basic call, and GSM’s MAP protoco

concludes with an assessment of these experimental results.
ii Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Acknowledgements
titude

unt-

arter of

m. For

 encour-

e Cali-

to my

rd H.

,

. I thank

es Sin-

resence
Many people were involved in the production of this thesis, and I wish to express my gra

towards them. Grazie mille to my supervisor and friend, Professor Luigi Logrippo, who spent co

less hours reading my numerous drafts and initiating unforgettable discussions. For the last qu

my life, I have been most fortunate to enjoy his wisdom, experience, guidance and enthusias

many years, I also had the chance to savor the expertise, unbounded imagination and warm

agements of Professor Ray Buhr, my co-supervisor. I hope my thanks will reach him under th

fornia sun, where he now enjoys a well-deserved retirement. I also extend my thanks

committee, Dr. Robert L. Probert, Dr. Michael Weiss, Dr. C. Murray Woodside, and Dr. Richa

Carver, my external examiner, for gracefully accepting to review and comment this work.

The weekly (and intense) meetings with the LOTOS Group, composed of wonderful people

represented an exquisite arena where many of the ideas presented here were first introduced

the numerous friends I met there over the years. In particular, I am indebted towards Jacqu

cennes for sharing his deep technical knowledge and his humour with me. His constant p

made the past nine years a memorable experience.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS iii

 Acknowledgements

m Ben

eering

my

y

ort

ge-

ppe-
Many parts of this thesis, and in particular the case studies, benefited from collaborations with

colleagues and co-authors, whom I wish to thank: Rossana Andrade, Natalia Balaba, Hiche

Fredj, Francis Bordeleau, Don Cameron, Leïla Charfi, Pascal Forhan, Nicolas Gorse, Tom Gray, Jim

Hodges, Serge Mankovski, Andrew Miga, Gunter Mussbacher, Dorin Petriu, John Visser, Tom Ware

Alan Williams, and many others who have shared their enthusiasm towards UCMs and LOTOS.

To Michel Racine, Johanne Forgues, Louise Desrosiers, Hasan Ural, and the SITE staff: merci

for your constant and friendly support. You are the best!

This work was made possible by the financial support of the “Fonds pour la Formation de

Chercheurs et l'Aide à la Recherche” (FCAR, Québec), the Natural Sciences and Engin

Research Council of Canada, Communications and Information Technology Ontario, the University

of Ottawa, Mitel Corporation, Nortel Networks, and Motorola Canada. A special thank goes to

manager, Daisy Fung, for giving me the time I needed to complete this thesis.

Enfin, mille mercis à mes amis ainsi qu’aux membres de ma famille. À mes parents, Jean-Gu

et Madeleine, qui m’ont appris à travailler et à aimer apprendre, tout en m’apportant un supp

exceptionnel. À mon épouse, Annie Blais, pour son amour, son aide, sa foi en moi et ses encoura

ments de tous les jours. À nos enfants Sandra, Jean-Luc, et Mireille, pour leur rires et pour me ra

ler l’importance du jeu et de l’équilibre. Je vous aime.
iv Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Table of Contents
Abstract i

Acknowledgements iii

Table of Contents v

List of Figures xi

List of Tables xiii

List of Acronyms xv

CHAPTER 1
Introduction 1
1.1 Motivation 1
1.2 Research Hypothesis 5
1.3 New Approach: SPEC-VALUE 7
1.4 Thesis Contributions 10

1.4.1 Contribution 1: SPEC-VALU E Methodology 10
1.4.2 Contribution 2: Theories and Techniques Supporting SPEC-VALU E 11
1.4.3 Contribution 3: Illustrative Experiments Validating SPEC-VALU E 12
1.4.4 Issues Not Addressed in this Thesis 13

1.5 Thesis Outline 13
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS v

CHAPTER 2
Basic Definitions and Notations 15
2.1 Basic Definitions 15

2.1.1 Four Engineering Disciplines 16
2.1.2 Processes, Formal Methods, Specifications and Designs 18
2.1.3 Validation and Verification 20

2.2 Introduction to Use Case Maps 22
2.2.1 Philosophy of UCMs 22
2.2.2 Information Needed to Construct UCMs 23
2.2.3 Basic UCM Path Notation 23
2.2.4 UCM Component Notation 25
2.2.5 Advanced UCM Path Notation 26
2.2.6 UCM Tools 28

2.3 Introduction to LOTOS 28
2.3.1 Philosophy of LOTOS 28
2.3.2 Information Needed to Construct LOTOS Specifications 29
2.3.3 LOTOS Operators 30
2.3.4 LOTOS Abstract Data Types 31
2.3.5 Labelled Transitions Systems and Underlying Semantics 33
2.3.6 Equivalences and Other Relations 35
2.3.7 Validation and Verification in LOTOS 41
2.3.8 LOTOS Tools 42
2.3.9 Enhancements to LOTOS 43

2.4 Chapter Summary 43

CHAPTER 3
Literature Survey 45
3.1 Causality 45

3.1.1 Why causality? 46
3.1.2 Concurrency Models and Equivalence Relations 47
3.1.3 Causality and Use Case Maps 49
3.1.4 Causality and LOTOS 50
3.1.5 Summary and Discussion 51

3.2 Specification Techniques 51
3.2.1 Evaluation Criteria for Specification Techniques 52
3.2.2 Overview of Selected Techniques 54
3.2.3 Comparison Between Specification Techniques 59

3.3 Scenarios 63
3.3.1 Why Scenarios? 64
3.3.2 Evaluation Criteria for Scenario Definitions 65
3.3.3 Overview of Selected Scenario Notations 68
3.3.4 Construction Approaches 74

3.4 Validation and Verification 87
3.4.1 Properties 87
3.4.2 General Testing Concepts 90
3.4.3 LOTOS Testing 95
3.4.4 Coverage 101
3.4.5 Testing Patterns 103
3.4.6 Summary and Discussion 106
vi Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Table of Contents
3.5 Chapter Summary 107

CHAPTER 4
From Requirements to UCMs
in SPEC-VALU E 111
4.1 Return on the SPEC-VALUE Methodology 111

4.1.1 SPEC-VALU E and Software Development Process Models 112
4.2 First Steps of the SPEC-VALUE Methodology 114

4.2.1 From Requirements to UCMs 114
4.2.2 Style and Content Guidelines for UCMs 115
4.2.3 Integration of Scenarios 116

4.3 Ongoing Example: Tiny Telephone System (TTS) 117
4.3.1 Informal Requirements for TTS 117
4.3.2 Individual Use Case Maps for TTS 118
4.3.3 Integrated UCM View 120

4.4 Chapter Summary 123

CHAPTER 5
From Use Case Maps to LOTOS
in SPEC-VALU E 125
5.1 Construction Approach 125

5.1.1 Appropriateness of LOTOS 127
5.1.2 Unfitness of TMDL 128

5.2 Construction Guidelines 129
5.2.1 Overview 129
5.2.2 Construction Guidelines for Paths 132
5.2.3 Construction Guidelines for Structures 142
5.2.4 Construction Guidelines for Data 154
5.2.5 Towards Partial Automation 155

5.3 Applying the Construction Guidelines to TTS 157
5.3.1 Structure of the TTS Specification 157
5.3.2 TTS Data Types and Operations 160
5.3.3 TTS Process Definitions 161

5.4 Chapter Summary 166

CHAPTER 6
UCM-LOTOS Testing Framework 169
6.1 Testing Approach in SPEC-VALUE 170

6.1.1 Justification for a Testing Approach 170
6.1.2 Testing in SPEC-VALU E 171
6.1.3 Validation Testing and Conformance Testing 173

6.2 UCM-LOTOS Testing Concepts 174
6.2.1 Combination of Approaches 175
6.2.2 Structure of UCM-Based Validation Test Suites 175
6.2.3 Validity Relation 180
6.2.4 Comparing Validity and Conformance in the Two Worlds 182
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS vii

6.3 UCM-Oriented Testing Patterns for Test Goal Selection 184
6.3.1 Introduction to UCM-Oriented Testing Patterns 185
6.3.2 Template for UCM-Oriented Testing Patterns 187
6.3.3 UCM-Oriented Testing Pattern Language 189
6.3.4 Testing Pattern and Strategies for Alternatives 191
6.3.5 Testing Pattern and Strategies for Concurrent Paths 194
6.3.6 Testing Pattern and Strategies for Loops 197
6.3.7 Testing Pattern and Strategies for Multiple Start Points 200
6.3.8 Testing Pattern and Strategies for a Single Stub and its Plug-ins 207
6.3.9 Testing Pattern and Strategies for Causally Linked Stubs 210
6.3.10 Discussion 213
6.3.11 Section Summary 220

6.4 Complementary Strategies and Test Case Generation 221
6.4.1 From Test Goals to Test Cases 221
6.4.2 Strategies for Value Selection 222
6.4.3 Completeness and Determinism Issues 223
6.4.4 Strategies for Rejection Test Cases 224

6.5 Testing the TTS System 226
6.5.1 Test Goals for TTS 226
6.5.2 Further Test Goals for Robustness Testing 231
6.5.3 Test Cases Generation 232
6.5.4 Results from Test Execution 234

6.6 Chapter Summary 235

CHAPTER 7
Structural Coverage 237
7.1 Structural Coverage in SPEC-VALUE 238
7.2 Issues in the Use of Probes 239
7.3 Probes in Sequential Programs 240
7.4 Probe Insertion in Lotos 241

7.4.1 A Simple Insertion Strategy 242
7.4.2 Improving the Probe Insertion Strategy 245
7.4.3 Interpreting Structural Coverage Results 247
7.4.4 Tool Support 249

7.5 TTS Structural Coverage Results 249
7.5.1 Summary of Coverage Results 250
7.5.2 Comments on LOLA and Missing Probes 252

7.6 Discussion 253
7.6.1 Compositional Coverage of the Structure 253
7.6.2 Specification Styles 254
7.6.3 Test Case Management Based on Structural Coverage 254

7.7 Chapter Summary 255
viii Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Table of Contents
CHAPTER 8
Experiments with SPEC-VALU E 257
8.1 Group Communication Server (GCS) 257

8.1.1 System Overview and UCM Descriptions 258
8.1.2 Construction of the LOTOS Prototype 259
8.1.3 Test Selection and Execution 260
8.1.4 Structural Coverage 260
8.1.5 Discussion 261

8.2 GPRS Group Call (PTM-G) 262
8.2.1 System Overview and UCM Descriptions 262
8.2.2 Construction of the LOTOS Prototype 264
8.2.3 Test Selection and Execution 265
8.2.4 Structural Coverage 266
8.2.5 Discussion 267

8.3 Feature Interactions (FI) 269
8.3.1 System Overview and UCM Descriptions 271
8.3.2 Construction of the LOTOS Prototype 275
8.3.3 Test Selection and Execution 276
8.3.4 Structural Coverage 281
8.3.5 Discussion 281

8.4 Agent-Based Simplified Basic Call (SBC) 285
8.4.1 System Overview and UCM Descriptions 286
8.4.2 Construction of the LOTOS Prototype 288
8.4.3 Test Selection and Execution 289
8.4.4 Structural Coverage 290
8.4.5 Discussion 291

8.5 Self-Coverage of GSM Mobile Application Part (MAP) 292
8.5.1 Construction of the LOTOS Prototype 292
8.5.2 Test Generation 292
8.5.3 Structural Coverage 293
8.5.4 Discussion 294

8.6 Test Suite Validation Using Mutation Analysis 294
8.6.1 Mutation Analysis and Validation 295
8.6.2 Mutant Generation and SPEC-VALU E 296
8.6.3 Application to Case Studies 301
8.6.4 Discussion 304

8.7 Chapter Summary 305

CHAPTER 9
Conclusions and Future Work 313
9.1 Hypothesis and Contributions 313

9.1.1 Validation of the Research Hypothesis 313
9.1.2 Contributions of the Thesis 314
9.1.3 SPEC-VALU E and the Formal Specifications Maturity Model 318

9.2 SPEC-VALUE and Related Methodologies 319
9.2.1 Comparing SPEC-VALU E to Related Methodologies 320
9.2.2 Integrating SPEC-VALU E to Related Methodologies 324
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS ix

9.3 Research Issues 327
9.3.1 Medium-Term Research Issues 327
9.3.2 Long-Term Research Issues 328

References 331

Appendix A: UCM Quick Reference Guide 357

Appendix B: LOTOS Specification of TTS 359

Appendix C: Comparing Val And Conf 379

Index 385
x Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

List of Figures
FIGURE 1. Evolution Towards Requirements Engineering and System Design1

FIGURE 2. Specification-Validation Approach with LOTOS and UCMs (SPEC-VALU E) 8

FIGURE 3. Basic Notation and Interpretation .24

FIGURE 4. Shared Routes and OR-Forks/Joins .24

FIGURE 5. Concurrent Routes with AND-Forks/Joins, and Some Variations25

FIGURE 6. Dynamic Components and Dynamic Responsibilities.25

FIGURE 7. Stubs and Plug-ins .26

FIGURE 8. Path Interactions. .27

FIGURE 9. Timers, Aborts, Failures, and Shared Responsibilities 27

FIGURE 10. Representation of a System Specified in LOTOS .30

FIGURE 11. A Behaviour Expression and its LTS as a Behaviour Tree 35

FIGURE 12. Connecting Several LOTOS Relations .39

FIGURE 13. Illustration of Several Relations. .40

FIGURE 14. Families of Concurrency Models .49

FIGURE 15. Limit of Testability. .92

FIGURE 16. Relations and Verdicts for Tests. .98

FIGURE 17. From Requirements to UCMs with SPEC-VALU E.113

FIGURE 18. TTS Basic Call UCM. .119

FIGURE 19. Individual UCMs for TTS Features .120

FIGURE 20. Integrated UCM View of TTS .121

FIGURE 21. From UCMs to LOTOS with SPEC-VALU E .126

FIGURE 22. Construction of a LOTOS Specification from a UCM 130

FIGURE 23. Interpreting AND-Joins and OR-Joins. .135
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS xi

FIGURE 24. Interpreting Stubs and Plug-Ins. 137

FIGURE 25. Interpreting Timers . 139

FIGURE 26. Interpreting Aborts . 140

FIGURE 27. Interpreting Dynamic Responsibilities Linked to Pools 141

FIGURE 28. Interpreting Dynamic Responsibilities Bound to Slots 142

FIGURE 29. Containment and Plug-Ins. 146

FIGURE 30. Situations with Unrelated Path Segments . 148

FIGURE 31. Channel Constraints and Valid Message Exchanges. 153

FIGURE 32. Structure of the LOTOS Specification . 160

FIGURE 33. Construction of Process User . 162

FIGURE 34. Process Calling Tree for the Agent Component . 163

FIGURE 35. Extract from the Terminating Plug-in Process . 164

FIGURE 36. Binding of a Plug-in to a Stub in Process SO . 165

FIGURE 37. UCM-Based Testing with SPEC-VALU E. 172

FIGURE 38. Partitioning of Acceptance and Rejection Test Groups and Test Cases . . 180

FIGURE 39. Comparison Between val and conf . 183

FIGURE 40. UCM-Oriented Testing Pattern Language. 189

FIGURE 41. Plug-in HandleStubs (Step 1) . 190

FIGURE 42. Plug-in HandleStartPoints (Step 2) . 190

FIGURE 43. Plug-in HandleConstructs (Step 3). 191

FIGURE 44. Reference UCM: Testing Pattern for Alternatives 192

FIGURE 45. Reference UCM: Testing Pattern for Concurrent Paths 195

FIGURE 46. Reference UCM: Testing Pattern for Loops . 197

FIGURE 47. Reference UCM: Testing Pattern for Multiple Start Points 200

FIGURE 48. Reference UCM: Testing Pattern for Single Stubs 207

FIGURE 49. Reference UCM: Testing Pattern for Causally Linked Stubs 210

FIGURE 50. Individual UCM in LOTOS with its LTS, Canonical Tester and Test Purposes215

FIGURE 51. Structural Coverage with SPEC-VALU E . 238

FIGURE 52. UCM and Responsibilities Information for “Initiate Call” Operation . . . 263

FIGURE 53. Partial UCM for INTL. 272

FIGURE 54. Global UCM and INTL Plug-in . 273

FIGURE 55. Construction of the FI Test Suite. 277

FIGURE 56. A Feature Interaction Between TCS and INFB . 280

FIGURE 57. SimplifiedBasicCall UCM for SBC . 287

FIGURE 58. Structure of the LOTOS Specification . 288

FIGURE 59. Self-Coverage of the MAP Specification . 293

FIGURE 60. val vs. conf: Classification of Criteria and Associated Propositions. 379

FIGURE 61. Example Requirements, Canonical Tester, SUTs, and Test Suites 380
xii Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

List of Tables
TABLE 1. UCMs and LOTOS: Two Related and Complementary Notations......................6

TABLE 2. Roles of UCMs and LOTOS in SPEC-VALU E...9

TABLE 3. Summary of LOTOS Syntax and Semantics ...31

TABLE 4. LTS Notation and Definitions ..34

TABLE 5. LOTOS Equivalence Relations..36

TABLE 6. Other Relations for LOTOS...38

TABLE 7. Evaluation of the Selected Specification Techniques62

TABLE 8. Benefits and Drawbacks of Scenarios..65

TABLE 9. Comparison of the Selected Scenario Notations..73

TABLE 10. Benefits and Drawbacks of Protocol Engineering Construction Approaches .76

TABLE 11. Comparison of the Selected Construction Approaches85

TABLE 12. Notation for Test Definitions ...97

TABLE 13. Passes, Fails, and Failsall Relations...97

TABLE 14. On the Partial Automation of Construction Guidelines.................................156

TABLE 15. Notation for Test Purposes...177

TABLE 16. Correspondence Between Templates for Design Patterns and Test Patterns .188

TABLE 17. Truth Table for Multiple Start Points Example (from Figure 47)..................202

TABLE 18. Notation for UCMs Interpreted in LOTOS..214

TABLE 19. Test Goals Extracted from UCMs Through Testing Patterns231

TABLE 20. Further Test Goals for Robustness...232

TABLE 21. Example of Probe Insertion in Pascal ..240

TABLE 22. Simple Probe Insertion in LOTOS...243

TABLE 23. Underlying LTSs..244
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS xiii

TABLE 24. TTS Structural Coverage Results.. 251

TABLE 25. SBC Test Suite and Verdicts ... 290

TABLE 26. TTS Mutants Generated Using Six Categories of Mutation Operators 299

TABLE 27. Mutation Analysis of TTS and its Test Suite .. 302

TABLE 28. Testing Pattern Strategies Used in TTS Test Cases....................................... 303

TABLE 29. Mutation Analysis of GCS, PTM-G, and FI ... 304

TABLE 30. Summary of Experiments with SPEC-VALU E... 306

TABLE 31. Construction Guidelines Usage... 308

TABLE 32. Testing Patterns Usage .. 310

TABLE 33. Summary of the Formal Specifications Maturity (FSM) Model 319
xiv Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

List of Acronyms
Acronym Definition Page
ADT Abstract Data Type 29
ANSI American National Standard Institute 2

ASN.1 Abstract Syntax Notation One 55
BBE Basic Behaviour Expression 242

BC Basic Call 160
BE Behaviour Expression 242

CADP CÆSAR-ALDEBARAN Distribution Platform 42
CCS Calculus of Communicating Systems 29
CEB Communication Entity Block 286

CFSM Communicating Finite State Machine 55
CG Construction Guideline 125

CMM Capability Maturity Model 5
CND Calling Number Delivery 271

CO Call Object 286
COMET Concurrent Object Modelling and Architectural Design Method 325

CPN Coloured Petri Net 57
CRESS Chisel Representation Employing Systematic Specification 84

CREWS Cooperative Requirements Engineering With Scenarios 69
CSP Communicating Sequential Processes 29
CT Canonical Tester 39

CTMF Conformance Testing Methodology and Framework 94
DCT Dynamic Causal Tree 50
DEB Device Entity Block 286
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS xv

EFSM Extended Finite State Machine 55
EIA Electonic Industry Association 17

E-LOTOS Enhanced LOTOS 43
ELUDO Environnement LOTOS de l’Université D’Ottawa 43

ETSI European Telecommunications Standards Institute 2
FDT Formal Description Techniques 5

FI Feature Interaction 12
FIFO First In First Out 159

FMCT Formal Methods in Conformance Testing 93
FSM Finite State Machine 55
FSM Formal Specifications Maturity model 5
GCS Group Communication Server 12

GPRS General Packet Radio Service 12
GSM Global System for Mobile Communication 13

HMSC High-level MSC 56
IDL Interface Description Language 55

IETF Internet Engineering Task Force 2
IN Intelligent Networks 3

INFB IN Freephone Billing 271
INTL IN Teen Line 271

IOFSM Input/Output Finite State Machines 91
IP Internet Protocol 12

ISO International Organization for Standardization 2
ITU International Telecommunications Union 2
LEB Logical Entity Block 286

LIFO Last In First Out 259
LOLA LOtos LAboratory 43

LOTOS Language of Temporal Ordering Specification 5
LQN Layered Queuing Network 115
LSC Life Sequence Chart 71
LTS Labelled Transition System 9

MAP Mobile Application Part protocol 13
MS Mobile Station 263
MS Mutation Score 300

MSC Message Sequence Chart 2
OCL Object Constraint Language 58
OCS Originating Call Screening 117
ODP Open Distributed Processing 3

OMG Object Management Group 52
OMT Object Modeling Technique 81

OO Object-Oriented 114
OS Operating System 272
xvi Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

List of Acronyms
OSI Open System Interconnection 18
PBX Private Branch eXchange 129
PCO Points of Control and Observations 70
PIN Personal Identity Code 271

PLMN Public Land Mobile Network 262
PN Petri Net 57

POTS Plain Old Telephone System 129
PTM-G GPRS Point-to-Multipoint Group Call 12
RATS Requirements Acquisition and spec. for Telecom. Services 72

ROOM Real-Time Object-Oriented Modeling 55
RT-TROOP Real-Time TRaceable Object-Oriented Process 78

SBC Simplified Basic Call 12
SCP Service Control Point 272
SDL Specification and Description Language 55

SECM Systems Engineering Capability Model 17
SPEC-VALU E Specification-Validation Approach with LOTOS and UCMs 7

SUM Synthesized Usage Model 78
SUT Specification Under Test 93
SUT System Under Test 39
TCS Terminating Call Screening 271
TIA Telecommunications Industry Association 2

TMDL Timethread Map Description Language 128
TS Test Suite 94

TTCN Tree and Tabular Combined Notation 55
TTS Tiny Telephone System 11

UCM Use Case Map 5
UCMNav UCM Navigator 28

UCT Use Case Trees 70
UML Unified Modeling Language 58

UORE Usage Oriented Requirements Engineering 78
URN User Requirements Notation 23
V&V Validation and Verification 20
VDM Vienna Development Method 55
XMI XML Metadata Interchange 59
XML eXtensible Markup Language 22
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS xvii

xviii Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

À mes enfants,
Sandra, Jean-Luc, et Mireille,
qui ont dû partager leur père
avec ce livre
durant toute leur vie...

een,
CHAPTER 1

Introduction

Research is to see what everybody else has s
and to think what nobody else has thought.

Albert von Szent-Györgyi,
1937 Nobel Laureate in Medicine
require-

ducers.

nc-

f infor-

ss, and

of com-
1.1 Motivation
The last few decades have resulted in an evolution of software design methodologies towards

ments engineering and high-level design, where the errors are the most costly for software pro

This trend was illustrated (see Figure 1) by Piotr Dembinski at FORTE 95 [103].

FIGURE 1. Evolution Towards Requirements Engineering and System Design

Requirements engineering has traditionally been concerned with investigating the goals, fu

tions, and constraints of (software) systems. It can be broken down into four tasks: elicitation o

mation related to the problem domain; modeling of the problem; analysis of costs, completene

consistency; and validation with the customer. These tasks pave the way to the generation

1. Requirements Specification

2. System Specification and Design

3. Programming Languages

4. Assembly Language

5. Machine Code

1990

1975

1960
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 1

CHAPTER 1 Introduction

 design

eering

relevant

ineering

ectly to

 harmful

s are

-

hitec-

 (ANSI,

sed,

 used in

onent-

details

ence,

dability

ices to

ickly

require-

d

nd

ntation

t focus

h-level

lemen-
plete, consistent, and unambiguous specifications of system behaviour that are well suited for

and implementation activities [120]. When applied to reactive systems, requirements engin

tasks need to focus on behaviour rather than on input/output functions, the latter being more

to sequential systems.

Although several approaches have been suggested to tackle these requirements eng

tasks, many design processes still skip these tasks by jumping from informal requirements dir

component-based specifications and descriptions of systems. For instance, we observed this

situation in the telecommunications area, where complex distributed and reactive system

designed and continuously enhanced with new services (often called features when packaged as mar

ketable units). New telecommunications software products, involving increasingly complex arc

tures and protocols, are constantly being designed in industry and in standardization bodies

ETSI, ISO, ITU, TIA, IETF, etc.). This is particularly true of new services for mobile, Internet-ba

and agent-based communication. In the early stages of many conventional design processes

industry and in standardization bodies, many features are described using (informal) comp

based operational descriptions, tables, and visual notations such as Message Sequence Charts (MSCs)

[208]. Whereas the focus should be on system and functional views, it is found to be on

belonging to a lower level of abstraction, or to later stages of the design process [20][21]. H

many requirements and high-level design decisions are buried in the details, and the understan

of the system goals and functionalities is affected in a way that makes the adaptability of serv

particular legacy architectures very difficult [77]. Also, as these descriptions evolve, they qu

become error-prone and difficult to manage. One well-known error that can be detected at the

ments and design stages is the one of undesirable interactions between services (the so-callefeature

interaction problem [65][85][230]). It is well known that the cost of errors is much lower when fou

at the requirements and design stages and much higher when found during the impleme

[290][335]. In the very competitive area of telecommunications, conventional approaches tha

too soon on details without proper description and understanding of requirements and hig

designs delay the introduction of new customer services and they increase the cost of their imp

tation [178].
2 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Motivation

inable,

nown as

for pre-

nment,

s inter-

l [20].

s on a

s, etc.)

re/ser-

ts.

.

sks to

n-

crip-

ses on

detailed

 in the

ight be

de or

 These

dden

 very

s are

y, con-
There is an urgent need for high-quality documents that are concise, descriptive, mainta

consistent, and understandable by readers with many different needs and perspectives, also k

the stakeholders (architects, engineers, testers, managers, marketing people, etc.). This need

cisely documenting all stages of the design process, which is significant in the industrial enviro

becomes critical in the standardization process (e.g. I.130 [200] or Q.65 [204]), where there i

national scrutiny for which stages are formalized and must undergo formal review and approva

In this context, the following issues should be addressed:

• While designing systems and services in the initial stages, the discussion must focu

level of detail that reflects the level of knowledge (about data, messages, component

available at the time. Irrelevant details tend to obscure the main idea behind a featu

vice/functionality, especially when the latter needs further modifications or refinemen

• Several levels of abstraction similar to viewpoints in Open Distributed Processing (ODP)

[195] and planes in Intelligent Networks (IN) [202] are often mixed in a single description

• A simple visual notation, which abstracts from messages while focusing on the ta

perform and their cause-to-effect (or causal) relations, can help concentrating on the ge

eral control flow while providing for more maintainable and reusable scenario des

tions. The Message Sequence Charts notation is very commonly used, but it focu

components and message exchanges, which come into consideration later at the

design stages. Such a focus can be inappropriate while defining the functionalities

initial stages of the design, when details related to messages and components m

unknown [21].

• There are possibly ambiguities, inconsistencies or undesirable interactions insi

between service descriptions, or between levels of abstraction of a given service.

remain difficult to detect with conventional inspection methods, and often remain hi

until errors are discovered after implementation, at which point corrections can be

costly and system interoperability can be jeopardized. Telecommunication network

heterogeneous in nature (in age, capabilities, and implementation) and, unfortunatel
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 3

CHAPTER 1 Introduction

ped by

ne hand,

s and

ndustry

nario-

eptance,

early

concise,

e under-

y a for-

ects of

d to the

egrating

 inter-

lecom-

 to fill

ation of

 informa-

ere the

proach

tion and

e omit-

ty

able the

os.
temporary open standards do not guarantee interoperability between systems develo

different vendors [19][120].

Over the years, several approaches have been used to provide such documents. On o

proponents of formal methods have claimed to solve the problem by providing unambiguou

mathematical notations and verification techniques, but the penetration of these methods in i

and in standardization bodies remains, unfortunately, low [20][103]. On the other hand, sce

driven approaches, although often less formal, have raised a higher level of interest and acc

mostly because of their intuitive representation of services [215][368]. Their application to

stages of the design and standardization processes raises new hopes for the availability of

descriptive, maintainable, and consistent documents and design specifications that need to b

stood by a variety of readers. A more rigorous approach, driven by scenarios and supported b

mal description technique, would allow the design process to focus on the main functional asp

the system to be specified, and hence better to cope with some of the complex problems relate

design, documentation, validation, and maintenance of systems and standards. However, int

individual scenarios in different ways may result in different kinds of unexpected or undesirable

actions. Appropriate integration techniques will hopefully lead to fewer such interactions.

The goal of this thesis is to provide techniques to describe and design distributed and te

munication systems in a better way, through formal prototyping and validation. It also intends

the gap between the stage where services are described informally and the first formal specific

the system, which can be validated and then used to generate the kind of message sequence

tion currently found in component-based descriptions. The thesis presents a methodology wh

level of scenario abstraction is different from the one used by most popular techniques. The ap

focuses on the very first stage of design and standardization processes, where many informa

design decisions are often lost or hidden behind implementation details. Such details should b

ted at this stage, whereas the general causal flow of responsibilities should be emphasized. Causali

often expresses intentions at the requirements level. A prime goal of this thesis is hence to en

description, formalization, and validation of telecommunications systems using causal scenari
4 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Research Hypothesis

n is a

s, such

unc-

are well

uities

the pre-

 talk at

aturity,

In this

s to the

iformal

t

al

l history

lp argu-

with the

nctional

ther

s gener-

r the

orts
1.2 Research Hypothesis
The process of going from informal functional requirements to a high-level formal specificatio

research subject where much work has been done [20][62][39][103]. However, many challenge

as the issues presented in the previous section, still remain. Formal Description Techniques (FDTs),

such as LOTOS [191], Estelle [192] and SDL [205], were created in order to formally express f

tional requirements, and hence to answer some of these challenges [350]. In particular, FDTs

suited for the precise definition of telecommunication systems. Although they help avoid ambig

and inconsistencies, FDTs often require an inappropriate level of detail and completeness in

liminary stages of standards definitions. Furthermore, as Ed Brinksma mentioned in his invited

FORTE’96, if we were to fit the current FDTs into a Capability Maturity Model (CMM) [175][278]

adapted for formal methods, we would still be at the first level (referred to as initial and sometimes as

anarchy). In fact, a concrete Formal Specifications Maturity model (called the FSM model) was sug-

gested by Fraser and Vaishnavi [138] a year later. This FSM model describes five levels of m

identical to those of CMM: 1) initial, 2) repeatable, 3) defined, 4) managed, and 5) optimized.

model, reviewed in more details in Section 9.1.3, the sole use of an FDT by experts correspond

initial (first) level of maturity.

In this thesis, we present an innovative approach where we combine an FDT to a sem

visual notation for causal scenarios called Use Case Maps (UCMs) [74][76]. UCMs use paths tha

causally link activities (called responsibilities), which can be bound to underlying organization

structures. Leyton observes that the mind assigns to any shape (including functionary) a causa

explaining how the shape was formed [245], and UCMs capture such shapes visually and he

ing about causality at an abstract level. Based on the literature and on previous experiences

notation, we assume that UCMs can be used to represent and integrate important aspects of fu

requirements for telecommunications services [21][22][24][25][77][78]. Integrating UCMs toge

can also help avoiding many undesirable interactions between services before any prototype i

ated. The selected FDT is the formal specification language LOTOS [191], the Language of Temporal

Ordering Specification. LOTOS possesses powerful testing concepts and tools that we use fo

detection of logical and design errors. LOTOS is an appropriate formalism here because it supp
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 5

CHAPTER 1 Introduction

nalysis

the

 will be

for the

t-

rts. We

aturity

g

many UCM concepts directly, and it complements most of UCM’s weak areas related to the a

of systems.

Table 1 summarizes how UCMs and LOTOS can be seen as complementary notations. At

same time, they share common characteristics which make them a good match. This claim

supported in the literature review (Chapter 3).

TABLE 1. UCMs and LOTOS: Two Related and Complementary Notations

The research hypothesis is denoted as follows:

In the process of designing complex telecommunications systems, requirements

described using the Use Case Map causal scenario notation can guide the generation

of LOTOS specifications useful for validating high-level designs systematically through

numerous techniques, including functional testing based on UCMs.

 By supporting the engineering of requirements with tools and techniques developed

engineering of systems (UCMs) and of protocols (LOTOS), this approach aims to help producing be

ter-quality designs and to improve human understanding with reduced time, costs, and effo

also believe that this solution can help to reach higher levels on the Formal Specifications M

Use Case Maps LOTOS

• Causal scenario notation (semi-formal)
• Readable, graphical
• Abstract
• Scalable
• Loose
• Relatively effortless to learn

• Mature formal language
• Unambiguous
• Good theories and tools for:

- Consistency and completeness checkin
- Testing and simulation
- Validation and verification

Both Notations

• Focus on ordering of actions
• Have similar constructs, which simplifies the mapping of UCMs onto LOTOS

• Can handle behaviour descriptions with or without components
• Have been used to describe telecommunications systems in the past
• Have been used to detect feature interactions in the past
6 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

New Approach: SPEC-VALUE

) rather

 for the

sed in

tions

iented

” in

develop-

tions.

hy we

ng of

such an

A

 interest

muni-

itation).

lities that

re then

-

sis) to

ida-
(FSM) model scale, and this assessment will be concentrated in the conclusion (Section 9.1.3

than being spread throughout the core chapters.

1.3 New Approach: S PEC-VALUE

We believe that using UCMs in a scenario-oriented approach represents a judicious choice

description of communicating and reactive systems. They fit well in the design approach propo

this thesis, the Specification-Validation Approach with LOTOS and UCMS (or SPEC-VALUE) methodol-

ogy. SPEC-VALU E aims to improve the maturity of design processes based on formal specifica

by introducing a semiformal description (UCM) between informal requirements and design-or

formal specifications (LOTOS). Such an improvement strategy is called “Transitional-Unassisted

the FSM model (see Table 33 on page 319). We intend to validate the research hypothesis by

ing SPEC-VALU E and by successfully applying it to a wide range of telecommunications applica

Requirements are usually dynamic; they change and are adapted over time. This is w

promote an iterative and incremental approach (in spiral form) that allows rapid prototypi

abstract behaviour and test case generation directly from scenarios. Figure 2 presents

approach and introduces the main concepts behind SPEC-VALU E. Its main cycle is first concerned

with the description of system structures ➀ and scenarios ➁, which can be done independently.

structure, also called component substrate, contains the abstract system components of

(mostly software, but also hardware), as well as some of their relationships (containment, com

cation links, etc.). Services and functionalities are captured as Use Case Maps (scenario elic

These UCMs represent scenarios emphasizing the causal relationships among the responsibi

compose services and large-grain functionalities. The responsibilities defined in the UCMs a

allocated to the components in the selected underlying structure ➂. Each component will have to per

form the responsibilities allocated to it. Next, the scenarios are combined (manually, in this the

synthesize a LOTOS specification ➃, which becomes the executable prototype enabling formal val

tion of the system’s abstract behaviour ➅.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 7

CHAPTER 1 Introduction

al sce-

es are

of

e inte-

ure cor-

rototype

xity of

 that are

ecause

st suite.
Concurrently with these steps, validation test cases can be generated from the individu

narios ➄ to ensure that the specification conforms to each intended functionality. The test cas

described in the same language as the specification, i.e. LOTOS. These tests check the integration

the functionalities, which is currently done manually in our approach. They also check that th

grated behaviour emerging from the collaboration among the components in the system struct

responds to the intended behaviour expressed by the UCMs. Although both the tests and the p

are generated from the same UCMs, discrepancy often result. This is largely due the comple

scenario integration in a component-based prototype and to the numerous design decisions

required at that level. Tests are much simpler to derive and are more likely to be correct. Also, b

UCMs are close to the functional requirements, verifying that the LOTOS specification conforms to

the UCMs is a way of validating the high-level design against the requirements.

FIGURE 2. Specification-Validation Approach with LOTOS and UCMs (SPEC-VALUE)

Probes can be inserted in the specification to measure its structural coverage by the te

Once the specification has been tested against all the test cases, results and statistics ➅ can be

Structure

Results
(Coverage)

UCMs on
Structure

Test Suite
(LOTOS)

Results
(Functions)

Requirements

Allocation

Testing

Scenarios
(UCM)

Test Cases
Generation

Modify if
necessary

Construction

Prototype
(LOTOS)

Add tests if
necessary

➀

➁

➂

➄

➆

➇
➅

➃

Towards
implementation

Towards
implementation

test suite
8 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

New Approach: SPEC-VALUE

ns) are

chable,

s,

s. Such

s, to

ry

el-

n-

applica-

n S

obtained automatically from the execution traces (described as Labelled Transition Systems, or LTSs).

The test results indicate whether logical and design errors (including undesirable interactio

present, while the coverage results determine whether some part of the specification is unrea

or whether the test suite is incomplete ➆. If no problem is detected, then the specification conform

according to the test selection strategy, to the UCMs and hence to the functional requirement

coherence increases substantially the level of confidence in the UCMs, in the LOTOS specification,

and in the validation test suite. Following the verdict, modifications may be required to the UCM

the test cases ➆, to the specification, or even to the requirements ➇. In fact, SPEC-VALU E is an itera-

tive and incremental approach as new functionalities may be integrated at a later time.

Table 2 summarizes, in the context of SPEC-VALU E, the roles of these two complementa

languages. These items will be explained and illustrated throughout the thesis.

TABLE 2. Roles of UCMs and LOTOS in SPEC-VALUE

Further, some of the products generated by SPEC-VALU E can be used in later steps the dev

opment cycle, towards implementation (dashed arrows in Figure 2). In particular, a LOTOS prototype

can be refined into a form suitable for code generation using conventional SPEC-VALU E tools, or else

be used for conformance testing. Similarly, abstract LOTOS test cases can be transformed into co

crete functional test cases for the validation of detailed designs and implementations. These

tions are related issues however belong to development processes with a scope wider thaPEC-

VALU E’s and are therefore not discussed in this thesis.

Use Case Maps LOTOS

• Requirements capture and scenario elicitation in terms
of related causal flows

• Architectural reasoning
• Bridge to design
• Feature interaction avoidance
• Design documentation
• Generation of abstract test cases
• Basis for the generation of abstract prototypes

• Executability and increased formality enabling system
analysis

• Validation of requirements through (functional) testing
• Detection of inconsistencies and other logical errors
• Detection of incompleteness in the

requirements through coverage measurements
• Feature interaction detection
• Production of validated test suites
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 9

CHAPTER 1 Introduction

p-

-

tan-

erlying

enera-

e they

 senior

w the

 incre-

d, and

ototype

pidly.

-

eering

e ver-

unc-

riteria

 subse-
1.4 Thesis Contributions
This thesis offers three main contributions: the SPEC-VALU E methodology, a set of techniques to su

port the SPEC-VALU E cycles, and application of SPEC-VALU E to specify and validate several com

plex telecommunications applications.

1.4.1 Contribution 1: S PEC-VALUE Methodology
We claim that SPEC-VALU E has several benefits, difficult to find all at once in other design and s

dardization processes:

• Separation of the functionalities from the underlying structure: since scenarios are

formalized at a level of abstraction higher than message exchanges, different und

structures or architectures can be evaluated with more flexibility, even before the g

tion of a prototype. The scenarios then become highly reusable entities; for exampl

can be used on different equipment and for different products. Senior managers and

designers can keep control over the general logic of the design without having to kno

characteristics of the latest equipment. This separation helps to cope also with the

mental addition of new functionalities that require modifications to the structure.

• Fast prototyping: once the structure and the scenarios are selected and documente

once the responsibilities have been allocated to their respective components, a pr

(the first formal specification of the system abstract behaviour) can be generated ra

This is mainly due to the ease with which LOTOS constructs can formalize UCM con

structs. Formal prototyping adds rigor to scenario-based requirements and engin

with UCMs because UCMs are semiformal and non-executable.

• Test case generation: scenarios guide the generation of test cases, hence allowing th

ification of the prototype against the UCMs and its validation against the informal f

tional requirements. The test suite can itself be validated using structural coverage c

on the model. It can be reused as a basis for functional or regression test suite in the

quent steps of the development process.
10 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Thesis Contributions

e go

nt peo-

ndable

y tech-

ssage

rs, or

erent

ple

l-

 time)

peci-

loped

CMs

g-ins

 to

s and

 rela-
• Design documentation: the documentation of requirements and designs is done as w

along the development cycle. It is also adapted to the expressive needs of the differe

ple involved in the design process. The part related to scenarios should be understa

by marketing people and service operators. These people do not have to know ever

nical detail described in the subsequent formal specifications (such as me

exchanges), since such details may be important only for engineers, implemento

testers. UCMs allow different specialists to become involved in discussions at diff

levels while sharing a common language and, hopefully, understanding.

More details on the SPEC-VALU E methodology, as well as UCMs for the ongoing exam

(the Tiny Telephone System, or TTS), are provided in Chapter 4.

1.4.2 Contribution 2: Theories and Techniques Supporting S PEC-VALUE

Different theories and techniques are involved in the support of the SPEC-VALU E cycles. Some of

them, such as theories and tools for the testing of LOTOS specifications [279] (step ➅ in Figure 2) and

for the visual editing of UCMs [257] (steps ➀, ➁, and ➂ in Figure 2), already exist. Others are deve

oped in this thesis:

• Guidelines for the construction of LOTOS specifications from UCMs: in his masters

thesis, Amyot provided a mapping between UCM paths (called Timethreads at the

and LOTOS [12]. This mapping is extended in this thesis to cover component-based s

fications, which better reflect the design, and to cover the new UCM constructs deve

over the last six years. Among others, new construction guidelines are provided for U

that have responsibilities bound to components and for UCMs with stubs and plu

(sub-UCMs). These construction guidelines, which relate to step ➃ in Figure 2, are devel-

oped in Chapter 5.

• UCM-L OTOS testing framework: test cases can be derived from UCMs and applied

specifications and implementations in order to check their conformance to the UCM

their validity with respect to the requirements. The thesis presents a new validation
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 11

CHAPTER 1 Introduction

tegies

age in

.

ally

ue

nge of

experi-

ibuted

-

e

phony

ppli-

ure
tion (val) accompanied by a set of testing patterns, which contain test selection stra

for UCMs. These patterns serve as a basis for the evaluation of functional cover

terms of UCMs. This framework, related to step ➄ in Figure 2, is developed in Chapter 6

• Structural coverage for LOTOS: the thesis presents a new technique for automatic

measuring the structural coverage of LOTOS specifications by a test suite. This techniq

includes a tool-supported theory for the insertion of probes in LOTOS specifications and

for coverage measurement. The structural coverage theory, which relates to step➆ in

Figure 2, is developed in Chapter 7.

1.4.3 Contribution 3: Illustrative Experiments Validating S PEC-VALUE

The SPEC-VALU E approach and its supporting techniques have been validated against a wide ra

telecommunications applications. Chapter 8 includes results and lessons learned from six

ments:

• Group Communication Server (GCS): first application of the SPEC-VALU E approach

and techniques in their entirety [15][17]. The GCS is an academic example of a distr

client/server application.

• GPRS Group-Call (PTM-G): application of SPEC-VALU E a mobile communication ser

vice of the General Packet Radio Service (GPRS) standard [16][24]. This work was don

during the first standardization stage of GPRS [128].

• First Feature Interaction Contest (FI): application of SPEC-VALU E targeted towards the

avoidance and the detection of undesirable interactions between a collection of tele

features described in the 1998 Feature Interaction Contest [18][22][161].

• Agent-Based Simplified Basic Call (SBC): application of SPEC-VALU E during a feasi-

bility study for the application of a functional testing process to industrial telephony a

cations based on agents and IP [25][369].

• GSM’s MAP Protocol (MAP) : application of the probe insertion technique to meas

the self-coverage of a conformance test suite generated automatically from a LOTOS speci-
12 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Thesis Outline

 in

tterns.

rs, and

other

dressed

t dis-

experi-

d

re the

ility

onsis-

her.

ystem
fication. The Mobile Application Part (MAP) protocol of the Global System for Mobile

Communication (GSM) standard is used as the example.

• Test Suite Validation: application of mutation analysis to the above specifications

order to validate the various test suites generated using the UCM-oriented testing pa

This experiment discusses the effectiveness of these test suites.

Most of these experiments were done in collaboration with industrial partners, professo

other students. The SPEC-VALU E approach is currently being used by other graduate students in

projects and theses [25][32][381].

1.4.4 Issues Not Addressed in this Thesis
The reader should be warned that Use Case Maps and the SPEC-VALU E methodology are still quite

young and maturing. A consequence is that many interesting and important issues are not ad

in this thesis:

• The use of UCMs for capturing requirements and eliciting system scenarios is no

cussed as such, although many illustrations and guidelines are given in the various

ments.

• The automated synthesis of the LOTOS specification from UCMs, although much desire

by many people, is not a goal of this thesis. Often, automated mappings requi

restricted use of the two notations involved. We take the point of view that flexib

should be allowed in both notations, at the cost of a manual transformation, with c

tency ensured through validation and conformance testing.

• The automated generation of test cases from UCMs is not covered by this thesis eit

• The testing used here is functional (black-box). It is targeted towards the user-s

level. Component or unit testing are not addressed in the thesis.

1.5 Thesis Outline
The rest of the thesis is divided into nine chapters:
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 13

CHAPTER 1 Introduction

well as

ion on

s

rage of

tion of

S

 direc-

d some

e when

 thesis

ronyms
• Chapter 2 presents general definitions of concepts used throughout the thesis as

introductions to Use Case Maps and LOTOS.

• Chapter 3 is the literature review that covers the necessary background informat

causality, on scenarios, on formal techniques, and on validation and verification.

• Chapter 4 details the first steps of SPEC-VALU E methodology and introduces the UCM

for the Tiny Telephone System (TTS), an ongoing example used throughout the thesis.

• Chapter 5 presents the construction guidelines for the generation of LOTOS specifications

from UCMs, illustrated with the TTS example.

• Chapter 6 describes the UCM-based testing framework used to validate LOTOS models,

illustrated with the TTS example.

• Chapter 7 defines the probe insertion technique used to measure the structural cove

LOTOS specifications, illustrated with the TTS example.

• Chapter 8 presents six experiments used to validate the SPEC-VALU E methodology and

techniques. It contains the lessons learned during the specification and the valida

telecommunications systems of various complexity and natures.

• Chapter 9 recalls the contributions of the thesis, compares the SPEC-VALU E methodology

to similar approaches, and attempts to provide new insights in how to integrate PEC-

VALU E to design processes with a wider scope. This chapter concludes with some

tions for future research.

These chapters are meant to be read linearly, although the definitions (Chapter 2) an

sections in the literature review (Chapter 3) can be skipped at first and referred to at a later tim

necessary. Due to the incredibly large number of acronyms and technical terms found in this

(which is typical of telecommunications systems and standards), we included a glossary of ac

on page xv, together with an index on page 385.
14 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

in
s.
e;
or
nt
CHAPTER 2

Basic Definitions and Notations

Description is important because it is the clay
which software developers fashion their work
Methods are, above all, about what to describ
about tools and materials and techniques f
descriptions; and about imposing a cohere
structure on a large description task.

Michael Jackson, 1995
troduc-

and,

s engi-

wn con-

thesis,

 sec-

d in an

ill be

tion,
This chapter provides general definitions of concepts used throughout the thesis as well as in

tions to Use Case Maps and LOTOS.

2.1 Basic Definitions
The SPEC-VALU E methodology combines ideas from many disciplines with different cultures

often, different semantics associated to the same terminology. Computer scientists, system

neers, telecommunications engineers, formalists, and defense organizations often have their o

ventions and standards involving different definitions for the same terms. Throughout the

several definitions will be given when specific terminology problems will be encountered. This

tion however focuses on more basic definitions and concepts, some of which have been use

intuitive way in the introductory chapter. In particular, four disciplines related to this thesis w

outlined, and definitions will be provided for various terms including requirements, specifica

design, process, prototype, validation, and verification.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 15

CHAPTER 2 Basic Definitions and Notations

) and

 soft-

tion,

tensive

4].

ic or

ments

ssified as

require-

ditions

rational-

-func-

 that

stem.

sters, and

ral are

hms or

muni-

ents at

and per-
2.1.1 Four Engineering Disciplines
The SPEC-VALU E methodology involves notations from systems engineering (Use Case Maps

protocol engineering (LOTOS), which are used for the engineering of requirements, systems, and

ware in general. The main characteristics of these disciplines are stated in this section.

Requirements Engineering

Requirements Engineering is the development and use of cost-effective technology for the elicita

specification, and analysis of the stakeholder requirements, which are to be met by software in

systems [308]. Zave provides an interesting classification of the research effort in this area [38

A requirement is something that states that a product will have a given characterist

achieve a given purpose, including what, how well, and under what conditions [122]. Require

can address software and non-software (e.g. hardware) issues. Requirements are usually cla

functional (defining functions of the system under development) or as non-functional (to characterize

expected performance, robustness, usability, maintainability, etc.). For instance, performance

ments describe how well system products must perform certain functions along with the con

under which the functions are performed. Functional requirements are sometimes seen as ope

izations of non-functional requirements. After decades of focus on functional requirements, non

tional requirements are nowadays the topic of much interest [96]. It is important to note

requirements define the problem to be solved by software, not the software that solves it.

 A stakeholder is an individual or organization interested in the success of a product or sy

Stakeholders include customers, users, developers, engineers, managers, manufacturers, te

so on.

The functionalities of telecommunications applications and of reactive systems in gene

expressed more often in terms of system and component behaviour than in terms of algorit

input/output functions. Use Case Maps have proven to be useful for the engineering of telecom

cations systems requirements [22]. They help capturing and illustrating behavioural requirem

the system level. To a lesser extent, non-functional issues related to architecture, robustness
16 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Basic Definitions

 require-

tems

bling

arly in

ystems.

hedule,

nes and

m con-

chnical

ystems

e repre-

 con-

ed com-

[296].

mpo-
formance can also be addressed, quantified and reasoned about [76][324][330]. Representing

ments as visual scenarios, UCMs can also be understood by various stakeholders.

Systems Engineering

Systems Engineering is an interdisciplinary approach enabling the realization of successful sys

[122]. The term system usually refers to the aggregation of end products/technologies and ena

products/technologies that achieves a given purpose.

Systems Engineering focuses on defining customer needs and required functionality e

the development cycle, on documenting requirements, and then on designing and validating s

At the same time, system issues like operations, performance, test, manufacturing, cost, sc

training, support, and disposal are considered. Systems Engineering integrates all the discipli

speciality groups into a team effort forming a structured development process that proceeds fro

cept to production to operation. This engineering field considers both the business and the te

needs of all customers with the goal of providing a quality product that meets the user needs. S

Engineering is still a maturing domain where several standards such as EIA’s Systems Engineering

Capability Model (SECM) [122] are emerging.

Use Case Maps were created as a notation for systems engineering, with a focus on th

sentation of high-level design decisions [74].

Protocol Engineering

Protocol Engineering is the efficient use of trusted components, (formal) methods and tools to

struct an integrated architecture of devices and processes which collaborate to provide desir

munications services while satisfying constraints such as cost, time, reliability and safety

Communication protocols are the rules that govern the communication between the different co

nents within a distributed computer system [53][180].
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 17

CHAPTER 2 Basic Definitions and Notations

 Liu

epre-

ed and

ludes

, proto-

sting,

rmal

li-

ches

 is not

 to the

pects of

 tech-

 engi-

gn. Sev-

t,

a

Models
The first attempt at defining this discipline was done by Piatkowski in 1980 [285], and

provided an early survey in [248]. While the construction of valid, safe, and efficient protocols r

sents the main goal of protocol engineering, the importance of service concept was recogniz

emphasized by Vissers and Logrippo [363]. According to Saleh [316], this engineering field inc

many specific areas such as formal specification of protocols and services, protocol validation

col synthesis (from service specifications), protocol implementation, protocol conformance te

protocol conversion, protocol performance analysis, quality assurance, and so on.

Nowadays, the engineering of communication protocols often involves the use of fo

description techniques such as LOTOS, which was specifically created for the formalization and va

dation of protocols in the Open System Interconnection (OSI) reference model [194].

Software Engineering

Software Engineering is the study and application of systematic, disciplined, quantifiable approa

to the development, operation, and maintenance of software [187][335]. Software Engineering

independent from the three other engineering disciplines. All four share many goals related

quality and the cost of products (usually software) and to the satisfaction of the users. Most as

Software Engineering and their research directions are being discussed in [136].

 SPEC-VALU E intends to bring these areas closer together by combining notations and

niques (UCMs and LOTOS) from two of these areas and by using them as a bridge between the

neering of requirements, systems, protocols, and software.

2.1.2 Processes, Formal Methods, Specifications and Designs
The thesis makes extensive use of terms like process, formal method, specification, and desi

eral definitions, which may vary depending on the context, are provided below.

In a general (system engineering) context, a process is a set of interrelated activities tha

together, transform inputs into outputs [122]1. The process maturity represents the extent to which

process is explicitly documented, managed, measured, controlled, and continually improved.
18 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Basic Definitions

ls of

 the use

uire-

 sets of

to other

e proce-

ation is

 split

),

 the

d

s these

 and

creed by

ications

ct), com-

roduce,

-

like CMM [278], SECM [122], and FSM [138] can help measuring this maturity. One of the goa

SPEC-VALU E is to improve the maturity of processes to which it is integrated.

Many protocol engineering and software engineering development processes suggest

of formal methods to improve their maturity. Formal methods are techniques for expressing req

ments in a manner that enables the requirements to be studied mathematically. They allow

requirements/descriptions to be examined for completeness, consistency, and equivalency

sets of requirements/descriptions.

Formal methods are used to produce formal specifications. A specification is a document that

clearly and accurately describes requirements and other characteristics for a product and th

dures to be used to determine that the product satisfies these requirements [122]. A specific

qualified as formal when it is written using a formal language [241]. Specifications are usually

into two categories: requirements specifications, which focus on the problem domain (the “what”

and software specifications, which focus on the description of the design in conformance with

requirements specification (the “how”). Specifications describe user functionalities, also calleser-

vices. When services are packaged into marketable units, the telecommunication industry call

services features.

Some specifications become standards, as they are documents that establish engineering

technical requirements for processes, procedures, practices and methods that have been de

authority or adopted by consensus. Guidelines for the creation of software and system specif

are provided by the IEEE in [188][189].

Specifications are used to construct more detailed descriptions called designs. Typically, a

design includes an operational concept (how users are expected or intended to use the produ

ponents and their relationships, and sometimes decisions about the processes that will p

deploy, and support it. We often distinguish between high-level designs, which focus on system func

1. However, in terms of LOTOS, a process is a behavioural abstraction that can be instantiated.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 19

CHAPTER 2 Basic Definitions and Notations

ls

equire-

of view,

c-

-

 data,

 of the

ification,

in cate-

are met

l prod-

re we

 of the

cifica-

ining

”.

n

s. A

 a new

nstrat-
tionalities and end-to-end scenarios, and low-level designs, where detailed issues related to protoco

and algorithms are handled. Designs have to be valid with respect to their specification and r

ments. Scenarios can be used to describe system functionalities, often from the user’s point

and to capture several aspects of requirements and designs.

Designs make reference to the system architecture, representing the logical or physical stru

ture that specifies interfaces and services provided by the system components used to accomplish sys

tem functionality. System components may be personnel, hardware, software, facilities,

materiel, services, or techniques which satisfy one or more requirements in the lowest levels

architecture [122].

2.1.3 Validation and Verification
A product needs to be checked against its design, which needs to be checked against the spec

which needs to be checked against the requirements. These activities are divided into two ma

gories, namely validation and verification (V&V).

Validation is an activity that ensures that the stakeholders’ true needs and expectations

by the end product. In other words, validation is the determination of the correctness of the fina

uct with respect to the user’s needs (hopefully captured correctly by the requirements), or “A

building the right product?”. This concept can be extended to the validation of the design and

specification.

Verification is an activity that ensures that the selected design solution satisfies the spe

tion, and that the end product satisfies the design. Ultimately, verification is about determ

whether the product fulfills the requirements established, or “Are we building the system right?

V&V is usually applied to a product or to a model, the latter being a simplified representatio

of some aspect of the real world. Specifications and designs are models, and so are prototypepro-

totype is a model of a product built or constructed for the purpose of: assessing the feasibility of

or unfamiliar technology; assessing or mitigating technical risk; validating requirements; demo
20 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Basic Definitions

 prod-

o the

s that

 can be

ple like

-

ults are

 all of its

 thesis),

o a sys-

m a

ce,

inputs.

e.

 way

derived

nward

parent

l defi-
ing critical features; qualifying a product; qualifying a process; characterizing performance or

uct features; or elucidating physical principles [122]. A prototype normally will not be identical t

final product in all its characteristics. Rather, it will correspond to it only for the characteristic

motivated its construction. Executable specifications, designs and other mathematical models

used to prototype software [275]. This idea was pioneered nearly two decades ago by peo

Davis [109] and Balzer et al [41]. In this thesis, LOTOS specifications will be used to prototype tele

communications systems.

Testing is one of the most pragmatic and most popular V&V technique. A test is an activity in

which a system, product, prototype, or a component is used under specified conditions, the res

observed or recorded, and an evaluation is made as to whether it adequately meets some or

requirements. Tests are used for different purposes, such as validation testing (the focus of this

unit or component testing, and regression testing, which is used to determine that a change t

tem component has not adversely affected functionality, reliability or performance.

One way of reducing the required V&V efforts is to construct a model or a product fro

more abstract model. The synthesis is the translation of input requirements (including performan

function, and interface) into possible solutions (resources and techniques) satisfying those

Synthesis does not have to be automatic. Interactive and incremental synthesis is also possibl

Transitioning from one model to the other and performing V&V on them demand some

of tracing related elements among the models. This particularity, called traceability, is the ability to

trace the heritage and lineage of a requirement. Traceability shows upward compliance of

requirements/specifications/designs/products with higher level parent requirements and dow

completeness of derived requirements/specifications/designs/products from higher level

requirements.

The following sections, together with the other chapters, will make use of all the genera

nitions discussed so far. Others will be provided when required.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 21

CHAPTER 2 Basic Definitions and Notations

 famil-

and the

 of the

 finally

erence

.

detailed

 partial

nts) to

 above

ecessarily

ectural

alities,

improve

sed on

 to

, and

ications
2.2 Introduction to Use Case Maps
This introduction is intended to provide an overview of Use Case Maps to people who want to

iarize themselves with this notation. This section presents the philosophy behind the notation

information necessary to use it. Then, the basic path notation is introduced, followed by part

component notation used in this thesis. Advanced notational concepts are then outlined, and

supporting tools are discussed. A summary of the UCM notation is provided as a quick ref

guide in Appendix A:

2.2.1 Philosophy of UCMs
The Use Case Map notation aims to link behaviour and structure in an explicit and visual wayUCM

paths are first-class architectural entities that describe causal relationships between responsibilities,

which can be bound to underlying organizational structures of abstract components [76]. These paths

represent scenarios that intend to bridge the gap between system requirements and

design [30]. The relationships are said to be causal because they involve concurrency and

ordering of activities and because they link causes (e.g., preconditions and triggering eve

effects (e.g. postconditions and resulting events).

With UCMs, scenarios are represented in terms of abstract responsibilities expressed

the level of messages exchanged between components. Hence, these scenarios are not n

bound to a specific organizational structure. This feature promotes the evaluation of archit

alternatives early in the design process. UCMs provide a bird's-eye view of system function

they allow for dynamic behaviour and structures to be represented and evaluated, and they

the level of reusability of scenarios [24].

Use Case Maps are primarily visual, but a formal textual representation also exists. Ba

the eXtensible Markup Language (XML) 1.0 standard [379], this representation allows for tools

generate UCMs or use them for further processing and analysis [23].

The UCM notation was developed at Carleton University by Professor Buhr and his team

it has been used for the description and the understanding of a wide range of complex appl
22 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Introduction to Use Case Maps

ftware

om all

quire-

ailable.

rpose,

ver, the

der

it also

ssages are

onent.

en-

and use

se, the

 include

quired,

rnatives,

nd for

e of dif-
(including telecommunication systems) since 1992. UCMs have raised a lot of interest in the so

community, which led to the creation of a user group in March 1999, with over 200 members fr

continents [359]. UCMs are also being considered as a notation for describing functional re

ments in ITU-T’s upcoming standard, the User Requirements Notation (URN) [28][82][84][203].

2.2.2 Information Needed to Construct UCMs
UCMs can be derived from informal requirements, or from use cases [212] when they are av

Responsibilities need to be stated or be inferred from these requirements. For illustration pu

separate UCMs can be created for individual features, or even for individual scenarios. Howe

strength of this notation mainly resides in the integration of scenarios.

It is important to clearly define the interface between the environment and the system un

description. This interface will lead to the start points and end points of the UCM paths, and

corresponds to the messages exchanged between the system and its environment. These me

further refined in models for detailed design (e.g. with Message Sequence Charts).

UCM can be composed of paths where responsibilities are not bound to any comp

These scenarios, called unbound UCMs, are useful as they describe system functionalities indep

dently of the architecture. However, because designers are often the people who create

UCMs, some design information such as internal components may be relevant. In this ca

description of these components, their nature, and some relationships (e.g. components that

sub-components) are required. Communication links between components are usually not re

but they can be added.

2.2.3 Basic UCM Path Notation
The UCM notation is mainly composed of path elements, and also of components. The basic path

notation addresses simple operators for causally linking responsibilities in sequences, as alte

and in parallel. More advanced operators can be used for structuring UCMs hierarchically a

representing exceptional scenarios and dynamic behaviour (Section 2.2.5). Components can b

ferent natures, allowing for richer description of some entities in a system (Section 2.2.4).
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 23

CHAPTER 2 Basic Definitions and Notations

pon-

e, the

sibility.

ostcon-

rt point

igure 4).

)

e brack-

n a
ase

/

al
 b
Figure 3 illustrates four basic notation elements of UCMs: start points, responsibilities, end

points, and components. In this section, simple boxes are used as components.

FIGURE 3. Basic Notation and Interpretation

The wiggly lines are paths that connect start points, responsibilities, and end points. A res

sibility is said to be bound to a component when the cross is inside the component. In this cas

component is responsible to perform the action, task, or function represented by the respon

Start points may have preconditions attached, while responsibilities and end points can have p

ditions. We call route a scenario that traverses paths and associated responsibilities from a sta

to an end point.

Alternatives and shared segments of routes are represented as overlapping paths (F

An OR-join merges two (or more) overlapping paths while an OR-fork splits a path into two (or more

alternatives. Alternatives may be guarded by conditions represented as labels between squar

ets.

FIGURE 4. Shared Routes and OR-Forks/Joins

Imagine tracing a path through a system of objects to explai
causal sequence, leaving behind a visual signature. Use C
Maps capture such sequences. They are composed of:

• start points (filled circles representing preconditions
and/or triggering causes)

• causal chains of responsibilities (crosses, representing
actions, tasks, or functions to be performed)

• and end points (bars representing postconditions and
or resulting effects).

The responsibilities can be bound to components, which are
the entities or objects composing the system.

Start
Point End

Point

Components

Responsibilities

(a) OR-join
(c) Permissible routes

assumed identified

Indicate routes that share common caus
segments. alternatives may be identifiedy
labels or by conditions ([guards])(b) OR-fork

[yes]

[no]
24 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Introduction to Use Case Maps

 vertical

s

 relevant

UCM

 and

is a
Concurrent and synchronized segments of routes are represented through the use of a

bar (Figure 5). An AND-join synchronizes two (or more) paths together while an AND-fork splits a

path into two (or more) concurrent segments. Cardinalities (N:M) are not required to be written a

they usually result from the number of incoming/outgoing path segments.

FIGURE 5. Concurrent Routes with AND-Forks/Joins, and Some Variations

2.2.4 UCM Component Notation
Components can be of different types and can possess different attributes. Although many component

notations could be used underneath UCM paths, Buhr suggests several types and attributes

for complex systems (real-time, object-oriented, dynamic, agent-based, etc.) [74][76]. The

Quick Reference Guide (Appendix A: — A8 and A9) illustrates all the component types

attributes in Buhr's notation. Some of the most interesting ones are illustrated in Figure 6.

FIGURE 6. Dynamic Components and Dynamic Responsibilities

Rectangles are called teams and are allowed to contain components of any type. This

default/generic component used in most UCMs. Parallelograms are active components (processes),

which usually imply a control thread, whereas rounded rectangles are passive components (objects)

N:1

(b) AND-join

1:N

(a) AND-fork

Fork-join

1:N N:1

1:N

Fork along a

1:N N:1

Rendezvous Synchronize

N:1 1:N N:N

single path
Fork-join along a

single path

N:1

Join along a
single path

N:M

(c) Generic version

..
.

...
Slot

Team

+

Pool

create

put get

move

Process
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 25

CHAPTER 2 Basic Definitions and Notations

-

amic

ing and

abling

g-ins,

nce,

hough
which are usually controlled. Dashed components are called slots and may be populated with differ

ent component instances at different times. Slots are containers for dynamic components (DC) in exe-

cution, while pools are containers for DCs that are not executing (they act as data). Dyn

components can be created, moved, stored, and deleted with dynamic responsibilities (see Appendix

A: — A10) such as create, put, get, and move in Figure 6.

2.2.5 Advanced UCM Path Notation
When maps become too complex to be represented as one single UCM, a mechanism for defin

structuring sub-maps becomes necessary. Top-level UCMs, called root maps, can include containers

(called stubs) for sub-maps (called plug-ins). Stubs are of two kinds (Figure 7):

FIGURE 7. Stubs and Plug-ins

• Static stubs: represented as plain diamonds, they contain only one plug-in, hence en

hierarchical decomposition of complex maps.

• Dynamic stubs: represented as dashed diamonds, they may contain several plu

whose selection can be determined at run-time according to a selection policy (often

described with preconditions). It is also possible to select multiple plug-ins at o

sequentially or in parallel.

Path segments coming in and going out of stubs can be identified on the root map. Alt

they are not required to be shown visually, their presence helps to achieve unambiguous bindings of

plug-ins to stubs. A binding is a set of pairs <stub_incoming_segment, plug-in_start_point> and

<stub_outgoing_segment, plug-in_end_point>. A dynamic stub has one such binding per plug-in.

(a) Static stubs have only one plug-in (sub-UCM) (b) Dynamic stubs may have multiple plug-ins
26 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Introduction to Use Case Maps

ure 8).

 (or a

n

 also

es.

een
Different paths may interact with each other synchronously or asynchronously (see Fig

Synchronous interactions are shown by having the end point of one path touching the start point

waiting place) of another path. A path touching the start point (or a waiting place) represents aasyn-

chronous interaction.

FIGURE 8. Path Interactions

Other notational elements include (Figure 9):

• Timer : special waiting place triggered by the timely arrival of a specific event. It can

enable a time-out path when this event does not arrive in time.

• Abort : a path can terminate the progression of another causal chain of responsibiliti

• Failure point: indicates potential failure points on a path.

• Shared responsibility: represents a complex activity that involves negotiation betw

two or more components.

FIGURE 9. Timers, Aborts, Failures, and Shared Responsibilities

Interacting paths.

Effect is of one longer path

R1 R2

R1 R2

with the constituent segments
joined end to end.

(a) Synchronous interaction

Interacting paths.

Effect is similar to one path

R1 R3

R1 R2

splitting into two concurrent
segments.

(b) Asynchronous interaction

R3

R2

(c) Ground symbols indicate possible path failure points

timeout path

waiting path

clearing path

continuation

(a) Timers may be set, reset, and timed-out

R1

R2

(b) Top path aborts bottom path after R1

R R

(d) R is a shared responsibility
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 27

CHAPTER 2 Basic Definitions and Notations

model-

h anno-

bust

t nota-

ted,

 Com-

nerates

. This

eration

How-

rmation

 fol-

ns

ed by

n-

ys the
Finally, the notation supports extensions specific to agent systems and to performance

ling [283][324][325]. These extensions are not addressed in this thesis, but their respective pat

tations are included in the quick reference guide (Appendix A: — A11).

2.2.6 UCM Tools
There currently exists only one tool that supports the UCM notation and the XML format: the UCM

Navigator (UCMNAV) [257]. Although still a prototype under development, this tool is already ro

enough for the creation, navigation, and maintenance of UCMs. Both the path and componen

tions are fully supported. UCMNAV ensures the syntactical correctness of the UCMs manipula

generates XML descriptions, exports UCMs in different formats (e.g. Encapsulated Postcript,

puter Graphics Metafile, Scalable Vector Graphics, and Maker Interchange Format), and ge

reports. More recently, support for simple data model and scenario definitions was included

enables the highlight of specific scenario paths in a collection of UCMs and the automated gen

of MSCs [258].

Alternatively, any drawing package or word processors could be used to draw UCMs.

ever, syntactic errors may be introduced in the UCMs, and no XML code is generated.

2.3 Introduction to L OTOS

This introduction is intended to provide an overview of LOTOS to the reader not familiar with this

specification language. This section presents the philosophy behind the language and the info

necessary to create specifications. LOTOS operators and abstract data types are shortly reviewed,

lowed by an overview of LOTOS’ underlying model, which will be used to define various relatio

between specifications. Main validation and verification techniques are then presented, follow

an enumeration of several supporting tools.

2.3.1 Philosophy of L OTOS

LOTOS, the Language of Temporal Ordering Specification, is an algebraic specification language sta

dardized by ISO [56][191]. It was especially developed for the formal description of the Open Systems

Interconnection (OSI) architecture (interfaces, services, and protocols) [194], although nowada
28 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Introduction to LOTOS

ystem’s

s

uch

ntia-

d

nd

ecking,

ming

 use-

yle uses

 compo-

ture, or

of

express

needed.

onent

nd there
language is used to describe distributed and concurrent systems in general. In LOTOS, the specifier

describes a system by defining the temporal relations among the actions that constitute the s

externally observable behaviour. The main influences for the behaviour part of LOTOS were Milner’s

Calculus of Communicating Systems (CCS) [260] and Hoare’s Communicating Sequential Processe

(CSP) [177]. LOTOS behaviour expressions are built from elementary actions by using operators s

as action prefix, choice, parallel composition, multiway synchronization, hiding, process insta

tion, and a few others. Data abstractions are specified with Abstract Data Types (ADT), based on

Ehrig and Mahr’s ACT ONE language [121]. LOTOS is suitable for the integration of behaviour an

structure in a unique executable model. LOTOS allows the use of many tool-supported validation a

verification techniques such as simulation, testing, expansion, equivalence checking, model ch

and goal-oriented execution [57].

2.3.2 Information Needed to Construct L OTOS Specifications
LOTOS can specify the temporal ordering of system actions from very little information. Assu

that actions and the necessary data types can be determined, a number of styles were defined accord-

ing to the additional information available to the specifier [364]. The constraint-oriented style is

ful when local and global behavioural constraints are representable. The resource-oriented st

the architectural structure as a starting point. The state-oriented style focuses on system and

nent states, and the monolithic style is used when no information about constraints, architec

states is available, resulting in abstract specifications.

Use Case Maps can represent a good starting point for the generation of a LOTOS specifica-

tion, because they capture actions and their causal ordering. LOTOS can specify abstract sequences

actions without having to say which entities can generate them. Hence it can be used to

unbound UCMs. However if it is desired to represent bound UCMs faithfully in a LOTOS specifica-

tion, then information about architectural elements, interfaces, and message parameters is

The LOTOS resource-oriented style can support the description of bound UCMs, but inter-comp

causal flows in the UCMs need to be refined as messages or inter-process synchronizations, a

are usually many ways to do so. This novel aspect will be discussed further in Chapter 5.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 29

CHAPTER 2 Basic Definitions and Notations

n

te name,

si-

 sense

the hid-

rmed as
2.3.3 LOTOS Operators
In LOTOS, systems and components are described in terms of processes. A LOTOS process is viewed

as a black box interacting with its environment via its observable gates (Figure 10). Its internal actions

are unobservable by the environment. A behaviour expression is built by combining LOTOS actions by

means of operators and possibly other behaviour expressions.

The basic element of a behaviour expression is the action which represents synchronizatio

between processes, between a process and its environment, or both. An action consists of a ga

a list (possibly empty) of value experiment offers (value offers or interaction parameters), and pos

bly a predicate that imposes conditions on the event to be accepted. Actions are atomic in the

that they occur instantaneously, without consuming time.

FIGURE 10. Representation of a System Specified in LOTOS

In Figure 10, the system is composed of two processes that interact with each other on

den gate G5 (interaction point). In LOTOS terms, we say that Process1 is synchronized with

Process2 on G5. LOTOS synchronization is based on a multi-way rendezvous concept.

There are three basic behaviour expressions, and more complex expressions can be fo

shown in Table 3, where a is an action, Bi are behaviour expressions, gi are gates, v i are values, and

P is a predicate.

Process1 Process2 G1

 G2 G3

G4 G5

System

Environment

specification System [G1, G2, G3, G4] : noexit
behaviour

hide G5 in
Process1[G1, G2, G5]
|[G5]|
Process2[G3, G4, G5]

where
process Process1[G1, G2, G5] : noexit :=

(* ... Behaviour of Process1 *)
endproc
process Process2[G3, G4, G5] : noexit :=

(* ... Behaviour of Process2 *)
endproc

endspec
30 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Introduction to LOTOS

t there is

l-

y).

r

The
uc-
TABLE 3. Summary of LOTOS Syntax and Semantics

More operators exist (e.g. generalized choice (different from []) and par) but they can often be

avoided and they are not used in this thesis.

2.3.4 LOTOS Abstract Data Types
LOTOS models data by an abstract equational notation. There are no predefined data types, bu

a standardized library of commonly required data types. In LOTOS, every data type is a set of data va

ues and operations that require to be defined.

Name Behaviour Expression Definition

B
as

ic
 B

eh
av

io
ur

E
xp

re
ss

io
ns

Inaction stop Cannot engage in any interaction (deadlock).

Successful
Termination

exit(v1,...,vn) Terminates successfully (and produces a δ action). Return values
may optionally be specified.

Process
Instantiation

ProcName [g1,...,gn] Creates an instance of a process ProcName.

B
as

ic
O

pe
ra

to
rs

Action Prefix a; B Prefixes a behaviour expression B with an action a.

Choice B1 [] B2 Offers a choice between two behaviour expressions.

Enabling B1 >> B2 Sequences two behaviour expressions. B1 has to exit for B2 to be
executed. Values may be passed through the construct:
B1 >> accept parameters in B2

Disabling B1 [> B2 B1 can be disrupted by B2 during normal functioning.

C
om

po
si

tio
n Parallel

Composition
B1 |[g1,...,gn]| B2 B1 and B2 behave independently, except for the gates g1,...,gn where

B1 and B2 must synchronize.

Interleaving B1 ||| B2 B1 and B2 behave independently (the synchronization set is empt

Full Synchro-
nization

B1 || B2 B1 and B2 are synchronized on all their gates.

O
th

er
 O

pe
ra

to
rs

Hiding hide g1,...,gn in B Hides actions g1,...,gn, which become internal and can no longe
synchronize with the environment.

Guarded
Behaviour

[P] -> B B can be executed if P is true.

Local
Definition

let x:s = E in B Substitutes a value expression (E) by a value identifier (x) of sort s
in B.

Process
Definition

process ProcName
 [g1,...,gn] (parameters)
 : funct := B
endproc

Creates a process definition with formal gates and parameters.
functionality funct indicates whether the process can terminate s
cessfully (exit, optionally with values) or not (noexit). Can be
instantiated as a basic behaviour expression.

Comment (* This is a comment *) Comment skipped by the parsers.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 31

CHAPTER 2 Basic Definitions and Notations

-

same or

. They

ns

alized).

n-

rate

nts that
LOTOS sorts are distinct sets of data values. The concept of sort in LOTOS corresponds to the

concept of type in many programming languages. LOTOS operations correspond to functions and pro

cedures to manipulate objects. By means of operations it is possible to combine values of the

different sorts into aggregate values (e.g. a record), or establish relations between them. LOTOS equa-

tions state properties that must be satisfied by (any implementation of) the objects of the type

are often interpreted as rewrite rules by tools. LOTOS types package sorts, operations, and equatio

together. Types can be aggregated, inherited, renamed, defined formally and instantiated (actu

As an illustrative example, the type Boolean can be defined as:

type Boolean is
 sorts Bool
 opns
 true, false : --> Bool (* Constructors *)
 not : Bool --> Bool
 eqns
 ofsort Bool
 not (true) = false;
 not (false) = true;
endtype (* Boolean *)

In LOTOS, data can be associated with actions in two ways: !value , which means value offer,

and ?variable:type , meaning value query. These can be combined in actions. For example,

G5 !3 ?answer:Bool

denotes an action where on gate G5, the value 3 is offered, and a value for answer (of type Bool) is

queried simultaneously. Offers and queries are both experiments. Selection predicates can be optio

ally added to value queries, as in:

G5 ?n:Integer [n > 3]

meaning that the acceptable values for the integer n are greater than 3. These examples demonst

the abstract nature of the language, since it allows to express in a single action system eve

could be quite complex to implement.
32 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Introduction to LOTOS

ing the

ing one

Ss are

o

fining

ection
2.3.5 Labelled Transitions Systems and Underlying Semantics
The underlying model of LOTOS is based on the concept of labelled transition systems (LTSs). An

LTS is a generalization of a finite state machine that provides a convenient way for express

step-by-step operational semantics of behaviour expressions. The latter evolve by execut

action at a time, selected from their alphabet set. The following notations and definitions for LT

excerpted from [69], [150], and [242].

Definition 2.1: A labelled transition system is a 4-tuple LTS = <S, s0, L, T>,

where:

• S is a (finite) non-empty set of states;

• s0 ∈ S is the initial state;

• L is a (finite) set of observable actions; and

• T = {a→ ⊆ S × Sa ∈ L’ , where L’ = L ∪ { i}}, is the set of transi-

tions, which are binary relations on S. If s1 a→ s2 such that s1, s2 ∈ S

then <s1, s2> ∈ a→. i represents a hidden internal action.

Note that a→ can be interpreted both as a set (over S × S) and as a relationship between tw

states. The notation and definitions in Table 4 are widely used for interpreting LTSs and for de

different conformance and equivalence relations, some of which will be introduced in the next s

and then used in Chapter 6:
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 33

CHAPTER 2 Basic Definitions and Notations

ll

.

le
TABLE 4. LTS Notation and Definitions

The operational semantics of LOTOS is expressed in terms of inference rules acting on an

underlying LTS. For instance, the simplified inference rules for the choice operator are:

The first inference rule means that if the behaviour expression B1 can perform a1 and then behave like

B1’ , then B1 [] B2 can add a transition a1 to the LTS and then behave like B1’ (the B2 alternative is

dropped). The rule on the right is symmetrical. The LOTOS standard provides inference rules for a

the operators in the language [191].

LTS Notation Definitions

L = {a, a1, a2, ..., am} The alphabet of observable actions. We define i to be the internal action (often
named τ in the literature [153]), and δ to be the successful termination action

B a→ B’ After executing the observable action a, the behaviour expression B is trans-
formed into another behaviour expression B’.

B  ik→ B’ After executing a sequence of k hidden actions, the behaviour expression B is
transformed into another behaviour expression B’.

B a1a2→ B’ ∃ B’’ such that B a1→ B’’ ∧ B’’ a2→ B’.

B =a⇒ B’
B is transformed into another behaviour expression B’ by executing zero or
more internal actions, followed by the observable action a, then zero or more
internal actions. Formally, ∃ k0, k1 ∈ N | B  ik0 a ik1→ B’.

B =a⇒ B may accept the action a. Formally, ∃ B’ | B =a⇒ B’.

B ≠a⇒ ¬(B =a⇒), that is, B must refuse the action a.

B =σ⇒ B’
B is transformed into another behaviour expression B’ by executing a
sequence of observable actions. Formally, if σ = a1, a2, ... an then
∃ k0, k1, ..., kn ∈ N | B  ik0 a1 i

k1 a2 … an i
kn → B’.

B =σ⇒ ∃ B’ | B =σ⇒ B’.

B after σ The set {B’ | B =σ⇒ B’}, i.e. the set of all behaviour expressions reachab
from B after executing the sequence σ.

Tr(B) The trace set of B, defined as {σ | B =σ⇒}. Note that Tr(B) ⊆ L*.

B1 a1→ B1’

B1 [] B2 a1→ B1’

B2 a2→ B2’

B1 [] B2 a2→ B2’

if ...

then ...
Notation:
34 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Introduction to LOTOS

e

xam-

1, with

about

n, verifi-

ions

ch are

ctions,
LTSs can also be represented visually as graphs. Often, LOTOS behaviour expressions ar

shown as behaviour trees, which represent unfolded LTSs (i.e. where loops are expanded). For e

ple, a behaviour expression for a simple telephone system is given on the left side of Figure 1

the corresponding behaviour tree (LTS) on the right side.

FIGURE 11. A Behaviour Expression and its LTS as a Behaviour Tree

Labelled transition systems will help illustrating behaviour expressions and reasoning

them throughout the thesis, particularly when the construction and validation of LOTOS specifications

from Use Case Maps will be discussed.

2.3.6 Equivalences and Other Relations
Multiple equivalence, ordering, and other relations have been defined for LOTOS. They are usually

defined in terms of the underlying semantic model (LTS) rather than with the LOTOS syntax itself.

These relations are of the outmost importance because they are at the heart of many validatio

cation, simplification, and implementation techniques for LOTOS. In this section, we will distinguish

between equivalence relations (which are symmetric, reflective, and transitive) and other relat

(which are not symmetric and may or may not be transitive).

Equivalence Relations

The LOTOS theory distinguishes between several types of equivalence relations, many of whi

inspired from CCS [260]. Depending on the level of details considered (observable or hidden a

OffHook;
Dial;
(
 (
 Talk; stop
 []
 Busy; stop
)
 [>
 OnHook; exit
)

Talk Busy

OnHook OnHook

Dial

OffHook

OnHook

δ δ

δ

Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 35

CHAPTER 2 Basic Definitions and Notations

ot be

ongest,

 behav-

.

 [

like
 that

non-

posed
 may

s

branching structure, non-determinism, etc.), two specifications (i.e. two LTSs) may or may n

equivalent. Table 5 contains some of the most interesting equivalence relations, from the str

which distinguishes the most, to the weakest, which distinguishes the least. Assume that two

iour expressions S1 and S2 are compared:

TABLE 5. LOTOS Equivalence Relations

Relations Definitions

Equality:
S1 = S2

S1 and S2 are equal (S1 = S2) iff their respective LTSs are isomorphic (i.e
the LTSs are the same).

Strong bisimulation:
S1 ∼ S2

Each immediate successor (next action, visible or not) of S1 must be equiva-
lent to some immediate successor of S2, and conversely. Formally:

If S1 ∼ S2 then, for all a ∈ L ∪ { i, δ}
(i) whenever S1a→S1’ then ∃ S2’ | S2a→S2’ and S1’ ∼ S2’
(ii) whenever S2a→S2’ then ∃ S1’ | S1a→S1’ and S1’ ∼ S2’

Congruence:
S1 ≈c S2

A context C[•] is a behaviour expression with a formal process parameter•]
called a hole. If C[•] is a context and B is a behaviour expression, then C[B] is
the behaviour expression that is the result of replacing the • occurrences by B.
S1 and S2 are congruent (S1 ≈c S2) iff, for all context C[•], S1 ≈c S2 implies
C[S1] ≈c C[S2]. Congruent behaviour expressions can be interchanged (
substitutable components) in any context and lead to global specifications
are observationally equivalent.

Weak bisimulation:
S1 ≈ S2

Whereas strong bisimulation considers i like an observable action, weak
bisimulation abstracts from internal actions, except when they cause
determinism in alternatives. We say that S1 and S2 are weak bisimulation
equivalent (S1 ≈ S2) iff for all sequences σ ∈ L* , each σ-descendant of S1 is
equivalent to some σ-descendant of S2, and conversely. Formally:

If S1 ≈ S2 then, for all a ∈ L ∪ {δ}
(i) whenever S1=a⇒S1’ then ∃ S2’ | S2=a⇒S2’ and S1’ ≈ S2’
(ii) whenever S2=a⇒S2’ then ∃ S1’ | S1=a⇒S1’ and S1’ ≈ S2’

This relation is also called observational equivalence.

Testing equivalence:
S1 te S2

S1 and S2 are testing equivalent (S1 te S2) iff they cannot be distinguished by
any test case. A test case is a behaviour expression which, when com
with a specification, leads to one of three possible verdicts (must pass,
pass, reject). A more formal definition of te will be given later.

Trace equivalence:
S1 tr S2

S1 and S2 are trace equivalent (S1 tr S2) iff they can produce the same trace
of observable actions. Formally, S1 tr S2 iff Tr (S1) = Tr (S2).
36 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Introduction to LOTOS

 The

ing

-

.

equire

 [191],

ewhat

tion

ching

quiva-

tions for

ngruent

quiva-

he LTS

elations

bstrac-

used to

Leduc
Suppose that SPECS is the set of all possible behaviour expressions (or specifications).

relations in Table 5 are all defined over SPECS × SPECS, and hence can be compared. A strict order

exist among these relations: = ⊂ ∼ ⊂ ≈c ⊂ ≈ ⊂ te ⊂ tr. For example, if S1 ≈c S2 holds, then we can con

clude that S1 ≈ S2, S1 te S2, and S1 tr S2, but S1 ∼ S2 may not hold (we do not know with certainty)

The strong bisimulation is the strongest meaningful equivalence relation that does not r

isomorphism at the LTS level. Many algebraic laws have been defined for strong equivalence

and they remain valid for all the weaker equivalences. However, this equivalence relation is som

deficient as it treats the internal action i on the same basis as all other actions. Weak bisimula

solves this problem by abstracting from internal actions, while preserving meaningful bran

structures in the LTS. Testing equivalence comes from a more pragmatic point of view where e

lence can only be assessed by means of testing. The congruence relation has useful implica

design as it is the largest relation that allows the substitution of a behaviour expression by a co

one in any LOTOS context. Such behaviour expressions act like pluggable components. Trace e

lence, although it is easy to understand, is not very useful as all the branching structure of t

(which includes non-determinism, what can be accepted, and what can be refused) is lost.

Other Relations

Equivalence relations are not the only way to compare behaviour expressions. Sometimes, r

that are not symmetric may be more appropriate to evaluate validity when different levels of a

tions are involved. For instance, a preorder, which is a reflexive and transitive relation, may be

check the conformance of a protocol specification against a service specification. If R is a preorder,

then R ∩ R-1 becomes symmetric and hence also becomes an equivalence.

Over the years, many non-symmetric relations have been defined by Brinksma [69],

[242][243], and others. Table 6 recalls three basic relations (defined over SPECS × SPECS), which will

be linked later to the concepts of canonical tester and testing equivalence.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 37

CHAPTER 2 Basic Definitions and Notations

de

xpres-

d

ension

see the

t

TABLE 6. Other Relations for LOTOS

Brinksma demonstrated that red and ext are both preorders, whereas conf is not because this

relation is not transitive (i.e. S1 conf S2 ∧ S2 conf S3 does not imply S1 conf S3) [69]. Leduc sug-

gested another conformance relation (conf-eq) which is a preorder [242], but its treatment is outsi

the scope of the thesis.

Testing Equivalence and Canonical Testers

According to the LOTOS testing theory presented by Brinksma [69], test cases are behaviour e

sions that are composed with the specification. Two specifications are testing equivalent (S1 te S2) if

they cannot be distinguished by any test case. An interesting property of te is that it can be expresse

formally in terms of red or ext: S1 te S2 ⇔ S1 red S2 ∧ S2 red S1 ⇔ S1 ext S2 ∧ S2 ext S1. This is

illustrated in the left half of Figure 12. The testing equivalence is both a reduction and an ext

and, according to their definitions, reduction and extension are both conformance relations (

right part of Figure 12).

Relations Definitions

Conformance:
S1 conf S2

S1 conforms to S2 (S1 conf S2) expresses that S2 deadlocks less often than S1
itself when tested against the traces of S1. S2 may however contain behaviour
not present in S1. Formally:

S1 conf S2 iff ∀σ ∈Tr(S2), ∀A ⊆ L,
if ∃S1’ | ∀a∈A, S1 =σ⇒ S1’ ∧ S1’≠a⇒
then ∃S2’ | ∀a∈A, S2 =σ⇒ S2’ ∧ S2’≠a⇒

Reduction:
S1 red S2

The reduction relation states that S1 red S2 if S1 can only execute actions tha
S2 can execute, and S1 can only refuse actions that can be refused by S2. In
other words, red takes away unnecessary options. S1 has fewer traces than S2
yet S1 deadlocks less often in an environment limited to the traces of S1. For-
mally:

S1 red S2 iff S1 conf S2 ∧ Tr(S1) ⊆ Tr(S2).

Extension:
S1 ext S2

We say that S1 extends S2 (S1 ext S2) when S1 has more traces than S2, but in
an environment whose traces are limited to those of S2, S1 deadlocks less
often. Formally:

S1 ext S2 iff S1 conf S2 ∧ Tr(S2) ⊆ Tr(S1).
38 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Introduction to LOTOS

tions.

System

-

e

n

e

ay be

e gener-

e

oes not

e gen-

ests an

nt

ussed
FIGURE 12. Connecting Several LOTOS Relations

Still, equivalences are not always the best way to establish the validity of implementa

For instance, the conformance relation is often used as a criterion to test an implementation (

Under Test — SUT) against its specification (S). When SUT conf S, SUT is allowed to be more deter

ministic and to contain more alternative behaviour than S.

Every specification S has a canonical tester (CT(S)), which is a behaviour expression (with th

same traces as S) that tests S completely according to conf [69]. Many such testers exist for a give

specification, and they are all testing equivalent with each other. CT(S) represents the only test cas

necessary to check that a SUT conforms to S. An interesting property is that CT(CT(S)) te S.

For most realistic specifications, a canonical tester cannot be directly generated as it m

infinite, especially when data values or recursive processes are involved. If such a tester can b

ated, then it can be applied to test another (e.g. refined) LOTOS specification. However, since thes

testers are usually non-deterministic, the use of canonical testers on real implementations d

guarantee that an error will be highlighted (by an unexpected deadlock). Consequently, CT(S) should

not be used for testing conformance of real implementations directly, but only used to guide th

eration of an adequate test suite (with deterministic test cases) from it [69]. Tretmans sugg

algorithm, based on this idea, to generate test cases from a LOTOS specification [345]. Leduc pre-

sented simplified canonical testers for the conf-eq relation [242] and others that handle diverge

behaviour (LTS with loops of internal actions) [243], but these developments will not be disc

any further in the thesis.

conf

teext red
ext ext-1

red

red-1

te
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 39

CHAPTER 2 Basic Definitions and Notations

ta-

 they

 actions
Behaviour expressions that are reductions of CT(S) are sound test cases for any implemen

tion of S. We say that S2 is irreducible if S1 red S2 ⇒ S1 te S2. Suppose two test cases (Tx and Ty)

where Tx red CT(S) and Ty red CT(S). These two test cases have the same detectability power if

are testing equivalent, i.e. when Tx te Ty. If Tx is irreducible with the same detectability power as Ty,

then Tx is a better test case than Ty because Tx is simpler and yet as powerful as Ty. Irreducible test

cases usually make excellent tests.

Example

Figure 13 illustrates some of the relations covered so far. Assume an alphabet of observable

L = {Busy, Dial, OnHook, Ring}.

FIGURE 13. Illustration of Several Relations

• (a) The specification S. OnHook is considered mandatory whereas Ring is optional.

• (b) The canonical tester of S. It happens here that S is a self-tester (CT(S) = S).

• (c) S1 conforms to S, even if Ring is absent and Busy is added.

• (d) S2 does not conform to S because OnHook is not available after Dial.

i Ring

OnHook

Dial

i Ring

OnHook

Dial

i Ring

OnHook

Dial

OnHook Busy

Dial

OnHook

Dial

Ring

Dial

i Ring

OnHook

Dial

OnHook

Dial

Busy

Ring

OnHook

(a) Specification S (b) CT(S) (c) S1, S1 conf S (d) S2, ¬(S2 conf S)

(e) S3, S3 red S (f) S4, S4 ext S (g) S5, S5 te S (h) S6, S6 conf S

Busy
40 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Introduction to LOTOS

-

d-

ion

a-

.4.3) can

lida-

 of

s (i.e.

xecu-

fica-

]. In

t can

eness

n be
• (e) S3 reduces S. Note also that S3 red CT(S) and that S3 cannot be reduced further. There

fore S3 is an irreducible test case for S.

• (f) S4 extends S by adding an observable action that was not part of S.

• (g) S5 is testing equivalent to S.

Note that testing S1, S3, S4, S5, and S6 against CT(S) does not result in any premature dea

lock. This is the case for all specifications conforming to S. Testing S2 against CT(S) results in a dead-

lock when the <Dial, i, OffHook> branch is chosen in the canonical tester, hence S2 does not conform

to S.

One weakness of the conf relation is that it is always possible to build a trivial implementat

that conforms to the specification. For instance, S6 in Figure 13(h) accepts every action of the alph

bet L and hence can never deadlock. This is where rejection test cases (to be seen in Section 3

help establishing the validity of such implementations.

2.3.7 Validation and Verification in L OTOS

The algebraic nature of LOTOS enables a multitude of techniques to become applicable for the va

tion and verification of specifications [57]. Some of the most popular techniques are:

• Step-by-step execution (or interactive simulation), in which the specifier takes the role

the environment by providing events to the specification and by observing the result

the next possible events) [135][162]. Although useful for debugging, step-by-step e

tion is probably the simplest and weakest validation technique available for LOTOS.

• Equivalence checking, used to check the conformity or the equivalence of one speci

tion against another (usually after some refinement or modifications) [153][242

LOTOS, equivalence checking is usually done using the underlying LTS model, but i

sometimes be done algebraically through the use of equivalence rules.

• Model checking aims to check a specification against safety, liveness, or responsiv

properties (often derived from the requirements) [149][150]. These properties ca
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 41

CHAPTER 2 Basic Definitions and Notations

into a

, finite

odel

or more

es and

ication

oper-

tandable

s and

xecu-

ervers

the-

orted (to

around

,

tion of

lence
expressed, among other languages, in terms of temporal logic or µ-calculus formulas. In

the LOTOS world, this technique usually requires that the specification be expanded

corresponding model, which is some graph representation (labeled transition system

state machine, or Kripke structure) of the specification’s semantics. On-the-fly m

checking techniques, where the whole model does not have to be generated a priori, exist

as well [135].

• Testing is concerned with the existence (or the absence) of traces, trees, use cases,

generally scenarios in the specification. These scenarios reflect system functionaliti

are transformed into black-box test cases that can be composed with the specif

[69][70][243][279][345]. Test cases are usually less powerful and expressive than pr

ties expressed in logic. However, test cases are often more manageable and unders

than properties and they relate more closely to (informal) operational requirement

semantics.

Other validation and verification techniques such as random walks [135], goal-oriented e

tion [165], symbolic execution [40], symbolic equivalence and model checking [327], and obs

[115][142] can also be applied to LOTOS specifications, but they are not as commonly used. This

sis focuses mostly on testing as a validation technique. Note that all these techniques are supp

various degrees) by tools, some of which are presented in the next section.

2.3.8 LOTOS Tools
LOTOS being a well-established standard, a number of solid tools have been developed for it

the world. We shall mention three of the most popular ones:

• CADP (CÆSAR-ALDEBARAN Distribution Platform): developed at INRIA in Grenoble

France [135]. It was built for extensive state exploration of LOTOS specifications. This tool

provides a variety of searching strategies to detect conditions of interest in the execu

a protocol or a feature, including step-by-step execution, random walks, equiva

checking, and (on-the-fly) model checking.
42 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Chapter Summary

of

active

iented

pain

 the

le

ble evo-

r each

ctional

t cur-

 shows

tware,
• ELUDO (Environnement LOTOS de l'Université D'Ottawa): developed at the University

Ottawa, Canada. It is mostly useful at the initial stages of the development of the LOTOS

specification, since it has an effective step-by-step execution option, graphically attr

and user-friendly. It also supports symbolic expansion, model checking, and goal-or

execution. ELUDO, together with CADP and other tools, is now part of the EUCALYPTUS

Toolbox [145].

• LOLA (LOtos LAboratory): developed at the Universidad Politécnica de Madrid, S

[279][280][301]. It is a state exploration tool for the simulation and testing of LOTOS spec-

ifications. Test cases are specified as LOTOS processes, and they can be composed with

specification to detect possible errors. LOLA analyses the test terminations for all possib

evolutions. If the number of test runs is too large or even infinite, LOLA can use equiva-

lence relations and coverage heuristics to check a representative subset of the possi

lutions. Verdicts such as Must pass, May pass and Reject are provided by the tool fo

test case.

In this thesis, we mainly use LOLA because of its ability to test LOTOS specifications.

2.3.9 Enhancements to L OTOS

The International Organization for Standardization has recently the LOTOS language to produce

Enhanced LOTOS (or E-LOTOS) [198]. This new language is backward compatible with LOTOS. E-

LOTOS includes new operators and semantics for handling time and modules, and a new fun

language (à la ML) replaces ADTs for representing data types.

E-LOTOS is not being used in this thesis because execution and validation tools are no

rently available.

2.4 Chapter Summary
This chapter reviews general definitions that will be used throughout the thesis. Section 2.1.1

how SPEC-VALU E is related to the engineering of requirements, systems, protocols, and sof
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 43

CHAPTER 2 Basic Definitions and Notations

ecifica-

elves

eded

Ss and
while the rest of Section 2.1 establishes basic terminology for processes, formal methods, sp

tions, designs, validation, verification, prototypes, and many other related concepts.

Sections 2.2 and 2.3 provide tutorial material for readers who want to familiarize thems

with UCMs and LOTOS. They both cover the philosophy behind each notation, the information ne

to use them, elements of the notation (paths and components for UCMs; operators, ADTs, LT

relations for LOTOS), and tool support.

Contributions

The following items are original contributions of this chapter:

• Quick tutorial on the Use Case Maps notation.

• Quick tutorial on the formal description technique LOTOS.
44 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

l
at
ust
CHAPTER 3

Literature Survey

“Post hoc, ergo propter hoc”

Unknown source

“After this, therefore because of this”. This logica
fallacy is committed whenever someone implies th
an event that occurred before another event m
have caused this event.
S

ed

 L

e Sec-

e tech-

lude

 on

ary fol-

 causal-

e simply

 of the

u-
This chapter surveys existing work and building blocks in four major areas closely related to PEC-

VALU E. We first recall several models that support causality (the focus of our scenarios), as oppos

to a plain temporal ordering (Section 3.1). Then, Section 3.2 compares Use Case Maps andOTOS

with several other notations and specification techniques. Because SPEC-VALU E uses scenarios as

building blocks for the specification and validation of telecommunications systems, we devot

tion 3.3 to the introduction of several scenario notations and related approaches, including som

niques for the construction of communicating and distributed entities from scenarios. We also inc

a fourth section on the verification and validation of distributed systems, with a special emphasis

the techniques relevant to the notations and concepts used in the thesis (Section 3.4). A summ

lows in Section 3.5.

3.1 Causality
Causality is a relation that connects causes to their effects. In concurrency theory, establishing

ity is useful as this helps distinguish events that are caused by other events from events that ar

observed one after another without one affecting the other. This is in fact the main concern

incorrect inference cited above: post hoc, ergo propter hoc (after this, therefore because of this). Ca
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 45

CHAPTER 3 Literature Survey

here it

 from

 for cau-

 sum-

context

Leyton

s formed

rocess.

ality at

. How-

ting a

ephone

by

m. An

lated to

rly stages

or in the
sality is also one important criterion used for evaluating scenario notations in Section 3.3.2 (w

is called ordering). Since the representation of causality is a feature that distinguishes UCMs

many other scenario notations, this section discusses different semantics and representations

sality. In particular, Section 3.1.1 introduces important benefits of causality while Section 3.1.2

marizes some of the major causal models available. Causality is also briefly discussed in the

of UCMs and LOTOS in Section 3.1.3 and Section 3.1.4 respectively.

3.1.1 Why causality?
We see four main reasons why it can be beneficial to capture causality in models:

To Capture Intentions

Causality helps expressing intentions at an abstract level as well as focusing on them.

observes that the mind assigns to any shape a causal history explaining how the shape wa

[245]. Such causal history can become a valuable and long-lived artefact in a development p

UCMs capture existing or desired functionalities (shapes) visually and help arguing about caus

a level close to requirements and high-level designs.

To Distinguish the Type of Ordering

Causal ordering and temporal ordering are almost indistinguishable for sequential processes

ever, when concurrency is involved (e.g. in communicating and distributed systems), interpre

temporal ordering as a causal relationship can be misleading. For instance, in a simplified tel

system, the following scenario could be observed: <OffHook, Dial, Ring, RingBack> . We

might conclude that RingBack is caused by its prefix, i.e. <OffHook, Dial, Ring> . However,

this interpretation might be wrong. Ring and RingBack may both be caused independently

<OffHook, Dial >, and there might not necessarily be any causal dependency between the

early focus on causal relations between actions helps to avoid several misunderstandings re

temporal ordering. The causal dependence between events should be documented in the ea

of the design process, before this information gets lost among the details of linear sequences

behaviour of individual components. UCMs are very helpful in this context.
46 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Causality

t do

usively.

ry

maller

 is sup-

blem is

ocesses

ompo-

substi-

rchical

els of

m, and

 at

in

t support

these

d by

ented
To Generate Smaller Models

Many specification languages, including LOTOS, have underlying semantics based on models tha

not support causality. For instance, labelled transition systems describe temporal ordering excl

LTSs interpret concurrency through the interleaving of parallel actions, which often leads to ve

large models. Using causality at the description level (e.g. with UCM scenarios) leads to s

descriptions and enable the preservation of causality in the underlying model (when causality

ported). This could in turn help cope with combinatorial explosions of system states.

To Allow the Refinement of Actions

Refinement of actions is an important research topic in concurrency theory. The general pro

defined as follows: actions at a given level of abstraction are replaced by more complicated pr

on a lower level of abstraction. The behaviour of the refined system is intended to be inferred c

sitionaly from the behaviour of the original system and from the behaviour of the processes

tuted for actions. Action refinement promotes the design of systems in a modular and hiera

way. Many authors, including van Glabbeek and Goltz [153], have shown that interleaving mod

concurrent systems (e.g. LTSs) are not suited for defining action refinement in its general for

that causal models are more appropriate. In SPEC-VALU E, such refinement should hence be done

the UCM level, not at the underlying LTS level.

3.1.2 Concurrency Models and Equivalence Relations
Specification techniques such as Petri Nets, SDL, LOTOS and UCMs can all describe concurrency

various forms. However, the semantic models associated to these languages may or may no

causality very well. The models of concurrency found in the literature usually fall into one of

two categories:

• Interleaving semantics: the independent progression of two processes is modelle

specifying the possible interleaving of their (atomic) actions.

• Causal semantics: the causal relations between the actions of a system are repres

explicitly. This is often referred to as true concurrency or partial order semantics.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 47

CHAPTER 3 Literature Survey

ccord-

used to

concur-

e pre-

consid-

ly to

dif-

tions

 are

is tree

 Grey

e cre-

er, Petri

erties
Equivalence relations, which establish whether a model is equivalent to another model a

ing to some criteria, can be defined over both types of semantics. Such relations are often

establish the correctness of refinements and implementations with respect to specifications of

rent systems.

In a recent survey on action refinement [153], van Glabbeek and Goltz indicate that th

served level of detail in system runs (interleaving versus causal) is not the only aspect to be

ered when describing concurrency models and relations. Two other important aspects include:

• Preserved level of detail of the choice structure between system runs: this goes fromtrace

semantics (linear time), where the choice structure is completely neglected, to decorated

trace semantics, where part of the choice structure is taken into account, and final

bisimulation semantics (branching time), which preserves the information where two

ferent runs diverge.

• Treatment of internal or invisible actions: this goes from relations where internal ac

are treated like visible actions (strong bisimulation) to relations where internal actions

invisible and can be, to a certain extent, abstracted (weak bisimulation).

Families of Concurrency Models

Several important families of concurrency models are classified in Figure 14. The leaves of th

(white boxes) are fine-grained families for which references to existing work are provided.

boxes indicate related sets of families. Dotted arrows indicate which family (tail) influenced th

ation of another, more general and more expressive family (head).

Several people argue that Petri Nets can be used as a causal semantic model. Howev

Nets usually rely on translations to interleaving models, e.g. LTSs, for the verification of prop

such as bisimulations [319].
48 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Causality

offer a

ctions

ot
FIGURE 14. Families of Concurrency Models

3.1.3 Causality and Use Case Maps
Using the four factors discussed in Section 3.1.1, we observe that UCMs describe causal relationships

between responsibilities, which may be allocated to components. In order to do so, UCMs

variety of constructs such as sequence, AND-fork, AND-join, and (a)synchronous intera

between UCM paths.

UCMs support alternatives (OR-fork), which are closer to the branching structure in LTSs and

trees than to linear-time models such as pomsets (partial order multisets). However, UCMs do n

support conflict/exclusion relations (e.g. the non-occurrence of action a is condition for the occur-

Concurrency
Models

Interleaving Causal

Synchronization
trees [260]

LTSs Causal LTSs Tree models

Prime Event
Structures [269]

Flow Event
Structures [64]

Stable Event
Structures [376]

Bundle Event
Structures [239]

Configuration
Structures [153]

Pomsets
[289][152]

Event-oriented
Models

Causal Trees [108]

Maximal Trees [319]

Dynamic Causal
Trees [319]
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 49

CHAPTER 3 Literature Survey

 trees

action

ement.

wever,

topic.

 focuses

el

e rela-

tax of

ent

f a

d max-

Ts are

 they are

s also

 causal

do not

ss and

hat are

ially in a

s are
rence of action b) as most event-oriented models would. Hence, UCMs have more affinities with

and LTSs than with event structures.

Action refinement could also be useful to UCMs. A stub is essentially a corse-grained

refined by a plug-in, and some properties might be interesting to preserve under such refin

Causal models support action refinement much better than plain interleaving models would. Ho

formal action refinement will not be pursued in the thesis and will therefore remain a research

3.1.4 Causality and L OTOS

Many semantic models can be used underneath a given specification language, which often

on the syntactic level. For instance, standard LOTOS is based on an interleaving semantic mod

(LTSs), which takes into consideration internal actions and offers a wide range of equivalenc

tions, including bisimulation. However, LTSs are weak at representing causality, even if the syn

LOTOS can express this concurrency concept (e.g. with the interleaving operator).

Various substitute semantics for LOTOS have been suggested in the literature: bundle ev

structures by Langerak [239] and Brinksma et al. [71], event-oriented models expressed in terms o

causal algebra by Pires [286] and Quartel [300], causal LTSs by Coelho da Costa [99][100], an

imal trees and dynamic causal trees by Saïdouni [319] (DCTs). Among all these semantics, DC

probably the most interesting as they are more general than causal trees (see Figure 14), and

closer to the current LOTOS semantic model than those based on event-oriented models. DCT

correspond to unfolded causal LTSs. DCTs cannot represent infinite behaviour as easily as

LTSs, nor do they solve the state explosion problem. However, in a verification context, DCTs

suffer from undecidability problems whereas causal LTSs do.

When choosing a causality model, a trade-off is usually required between expressivene

ease of verification, which are two opposite forces. Causality leads to equivalence relations t

more complex and harder to define than relations based on an interleaving semantics, espec

context where internal actions are considered [153]. Correct and efficient verification algorithm

hard to define for expressive causal semantics, and currently tool support is very weak.
50 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Specification Techniques

mphasis

allows

les the

causal

icial

ll

ations

andard

TSs

 fields.

ation of

thods

us sup-

 formal

ally met

nd to

ribed and

 have

ecifica-

iliency.

ve been
3.1.5 Summary and Discussion
This section discusses several results from the concurrency theory in general, with a special e

on causality. It explains why causality is an interesting property of semantic models. Causality

for a better understanding of intentions and ordering, may result in smaller models, and enab

refinement of actions. Important families of concurrency models based on interleaving and

semantics were briefly discussed and classified (Figure 14).

Both Use Case Maps and LOTOS can express causality at a syntactic level, which is benef

to SPEC-VALU E. However, causality is missing from the standard LOTOS semantic model (LTSs).

Although many alternative semantics exist, SPEC-VALU E, with its emphasis on validation, is sti

using LTSs. Causal semantic models are difficult to validate and verify formally, equivalence rel

are complex, and tool support for causal V&V is still sparse and experimental. LTSs are the st

semantics for LOTOS, which is well supported by many validation and verification tools. Hence, L

still represent the most pragmatic avenue for validation in SPEC-VALU E., even at the cost of loosing

causal relationships and generating larger models.

3.2 Specification Techniques
Nowadays, specification techniques are widely applied to many software-related engineering

Formal methods have particularly raised much hopes over the last two decades for the specific

requirements and designs, and for their validation and verification [104][176][220]. Formal me

are mathematical specification languages with formal syntax and semantics, which offer rigoro

port of system development [351]. Despite several successful applications to real systems,

methods have been the target of myriads of criticisms over the years because they have not re

the initial optimistic expectations of their users [20][250]. In order to answer these critics a

explain the real strengths and weaknesses of formal methods, several myths have been desc

explained to the software community by Hall [166] and Bowen [67]. Le Charlier and Flener

replied with additional myths on the usefulness of formal methods, the main one being that sp

tions are necessarily informal [241]. Against all odds, formal methods have shown notable res

They are still in use nowadays and are the subject of research and development. New tools ha
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 51

CHAPTER 3 Literature Survey

ir initial

versal.

 be more

ethods

blem at

 [211].

uch

Several

ell as

L).

ever,

 evalu-

niques

.2 (Use

and

ur own

ys from

re

criteria

ining.

int.
developed for them and applied in areas at times quite remote from the ones envisaged by the

designers [20].

It is recognized that formal methods and specification techniques in general are not uni

For instance, some methods handle concurrency better than others, whereas the latter might

appropriate for the description of sequential algorithms. Jackson even claims that universal m

cannot be effective because they cannot take advantage of any particular features of the pro

hand, and they must abstract from any feature whose universal treatment is simply too hard

Most formal methods therefore focus on particular problem domains (they were named domain-spe-

cific formal methods in [250]), one of which being telecommunications. But even for one s

domain, multiple techniques are often used together to specify various facets of the problem.

advocates of multi-method solutions include Holzmann [181], Zave and Jackson [382], as w

standardization bodies such as the ITU-T (with SDL/MSC/ASN.1/TTCN) and the OMG (with UM

SPEC-VALU E is not different in that respect as it is based on two specification techniques. How

in order to justify that these techniques represent a potentially useful combination, we need to

ate them against a number of criteria and compare them to other techniques.

This section presents and comments on six formal and semi-formal specification tech

used for telecommunications systems. Already, two of them have been introduced in Section 2

Case Maps) and Section 2.3 (LOTOS). Section 3.2.2 gives an overview of all these techniques,

then a comparison is provided (Section 3.2.3) according to criteria presented in Section 3.2.1.

3.2.1 Evaluation Criteria for Specification Techniques
In a recent survey [20], we have selected a wide range of evaluation criteria on the basis of o

experiences with specification techniques and requirements engineering, and of existing surve

Ardis et al. [39], Craigen et al. [104], and Weidenhaupt et al. [368]. In order to evaluate and compa

specification techniques for telecommunications systems, we selected a total of thirteen

grouped in four categories, namely usability, validation and verification, tool support, and tra

We see them as being all fundamental, and therefore we do not try to prioritize them at this po
52 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Specification Techniques

xperts

nding,

asily

ssed,

 trace-

ew-

 and

 of

, and

, and

n the

 docu-

avail-

d non-

rtifi-

ess
Usability

• Readability: specifications need to be readable by domain experts (and not only by e

in the specification technique). There is a strong emphasis here in human understa

and in common understanding amongst different stakeholders, including the client.

• Modularity: composition operators are needed to allow large specifications to be e

written and understood by decomposing them into smaller parts.

• Abstraction: this criterion is concerned with the level of detail that needs to be addre

and with separation of concerns. An abstraction mechanism that supports two-way

ability allows to go from complex and high-level viewpoints to simple and low-level vi

points and vice versa.

• Scalability: we say that a technique is scalable if it allows the specification of complex

simple systems in a similar way.

• Maintenance and Evolution: we are interested in techniques that allow for the reuse

old parts of a specification in the creation of new parts, for the addition of new details

for the modification of existing parts. Frequent changes in a distributed, iterative

evolving drafting process need to be supported with minimal effort. Ripple effects o

document consistency, caused by the impact of a modification on other parts of the

ments, need to be minimized.

• Looseness: in the early stages of the specification/design process, few details are

able, and a specification technique should permit some level of incompleteness an

determinism in a specification.

• Maturity: a technique has a high level of maturity mainly if it has undergone some ce

cation process and if it has a history of use in various applications.

Validation and Verification (V&V)

• Completeness and Consistency: techniques should offer ways of checking completen

and consistency between partial functionalities, scenarios, and levels of abstraction.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 53

CHAPTER 3 Literature Survey

ed,

specifi-

er-

nd to

rform.

mainte-

ing for

 theo-

and in

ood

tant as

xt sec-

cifica-

ndards.
• Testing and Simulation: V&V is greatly improved when specifications can be execut

animated, simulated, and tested. Also one should be able to obtain test cases from

cations.

• Verifiability and Correctness: verification of a model against requirement properties. V

ification approaches are usually stronger than testing and simulation as they inte

prove that a property holds in general, but they are also harder and more costly to pe

Tool Support

We are interested in techniques that are supported by tools for the capture, the editing, the

nance, the animation, the testing, and the verification of specifications. We are especially look

multi-platform, industrial-strength and quality tools, where support and training is available.

Training

• Learning Curve: we are interested in how quickly a new user can learn the concepts,

ries, techniques, and tools to make useful application of the specification technique,

how different is this technique from the current practice.

• Tutorials and Documentation: good tutorials and documentation are necessary for a g

training. Courses, case studies, and other technology transfer activities are impor

well.

These criteria will be used to compare the specification techniques introduced in the ne

tion.

3.2.2 Overview of Selected Techniques
In this section, we give a short overview of six specification techniques (UCM, LOTOS, SDL, MSC,

Petri Nets, and UML) particularly relevant to the scenario-based description of high-level spe

tions and designs of distributed systems and for the documentation of telecommunication sta

The selected techniques have all been used to describe real world problems and solutions.
54 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Specification Techniques

 One

SM,

ime

CN)

 the-

g tele-

lieve they

ns sys-

rder for

 wire-

eader to

rke

ota-

us sys-

eans of

 is a lan-

parison

rds in

of the

 and the
Other specification and description notations, such as the Abstract Syntax Notation

(ASN.1) [201][337], Estelle [192], plain/extended/communicating Finite State Machines (F

EFSM, CFSM) [143], the Interface Description Language (IDL) [273], Larch [163], the Real-T

Object-Oriented Modeling (ROOM) [326], the Tree and Tabular Combined Notation (TT

[197][209], the Vienna Development Method (VDM) [219], and Z [336], are not discussed in this

sis. Although most of them have reached good levels of recognition in different areas (includin

communications and distributed systems), and have been standardized in some cases, we be

are less appropriate for the scenario-based specification and validation of telecommunicatio

tems than the six techniques we selected. A minimum number of techniques is surveyed in o

this chapter to remain concise.

A few other formalisms are covered in a recent survey of specifications techniques for

less standards [20], which served as a basis for this section. We also invite the interested r

look at other studies from Ardis et al. [39] on specification methods for reactive systems, from Cla

et al. [97] on the state of in art in formal methods, and from Craigen et al. [104] on industrial applica-

tion of these methods.

Because UCMs and LOTOS were already presented in Chapter 2, only the four remaining n

tions (SDL, MSC, Petri Nets and UML) are introduced in this section.

Specification and Description Language (SDL)

SDL [205] is an FDT designed for reactive, concurrent, real-time, distributed, and heterogeneo

tems. The basic SDL model consists of extended finite state machines communicating by m

message queues. Notions of types and inheritance make SDL an object-based language. SDL

guage used to support human understanding of system descriptions, formal analysis and com

of behaviours, in an implementation independent way. SDL is suitable for international standa

the telecommunication area, for systems in development, and for verification and validation

system behaviour. SDL has two concrete syntaxes: the graphic representation called SDL/GR
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 55

CHAPTER 3 Literature Survey

nships

, inter-

s the

 low-

r the

f appli-

haviour

ed for

 of dis-

ent by

ly since

Cs is not

or func-

st cases.

 (MSC/

verthe-
textual representation called SDL/PR. The graphic form is more intuitive and displays relatio

more clearly than the textual form. The language has two major features:

• An SDL system describes the application in the sense that many aspects (structure

faces, and behaviour) of the application are described.

• SDL is a high-level language. The extended finite state machine paradigm give

designer a possibility to concentrate on the application problem and not to deal with

level programming issues.

SDL is also being integrated, to some extent, to UML through a profile [207].

Message Sequence Charts (MSC)

The MSC notation, standardized by ITU-T [208][313], is a graphical and textual language fo

description and specification of the interactions between system components. The main area o

cation for Message Sequence Charts is as an overview specification of the communication be

of real-time systems, in particular telecommunication switching systems. MSCs may be us

requirement specification, simulation and validation, test case specification and documentation

tributed systems.

MSCs focus on the communication behaviour of system components and their environm

means of message exchanges. A set of MSCs usually covers a partial system behaviour on

each MSC represents one scenario or several closely related scenarios. The main focus of MS

on complete system descriptions but rather on the specification of special system properties

tions (i.e. scenarios). MSCs can also represent test purposes for the automatic generation of te

MSCs can be used as complement to SDL. Similarly to SDL, the MSC language has graphical

GR) and textual (MSC/PR) syntax forms. A recent enhancement, High-level MSCs (HMSC), includes

control structures that can combine several MSCs. Under an apparent simplicity, MSCs can ne

less lead to many subtleties and misinterpretations [236].
56 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Specification Techniques

 with a

,

. An

he

 usually

ibuted

 verify

hical

ys in this

roblem,

i

mplex

ng lan-

pa-

 time,

of nets

re now

-

Petri Nets

Petri Nets (PNs) [281] are abstract machines used to describe system behaviour visually

directed graph containing two types of nodes: places and transitions. Places, represented by circles

contain tokens whereas transitions, represented by lines, allow tokens to move between places

event usually corresponds to the firing of a transition, which is allowed when all arrows entering t

transition originate from places with tokens. PNs can be represented graphically, and they are

formalized with simple mathematical arrays and functions. They can specify the logic of distr

systems at different levels of abstraction, and multiple techniques and tools can be used to

them.

A problem with plain Petri Nets is the explosion of the number of elements of their grap

form when they are used to describe complex systems, hence they are seldom used nowada

form. However, numerous extensions have been suggested over the years to cope with this p

many of which are supported by tools. For instance, Design/CPN is a widely used tool within the Petr

Net community and has been developed for more than 10 years [95]. Design/CPN supports Coloured

Petri Nets (CPNs) [216], an extension with complex data types (colour sets for tokens) and co

data manipulations (arc expressions and guards), both specified in the functional programmi

guage ML. This tool also supports Hierarchical CPNs, i.e. net diagrams that consist of a set of se

rate modules (subnets) with well-defined interfaces. Other extensions to Petri nets include

probabilities, communication, and even object orientation. Among them, Object CPNs support class

nets, inheritance, (a)synchronous communication, and dynamic creation and destruction

[253].

Petri Nets and their variants offer both graphical and textual representations. CPNs a

being standardized in a superset called High-Level Petri Nets [199], which also include a textual for

mat described in SGML [251].
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 57

CHAPTER 3 Literature Survey

ying,

ct-ori-

are sys-

tion of

L 1.3

uch as

nstraints

ia-

s can be

They

hro-

ys-

 the

hey are

ons.

arac-

oncur-
Unified Modeling Language (UML)

The Unified Modeling Language (UML) is a general-purpose modelling language for specif

visualizing, constructing and documenting the artifacts of software systems (in particular obje

ented and component-based systems), as well as for business modelling and other non-softw

tems. It includes many concepts and notations useful for the description and documenta

multiple models, and it enjoys a strong support from academic and industrial communities. UM

is the latest version of this OMG standard [274][358].

UML has a semi-formal semantic meta-model which defines basic modelling concepts s

objects and classes. This meta-model includes well-formedness rules expressed as formal co

in the Object Constraint Language (OCL). UML is graphical notation that supports nine different d

gram types, whose static semantics are defined in terms of the meta-model. These diagram

categorized into two sets. The first set, called behavioural diagrams, focuses mainly of functional and

dynamic aspects of systems. It is comprised of five types of UML diagrams:

• Use case diagrams: Show actors and use cases together with their relationships.

describe system functionalities from the user’s point of view.

• Sequence diagrams: Describe patterns of interaction among objects, arranged in a c

nological order. They originate from Message Sequence Charts.

• Collaboration diagrams: Show the generic structure and interaction behaviour of s

tems.

• Statechart diagrams: Show the system in terms of a hierarchical state machine, with

events that cause the transitions of one state to another and the actions that result. T

based on Harel’s notation [168].

• Activity diagrams: Capture the dynamic behaviour of a system in terms of operati

They focus on flows driven by internal processing. Activity diagrams share many ch

teristics with UCMs: focus on sequences of actions, guarded alternatives, and c
58 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Specification Techniques

d; and

 of

stem

 data

 the

t pretend

.1 will

ths and

ehold-

aturity,

 pro-
rency; start and end points have similar purpose; complex activities can be refine

simple mapping to components can be achieved through swimlanes.

The second set, called structural diagrams, describe components and static characteristics

systems. It includes these four types of UML diagrams:

• Class diagrams: Capture the vocabulary of a system. They show the entities in a sy

and their general relationships.

• Object diagrams: Snapshots of a running system. They show object instances (with

values) and their relationships at some point in time.

• Component diagrams: Show the dependencies among software components.

• Deployment diagrams: Show the configuration of run-time processing elements and

software components, processes, and objects that live on them.

A textual representation of UML models and meta-models, the XML Metadata Interchange

(XMI), has been included in the latest version of the standard [186].

3.2.3 Comparison Between Specification Techniques
Comparing such complex techniques represents a major challenge, and this section does no

to cover everything there is to say about them. However, the criteria presented in Section 3.2

help to emphasize some of the main points of interest related to this thesis. The major streng

weaknesses of each technique will be enumerated for each category of evaluation criteria.

Usability

UCMs, MSCs, and most UML diagrams can be read and understood by a wide variety of stak

ers, which is not always the case for the three other techniques, especially LOTOS which lacks a usable

graphical representation. In terms of modularity, SDL has already reached a good level of m

while the others are still catching up: UCMs with libraries of plug-ins and patterns, LOTOS with E-

LOTOS, MSCs with HMSCs, PNs with High-Level PNs, and UML with improved packages and

files.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 59

CHAPTER 3 Literature Survey

arame-

 in the

nd

rse for

f disjoint

f such

ness is

es when

re and

pment

eady

rrors

ation is

ions can

e exe-

 being

tion of

 SDL

thesis
Abstraction is certainly a strength of UCMs, LOTOS and UML (e.g. activity diagrams),

whereas MSCs and SDL require a commitment to fine-grained details (messages, entities, p

ters, etc.). This is also true of scalability, where different mechanisms proved their usefulness

past (plug-ins and stubs for UCMs, processes for LOTOS, and many other such strategies for UML a

SDL).

Maintenance and evolution appear to be an issue for all of these techniques, but it is wo

MSCs and PNs due to the nature of these notations (arrows and lines/nodes) and to the use o

scenario descriptions in plain MSCs. Improving the maintenance and evolution capabilities o

languages would contribute in a positive way to the handling of requirements changes. Loose

best supported by UCMs, because useful descriptions can be achieved in early design stag

details are not always available. The other techniques need more details, and the FDTs (LOTOS and

SDL) are especially demanding in terms of precision. Overall, most technique are fairly matu

standardized (PNs are undergoing standardization), but the UCM notation is still under develo

and will hopefully be standardized within the next few years (work in this direction has alr

started in ITU-T Study Group 10 and in the OMG).

Validation and Verification

LOTOS, SDL and Petri Nets are well-suited for V&V and, by using them, many types of design e

and inconsistency and incompleteness problems have to be resolved at the time the specific

written. This is not the case for the other techniques, because many disjoint and loose descript

be created, which are prone to being inconsistent and incomplete.

Testing and simulation are well supported within the two FDTs and PNs, since they ar

cutable languages. This is far from being the case for many UML diagrams (the main exception

Statechart diagrams, whose dynamic semantics in UML is still ambiguous). The new genera

tools based on the UML/SDL standard Z.109 however improves this situation by combining

simulation/testing capabilities to UML design [207]. UCMs are not executable as is, but the

intends to provide an alternative by mapping UCMs to an executable formalism.
60 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Specification Techniques

stems.

 UML

mber of

s. These

are not

e tech-

rent lev-

ll

not easy

gram-

and a
Many techniques exist for verification and correctness checking of LOTOS, SDL, and PN spec-

ifications, and there is considerable experience in using them in specifications of real-life sy

However, UCMs and UML lack established verification frameworks.

Tool Support

Several industrial-strength tools are available for SDL and MSCs (e.g. Telelogic’s Tau) and for

(e.g. Rational Rose), and they have been used in telecommunications companies for a nu

years. The three other techniques are also supported, to a lesser extent, by (university) tool

tools are routinely used in research environments, so they are fairly robust, although they

industrially supported.

Training

Because of the intuitive nature of UCMs, MSCs, and PNs, the learning curve is excellent and th

niques are easily accepted by many practitioners. It is possible to use these techniques at diffe

els of competence, and books and tutorials are available. LOTOS and its related methodology are we

documented in books, tutorials, and papers. However, experience shows that the language is

to learn, although its order of difficulty does not exceed the one of many “unconventional” pro

ming languages. To learn and use SDL and UML effectively, books, papers, technical reports,

number of courses as well as commercial toolsets are available.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 61

CHAPTER 3 Literature Survey

selected

ts and

 L

mplete-

ns to

s and

re, i.e.

s.

tem.

igder
Summary and Discussion

According to our evaluation criteria, Table 7 summarizes the strengths and weaknesses of the

specification techniques.

Legend: + = Strength; 0 = Adequate; - = Weakness.

Note that UCMs have several properties suitable for the representation of requiremen

high-level designs (readability, abstraction, scalability, looseness and ease of learning), whileOTOS

complements most of UCMs weak areas related to the analysis of requirements (maturity, co

ness & consistency, testing & simulation, verifiability & correctness). Hence, we have reaso

believe these two complementary notations to be a particularly good match. Moreover, UCM

LOTOS offer similar constructs (such as sequence, alternative, parallelism, hiding, and structu

stubs in UCMs and processes in LOTOS), which result in simpler mapping and traceability relation

In particular, both UCMs and LOTOS aim to represent the ordering of abstract events in a sys

These are two of the main reasons why SPEC-VALU E uses those notations.

The complementarity of LOTOS and system behaviour paths has also been observed by V

[362]. In his thesis, Vigder used a very preliminary path notation called slices, which guided the

TABLE 7. Evaluation of the Selected Specification Techniques

Technique

R
ea

da
bi

lit
y

M
od

ul
ar

ity

A
bs

tr
ac

tio
n

S
ca

la
bi

lit
y

M
ai

nt
en

an
ce

&
 E

vo
lu

tio
n

Lo
os

en
es

s

M
at

ur
ity

C
om

pl
et

en
es

s
&

 C
on

si
st

en
cy

Te
st

in
g

&
S

im
ul

at
io

n

Ve
rif

ia
bi

lit
y

&
C

or
re

ct
ne

ss

To
ol

 S
up

po
rt

Le
ar

ni
ng

 C
ur

ve

Tu
to

ria
ls

 &
 D

oc

UCM + 0 + + 0 + - - - - 0 + 0
LOTOS - 0 + + 0 - + + + + 0 - +
MSC + 0 - - - 0 + - 0 0 + + +
SDL 0 + - + 0 - + + + + + 0 +

Petri Nets 0 0 0 0 - 0 0 + + + 0 + +
UML + 0 + + 0 0 + - - - + 0 +
62 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Scenarios

o L

posed,

some

t be

 benefit

oints

and this

hesis.

e use of

[368].

nts and

ns, but

r by

enario. In

results of

reted as

 are instan-

]. How-

ontained

although
design of component-based concurrent systems. These designs were translated (manually) tOTOS

models, which provided formal semantics and enabled analysis. No validation strategy was pro

and the practicality of the work was somewhat limited. Nevertheless, Vigder’s work provided

inspiration for the creation of Use Case Maps and for SPEC-VALU E.

UCMs and LOTOS being mutually complementary does not mean that UCMs could no

combined to other techniques, on the contrary. We believe most design methodologies could

from the combined use of different specification techniques, which often bring different viewp

and complementary strengths. For instance, SDL and UCMs also complement each other,

research direction is being studied by Sales and Probert [317][318]. However, the UCM-LOTOS com-

bination is the only avenue pursued here, other combinations being beyond the scope of this t

3.3 Scenarios
Over the last few years, there has been a strong interest, in both academia and industry, in th

scenarios for requirements engineering and system design, testing, and evolution [107][185]

Scenarios are known to help describing functional requirements, uncovering hidden requireme

trade-offs, as well as validating and verifying requirements. The introduction of use cases in the

object-oriented world confirmed this trend almost a decade ago [212].

The exact definition of a scenario may vary depending on used semantics and notatio

most definitions include the notion of a partial description of system usage as seen by its users o

related systems [305]. There is no clear separation between the meanings of use case and sc

UML, use cases are defined as sequences of actions a system performs that yield observable

value to a particular user (actor) [274]. In the object-oriented community, use cases are interp

classes of related scenarios, where scenarios are sequential and where use case parameters

tiated with concrete values. Hence, a scenario is a specific realization of a use case [274][304

ever, the requirements engineering community sometimes sees multiple use cases as being c

in a scenario. In this thesis, the terms “use cases” and “scenarios” are used interchangeably,

sequential scenarios will refer to instantiated sequences of events or actions.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 63

CHAPTER 3 Literature Survey

ree of

e related

nents, to

 of such

2], natu-

xpres-

33], to

ion and

ons, but

is sec-

. It also

e analytic

ficulties

potheti-

 is in its

and in

d draw-
Many scenario-driven methodologies are now available and they often have a high deg

acceptance because of the intuitive and linear nature of scenarios [215][368]. Scenarios can b

to traces (of internal actions and external events), to message exchanges between compo

interaction sequences between a system and its user, to a more or less generic collection

traces, etc. Numerous notations are also used to describe scenarios: semi-formal pictures [21

ral language or structured text [126][274][304], grammars or automata [183], boolean or logic e

sions [340], tables [98], and message exchange diagrams similar to MSCs [212][274][304][3

mention but a few. The approaches available differ on many aspects, depending on the definit

the notation used. Scenarios are used not only to elicit requirements and produce specificati

also to drive the design, the testing, the overall validation, and the evolution of the system. Th

tion introduces several scenario notations and gives a short comparison based on eight criteria

discusses several design processes that make use of scenarios, as well as techniques for th

and synthetic construction of component behaviour from scenarios.

3.3.1 Why Scenarios?
One frequent problem requirements engineers are faced with is that stakeholders may have dif

expressing goals and requirements in an abstract way [238]. Typical usage scenarios for an hy

cal system may be easier to obtain than goals or properties when the system understanding

infancy. This fact has been recognized in cognitive studies on human problem solving [47]

research on inquiry-based requirements engineering [288].

The use of scenarios for requirement engineering and system design bears benefits an

backs. A non-exhaustive list of the most relevant ones follows in Table 8.
64 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Scenarios

 their

th other

s, many

eability

 all.

pare

ents

ly from

on as

 these

ss
ss,

n

 to
s.

nt

The increasing popularity of scenarios makes us believe that their benefits outweigh

drawbacks. Further, these drawbacks can often be cured by using scenarios in conjunction wi

techniques. In spite of the fact that this thesis intends to emphasize the benefits of scenario

issues related to scalability, maintainability, completeness, consistency, synthesis, and trac

will be addressed as well.

3.3.2 Evaluation Criteria for Scenario Definitions
Many definitions of the term “scenario” exist, and it would be impossible to enumerate them

However, the following collection of eight important criteria will help to categorize and com

many scenario notations [29]:

• Component-centered: Scenarios can be described in terms of communication ev

between system components only (i.e. component-centered), or else independent

components, in a pure functional style (end-to-end). This is a very important criteri

many notations focus solely on interactions between components, while in our view

TABLE 8. Benefits and Drawbacks of Scenarios

Benefits Drawbacks

• Scenarios are intuitive and relate closely to the
requirements. Different stakeholders, such as
designers and users, can understand them. They are
particularly well suited for operational descriptions of
reactive systems.

• They can be introduced in iterative and incremental
design processes.

• They can abstract from the underlying system
structure, if necessary.

• They are most useful for documentation and
communication.

• They can guide the generation of requirements-based
tests used for validation at different levels
(specification, design and implementation).

• They can guide the construction of more detailed
models and implementations.

• Since scenarios are partial representations, completene
and consistency of a set of scenarios are difficult to asse
especially when the scenarios are not described at a
uniform abstraction level.

• Scenarios are not able to express most non-functional
requirements.

• Scenarios often leave required properties about the
intended system implicit.

• The synthesis of components behaviour, from a collectio
of scenarios, remains a complex problem.

• The use of scenarios leads to the usual problems related
traceability with other models used in the design proces

• Getting and maintaining the right granularity for the
scenarios can be a real challenge.

• Design approaches based on scenarios are rather rece
and seldom possess a high level of maturity. Scalability
and maintainability represent notably important issues.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 65

CHAPTER 3 Literature Survey

lation-

arly

 appro-

t only

rd-

of vari-

reating

eration

enario

 and

ts, the

 is

on the

terface

opinion

by the

e not

ition-

igns or

ns of

i-for-

 tables,

 a wide

ained in

ss of a
interactions are secondary and result from the need to implement the causality re

ships linking responsibilities (processing activities) in different components. An e

focus on messages may lead to system overspecification and may prune out other

priate options.

• Hiding: Scenarios could describe system behaviour with respect to their environmen

(black-box), or it could include internal (hidden) information as well (grey-box). Acco

ing to Chandrasekaran [90], the most important reason that impeded the progress

ous large projects he studied is the lack of internal details in scenarios. Essentially, t

the system like a black box in a scenario model means that there shall be no consid

of implementation constraints while describing scenarios. It does not mean that a sc

shall not delve into details of requirements on internal system functionality. Zave

Jackson present a different viewpoint and claim that when it comes to requiremen

environment is not the most important thing — it is the only thing [383] (this view

shared by Probert and Wei in [295]). They suggest to avoid any implementation bias

basis that requirements are supposed to describe what is observable at the in

between the environment and the system, and nothing else about the system. Our

is more in line with Chandrasekaran’s: shared events, whether they are controlled

system or by the environment, are insufficient. Many implementation constraints ar

necessarily premature design decisions, but in fact non-functional requirements. Add

ally, there comes a point where the gap between requirements and high-level des

implementations needs to be filled (an important topic of this thesis), and descriptio

activities performed internally by the system can then be of tremendous help.

• Representation: Scenarios can be described in various ways, for instance with sem

mal pictures, natural language, structured text, grammars, trees, state machines,

and sequence diagrams. Graphical representations are often better understood by

range of stakeholders, whereas structured textual languages are often less constr

terms of expressiveness. The level of formality has also an impact on the usefulne
66 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Scenarios

 for

 con-

 the

si-

ds to

narios,

 links

os can

eficial

of sce-

narios

ses, and

n

ur

an ben-

imen-
notation: less formality is better for requirements, but more formality is desirable

detailed design and automated model transformations or code generation.

• Ordering: Scenarios represent a collection of events ordered according to time only or to

causality. Causal ordering is very important when concurrency is involved, otherwise

current actions expressed with a time ordering might result in logical fallacies in

requirements (see the explanation of Post hoc, ergo propter hoc below the title of this

chapter). Causality is further discussed in Section 3.1.

• Multiplicity : We can either have one single trace only (i.e. a sequential scenario) or pos

bly multiple related traces per scenario. Having multiple scenarios linked together lea

more concise descriptions and to a better understanding of the integration of sce

whereas the availability of individual scenarios eases the construction of traceable

across design models. But obviously, a notation that can support multiple scenari

support single scenarios as well.

• Abstraction: An abstract scenario is generic, with formal parameters, whereas a concrete

scenario focuses on one specific instance, with concrete values. Abstraction is ben

in the early stages of design (e.g. requirements capture) and for capturing families

narios that differ only by their concrete values. Notations that focus on concrete sce

however ease the transition towards detailed models (e.g. state machines), test ca

implementations.

• Identity: Scenarios can focus on one actor or target many actors at once. The later is see

as a major benefit in terms of expressiveness.

• Dynamicity: A scenario notation is dynamic when it enables the description of behavio

that modifies itself at run-time, otherwise it is said to be static. Emerging telecommunica-

tion services enabled by IP networks, agent systems, and negotiation mechanisms c

efit from notations that can express dynamicity.

Obviously, other sets of criteria could be defined. For instance, Cockburn uses four d

sions to use case descriptions, namely purpose, content, plurality, and structure [98]. Purpose can be
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 67

CHAPTER 3 Literature Survey

sistent

n be

ith our

th sto-

t prose,

eal

esents

 business

e case,

 years.

ications

rds bod-

 textual

d towards

 MSCs

-Level

om the

se cases
either for stories (explanations) or for requirements. Content can be either contradicting, con

prose, or formal content. Plurality is either 1 or multiple, similar to our multiplicity. Structure ca

unstructured, semi-formal, or formal. This dimension shares some common characteristics w

representation criterion. According to this classification, Use Case Maps’ purpose could be bo

ries and requirements, whereas the other criteria would be evaluated respectively to consisten

multiple, and semi-formal. Rolland et al. suggest yet another set of criteria in [311], but without a r

emphasis on specific needs of telecommunication systems.

The next section does not attempt to provide a single scenario definition. Instead, it pr

and compares different notations according to the selected criteria.

3.3.3 Overview of Selected Scenario Notations
There are dozens of scenario notations used for the description of system usage, goals, and

logic. For example, Hurlbut’s thesis surveyed and compared nearly sixty different scenario, us

and policy formalisms and models [184][185], and others are likely to emerge in the upcoming

This section focuses on selected scenario notations particularly relevant to the telecommun

domain, and it provides a concise comparison in terms of the criteria seen in Section 3.3.2.

Message Sequence Charts

The scenario notation the most commonly used by telecommunications companies and standa

ies is undoubtedly Message Sequence Charts. MSCs are essentially graphical (although a

machine-processable format exists), composed of concrete events (messages), and centere

components. MSCs can represent internal actions and multiple actors. While conventional

mostly use time ordering and single traces (MSC'2000 now enables multiple traces), High

MSCs focus more on multiple structured scenarios and also on causality.

MSCs have been used by many people to formalize scenarios. Kimbler et al. use them to cre-

ate Service Usage Models, which describe the dynamic behaviour of the system services fr

user's perspective [229][304]. Andersson and Bergstrand also present a method to formalize u

that introduces an unambiguous syntax through MSCs [31].
68 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Scenarios

They are

iagrams

 such as

n be of

andling

cenarios,

ios

a set of

: normal

ptional,

ultiple

 and uses

r [183].

arcs rep-

ractions

sition

e case in
Use Cases

Jacobson’s use cases are prose descriptions of behaviour from the user’s perspective [212].

mostly black-box, i.e. they focus on the interactions between actors and systems. Use case d

offer a graphical means by which use cases can be related to each other. They offer relations

uses and extends, which allow for uses cases to reuse (part of) other scenarios. Use cases ca

two kinds: basic courses, for normal scenarios, and alternative courses, which include fault-h

scenarios. Use cases are mostly based on a time ordering, they represent multiple abstract s

and they may involve many actors.

CREWS-L’Ecritoire

CREWS, the European ESPRIT project on Cooperative Requirements Engineering With Scenar

[126], proposes structured narrative text for capturing requirements scenarios, together with

style and content guidelines [46]. These are supported by a tool called L’Ecritoire [312] and, to some

extent, by the SAVRE tool [252].

In a way similar to Jacobson’s use cases, these scenarios are divided into two main categories

scenarios and extension scenarios. The latter can be either normal (alternatives) or exce

depending on whether they allow to reach the associated goal or not. This notation supports m

actors and abstract scenarios, focuses on external events, is centered towards components,

time ordering.

Scenario Trees

Hsia et al. suggest the use of scenario trees that represent all scenarios for a particular use

Similarly to LTSs, scenario trees are composed of nodes, which capture system states, and of

resenting events that allow the passage from one state to the next. They also focus on inte

between actors and the system, they use time ordering, and they can be abstract.

This notation is best suited for a single thread of control and well defined state tran

sequences that have few alternative courses of action and no concurrency, which is seldom th
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 69

CHAPTER 3 Literature Survey

 scenario

enarios

l and

 points of

ntation

rs) to be

atically

risk sce-

wards

rrency,

Chisel

ication

vents tak-

can take

quences.

e inter-

 from

a way

ehav-
real telecommunications systems. Regular expressions are used to formally express the user

that results in a deterministic finite state machine.

Use Case Trees

Boni Bangari proposes Use Case Trees (UCTs) as a text-based notation for describing sc

related to one entity [59]. This notation, inspired from TTCN [197][294], captures sequentia

alternative scenarios in terms of messages. These messages are sent and received through

control and observations (PCOs) belonging to an actor under test. The grammar-like represe

allows for sub-trees, timer events and data parameters (assignments, operations and qualifie

defined and used. An interesting property of UCTs is that sequential scenarios can be autom

derived (usually as Message Sequence Charts) and characterized as normal, low risk, or high-

narios. This notation is potentially useful for defining compact validation test suites targeted to

the system as a whole or towards single components. However, the lack of support for concu

multiple entities and hiding limits its usefulness as a requirements notation.

Chisel Diagrams

Aho et al. have performed empirical studies with telecommunication engineers to create the

notation [4]. The graphical language Chisel is used for defining requirements of telecommun

services. Chisel diagrams are trees whose branches represent sequences of (synchronous) e

ing place on component interfaces. Nodes describe these events (multiple concurrent events

place in one node) and arcs, which can be guarded by conditions, link the events in causal se

Multiple abstract scenarios and actors can be involved, but internal actions are not covered. Th

ested reader can find further information on the transition from Chisel to UCMs in [18], and

Chisel to LOTOS in [354][357].

Statechart Diagrams

Glintz uses Harel’s Statechart notation [168], now part of the Unified Modeling Language, as

of capturing scenarios [154]. This results in a formal notation for validating and simulating a b
70 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Scenarios

hat they

titioned

d State-

ition of

. These

oncept

enarios

 concept

ially the

where

4]. Sce-

ime sys-

 actions

 the MSC

w cov-

otations.

the sce-
ioural model representing the external view of a system. Scenarios must be structured such t

are all disjoint. Any overlapping scenarios must be either merged into a single scenario or par

into several disjoint ones. Such structuring allows for each scenario to be modelled by a close

chart, i.e. a single initial state and a single terminal state, with other states in between. Compos

scenarios is performed though sequence, alternative, iteration, or concurrency declarations

scenarios support causal ordering, multiple actors, and multiple abstract scenario sequences.

Life Sequence Charts

Damm and Harel propose Life Sequence Charts (LSCs) [106], which enrich MSCs with a c

called liveness. Liveness enables one to specify mandatory scenarios as well as forbidden sc

(e.g. to capture safety requirements) through the same representation. Although the liveness

is certainly useful and leads to more accurate component descriptions, LSCs satisfy essent

same criteria as HMSCs.

Somé’s Scenarios

Somé et al. represent timed scenarios with structured text, but also with a formal interpretation

preconditions, triggers, sequence of actions, reactions and delays are specified [332][333][33

narios are interpreted as timed sequences of events, which make them appropriate for real-t

tems. External events represent interactions between components, including actors, whereas

can be internal. These textual scenarios can also be represented graphically. Somé extended

notation to support additional scenario elements such as conditions and expiration delays (no

ered to some extent by HMSCs).

Multiple abstract scenarios and actors can be considered by these component-based n

They are ordered according to time, although non-linear causality appears when composing

narios together to form an automaton.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 71

CHAPTER 3 Literature Survey

, struc-

nent-

 from a

d into

cus on

ases can

ract and

dol-

m.

 be dis-

 diagrams

tion as

s. The

grams

d flows

us on

ed; and

ts" is

ultiple

compo-
RATS

In his RATS (Requirements Acquisition and specification for Telecommunication Services) methodol-

ogy [120], Eberlein uses three different scenario representations: textual (natural language)

tured (in text, but with pre/post/flow conditions) and formalized (structured text, more compo

centered). The aim of having these three notations is to allow a smooth and gradual transition

service description in natural language to a formal specification in SDL. Scenarios are divide

normal, parallel/alternative, and exceptional behavior, in order to help the developer to first fo

the most common behavior and then later on the less common system functionality. The use c

be structured hierarchically in overall use cases of higher abstraction. Most scenarios are abst

linear, although overall scenarios capture multiple scenarios, with a causal ordering. The metho

ogy has been implemented in a prototype of the RATS tool, a client-server-based expert syste

UML Activity Diagrams

All UML behavioural diagrams can be used to describe scenarios. Four of them have already

cussed in some form in this section: Jacobson’s use cases and use case diagrams, sequence

(similar to MSCs, although less expressive than Z.120), collaboration diagrams (same informa

MSCs, but with a two-dimensional view of the component architecture), and Statechart diagram

last type, activity diagrams, stands out as an interesting way of capturing scenarios. Activity dia

capture the dynamic behavior of a system in terms of operations. They focus on end-to-en

driven by internal processing. Activity diagrams share many characteristics with UCMs: foc

sequences of actions, guarded alternatives, and concurrency; complex activities can be refin

simple mapping of behavior to components can be achieved through vertical swimlanes. However,

activity diagrams do not capture dynamicity well, and the binding of actions to "componen

semantically weak in the current UML standard.

Use Case Maps

UCMs are discussed thoroughly in this document, but let us recall that they represent m

abstract scenarios through visual paths linking responsibilities. The latter can be allocated to
72 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Scenarios

flow of

ure run-

e major

k-box

Ms do

 LSCs

ts. Use

 support

ines, yet
nents or users (actors), yet interactions between component, which implement the causal

responsibilities, are left to a more detailed stage of the design process. UCMs can also capt

time self-modifying behaviour through dynamic stubs and dynamic responsibilities.

Summary and Discussion

The thirteen scenario notations compared in this paper are summarized in Table 9. Due to som

differences, HMSCs are considered separately from basic MSCs in this table.

MSCs are most useful for single scenarios, especially when expressing lengthy blac

interactions between actors and a given system (something that UML activity diagrams and UC

not do well). However, MSCs are not appealing for structuring related scenarios. HMSCs and

are more powerful and expressive, but they still require an early commitment to componen

cases and UCTs are generally not used to describe internal responsibilities and they do not

causal ordering. CREWS’ scenarios improve on use cases by using structured text and guidel

a. In bound UCMs, what is inside components is usually assumed to be hidden.

TABLE 9. Comparison of the Selected Scenario Notations

Scenario
Notation

Comp-centered
or end-to-end

Hiding Representation Ordering Multiplicity Abstraction Identity Dynamicity

MSC Comp.-centered Yes Sequence Diagram Time Single Concrete Many Static

HMSC Comp.-centered Yes Sequence Diagram Causal Multiple Concrete Many Static

Use Case Comp.-centered No Text Time Multiple Abstract Many Static

CREWS’ Comp.-centered No Structured Text Time Multiple Abstract Many Static

Scen. Tree Comp.-centered No Tree & Grammar Time Multiple Abstract One actor Static

UCT Comp.-centered No Text & Grammar Time Multiple Concrete One actor Static

Chisel Comp.-centered No Tree Causal Multiple Abstract Many Static

Statechart Comp.-centered No State Machine Causal Multiple Abstract Many Static

LSC Comp.-centered Yes Sequence Diagram Causal Multiple Concrete Many Static

Somé’s Comp.-centered Yes Structured Text &
Sequence Diagram

Time Multiple Abstract Many Static

RATS Either type Yes Structured Text Causal Multiple Abstract Many Static

UML Act-
ivity Diag.

End-to-end Yes Paths on Swimlanes Causal Multiple Abstract Many Static

UCM End-to-end Yesa Paths on Components Causal Multiple Abstract Many Dynamic
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 73

CHAPTER 3 Literature Survey

t a time,

sel dia-

en com-

nsformed

 nota-

escrip-

nships

ar view

cture in

n-func-

CMs

t makes

namic

 move

UCMs,

ic selec-

quire-

not (SDL

tions to

ed

tant to

h a high
they have essentially the same limitations. Scenario trees and UCTs focus on only one actor a

which is often not desirable when describing telecommunications systems requirements. Chi

grams represent a good alternative to scenario trees, but they still focus on interactions betwe

ponents. Somé’s scenarios lack the causal ordering that only appears when scenarios are tra

into component automata.

UCMs, RATS, and UML activity diagrams stand up as being the only surveyed scenario

tions that are not component-centered but define end-to-end behavior. This is useful for early d

tions of requirements and helps to avoid overspecification. Also, UCMs stress causality relatio

that can span many components. UML activity diagrams can, to some extent, present a simil

with swimlanes, but swimlanes are semantically weak and they cannot represent the archite

two dimensions (swimlanes show components as columns). RATS scenarios can capture no

tional information, unlike most other notations. They have many of UCMs' characteristics, but U

have only one type of scenarios (not three as in RATS), and they are graphical, a property tha

them appealing to a variety of stakeholders. UCMs can also capture dynamicity through dy

stubs (with multiple sub-maps selected at run-time) and dynamic responsibilities (which can

sub-maps around and store them in pools of sub-maps). This useful feature, fairly unique to

enables the description of emerging telecommunication services based on agents and dynam

tion of negotiation mechanisms.

Overall, we believe the UCM notation to have very good features for the capture of re

ments and the description of high-level designs. Moreover, LOTOS is one of the few formal technique

surveyed that can specify scenarios that are component-centered as well as those that are

requires components), hence it can support a progression from system requirements descrip

component-centered high-level designs. SPEC-VALU E can therefore take advantage of this add

value provided by the UCM-LOTOS combination.

3.3.4 Construction Approaches
In the scenario-driven development of telecommunication systems and services, it is impor

leverage the investment in scenarios in order to generate systems rapidly, at low cost, and wit
74 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Scenarios

tionali-

uch by

re the

he con-

dustry

oncept

truction

ted sys-

pro-

Due to

e and

d cor-

t the

) pro-

 verifi-

eering

ered

ation

rvice
quality. To support the progression from scenarios capturing requirements and high-level func

ties to detailed designs and implementations based on communicating entities, we can learn m

examining different construction approaches used in the protocol engineering discipline, whe

construction of a model based on another model is a concept supported by many techniques. T

struction of models from scenarios is nowadays getting a lot of attention from academia and in

[341]. This section introduces and compares many construction approaches.

Protocol Engineering Approaches

In the field of protocol engineering, the construction of a model based on another model is a c

supported by many approaches. In [293], Probert and Saleh present two categories of cons

approaches for communication protocols that can be generalized to most reactive and distribu

tems:

• Analytic approach: this is a build-and-test approach where the designer iteratively

duces versions of the model by defining messages and their effect on the entities.

the manual nature of this construction approach, which often results in incomplet

erroneous model, an extra step is required for the analysis, verification (testing), an

rection of errors.

• Synthetic approach: a partially specified model is constructed or completed such tha

interactions between its entities proceed without manifesting any error and (ideally

vide the set of specified services. For properties preserved by such approaches, no

cation is needed as the correctness is insured by construction.

In particular, Saleh surveyed multiple synthesis techniques applied to two protocol engin

domains:

• Synthesis of protocol specifications from service specifications [293][315]. In a lay

reference model like OSI, this problem relates to the design of the protocol specific

of layer N from the service specifications of layers N and N-1. The usefulness of se

specifications is emphasized in [363].
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 75

CHAPTER 3 Literature Survey

 con-

iven

e

e

• Synthesis of protocol converters [316]. This problem is formulated as the design of a

verter for the interworking between two incompatible protocols, at layers N and M, g

the formal specification of these protocols and/or the services they provide.

TABLE 10. Benefits and Drawbacks of Protocol Engineering Construction Approaches

Construction
Approach

Benefits Drawbacks

Analytic

• No formal source model required.
• Both the source and target models can

exploit the richness of their respective mod-
elling language to their full extent.

• The constructed model can more easily take
into consideration design or implementation
constraints (e.g. to reflect the high-level
design), and be optimized accordingly.

• Non-functional requirements (e.g. perfor-
mance and robustness) can more easily be
taken into consideration.

• Transformation mostly manual.
• Errors may result from the construction.
• Verification is required.
• Many iterations may be required to fix the errors

detected during verification.
• Time-consuming.

Synthetic,
interactive

• Improper synthetic constructions can be
avoided by interacting with the designer.

• Correctness “ensured” by construction
(under certain assumptions). Many faults are
therefore avoided.

• Verification theoretically not required.
• Only one iteration required.
• Quick construction.

• Not fully automated.
• Requires a formal source model.
• May require a partially constructed model to be

available.
• Both source and target modelling languages ar

usually restricted in style and content.
• Requires more details in the source model than

non-automated approaches.
• Difficult to take into consideration design/

implementation constraints, optimizations, and
non-functional requirements.

• Resulting model usually hard to understand,
maintain and extend.

Synthetic,
automated

• Fully automated.
• Correctness “ensured” by construction

(under certain assumptions). Many faults are
therefore avoided.

• Verification theoretically not required.
• Only one iteration required.
• Very quick construction.

• Requires a formal source model.
• Both source and target modelling languages ar

usually restricted in style and content.
• May result in improper synthetic constructions

in ambiguous cases (the algorithm makes the
decisions, not the designer).

• Requires more details in the source model than
non-automated approaches.

• Resulting model usually hard to understand,
maintain and extend.
76 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Scenarios

 cases,

tomata

odels.

some of

ols or

onstruc-

eral.

d by the

plete-

 require

the sce-

ponent

 levels

or the

for the

 imple-

h are

ated.
Synthetic approaches may or may not be fully automated. Sometimes, they require theinter-

active participation of the designer as some decisions need to be taken along the way. In both

synthetic approaches require the source model to be described formally (usually with some au

model or with FDTs), whereas analytic approaches may start with semi-formal or informal m

Analytic and (automated) synthesis approaches have many other benefits and drawbacks,

which are summarized in Table 10.

We have no intention of surveying the myriad of approaches for the synthesis of protoc

converters. However, we can build on the benefits and drawbacks presented here to evaluate c

tion techniques based on scenarios that are applicable to telecommunications systems in gen

Comparison Criteria for Model Construction

The construction of models that integrate scenarios represents a problem similar to those face

protocol engineering community. A collection of scenarios often needs to be checked for com

ness, consistency, and absence of undesirable interactions. To do so, most V&V techniques

that a model which integrates these scenarios be available. Also, it is often desirable to map

narios onto a component architecture at design time in order to enable the generation of com

behavior in distributed applications (e.g. telecommunication systems). These two construction

are of particular interest for this thesis:

P1) Integration of a collection of requirements scenarios in an abstract model used f

analysis of requirements. No components are required here.

P2) Integration of a collection of scenarios in a component-based model used not only

analysis of the requirements, but also as a high-level design which considers some

mentation issues.

Different approaches targeting these two levels are already available, twenty of whic

reviewed next. Additional evaluation criteria include:

• Type of construction approach: analytic, synthetic non-automated, or synthetic autom
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 77

CHAPTER 3 Literature Survey

 called

l

of

e views,

 SUM

cluding

port is

e to

quire-

e system

al use-

e cases

o

e spec-

d

UCMs,

rans-

-

 patterns
• Source scenario notation, such as the ones overviewed in Section 3.3.3.

• Target construction model (SDL, UML Statecharts, automata, LOTOS, etc.).

• Whether the scenario model requires explicit components and messages.

Non-Automated Analytic Approaches

The Usage Oriented Requirements Engineering (UORE) approach proposed by Regnell et al.

[304][306] builds on the Objectory method [212] and adds a construction phase (unfortunately

synthesis in their work) where use cases are integrated manually into a Synthesized Usage Mode

(SUM). This “synthesis”, which addresses level P1, is composed of three activities: formalization

use cases (using an extended MSC notation), integration of use cases (which produces usag

one for each actor/component), and verification (through inspection and testing). The resulting

is a set of automata whose purpose is to serve as a reference model for design and V&V, in

Cleanroom’s statistical usage testing [259][307] and dynamic testing [305]. No automated sup

provided yet.

In RATS, Eberlein provides informal guidelines [120]. Non-functional requirements hav

be refined into either functional requirements or implementation constraints. The functional re

ments have to be expressed in textual use cases. The user then has to define states in th

behavior. Adding pre-, flow- and post-conditions results in structured use cases. The most form

case notation uses atomic actions, which still contain textual descriptions. These formalized us

are then mapped to SDL flowchart constructs in order to address level P2. The approach does not g

deeply into the construction of the SDL model as RATS focuses more on the acquisition and th

ification of requirements (including non-functional ones).

In his thesis, Bordeleau addresses P2 by defining the Real-Time TRaceable Object-Oriente

Process (RT-TROOP), which combines the use of scenario textual descriptions (use cases),

MSCs, and ROOM (UML-RT) [62]. Included is an approach where UCM scenarios are first t

formed into HMSCs, and then into hierarchical CFSMs (ROOMCharts) [61]. No construction algo

rithm is proposed, but the use of transformation patterns is suggested instead. Several such
78 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Scenarios

anges,

eability

require-

red to

SCs,

State-

an-

nts in the

rio) are

er very

ies are

/com-

 from

iagrams

 scenar-

 repre-

to be

ls.

 timed

d its

r-

g, and
are provided for the UCM-HMSC mapping [63], and for the construction of ROOMCharts from

HMSCs. HMSCs are used to fill the gap between UCMs, which abstract from message exch

and the state machines, which describe the behaviour of the actors/components involved. Trac

relationships are also defined in this process. RT-TROOP focuses more on design than on

ments validation because verification of the ROOM model is limited (especially when compa

FDTs). ObjecTime, ROOM’s tool, supports animation and a limited form of testing based on M

but at the same time it supports automatic code generation.

Krüger et al. present a related technique for the transformation of a set of MSCs to a

chart model [235], hence addressing P2. The construction takes into consideration the type of sem

tics associated to MSCs, e.g. whether there are fewer, more, or the same number of compone

system than what is found in the MSCs, or whether additional messages (from another scena

allowed or forbidden between two messages in a component, etc. This technique is howev

immature at this point and it is not supported by algorithms or tools.

According to Lamsweerde and Willemet, a drawback of scenarios is that system propert

often left implicit. If these properties were explicit (e.g. in declarative terms), then consistency

pleteness analysis would be much easier to carry out. Lamsweerde and Willemet addressP1 by

exploring the process of inferring (by induction) formal specifications of such properties (goals)

scenario descriptions [238]. Their scenarios are sequential and synchronous interaction d

whereas their goals are linear temporal logic properties expressed in the KAOS language. The

ios can either be positive (must be covered) or negative (must be excluded). Their technique

sents a novel and promising contribution, but it remains analytic as it requires validation

performed because inductive inference is not sound. This approach is not yet supported by too

Yee and Woodside developed a transformational approach to process partitioning using

Petri Nets [380], which addresses P2. An abstract scenario model combining both the system an

environment (Process Specification of Requirements — PSR) is partitioned, using a collection of co

rectness preserving transformations (abstraction, refinement, sequentialization, partitionin
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 79

CHAPTER 3 Literature Survey

em com-

i Net,

. Being

ernative

ation of

sented

e actor

al alge-

itions

chnique

stems.

narios

cenarios

based on

when the

rves the

tomated

 of the

rithm

han for

 global

rts)
resource access control), into a collection of communicating processes that can represent syst

ponents (proto-design). Both the source and the target models are described using timed Petr

and the transformations ensure their behavioural equivalence from the environment viewpoint

executable, the target model can be used for analysis and for performance evaluation of alt

architectures. The source model does not require any component, but the selection and applic

the transformations are manual.

Non-Automated Synthesis Approaches

Desharnais et al. propose a synthesis approach for the integration of sequential scenarios repre

in state-based relational algebra [114]. The initial scenarios involve the system and a singl

(concurrency is not involved), and the result is one large scenario represented again in relation

bra. As a result, level P1 is addressed. Although the authors claim that data and complex cond

being incorporated in the formalism represent an advantage over other approaches, their te

seems somewhat limited in terms of usability and scalability for realistic telecommunication sy

In his thesis [333][334], Somé proposes a composition algorithm that transforms his sce

into Alur’s timed automata [7], one for each component (hence addressing P2). This synthesis algo-

rithm is implemented in a prototype tool, where consistency and completeness issues in the s

are resolved through the interactive assistance of the requirements engineer. The synthesis is

the common preconditions rather than on the sequences of actions. Super-states are used

preconditions of one scenario are included in that of a second scenario. The algorithm prese

temporal constraints associated to the scenarios, which is seldom the case of other (semi-)au

synthesis techniques.

Harel and Kugler propose an algorithm for the synthesis of Statecharts from a subset

Life Sequence Charts (LSCs — [106]) notation, without data or conditions [169]. This algo

decides the satisfyability and consistency of a set of LSCs, something that is harder to do t

MSCs due to the possibility of expressing forbidden scenarios. The algorithm then produces a

system automaton. In order to address P2, this global automaton can be distributed (as Statecha
80 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Scenarios

n with

 sup-

nicat-

ed

-theo-

tes in

 detec-

ed this

grams

s

equence

n-

ces, then

l asks

 accept-

unter-

t of

thesis

ns,

grams

l [233],
over the set of components involved in the LSCs. These components share all their informatio

each other, which simplifies the synthesis algorithm. This work is promising but it is not yet

ported by tools.

Alur et al. have an algorithm which transforms a set of stateless basic MSCs into commu

ing state machines of various types (level P2) [9]. This technique supports the detection of impli

scenarios resulting from the composition of multiple MSCs. Alur’s algorithm uses a language

retic framework with closure conditions. Its emphasis is on safety and on efficiency (it execu

polynomial time), and it can generate counter-examples for non-realizable sets of MSCs. The

tion is based on previous work done in collaboration with Holzmann and Peled [8], who extend

work in another direction to support HMSCs during requirements analysis with the tool UBET

[182][249].

Mäkinen and Systä developed an approach and tool to synthesize UML Statechart dia

from a set of UML sequence diagrams [254], hence addressing P2. Since fully automated synthesi

may overgeneralize the Statechart and may introduce more scenarios than described in the s

diagrams, the MAS (Minimally Adequate Synthesizer) approach is interactive. MAS models the sy

thesis process as a language inference problem and translates sequence diagrams first into tra

into finite state automata, and finally into Statechart diagrams. The interactive part of the too

membership queries visualized as sequence diagrams (in a nutshell: “Is this sequence diagram

able?”), which allow the derivation of a consistent and deterministic Statechart diagram. Co

examples can be provided when appropriate.

Automated Synthesis Approaches

With their SCED methodology [232], Koskimies et al. propose a synthesis algorithm based on tha

Biermann and Lrishnaswamy [49], the latter being available since the mid-70’s. SCED’s syn

algorithm integrates scenario diagrams, an extension of the basic MSC’92 notation with iteratio

conditions, and sub-scenarios (thus more in line with MSC 2000), and outputs OMT state dia

[314], which are based on Harel’s Statecharts. The synthesis is supported by the SCED too
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 81

CHAPTER 3 Literature Survey

e gener-

enarios.

used in

 this

thesis

ency

 Kosk-

e, the

ial com-

ential

al user

 addi-

 from

d

 State-

d (hier-

shares

of the

er types

itten in

bject-

MSCs,
which also contains visual editors for scenario diagrams and state diagrams. The state machin

ated by the tool is minimal with respect to the number of states necessary to support the sc

The authors claim that their approach is not tied to the OMT methodology, and hence can be re

other contexts to address the level P2.

Schönberger et al. have developed another algorithm based on a similar idea [322], only

time they start with another type of scenario notation: UML collaboration diagrams. Their syn

procedure addresses P2 by generating UML Statecharts, which make extensive use of concurr

constructs to satisfy the inherent concurrency found in collaboration diagrams (but absent from

imies’ scenario diagrams). Although their algorithm does not output a minimized state machin

authors provide several state diagram compression techniques. This procedure has a polynom

plexity and is not incremental, whereas Koskimies’ approach is incremental but with an expon

complexity. A prototype tool implements this algorithm, and it can be used to generate graphic

interfaces automatically, provided that the initial collaboration diagrams include appropriate

tional information [125].

Whittle and Shumann [374] propose an algorithm for the generation of UML Statecharts

a collection of UML sequence diagrams (addresses P2). It allows for conflicts to be detected an

resolved through UML’s Object Constraint Language (OCL) and global state variables. These

charts can be non-deterministic. The target Statechart model is intended to be highly structure

archical) and readable in order to be modified and refined by designers. This algorithm

similarities with the work of Schönberger [322] and Somé [333] as the hierarchical nature

states is inferred. However, the synthesis is also influenced by structure elements found in oth

of UML diagrams such as class diagrams. The approach is supported by a prototype tool wr

Java.

Leue et al. have developed two algorithms for the automated synthesis of Real-Time O

Oriented Modeling (ROOM) models [326] from standard HMSC scenarios [244]. Essentially, ROOM-

Charts (hierarchical state machines similar to Harel’s) are generated for each actor in the H
82 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Scenarios

C are

impler

e

e

e algo-

om

es are

ed into

 by the

stency

 algo-

ompo-

able

 (hence

all the

.

have no

, and

valua-

en an

), and a
hence addressing P2. One major assumption is that the basic MSCs referenced by the HMS

mutually exclusive, i.e. unlike SCED, only one scenario is active at any time. This results in s

synthesis algorithms. The first algorithm, called maximum traceability, preserves the HMSC structur

in the synthesized model. The second one, called maximum progress, generates smaller stat

machines but sacrifices traceability with respect to HMSCs. The properties preserved by thes

rithms are still under investigation. Both algorithms are implemented in the MESA toolset [45], and

their authors claim that their work can be adapted to support SDL and UML.

Mansurov and Zhukov address P2 and target the automated generation of SDL models fr

HMSCs [255]. The scenarios are first sliced by actor, then communicating finite state machin

generated for each actor. These FSMs are made deterministic and minimal, and then transform

SDL processes. The resulting SDL system usually allows more traces than those defined

HMSCs. Very little is said about the synthesis algorithm itself, and the levels of detail and consi

required by the MSCs is relatively high. This technique is implemented in MOST, the Moscow Syn-

thesizer Tool.

Li and Horgan target the architectural analysis of telecommunications systems with an

rithm for the semi-automated synthesis of SDL models from architectures described using c

nent, links, and archflows [246]. Archflows are sequential workflows where the steps are observ

events, internal events, or sending/reception of messages performed by the components

addressing P2). The resulting SDL model is complete and assumed to be valid when it contains

archflow traces, in a way similar to a May Pass verdict in the LOTOS testing theory (Section 3.4.3)

Workflows are assumed not to conflict with each other, hence they should be consistent and

undesirable interaction, which is of limited use for early validation. Non-determinism is allowed

the model can be supplemented with performance information for performance prediction e

tions. The method is supported by a toolset, the WORKFLOW-TO-SDL-DIRECT-SIMULATION .

Khendek and Vincent propose an approach for the construction of an SDL model giv

existing SDL model, whose properties need to be preserved (an extension relation is provided
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 83

CHAPTER 3 Literature Survey

not the

compo-

ing the

ment

long the

 SDL

 MSCs

n may

tic

anced

ecifica-

ore

ponents.

f

mains

ols.

 auto-

tations

ues for

thetic

te

 a proto-

s that
set of new MSC scenarios [228]. The synthesis algorithm considers only input/output signals,

actions in the transitions. The semi-automated construction is done in three steps: add new

nents if necessary (manually), synthesize the new architecture behaviour from MSCs us

MSC2SDL tool [1], and then merge the behaviour descriptions of the old SDL with the incre

SDL, on a per process basis. If non-determinism that violates the extension relation is added a

way, then the tool reports the problem (error detection only). If an MSC description of the old

specification is available, then the approach can be simplified to adding new MSCs to the old

and regenerate the new specification using the MSC2SDL tool. However, the extension relatio

also be violated by this approach.

Turner presents an approach called CRESS (Chisel Representation Employing Systema

Specification), which defines tightly defined rules for the syntax and static semantics of an enh

version of Chisel diagrams [354]. This improved notation has formal denotations in both LOTOS and

SDL, hence enabling the synthesis of formal models in order to support the rapid creation, sp

tion, analysis and development of features. Although CRESS often represents scenarios as trees (m

precisely as directed acyclic graphs), the tree nodes represent interactions between com

Hence, this approach is roughly comparable to the ones starting from HMSCs (although CRESS’ inter-

actions are synchronous and directionless) and it also addresses P2. CRESS is supported by a set o

tools for parsing, checking and translating diagrams. However, the synthesis algorithm re

undocumented and hence little in known about the design decisions taken by the translation to

Dulz et al. present an approach where performance prediction models (in SDL) are also

matically synthesized from MSC scenarios, but this time supplemented with performance anno

[118]. Their goal is to obtain performance estimates early in the design process (other techniq

the construction of performance models from UML and SDL are reported in [377]). The syn

SDL model is intended to be a throw-away prototype (level P1), but it is nonetheless used to genera

the code for the target system whose performance is evaluated. The approach is supported by

type tool (LISA), however the algorithm remains obscure. It is not even clear whether two MSC

start with a similar transition should be composed as alternatives, as sequences, or in parallel.
84 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Scenarios
Summary and Discussion

Several aspects of the reviewed construction approaches are summarized in Table 11:

TABLE 11. Comparison of the Selected Construction Approaches

a. The model is component-based, but mostly used as a reference model for requirements validation.

b. Interactions between a user and the system in terms of a relational algebra.

 Approach Level Type of Approach Scenario Models Construction Models Comp?

Regnell et al.
(UORE) P1a Analytic Extended MSC Automata Y

Eberlein
(RATS) P2 Analytic Structured text SDL N

Bordeleau
(RT-TROOP) P2 Analytic UCMs, HMSCs ROOMCharts N

Krüger et al. P2 Analytic MSCs Statecharts Y

Lamsweerde
and Willemet P1 Analytic

Sequential and synchronous
MSCs

LTL properties in KAOS Y

Yee and
Woodside

P2 Analytic Timed Petri Net Timed Petri Net N

Desharnais
 et al. P1 Synthetic, non-automated

State-based relational
algebra

State-based relational
algebra

Yb

Somé P2 Synthetic, non-automated
Structured text, extended

MSCs
Timed automata Y

Harel and
Kugler P2 Synthetic, non-automated LSCs Statecharts Y

Alur et al P2 Synthetic, non-automated Basic MSCs CFSMs Y

Mäkinen and
Systä (MAS) P2 Synthetic, non-automated

UML sequence
diagrams

UML Statecharts Y

Koskimies et
al.(SCED)

P2 Synthetic, automated Extended MSCs OMT state diagrams Y

Schönberger
et al. P2 Synthetic, automated

UML collaboration
diagrams

UML Statecharts Y

Whittle and
Schumann P2 Synthetic, automated

UML sequence
diagrams

UML Statecharts Y

Leue et al. P2 Synthetic, automated HMSCs ROOMCharts Y

Mansurov
and Zhukov P2 Synthetic, automated HMSCs SDL Y

Li & Horgan P2 Synthetic, automated Archflows SDL Y

Khendek
and Vincent P2 Synthetic, automated MSCs, SDL SDL Y

Turner
(CRESS)

P2 Synthetic, automated
Extended

Chisel diagrams
SDL or LOTOS Y

Dulz et al. P1 Synthetic, automated Extended MSCs SDL Y
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 85

CHAPTER 3 Literature Survey

essages

uch as

mmon

ther ben-

autom-

hines,

ot

nent-

lopment,

s of con-

urveyed

ompo-

ents,

 along

ence,

ations

artially,

can’t

on of

ue.

n

i-
Most of the techniques surveyed here require the use of scenario notations based on m

exchanged between communicating entities (see rightmost column). MSC-like notations s

basic MSCs, extended MSCs, HMSCs, LSCs, and UML interaction diagrams are especially co

as source scenario models for construction approaches. Techniques based on HMSCs can fur

efit from recent theoretical results on necessary conditions for the synthesis of communicating

ata from HMSCs [173]. For target construction models, communicating finite state mac

whether they are hierarchical (ROOMCHARTS, (UML) Statecharts, or OMT state diagrams) or n

(SDL’96 or plain CFSMs) are very common. It is difficult to evaluate approaches for compo

based scenarios as they use varying source and target models, they are still under heavy deve

and they are not supported by commercial tools. Synthesis approaches also have different set

straints and design decisions embedded in their algorithms. Only three of the techniques s

(RATS, RT-TROOP, and Yee&Woodside) do not start from scenarios expressed in terms of c

nents and messages, and they are only used in analytic construction approaches.

In SPEC-VALU E, UCMs abstract from the communication aspect between the compon

although interaction with the environment could be attributed to start points and end points

UCM paths. UCMs could also be unbound, meaning that no component would be involved. H

most of the synthesis algorithms surveyed are of little use for the construction of formal specific

from UCMs. Furthermore, any attempt to automate the synthesis of such specification, even p

would require further formalization of UCMs, which are currently semi-formal. In general, one

go from the informal to the formal by formal means. An analytic approach to the constructi

LOTOS specifications from UCMs therefore seems to be, at this time, the most appropriate aven

An interesting characteristic of these two languages is that they can both address levelsP1 and

P2. Amyot’s master thesis partially addressed level P1 by providing several mapping rules betwee

unbound UCMs and LOTOS [12]. In the current thesis, we extend this work to address level P2, where

components are considered in order to produce high-level designs. Additionally, since SPEC-VALU E

rests on an analytic transformation from UCMs to LOTOS, there will be much emphasis on the verif

cation aspects required to gain a high degree of confidence in the resulting specification.
86 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Validation and Verification

while

often

 models

nd veri-

is espe-

ets of

 case

ormal

n essen-

ith an

uction

as such.

roper-

 help

nother.

me lan-

m both

tial and

fer-
3.4 Validation and Verification
In general, validation refers to activities that ensure that the right product has been designed

verification refers to activities that ensure that the product is designed correctly. Validation

involves user requirements and scenarios whereas verification usually makes uses of formal

and coarse-grain properties (e.g., absence of deadlocks). The distinction between validation a

fication is at times blurred by the same techniques being applicable to both activities, and this

cially true of formal methods. The distinction is more a state of mind than mutually exclusive s

techniques.

When constructing an initial formal specification from informal requirements, as it is the

in SPEC-VALU E, Brinksma points out that the resulting models cannot be demonstrated by f

means, hence experimentation becomes necessary [73]. Experimental validation constitutes a

tial methodological ingredient for the analysis of telecommunications systems. SPEC-VALU E intends

to introduce such a validation framework in Chapter 6.

Many concepts surrounding V&V have already been presented in Section 2.1.3, w

emphasis on LOTOS techniques in Section 2.3.6 and Section 2.3.7. Concepts related to constr

approaches have also been introduced in Section 3.3.4. These notions will not be repeated

Instead, the current section will complement these concepts with additional background on p

ties, general testing concepts, LOTOS testing, coverage, and testing patterns. These concepts will

defining and understanding the validation framework based on UCMs and LOTOS, which is an

expected contribution of the thesis.

3.4.1 Properties
The verification of a system under design usually involves checking a formal model against a

Equivalence relations verify that the two models, which are usually represented using the sa

guage, are equivalent under some criteria. This requires a similar level of completeness fro

models. However, sometimes designers want to verify their complete formal model against par

more manageable models that we call properties. Properties are often described in a language dif
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 87

CHAPTER 3 Literature Survey

lts sur-

sified in

ring,

uffer or

s its

eli-

ailures

g the

 of

nction-

 and

rties.

em.

ility to

 proper-

rs (in

ess and
ent from the model being verified. This section presents some of the main concepts and resu

rounding properties and their use in a LOTOS-based approach.

Classifying Properties

In reactive systems, and especially in telecommunications systems, properties can be clas

three categories [316]:

• Safety properties: something bad never happens. In the realm of protocol enginee

these properties ensure the absence of deadlocks, unspecified reception errors, b

channel overflow, and other errors in the system.

• Liveness properties: something good will eventually happen, i.e. the system perform

intended functions.

• Responsiveness properties: the system respects the response time requirements (tim

ness, performance) and it has the possibility of recovering in the case of transient f

(robustness and fault-tolerance).

Using different techniques, these properties can be usually guaranteed by verifyin

absence of syntactic and semantic design errors [293]:

• Syntactical or logical design errors: are related to the logical structure of the exchange

messages among entities. These errors are usually independent of the service or fu

ality: deadlocks, unspecified receptions, instabilities, livelocks, overspecification,

channel overflow. The absence of such design errors often guarantees safety prope

• Semantic design errors: are related to the functionalities to be provided by the syst

Such errors are manifested by the abnormal functioning of the system and its inab

meet its intended purpose. These errors usually cause liveness and responsiveness

ties to be unsatisfied.

To some extent, verification is more concerned with the detection of syntactical erro

safety properties) whereas validation focuses more on the detection of semantic errors (in liven
88 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Validation and Verification

eness

 no clear-

ving,

andles

 hence

odels or

arch on

ge or

 simpli-

ar

 branch

proach

lex and

hereas

ained and

e diffi-

ress this

, mea-

.

,

t

ster of a
responsiveness properties). Note however that validation can be performed by “verifying” liv

and responsiveness properties! Again, both concepts overlap on many occasions, and there is

cut separation.

Properties and LOTOS

In the LOTOS world, verification is usually achieved through techniques such as theorem pro

reachability analysis, model checking, equivalence checking, and testing. Theorem proving h

systems with an infinite number of states, but it usually cannot be completely automated and

requires human assistance. Reachability analysis and model checking, which are based on m

state exploration, require a finite number of states, but they are fully automated. Recent rese

symbolic model checking [327] and on-the-fly model checking [135] provides some relief for lar

infinite state spaces, but available tools are still limited and they impose many constraints and

fying assumptions on the models. Equivalences can also be used to verify properties. Chehaibet al.

[93] express their properties as graphs (Finite State Machines) that are checked, through

equivalence and bisimulation equivalence, against the specification. However, even this ap

needs a finite representation of the specification, which can hardly be generated from the comp

dynamic telecommunications systems on which the thesis focuses.

Properties expressed in temporal logic (for model checking) are usually large-grained w

test cases can be considered as small-grained properties, because the latter are more constr

they usually cover fewer states in the model. However, temporal logic properties are often mor

cult to create and to use than test cases, which are more linear. Tools recently started to add

issue by providing graphical means of developing temporal logic properties [331]. In any case

suring the completeness and consistency of a set of properties remains a complex issue [135]

Conformance relations (conf) and canonical testers (CT(S)), as introduced in Section 2.3.6

mainly target the verification of liveness properties. Whereas CT(S) verifies all liveness properties a

once, test cases verify small-grain properties. Test cases that are reductions of the canonical te

specification (Tx such that Tx red CT(S)) are called acceptance tests. Their counterpart, called rejec-
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 89

CHAPTER 3 Literature Survey

jection

eakness

0, stat-

test

roperties

rob-

e use of

ic tele-

 whole

verifyier

 oper-

general

t of find-

here-

case is a

er

theses,

n of an
tion tests in this document, are expected to be rejected by the implementation. Essentially, re

test cases are used to check small-grained safety properties. They can also help cope with a w

of the conf relation mentioned at the end of Section 2.3.6. For instance, in Figure 13 on page 4

ing that an implementation should refuse the sequence <Dial, Dial> would show that S6 is not valid

with respect to its specification S. The LOTOS theory does not address the derivation of rejection

cases because many arbitrary decisions can be taken during their creation. Responsiveness p

are also difficult to verify in LOTOS because this language lacks quantitative notions of time and p

abilities. However, robustness and fault-tolerance can be checked to some extent through th

temporal logic properties and tests corresponding to exceptional scenarios.

We use testing as the main validation technique in this thesis. For complex and realist

communications systems, testing is simpler, more pragmatic, and better supported along the

design process than any other technique discussed so far. Moreover, even the most formal

admits that a formally verified system should still be tested (who verified the compiler? and the

ating system? and who verified the verifyer? and so on) [347]. The next section focuses on

testing concepts, followed by a more detailed presentation of LOTOS testing.

3.4.2 General Testing Concepts
The main goal of testing is to detect errors. Research and experience have shown that the cos

ing an error gets much higher the closer we get to the implementation [267][290][287][335]. T

fore, testing should be used as soon as possible, even at the specification level. A good test

test that highlights a fault in the specification. A good test suite is a set of test cases that covers, und

some hypotheses and assumptions, critical aspects, if not all aspects, of a specification.

This section briefly covers general testing concepts such as test selection, test hypo

testability, conformance testing, test suites and test architectures.

Test Selection and Hypotheses

When testing complex systems, one of the main problems faced by engineers is the selectio

appropriate test suite. Tretmans suggests four approaches that facilitate this selection [346]:
90 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Validation and Verification

quires

fore the

ronous

al test

 This

bles a

rule),

 in a

-

option
• Select goals for individual tests.

• Weaken the specification, which then allows more correct implementations and re

fewer properties to check.

• Weaken the implementation relation. For instance, conf, being weaker than te, will allow

more correct implementation and will require fewer properties to check than te. This

approach is seldom used because the implementation relation is often selected be

specification is created (as it can influence the way the specification is built).

• Improve the test hypotheses.

Phalippou has discussed the last option extensively, especially in the context of synch

testing for a class of input/output finite state machines (IOFSMs) [284]. He defines sever

hypotheses and their impact:

• Regularity: the number of next states is limited for each state in the implementation.

allows for infinite test cases to be reduced to finite test cases.

• Independence: the actions or functions are projected to independent sets. This ena

divide-and-conquer approach to testing.

• Uniformity : the value domain are partitioned (e.g. according to some congruence

and then one test for each partition is used.

• Fairness: the (non-deterministic) behaviour of the implementation can be covered

finite and computable number of attempts.

Also, many test selection strategies imply a reset hypothesis, which requires the implementa

tion to possess a working reset feature to be used before each test case.

Rather than working on hypotheses or relations, the thesis focuses on Tretmans’ first

and use UCMs to define appropriate goals which will lead to the generation of test cases.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 91

CHAPTER 3 Literature Survey

ever is a

nspired

notion

o the

lity

sibil-

cess.

garten

 quali-

 con-

nt.

(and

test case

 strategy

n and/
Testability

Validation test cases can be derived according to many strategies. What is most desirable how

test suite that will detect invalid SUTs with the most success and the least cost. Figure 15, i

from Drira and Azéma [116], illustrates one important test selection goal. In this diagram, the

of detectability means that a test suite detects the invalidity of a specification with respect t

requirements. For example, Section 2.3.6 states that two LOTOS test cases have the same detectabi

if they are testing equivalent. Testability exposes some limits caused by constraints on the acces

ity, observability, and controllability of the SUT, and of the automatability of the testing pro

Other limits also relate to the fact that the behaviour may be infinite. In a recent paper, Baum

and Wiland discuss many definitions of testability and provide an interesting framework where

tative notions of testability can be evaluated [43].

LOTOS specifications are highly testable (in opposition to conventional software) and those

straints are much weaker for LOTOS than for real implementations, but they are nonetheless prese

FIGURE 15. Limit of Testability

There is a limit of testability beyond which invalid SUTs are not detected by a finite

incomplete) test suite. This set of invalid SUTs has to be reduced as much as possible. The

derivation and selection strategy has a direct impact on the size of this set. Of course, a good

leads to a good detectability and to a lower testability limit, but also to higher costs of derivatio

or execution.

Testability

Valid SUTs

Invalid and non-detectable

SUTs

Invalid but detectable SUTs

Limit of testability

{
{

}
SUTs found to be valid by

the test suite.

SUTs found to be invalid

by the test suite.

We try to reduce this set as

much as possible with a

good test suite.
92 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Validation and Verification

ast few

ion by

and the

 test-

ts cap-

 criteria

ped for

alidity

 a finite

 incom-

ing an

e mini-

 of the
Conformance Testing

Specification-based testing has been used with different specification languages over the l

decades (for instance, see [10][88][213][309]). In the context of (formal) conformance testing, a spec-

ification-based technique verifying that the implementation under test conforms to its specificat

attempting to detect conformance errors, most methods assume that both the specification

implementation can be modelled in the same (formal) language. According to the Formal Methods in

Conformance Testing (FMCT) framework [196], a test suite can be:

• Exhaustive: all passing implementations are compliant to the specification.

• Sound: all implementations that do not pass are not compliant.

• Complete: the test suite is both sound and exhaustive,

The validation context proposed in this thesis is different from traditional conformance

ing. In particular, the term specification can be misleading as our LOTOS specifications really are

high-level design prototypes. Therefore, in the context of SPEC-VALU E, the term “specification” is

replaced by “requirements”, and “implementation” becomes “specification under test (SUT)”. To val-

idate the SUT, we plan to use functional (black-box) test cases derived from user requiremen

tured as UCMs. Conformance test suites are usually abstract and they target artificial coverage

in terms of another previously defined model. Nevertheless, many ideas and techniques develo

conformance testing can be applied in our specific validation context.

If a test suite is neither sound nor exhaustive, then nothing concerning conformance or v

can be concluded by means of testing. Pragmatically, it is almost never possible to construct

exhaustive test suite for real-life systems. Consequently, test suites are usually sound, but still

plete. Any error detected by a sound test suite proves that the SUT is incorrect, but not find

error does not mean that the SUT is without errors. Optimizations of such test suites target th

mization of the number of test cases and their complexity/length/cost, and the maximization
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 93

CHAPTER 3 Literature Survey

d work

equire-

ting is

ith the

teroper-

ads to

, then

r the

l

t steps

ation

arting
discriminatory power of the tests. A test suite TS1 is said to discriminate more than another one (TS2)

if TS1 finds faults in more specifications than TS2.

Note that in the current practice, conformance does not imply interoperability and interopera-

bility does not imply conformance. Two systems are interoperable if they can communicate an

together to achieve a common goal. Two different implementations may conform to the same r

ments or standards and yet they might not be completely interoperable. Interoperability tes

more costly than conformance testing. The cost of conformance testing increases linearly w

number of products to test (each one is tested against the specification) whereas the cost of in

ability testing increases with the number of possible combinations of these products, which le

many more configurations to check. However, if the specification (or standard) is formal enough

conformance could potentially imply some level of interoperability. This is another motivation fo

creation of formal specifications from requirements.

Test Suites and Test Architecture

The Conformance Testing Methodology and Framework (CTMF) [193] details the definition of an

abstract test suite as being composed of test groups. Each group consists of several test cases accord-

ing to a logical ordering of execution. A test case contains test steps, each of which consists of severa

test events, i.e. the atomic interactions between the tester and the implementation or SUT. Tes

can be shared by many test cases.

A test case is often composed of several parts:

• Test purpose: describes the objective of the test case (expected behaviour, verific

goal, etc.).

• Test preamble: contains the necessary steps to bring the SUT into the desired st

state.

• Test body: defines the test steps needed to achieve the test purpose.

• Test postamble: used to put the SUT into a stable state after a test body is executed.
94 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Validation and Verification

ins one

ish-

 verifi-

sulting

test cases

TTCN-3

.

, and

-

tended

re the

cessful

 of an

ms are

 much

. Sec-

-

ditional

 case),

ers, the
Conformance test cases for finite state machines usually have a test body that conta

transition followed by a test verification step (checking sequence, unique input/output, distingu

ing sequence, etc.), which identifies the target state [248][360]. A preamble may also contain a

cation sequence that checks the initial state. However, in many test suites, the initial state re

from the preamble has already been checked as a target state in a previous test case. Often

are designed to be mutually execution-independent. Test cases can also be described in

[209], the latest ITU-T standard notation for the specification of abstract and retargetable tests

Note that CTMF also defines multiple test architectures (local, distributed, coordinated

remote methods) but they will not be used in the thesis. The SPEC-VALU E approach focuses on high

level functional testing at the specification level. Therefore, the only test architecture that is in

to be used is based on LOTOS synchronous testing between the tester and the specification, whe

points of control and observation (PCO) are represented as observable LOTOS gates.

3.4.3 LOTOS Testing
LOTOS exhibits interesting static semantics features that are supported by many tools. The suc

compilation of a LOTOS specification ensures that several data-flow anomalies, such as the use

undefined or unassigned value identifier (variable), cannot occur. Since many of these proble

automatically avoided or can be detected using existing techniques [323], they will not receive

attention in the thesis.

Dynamic behaviour, however, is a totally different story. This is where testing can help

tion 2.3.6 already provided an overview of basic concepts of the LOTOS testing theory (testing equiva

lence, conformance relation, canonical testers, and tests cases). This section provides ad

definitions for the concepts of test suites and verdicts.

Test Suites and Relations

The LOTOS testing theory has a test assumption stating that the implementation (the SUT in our

modelled as a LTS, communicates in a symmetric and synchronous way with external observ
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 95

CHAPTER 3 Literature Survey

 a com-

h

e

 char-

d

f vali-

re test

se that is
test processes. There is no notion of initiative of actions, and no direction can be associated to

munication.

A correct test case is a reduction of the specification’s canonical tester (Tx red CT(S)). To ver-

ify the successful execution of a test case, such a test process Tx and the specification under test SUT

are composed in parallel, synchronizing on all gates but one (a Success event, added at the end of eac

test case). If the composed behaviour expression deadlock occurs prematurely, i.e. if Success is not

always reached at the end of each branch of the LTS resulting from this composition, then thSUT

fails this test. If this is not the case, then it must have passed the test1.

 Table 12 and Table 13 present formal definitions of notations and relations that will help

acterizing the (un)successful execution of test cases in LOTOS. Many of these definitions are inspire

from previous work by Hennessy and De Nicola [113][174] and Brinksma et al. [70], and from the

FMCT framework [196]. They are used mostly in Chapter 6 where a theory for the derivation o

dation test cases from UCMs is proposed.

In Table 13, the relations are not only defined for individual test cases, but also for enti

suites. Although the same names are used, their signatures (domains) are different.

1. It has passed unless the SUT exhibits divergent behaviour, such as an infinite loop of internal events, a ca
outside the scope of this thesis.
96 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Validation and Verification

es):
TABLE 12. Notation for Test Definitions

TABLE 13. Passes, Fails, and Failsall Relations

Notations Definitions

SPECS Universe of all possible behaviour expressions.

S, S1, S2... Specifications. S ∈ SPECS, S1 ∈ SPECS, S2 ∈ SPECS, ...

SUT Specification Under Test. SUT ∈ SPECS.

TESTS
Universe of test cases. In LOTOS, tests are also behaviour expressions (process
TESTS = SPECS.

CT(S) Canonical tester of specification S. CT(S) ∈ TESTS.

TS Test suite (set of test cases) for testing specification SUT. TS ⊆ TESTS.

TGn Test group n. The test suite contains all test groups. TS = TGg ∧ TGg ⊆ TESTS.

Tx Test case x, which belongs to a test group. ∀Tx, ∃TGg | Tx ∈ TGg ∧ TGg ⊆ TS.

ACCEPT(TS) Set of acceptance test cases found in TS (Must tests). ACCEPT(TS) ⊆ TS.

REJECT(TS) Set of rejection test cases found in TS (Reject tests). REJECT(TS) ⊆ TS.

Relation Definitions

SUT passes Tx
Pass relation for one test case: passes ⊆ SPECS × TESTS.
SUT passes Tx ⇔ ∀t ∈Tr(SUT |[all gates but Success]| Tx), t reaches Success.

SUT passes TS
Pass relation for a test suite: passes ⊆ SPECS × PowerSet(TESTS).
SUT passes TS ⇔ ∀Tx ∈ TS, SUT passes Tx.

SUT fails Tx
Failure relation for one test case: fails ⊆ SPECS × TESTS.
SUT fails Tx ⇔ ¬(SUT passes Tx)

SUT fails TS
Failure relation for a test suite: fails ⊆ SPECS × PowerSet(TESTS).
SUT fails TS ⇔ ¬(SUT passes TS) ⇔ ∃Tx ∈ TS, SUT fails Tx.

SUT failsall Tx
Failure relation for one test case: failsall ⊆ SPECS × TESTS.
SUT failsall Tx ⇔ ∀t∈Tr(SUT |[all gates but Success]| Tx), t does not reach Success.

SUT failsall TS
Failure relation for a test suite: failsall ⊆ SPECS × PowerSet(TESTS).
SUT failsall TS ⇔ ∀Tx ∈ TS, SUT failsall Tx.

∪
 g=1

 n
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 97

CHAPTER 3 Literature Survey

l

ead-

nd

e

ccord-

For-

resence

. Deter-

trib-

 it

omposi-
The difference between fails and failsall is that the Success event is never reached in failsal,

while it may be so for some test runs in fails as long as at least one test run leads to a premature d

lock (or to an infinite loop). Hence, fails is implied by failsall (see Figure 16(a)).

FIGURE 16. Relations and Verdicts for Tests

Verdicts and Types of Tests

This testing theory is supported by the tool LOLA [301], which expands the composition of a test a

a specification to determine whether the executions reach the Success event or not. Three verdicts can

occur after the execution of one test case (Figure 16(b)):

• Must pass: all the possible executions (called test runs) were successful (they reached th

Success event for every trace). Formally: SUT passes Tx ⇒ Must pass.

• May pass: some executions were successful, some unsuccessful (or inconclusive a

ing to a depth limit). Formally: ¬(SUT passes Tx) ∧ ¬(SUT failsall Tx) ⇒ May pass.

• Reject: all executions failed (they deadlocked prematurely or were inconclusive).

mally: SUT failsall Tx ⇒ Reject.

With real implementations, test cases often must be executed more than once in the p

of non-determinism in either the test or the implementation (under some fairness assumption)

ministic testing, as defined by Calder et al., addresses this issue to some extent for concrete dis

uted programs [86][87]. At the specification level, LOLA avoids this problem altogether because

determines the response of a specification to a test by a complete state exploration of their c

failsall passes

fails

Must Pass Reject

May Pass

(a) Relations for Tests (b) Three Mutually Exclusive Verdicts
98 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Validation and Verification

m-

ccess-

n

and

un

a May

ny

n

t

ffec-

perty is

possible in
 imple-
tion [280]. For tests that do not contain exit, LOLA uses the composition on the left, whereas the co

position on the right is for tests that do contain exit:

LOLA analyzes all the test terminations for all possible evolutions (the test runs). The su

ful termination of a test run consists in reaching a state where the termination event (Success) is

offered. A test run does not terminate if a deadlock or internal livelock1 is reached.

The LOTOS theory differentiates three types of intent for tests submitted to a SUT:

• Must test: Tx is a “must test” of SUT if it is intended to terminate for every test run whe

applied to SUT (SUT passes Tx). A “must test” corresponds to a mandatory scenario,

the expected verdict is a Must pass.

• May test: Tx is a “may test” of SUT if it is intended to terminate for at least one test r

when applied to SUT (∃trace in SUT |[all gates but Success]| Tx that leads to a Success). A

“may test” corresponds to an optional scenario, and the expected verdict is either

pass or a Must pass.

• Reject test: Tx is a “reject test” of SUT if is intended not to terminate successfully for a

test run when applied to SUT (SUT failsall Tx). A “reject test” corresponds to a forbidde

scenario, and the expected verdict is a Reject.

These types relate to what we call acceptance/rejection testing. An acceptance test is a “mus

test” in the set ACCEPT which checks that a functionality is present or that an expected result is e

tively output. A failure in that case is seen as catastrophic, because the underlying liveness pro

1. There is no notion of fairness in this theory. Whenever there is a loop of internal events (τ-loop) which is not under
the control of the test process, then the test run has to be truncated. We try to avoid these loops as much as
our specifications. Although some theories and simplifications (through weak bisimulation) exist, they are not
mented in LOLA.

SUT[{EventSUT}]

|[{EventSUT} ∪ {EventTx}]|

Tx[{EventTx} ∪ { Success }]

(SUT[{EventSUT}]

 |[{EventSUT} ∪ {EventTx}]|

 T x[{EventTx} ∪ { Success }]

) >> Success ; stop
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 99

CHAPTER 3 Literature Survey

nts

ing safety

.

le

est

 that the

urpose.

y

rvention.

ppens to

on dif-

, the test

so that it

a tree of

s, for-

ns have

 a

 ioco

elation

ed on

re it has

tion
violated. A rejection test (a “reject test” in REJECT) checks that the SUT rejects one or many eve

after a given sequence of events. A success in that case is catastrophic because the underly

property is violated. For a given test suite TS, REJECT(TS) and ACCEPT(TS) represent partitions, i.e

they are mutually exclusive (REJECT(TS) ∩ ACCEPT(TS) = ∅) and together they constitute the who

test suite (REJECT(TS) ∪ ACCEPT(TS) = TS). Rejection test cases can lower the testability limit of t

suites conventionally composed solely of acceptance test cases. In Section 6.2.2, we will see

test type (acceptance or rejection) is, together with the test goal, part of our definition of test p

“May tests” will not be used in the SPEC-VALU E approach as the interpretation of the Ma

pass verdict, composed of successful and unsuccessful traces, usually requires human inte

Although canonical testers can be reduced to sets of deterministic test cases [69], if a SUT ha

be non-deterministic (i.e. for a same input event the SUT may offer different resulting events

ferent occasions), then an acceptance test could also result in a May pass verdict. In this case

case has to be augmented with the necessary alternatives (present in the canonical tester)

results in a Must pass verdict. As a result, the test would no longer a sequence of events but

events.

Evolution Towards Input/Output LTSs

Brinksma and Tretmans surveyed many extensions to LTS with applications to test framework

mal test generation (with tools), and asynchronous test contexts [72]. Several of these extensio

been used as enhanced semantic models for LOTOS. In particular, Tretmans partitions the actions on

LTS into inputs and outputs [347]. This enables the application of the conformance relation,

which is more appropriate for testing real implementations than a directionless conformance r

like conf. The relation ioco also helps to alleviate the need for a category of rejection tests bas

non-deterministic outputs of data on a gate, which is otherwise required when conf is used in a valida-

tion context. This concept is extended by Heerink to multiple channels in the mioco relation [171].

Although such enhanced semantics is attractive from a conformance testing perspective, whe

been used so far [117], it does not seem to apply directly to the validation of a LOTOS specification,

which is the focus of SPEC-VALU E. Moreover, current tool support targets the automated genera
100 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Validation and Verification

he

fication

chniques

 vali-

re is

es first)

of the

sing the

Inexperi-

ng tech-

g. Cov-

test suite

blished

alled

his is

 and
and execution of test cases from LOTOS specification, but nothing is available for the testing of t

specification itself. Again, a major assumption behind these techniques is that the formal speci

is correct and valid with respect to the requirements. Chapter 6 proposes scenario-based te

that help increasing the level of confidence in such a specification.

3.4.4 Coverage
“When to stop testing?” is and will remain an important problem for communications software

dation and verification. Communications software is often tested until the probability of failu

believed to be small, or until the deadline for the product release is reached (whichever com

[328]. Statistical models can also be helpful [265]. Lai [237] mentions that knowing how much

application source code has been covered by a test suite can help estimate the risk of relea

software product to users, and discover new tests necessary to achieve a better coverage.

enced testers tend to execute down the same path of a program, which is not an efficient testi

nique.

Coverage measures are considered to be a key element in deciding when to stop testin

erage analysis of code is a common approach to measure the quality and the adequacy of a

[371][386]. Coverage criteria can guide the selection of test cases (a priori, i.e. before the execution

of the tests) and be used as metrics for measuring the quality of an existing test suite (a posteriori, i.e.

after the execution of the tests). Many methods are available, and several criteria are well esta

[92]:

• Statement coverage: checks which statements or operations are executed. Also c

structural coverage.

• Branch coverage: checks whether all possible outcomes of a branch are executed. T

particularly relevant to structured programming languages.

• Data-flow coverage: measure of executing paths between creations, modifications,

uses of data values.

• Path coverage: checks the execution of syntactically- or semantically-defined paths.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 101

CHAPTER 3 Literature Survey

pro-

itive to

an dis-

 fault

t suite

ase.

erage.

l criteria

s for an

. These

ification

’s

FAD’s

.g. for

erage

asuring

 avail-

n

defined

al cover-

t

ction and
• Mutation adequacy: checks whether the tests kill all non-equivalent mutants of a

gram. Mutation testing is a white-box method for creating test cases which are sens

small syntactic changes to the structure of a program or of a specification. If a test c

tinguish a valid program from an invalid variation (a mutant, which is the valid program/

specification plus one modification to one operator or construct done according to a

model), then this is a good test and should be part of the test suite [112][292]. If a tes

cannot detect an invalid mutant, then it needs to be augmented with a suitable test c

This thesis covers a different angle of the same question, relating to specification cov

Specifications, just like programs, can be covered for several reasons and according to severa

[10]. For example, we want to cover a specification in the generation of conformance test case

implementation, or in order to check whether a specification satisfies abstract requirements

processes can also gain in quality from the use of coverage measurements. Many formal spec

languages already benefit from tool-supported coverage metrics, including SDL with Telelogic Tau

[342], which measures the coverage of symbols like states and transitions, and VDM with I

VDMTools [190]. Such tools have started to appear for design modelling languages as well, e

UML collaboration diagrams [2]. Even hardware description languages now benefit from cov

analysis. For instance, Joyce uses probe-based instrumentation of Verilog descriptions for me

the coverage of a test suite at simulation time [221]. Unfortunately, no such tools are currently

able for LOTOS.

Still, several coverage criteria have been defined for LOTOS specifications. For instance, va

der Schoot and Ural developed a technique for static data-flow analysis [323], Carver and Tai

a sequencing constraint coverage criterion [86], and Cheung and Ren proposed an operation

age criterion [94]. These three techniques are used mostly for guiding, a priori, the generation of tes

cases from the specification. The first one is based on data usage, the second on the satisfa

non-satisfaction of constraints, and the third one is based on the semantics of LOTOS operators.
102 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Validation and Verification

data to

ed, or

erally

these

ate that

 the test

code is

mber

 impor-

 will be

 a test

 testing

require-

software

It also

 as rela-

tices.
Instrumentation

A posteriori metrics of coverage often require the code to be instrumented in order for relevant

be collected and coverage results to be computed. Probe insertion is a well-known white-box tech-

nique for monitoring software in order to identify portions of code that has not been yet exercis

to collect information for performance analysis. A program is instrumented with probes (gen

counters) without any modification of its functionality. When executed, test cases trigger

probes, and counters are incremented accordingly. Probes that have not been “visited” indic

part of the code is not reachable with the tests in consideration. Obvious reasons include that

suite is incomplete, that the implementation is not deterministic enough, or that this part of the

reachable under no circumstance.

For well-delimited programs, Probert suggests a technique for inserting the minimal nu

of statement probes necessary to cover all branches [291]. Minimizing the number of probes is

tant because instrumentation usually has an impact on the speed of test execution. This idea

adapted to LOTOS in Chapter 7 in order to measure the structural coverage of specifications by

suite. UCM path coverage will be used in Chapter 6 as an a priori test selection criteria, with the

assumption that this corresponds to the coverage of functional requirements.

3.4.5 Testing Patterns
This section provides a short overview of patterns in general, with an emphasis on design and

patterns. Section 6.3 intends to develop testing patterns for the selection of test cases from

ments and high-level designs based on the coverage of UCM paths.

Patterns

Nearly a decade ago, patterns have emerged from the object-oriented community as a new

engineering problem-solving discipline. Although multiple definitions exist [101], a pattern remains

essentially a proven and reusable solution to a recurring problem in a specific context.

describes the relevant forces, which may be present in varying degrees in a context, as well

tions among them. A pattern explains insights that have led to generally recognized good prac
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 103

CHAPTER 3 Literature Survey

nning

ithout

entation

ritten

more

sys-

 soft-

olu-

und,

ribute

so be
Patterns have roots in many disciplines, most notably in Alexander's work on urban pla

and building architecture [5][6]. Alexander used patterns to describe what he called a “quality w

a name” in architectural solutions, where patterns focus on good design culture and on docum

rather than on technology.

Software patterns truly became popular with the publication of a design pattern book w

by Gamma et al. [144]. Software patterns can be defined at several levels, including (from the

general to the more detailed):

• Process patterns: express problems and solutions at a methodological level.

• Architectural patterns : express a fundamental structural organization for software

tems.

• Design patterns: provide a scheme for refining the subsystems or components of a

ware system, or the relationships between them.

• Idioms: low-level patterns specific to a programming language.

Content of a Pattern

Software patterns can be described according to different formats or templates [6][51][81][144].

However, most patterns contain five core elements [240][256][361]:

• Name: A short familiar, descriptive name or phrase, usually more indicative of the s

tion than of the problem or context.

• Problem: The challenge to be addressed.

• Context: The situations under which the pattern applies. Often includes backgro

requirements, and discussions of why this pattern exists.

• Forces: A description of the relevant factors, constraints and compromises that cont

to the problem and/or its solution. The interactions between the forces may al

included.
104 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Validation and Verification

lution

ces.

ences,

s

rk

ne pat-

g them.

g pro-

f inter-

el. Ris-

-

sirable

ge

[35]. In

iour pat-

s expres-

 for the

fined

stems

rn lan-

a com-
• Solution: how to address the problem in order to balance forces and to construct so

artifacts. Solutions often include several variants and/or ways to adjust to circumstan

Additional elements can also be found, including rationales, resulting contexts, consequ

examples, related patterns, and known uses.

Patterns can be regrouped into pattern catalogs [81], which are collections of related pattern

divided into categories, or as pattern languages [299], which are collections of patterns that wo

together to solve problems in a specific domain. In a pattern language, a resulting context of o

tern becomes the context of its successor patterns.

Design Patterns and Testing Patterns

Patterns can be used for designing systems, which is their traditional use, but also for testin

Testing patterns can provide established solutions for designing tests or for supporting the testin

cess. This section gives a brief review of existing pattern-oriented work relevant to the areas o

est to this thesis, i.e. telecommunications systems, scenarios, and testing.

In the telecommunications area, most patterns that currently exist target the design lev

ing collected many recent such patterns in her book [310]. Adams et al. focus on fault-tolerance sys

tems [3], whereas Utas proposes a pattern language for handling and avoiding unde

interactions between telephony features [361]. Andrade et al. recently presented a pattern langua

for mobility management adapted to second generation wireless communication systems [34]

the area of scenarios, Buhr used UCMs for describing and understanding macroscopic behav

terns in object-oriented frameworks [80]. Jacobson suggested abstract use cases as a rigorou

sion of the problem part of a pattern [139]. Bordeleau proposed scenario composition patterns

construction of hierarchical finite state machines from UCMs [62]. Mussbacher and Amyot de

several UCM patterns for describing functionalities of complex reactive and distributed sy

according to various styles [266]. In the area of testing, DeLano and Rising created a patte

guage, mostly at the process level, for testing large software systems [111]. Binder provides
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 105

CHAPTER 3 Literature Survey

 Other

of pat-

e time.

e

hat are

ugh the

 or any

rns for

ggests

sting

ng pat-

ortunity

ith UCM

ey repre-

It pro-

, L

hes for

ccep-

-

hich are
prehensive set of patterns for testing object-oriented systems in a very recent book [51].

authors, notably Beizer [44] and Siegel [329], propose testing solutions in the general form

terns, although they are not called patterns explicitly in these publications.

The most interesting patterns however cover many of the areas of interest at the sam

For instance, Andrade uses UCMs to describe requirements, design and analysis patterns for mobil

wireless communications systems [32][33][35]. These generic patterns express functions t

common to many existing mobile systems and can be used in the early steps of design. Altho

design pattern community is not used to seeing patterns described with scenarios (in UCMs

other form), this work shows much promise. Mussbacher and Amyot also illustrated their patte

UCMs using various telecommunications systems [266]. In his collection of patterns, Binder su

the use of test design patterns for UML-based scenarios, in the context of OO systems te

[50][51]. Some of them are related to the patterns developed in Section 6.3.

There is a real interest in patterns from the software community, and the need for testi

terns adapted to telecommunications and reactive systems is still crying. We see in this an opp

to provide testing patterns adapted to telecommunications systems and integrated to SPEC-VALU E as

a means to develop suitable validation test suites from requirements and designs expressed w

scenarios. Testing patterns can be seen as a semi-formal way of selecting test cases, and th

sent a good match for a semi-formal notation like UCMs.

3.4.6 Summary and Discussion
This section complements many validation and verification concepts introduced in Chapter 2.

vides additional background on some relevant work about properties, general testing conceptsOTOS

testing, coverage, and testing patterns.

Among the conclusions, we observe that testing is one of the most pragmatic approac

validating and verifying complex telecommunications systems, even at the specification level. A

tance test cases, which are reductions of canonical testers in LOTOS, can describe fine-grained live

ness properties and be used to assess conformance. The need for rejection test cases, w
106 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Chapter Summary

ined

s, and

nd

re not

aths, i.e.

ructural

kle this

eneficial

 causal

 and

s,

 differ-

nd

egories

ation

and sup-

Table 1
discussed superficially in the LOTOS theory, is emphasized. Rejection tests can describe fine-gra

safety properties, lead to improved validity relations when used jointly with acceptance test

lower the limit of testability. In the context of LOTOS testing, this section also defines notations a

relations (inspired from the literature) formalizing verdicts and types of tests.

Test selection is and will remain a major V&V issue. In this thesis, test hypotheses a

intended to guide the test selection process. Instead, coverage-based criteria based on UCM p

testing patterns, will be used to derive test goals. Additional coverage metrics, based on the st

coverage of LOTOS specifications, will be measured a posteriori. Such metrics are still lacking in the

literature, but there is an opportunity to define an approach based on probe insertion to tac

issue.

3.5 Chapter Summary
This chapter reviews existing work and concepts in four areas of interest to SPEC-VALU E. Section 3.1

addresses many issues related to the concept of causality. It explains how causality can be b

when describing concurrent systems. A discussion on concurrency models for interleaving and

semantics follows, and different families are briefly introduced and classified. Although UCMs

LOTOS are able to capture causality at a syntactic level, the LOTOS semantic model, based on LTS

does not capture causality as such. Nevertheless, LTSs are still used in SPEC-VALU E because they

offer simple verification algorithms and good tool support for validating system specifications.

Section 3.2 focuses on specification techniques and emphasizes the similarities and

ences between Use Case Maps, LOTOS, and four other techniques (MSCs, SDL, Petri Nets, a

UML). These techniques are compared against thirteen criteria regrouped under four cat

(usability, V&V, tool support, and training). UCMs appear particularly suitable for the represent

of functional requirements and of high-level designs. LOTOS complements most of UCMs’ weak

areas related to the analysis of systems. Both languages also make use of similar constructs

port system descriptions with and without components. These characteristics, introduced in

on page 6, facilitate the mapping of UCMs to LOTOS, as suggested in SPEC-VALU E.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 107

CHAPTER 3 Literature Survey

nted in

re com-

lterna-

, three

to the

h-level

hes are

t of the

ts. Since

odels

s-

of the

ated to

lem

 lat-

CMs.

 to the

alida-

rns,

are
Scenarios are the main topic of Section 3.3. Their benefits and drawbacks are prese

general terms. Then, thirteen scenario notations relevant to telecommunications systems a

pared against eight evaluation criteria. Again, the UCM notation proves to be an interesting a

tive because it is not component-centered, it supports causality, and it supports dynamicity

features that help describing telecommunication systems requirements and early designs.

Section 3.3.4 covers construction approaches, where individual scenarios (closer

requirements) are integrated to form a composite view of all scenarios (closer to the hig

design). Benefits and drawbacks of analytic and synthetic (interactive and automated) approac

presented. Then, twenty construction approaches are introduced and briefly compared. Mos

synthetic approaches require the presence of messages or interactions between componen

UCMs abstract from this kind of communication, the existing algorithms for the synthesis of m

from scenarios are of little use. In the context of SPEC-VALU E, an analytic approach (manual tran

formation followed by a verification step) appears to be more appropriate. This will be one

main topic discussed in Chapters 4 and 5.

As for validation and verification, Section 3.4 presents several necessary concepts rel

properties, testing in general, LOTOS testing, coverage, and testing patterns. The validation prob

addressed by SPEC-VALU E is different from that of conventional conformance testing because the

ter checks a (formal) implementation against a formal specification whereas SPEC-VALU E suggests

the validation of a first formal specification against informal requirements and semi-formal U

The LOTOS testing theory can still be used, but several needs are identified in order to adapt it

context of SPEC-VALU E. These needs include the use of rejection test cases, the definition of a v

tion relation more discriminative than conf, the selection of tests using UCM-based testing patte

and the need to measure the coverage of LOTOS specifications by a test suite. These issues

intended to be addressed in Chapter 6 and Chapter 7.
108 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Chapter Summary

n-

rate

es.

es.
This literature review shows that UCMs and LOTOS represent a good match with much pote

tial in an approach like SPEC-VALU E. The remaining chapters of this thesis will discuss and illust

how this potential can be exploited.

Contributions

The following items are original contributions of this chapter:

• Evaluation of six specification techniques.

• Evaluation of thirteen scenario notations.

• Survey and brief comparison of twenty analytic and synthetic construction approach

• Argument showing that UCMs and LOTOS are compatible and complementary techniqu
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 109

CHAPTER 3 Literature Survey
110 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

t
ter
CHAPTER 4

From Requirements to UCMs

in SPEC-VALUE

Right now it’s only a notion but I think I can ge
money to make it into a concept and then la
change it into an idea.

Woody Allen (Annie Hall, 1977)
of the

 devel-

ith val-

. This is

etailed

ns and

m func-

, and
This chapter presents the first steps of the SPEC-VALUE methodology, which was introduced in

Chapter 1, together with a recapitulation of the main motivations behind the existence

approach. These first steps are illustrated in Section 4.3 with an ongoing example that will be

oped throughout the thesis. This example is the Tiny Telephone System (TTS), for which the informal

requirements, the structure and the UCM scenarios are provided.

4.1 Return on the S PEC-VALUE Methodology
The Specification-Validation Approach with LOTOS and UCMs (SPEC-VALU E) aims to produce vali-

dated and executable specifications of system requirements and high-level designs, together w

idated functional test cases and documentation. One of the main assumptions behind SPEC-VALU E is

that the system functionalities to be designed can be described in terms of Use Case Maps

usually true of reactive, concurrent, and distributed systems, which focus on behaviour. For d

sequential systems that focus on input/output functions (e.g., a sorting algorithm), other notatio

approaches are more appropriate. The introduction of a semi-formal representation of syste

tionalities is in line with the second level of the Formal Specifications Maturity model scale

hence improves upon the sole use of formal languages (Section 9.1.3).
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 111

CHAPTER 4 From Requirements to UCMs in SPEC-VALUE

L

ments,

al

mit to

o-

nts and,

of

reusable

arios.

ess and

ire a

 require

l soft-

. This

design,

pes

eans for

e fully

 with a

stiga-

 away

vel lan-
As explained in the literature review, Use Case Maps and LOTOS complement each other in

many ways, the gap between the two notations is small, and a translation from UCMs to OTOS

appears straightforward (Table 1 and Section 3.2). UCMs are close to the functional require

which represent the starting point of SPEC-VALU E, they handle causality, dynamicity, and option

component structures, and they help reasoning about requirements without having to com

details that belong to a lower level of abstraction. LOTOS specifications, which are executable prot

types, can formalize requirements and high-level design in terms of abstract sequences of eve

when appropriate, component-based behaviour. LOTOS enables formal analysis and early validation

the UCMs and the requirements, as well as the generation of functional test cases that are

down the road towards the implementation (Section 3.4).

SPEC-VALU E uses an analytic approach for the construction of prototypes from scen

According to the analysis in Section 3.3.4, the differences in the levels of looseness, completen

details between UCMs and LOTOS suggest that analytic approaches (which are manual and requ

verification step) are more appropriate than synthetic approaches (which are automatable but

strict, formal, and often restrictive semantics), especially for complex systems.

4.1.1 SPEC-VALUE and Software Development Process Models
SPEC-VALU E, whose steps are recalled in Figure 17, is more limited in scope than traditiona

ware development process models (waterfall, prototyping, spiral, object-oriented, etc.) [335]

methodology focuses on how to bridge the gap between requirements and the first high-level

and it is not concerned with detailed design, implementation, and maintenance of software.

Still, SPEC-VALU E shares many similarities with prototyping approaches [172]. Prototy

focus on the aspects of the system that are most important to the customer, and they provide m

early validation. Prototypes are well suited in environments where requirements are yet to b

determined, a place where UCMs also proved to be useful. Allowing the stakeholders to play

prototype can give invaluable insight into the feasibility or correctness of solutions under inve

tion [120]. Often, prototypes demand much effort and investment, and yet they are thrown

because they implement a subset of the requirements only. However, very abstract and high-le
112 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Return on the SPEC-VALUE Methodology

 high

e and

xisting

nalysis

 what to

esign,

 within a

ts

tems.
guages such as LOTOS require less effort for the generation of prototypes, and the latter exhibit a

reusability when new system functionalities become needed.

SPEC-VALU E also resembles Boehm’s spiral model [54]. Both approaches are iterativ

they enable the integration of new scenarios and functionalities, as well as the modification of e

ones. Iterations also help to understand the problem and to cope with it in small chunks. Risk a

is at the basis of each iteration [55]. It is used to determine and evaluate the alternatives as to

integrate and validate next.

The spiral model contains macro-iterations for requirements capture and analysis, d

implementation, and so on. This model is general enough for other process models to be used

macro-iteration [290]. For instance, SPEC-VALU E could finds its place nicely as the requiremen

capture and analysis macro-iteration for processes targeting complex telecommunications sys

FIGURE 17. From Requirements to UCMs with SPEC-VALUE

Structure

Results
(Coverage)

UCMs on
Structure

Test Suite
(LOTOS)

Results
(Functions)

Requirements

Allocation

Testing

Scenarios
(UCM)

Test Cases
Generation

Modify if
necessary

Construction

Prototype
(LOTOS)

Add tests if
necessary

➀

➁

➂

➄

➆

➇
➅

➃

Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 113

CHAPTER 4 From Requirements to UCMs in SPEC-VALUE

nal

ios will

he use

n 4.2.3

a-

ins the

mmuni-

s the-

oarse-

xtracted

 in the

ted by

nents or

ents [74].

alities

l relation-

e from

t cases,

lected

d to

ur and
4.2 First Steps of the S PEC-VALUE Methodology
The three first steps of SPEC-VALU E, where UCMs are used to capture the informal operatio

requirements, are highlighted in Figure 17. The elicitation and representation of causal scenar

be briefly introduced in this section, and then illustrated in Section 4.3. Several guidelines for t

of the UCM notation and the integration of scenarios are given in Section 4.2.2 and Sectio

respectively.

4.2.1 From Requirements to UCMs
One interesting contribution of SPEC-VALU E, which is inherited directly from UCMs, is the separ

tion of concerns between system functionalities and underlying structure. A structure conta

abstract system components of interest as well as some of their relationships (containment, co

cation links, etc.). Step ➀ is the description of the system structure, which are represented in thi

sis using Buhr’s component notation (Appendix A: — A8 and A9). The components represent c

grained entities of relevance to the requirements engineers and designers. They can be e

directly from the requirements or environmental constraints, or discovered during an iteration

approach. They are different from classes in the OO world. A component could be represen

aggregating many class instances (objects), or a class could represent many different compo

roles. Hence, there is not necessarily a one to one mapping between OO classes and compon

Step ➁ is a scenario elicitation phase where system services and large-grained function

are captured as UCM paths. These paths represent scenarios whose emphasis is on the causa

ships among the responsibilities that compose the functionalities. The elicitation can be don

informal requirements, business goals, interviews, existing documentation, designs, code, tes

and so on.

The responsibilities defined in the UCMs can be allocated to the components in the se

underlying structure (step ➂). Each component will have to perform the responsibilities allocate

it. The double binding of responsibilities (to paths and to components) is what links behavio

structure.
114 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

First Steps of the SPEC-VALUE Methodology

s, differ-

e gen-

ever, the

 used in

ucting

d-

s the

d to the

nd end

. the

 can be

iting

ystem

e

rfaces

uare
Since scenarios are formalized at a level of abstraction higher than message exchange

ent underlying structures or architectures can be evaluated with more flexibility, even before th

eration of a prototype.

4.2.2 Style and Content Guidelines for UCMs
The Use Case Map notation is flexible and can be used across a wide range of domains. How

notation does not come with a predefined set of style and content guidelines. UCMs have been

diverse ways, and with various levels of looseness (a classification is given in [266]). Constr

UCMs with the goal of generating LOTOS specifications [24], SDL specifications [317], ROOM mo

els [62], agent systems [77][124] or Layered Queuing Networks (LQNs) [283][324][325] affect

style in which the paths are drawn and the supplemental information that needs to be attache

responsibilities and other path elements.

In this thesis, several guidelines will be applied in order to facilitate the generation of LOTOS

specifications from UCMs:

G1.Start points going towards the components representing the system under design a

points coming out of them will represent interaction points with the environment, i.e

users.

G2.If data values or variables need to appear on the UCM on start and end points, they

added to the labels using the syntax !value or ?variable.

G3.Labels will be used for all responsibilities, start points, end points, timers and wa

places. Labels should be valid LOTOS identifiers.

G4.Responsibilities, start points, end points, timers and waiting places located inside a s

component will be hidden from their environment (may not be the case for actors, seG7).

This is only an assumption in the UCM domain because UCMs do not support inte

yet, but this will be made concrete in the LOTOS domain.

G5.Guards on path alternatives will be identified by italicized conditions between sq

brackets. Responsibilities are not to be used as conditions.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 115

CHAPTER 4 From Requirements to UCMs in SPEC-VALUE

need

ommu-

 places

 repre-

st rep-

 they

be of

in the

grated

on-

ment

n [90],

g

 prior-

e study

ts, and

e

e most

 the least
G6.A causal flow between two responsibilities in two different components implies the

for message exchanges. However, this does not imply that these components can c

nicate directly; intermediate components may be involved.

G7.Users (and their roles) may be represented as components. Start/end points, waiting

and responsibilities associated to the users are visible. Multiple concurrent users are

sented as stacks of components.

G8.Users could have different roles (e.g. originator and terminator). These roles are be

resented as two different components in a UCM (for better understandability), but

will be reunited as one component in the formal specification. The labels used will

the form ComponentName:Role .

This set of guidelines is provided as is, without any intention to validate or complete it

thesis.

4.2.3 Integration of Scenarios
Often, system functionalities will be described as individual UCMs, and they need to be inte

together in the UCMs and/or the LOTOS prototype. Also, as requirements are dynamic, new functi

alities may become necessary, and new scenarios will have to be integrated in the old set.

Not selecting a good mix of system functionalities for the initial (and subsequent) incre

ranks in third place among the problems of use case modelling identified by Chandrasekera

therefore this is an important problem. Karlsson et al. already evaluated six methods for prioritizin

software requirements [224]. Unfortunately, their results are not really useful here. None of the

itizing methods described in this article provides means for handling interdependence, and th

focuses on non-functional requirements. Use Case Maps emphasize functional requiremen

often scenarios are interdependent.

When integrating UCMs or constructing a model (in LOTOS or any other language), on

should try to sort scenarios. In order to reduce integration risks, priority should be given to th

important scenarios, i.e. the ones with the most impact on the system, and to the ones that are

likely to change.
116 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Ongoing Example: Tiny Telephone System (TTS)

en the

as a big

ipated.

trans-

is does

gineers

nts will

 inte-

l.

nnec-

ing

e will

 phone

g Call

it the

s the
If functionalities can be integrated in a hierarchical way (through stubs and plug-ins), th

top-level maps should be worked out first. The presence or absence of stubs in these maps h

impact on how easily new UCMs can be integrated, so the need for stubs should be antic

Dynamic stubs also allow more flexibility than static stubs (although a static stub could be

formed into a dynamic one when necessary).

Again, these few integration guidelines result from the author’s experience and the thes

not aim to validate them explicitly.

4.3 Ongoing Example: Tiny Telephone System (TTS)
The goal of the Tiny Telephone System is to illustrate several steps that allow requirements en

and designers to bridge the gap between requirements and UCMs. First, individual requireme

be provided, then individual UCMs will be constructed for each feature of TTS, and finally an

grated view of the functionalities will be given as one global UCM.

4.3.1 Informal Requirements for TTS
TTS is used to establish a telephone connection between two parties. The originating party (orcaller)

is the user who initiates the call, and the terminating party (or callee) is the one who receives the cal

The basic call service is as follows. The caller, who is initially busy but not involved in a call co

tion, initiates a call request (req) to the system. If the callee is idle, then the callee’s phone will r

(ring) after some internal update (to reflect that the callee is now busy) while the caller’s phon

emit a ringback signal. If the callee is already busy in another phone session, then the caller’s

shall emit a busy signal.

TTS users may also have subscribed to additional features. The first one is Originatin

Screening (OCS), which will deny the call if the callee is in the caller’s screening list (and em

appropriate signal to the caller). The second is Call Number Display (CND), which display

caller’s number on the callee’s phone (disp) while the latter is ringing.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 117

CHAPTER 4 From Requirements to UCMs in SPEC-VALUE

ates. To

sers are

ll com-

ic call,

). This

re

 that

uare

ignals

nce-

arried in

ropriate

d to

 struc-

an agent.

 different
Each user has an agent that takes care of the handling of internal databases and upd

simplify the design, TTS assumes that users cannot register to or unregister from a feature. U

initially subscribed to a list of features, which may be empty.

4.3.2 Individual Use Case Maps for TTS
Typical telephone system documentation will first describe the basic call, and then the basic ca

bined to one feature. This section follows the same idea by presenting UCMs for TTS’ bas

OCS, and CND.

TTS Basic Call

Starting from the requirements, the designer can draw a UCM path like the one in Figure 18(a

corresponds to step ➀ in SPEC-VALU E. The req and ring signals, which are start and end points, we

mentioned explicitly in the requirements. However, this UCM exhibits additional responsibilities

were left implicit: vrfy verifies whether the called party is idle or busy (conditions are between sq

brackets) and upd updates the callee’s status. Instead of having a multitude of call progression s

on the caller’s side, a single end point (sig) is used to propagate the appropriate signal or annou

ment from the system to the user. Additional signals and announcements are expected to be c

the same way, so this simplifies the UCM and the overall design. A consequence is that app

signals need to be prepared by the system: pbs prepares a busy signal whereas prbs prepares a ring-

back signal. As explained in guideline G2, input variables and output values could be associate

start and end points when necessary (e.g. req?Callee and sig!Signal). However, these will not be

shown for the UCMs to remain simple.

The underlying structure can be of various natures, and this is the focus of step ➁ in SPEC-

VALU E. For instance, Figure 18(b) shows the UCM path bound to a conventional switch-based

ture. However, the requirements suggest a less centralized architecture where each user has

Figure 18(c) presents a possible agent-based structure. The agents are all alike, but they have

roles: originating (O) or terminating (T). The same idea applies to the users as well.
118 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Ongoing Example: Tiny Telephone System (TTS)

 in a

tructure

factory,

r path

n.

. OCS

 the caller

he prep-
FIGURE 18. TTS Basic Call UCM

Under an apparent simplicity, UCMs such as Figure 18(c) convey a lot of information

compact form, and they allow requirements engineers and designers to use two dimensions (s

and behaviour) to evaluate architectural alternatives for their system. Once both views are satis

then they are combined to form a bound UCM, as indicated by step ➂ in SPEC-VALU E. The binding is

done by allocating the UCM responsibilities (and optionally start points, end points, and othe

elements) to the components in the structure. Figure 18(c) represents the result of the allocatio

OCS and CND Features

Individual UCMs for OCS and CND, based on the structure of agents, are given in Figure 19

requires a passive object (e.g. a database) which represents the list of screened numbers that

is forbidden to contact (OCSlist). This new component can be checked (chk) to determine whether the

call should be allowed or denied at the originating side. Denied calls cause some update and t

aration of an appropriate signal (pds) in the originating agent.

CND extends TTS’ basic call with a new result which displays the number of the caller (disp).

This display is concurrent with the ringing of the phone at the terminating end.

req ring

sig

vrfy

[busy]
pbs

[idle]

prbs

upd

(a) UCM Path

User:TUser:O

req ring

sig

Agent:O Agent:T

vrfy

[busy]
pbs

[idle]

prbs

upd

(c) Path on Agent-Based Structure

CalleeCaller Switch

(b) Path on Conventional Structure

req ring

sig

vrfy

[busy]
pbs

[idle]

prbs

upd
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 119

CHAPTER 4 From Requirements to UCMs in SPEC-VALUE

p in the

use of

s. The

e stubs.

ne

t be

istency,

en-

tionality.

ith too
FIGURE 19. Individual UCMs for TTS Features

4.3.3 Integrated UCM View
Refinement of designs can be obtained in UCMs by the use of stubs and plug-ins. The root ma

middle of Figure 20 shows an enhanced version of the UCM from Figure 18. Through the

stubs, this root map enables the integration of many scenarios coming from different feature

OCS and CND features described in Figure 19 are integrated to the root map as plug-ins for th

The five different UCMs (the DEFAULT plug-in is used twice) shown in Figure 20 represent only o

way to integrate the individual UCMs seen so far; other possibilities exist but they will no

explored here. Generating integrated views is also part of step ➂ in SPEC-VALU E. Although such a

view is not mandatory, it usually helps structuring the scenarios together, ensuring their cons

and avoiding undesirable behaviours or side effects.

The originating dynamic stub SO has two plug-ins (DEFAULT and OCS). The start point of the

DEFAULT plug-in (start) is bound to the incoming path segment in1, and the end point continue is

bound to the outgoing segment out1. The OCS plug-in includes the OCSlist component, which is then

considered to be inside the Agent component. If the caller subscribes to the Originating Call Scre

ing service, then the originating agent will select the OCS plug-in instead of the DEFAULT plug-in.

This is the selection policy of the dynamic stub SO.

The terminating static stub ST contains one plug-in only (TERMINATING), hence selection poli-

cies are not necessary here. Static stubs enable modular and stepwise decomposition of func

Their plug-ins act as refinements and they also prevent the calling maps from being cluttered w

many details.

User:TUser:O

req

sig

Agent:O Agent:T

vrfy

[busy]
pbs

[idle]

prbs

(b) CND Feature

User:TUser:O

req ring

sig

Agent:O Agent:T

vrfy

[busy]
pbs

[idle]

prbs

upd

(a) OCS Feature

chk

[denied]

[allowed]

OCSlist

pds disp

ring
upd
120 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Ongoing Example: Tiny Telephone System (TTS)

e

g

 dif-

r

e same

gling;

 the ter-
FIGURE 20. Integrated UCM View of TTS

TERMINATING includes the dynamic stub SD, which handles the display of information to th

terminating user. SD’s selection policy states that the CND plug-in is selected when the terminatin

party is a Call Number Delivery subscriber. Otherwise, the DEFAULT plug-in is selected.

Note that the DEFAULT plug-in is reused in two different stubs. However, the bindings are

ferent. For SD, the start point of DEFAULT (start) is bound to the incoming path segment in3, and the

end point continue is bound to the outgoing segment out5. The binding relationships of the othe

plug-ins is defined in this example by start points being bound to incoming path segments of th

name and by end points being bound to outgoing path segments of the same name.

The CND plug-in has some interesting characteristics. First, it leaves an end point dan

disp is not bound to any output segment of the stub, but it becomes a new observable event at

User:TUser:O

req ring

sig

Agent:O Agent:T

SO ST

in1 in2out1 out3

out4out2

chk
in1

[denied]

[allowed]
out1

out2
pds

start continue

OCSlist

vrfy
in2

[busy]

out3

out4
pbs

[idle]

prbs

P
L
U

G
-I

N
S

F
O

R
 S

O
R

O
O

T
M

A
P

P
L
U

G
-I

N
 F

O
R
 S

T

DEFAULT plug-in

TERMINATING plug-in

OCS plug-in

upd
SD

in3 out5

in3
out5start continue

P
L

U
G

-I
N

S
F

O
R

S
D

DEFAULT plug-in CND plug-in

disp

User:T
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 121

CHAPTER 4 From Requirements to UCMs in SPEC-VALUE

ments.

 plug-

 a ref-

lso

ted as

 set of

r benefit

lared

 be sup-

es and

differ-

h special

, which

decom-

 stubs.

t UCMs

ll the

tened

ll in

e inte-
minating end. Not all plug-in start points and end points need to be explicitly bound to stub seg

However, this flexibility needs to be used with moderation otherwise parent maps (where such

ins are called) will no longer represent the big picture clearly. Second, the CND plug-in includes

erence to an existing component (User:T), defined in the root map. Referenced components, a

known as anchored components, are shaded in the UCM notation. Such component is interpre

being declared outside the component that contains the calling stub. This means that User:T in CND

is not a sub-component of Agent:T (obviously, User:T is defined at the top level).

A plug-in that uses anchored components is said to be in an unconstrained style [76]. This

style enables parent (root) maps to be simplified by showing only the main paths through a

components, treating meandering across components as details deferred to plug-ins. Anothe

is that considerable flexibility in filling in details is provided. Also, sub-components can be dec

or referenced in the appropriate maps, when required by the causal scenarios that need to

ported. However, this style breaks the component containment intuition shown in UCM structur

it leaves the big picture somewhat incomplete, requiring it to be mentally pieced together from

ent maps. Therefore, the unconstrained style and anchored components should be used wit

care.

Once stubs are defined at key points on a path, it becomes easy to add new plug-ins

could represent new features in the TTS example. Existing maps and plug-ins can further be

posed or extended (e.g. when a radically different service is added) with new paths and new

Experienced requirements engineers and designers may even prefer to skip the individual fla

(e.g. Figure 18(c) and Figure 19) and work directly with an integrated UCM view, where a

UCMs are connected through stub/plug-in bindings (e.g. Figure 20).

By selecting plug-ins for the stubs in the integrated UCM view, one can obtain a flat

map, which may still contain multiple end-to-end scenarios. For instance, by selecting the DEFAULT

plug-in in stubs SO and SD, the resulting map becomes the same as the original basic ca

Figure 18(c). The OCS and CND individual UCMs can also be derived in the same way. Th
122 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Chapter Summary

tures.

active.

t a high-

The

totyping

-

on is

s well as

sulting

out the

ived

erged to

n also

 compo-
grated view contains however more scenarios, resulting from the combination of individual fea

For instance, a totally new UCM would result from the case where both OCS and CND are

This is what enables designers to reason about undesirable interactions between features a

level of abstraction (to be discussed further in Section 8.3.1).

4.4 Chapter Summary
This chapter recalls some of the main motivations behind the use of Use Case Maps and LOTOS in the

SPEC-VALU E methodology, many of which resulted from the literature review in Chapter 3.

methodology is also briefly compared to common software design processes such as the pro

model and the spiral model.

Section 4.2 expands on the three first steps of the SPEC-VALU E methodology, which are con

cerned with the capture of functional requirements in terms of UCMs. A particular attenti

devoted to style and content guidelines that increase the completeness of UCM descriptions a

the compatibility and traceability between UCMs and subsequent models (such as LOTOS prototypes).

The integration of scenarios is also briefly discussed along with a few integration guidelines re

from the author’s experience.

These steps are illustrated in Section 4.3 with an example intended to be used through

thesis: the Tiny Telephone System (TTS). The basic call responsibilities and causal flows are der

from informal requirements (step ➀), together with an appropriate structure of components (step➁).

Responsibilities are allocated to components, resulting in bound UCMs (step ➂). The OCS and CND

features are also represented as individual UCMs. Then, the features and the basic call are m

form an integrated UCM view of TTS, where stubs and plug-ins are heavily used. This sectio

discusses the appropriateness of selection policies, of the unconstrained style with anchored

nents, and of the flattening of integrated UCMs

Contributions

The following items are original contributions of this chapter:
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 123

CHAPTER 4 From Requirements to UCMs in SPEC-VALUE

func-
• Partial illustration of Contribution 1 (Section 1.4.1) regarding the separation of the

tionalities from the underlying structure and the design documentation in SPEC-VALU E.

• Illustration of the first steps of SPEC-VALU E, i.e. from requirements to UCMs.

• Style, content, and integration guidelines for Use Case Maps.

• Informal requirements and UCMs for the Tiny Telephone System.
124 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

.
se
to
CHAPTER 5

From Use Case Maps to L OTOS

in SPEC-VALUE

Don’t worry about that specification paperwork
We’d better hurry up and start coding, becau
we’re going to have a whole lot of debugging
do...

Barry Boehm, 1984
G) are

y Tele-

ld be

he out-

ere the

viewed

 interac-

the level

d inter-
This chapter presents an analytic approach for the construction of LOTOS specifications from Use

Case Maps. The core of this approach is found in Section 5.2, where construction guidelines (C

introduced and several are illustrated individually. These guidelines are then applied to the Tin

phone System example, and the resulting LOTOS specification is discussed in Section 5.3.

5.1 Construction Approach
The construction of a LOTOS prototype from UCMs corresponds to step ➃ in the SPEC-VALU E meth-

odology and is highlighted in Figure 21. The prerequisite is a collection of UCMs (which cou

integrated or not), similar to what was obtained for the Tiny Telephone System in Chapter 4. T

put is a specification that captures the functional requirements and the high-level design, wh

structure of components may or may not be considered.

Several methods for the integration of scenarios and the construction of models were re

in Section 3.3.4. Most of the synthetic and analytic approaches surveyed are based on various

tion diagram notations and they involve components and messages. UCMs are defined above

of messages, and they may or may not include components. Algorithms for the automated an
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 125

CHAPTER 5 From Use Case Maps to LOTOS in SPEC-VALUE

uited for

rs to be

ant to

ichness

s and

del.
active synthesis of integrated models from message-oriented scenarios hence are not well s

translating UCMs fully and automatically.

FIGURE 21. From UCMs to LOTOS with SPEC-VALUE

An analytic approach, where the model is generated manually and then verified, appea

the most pragmatic way of capturing UCMs directly in LOTOS. As shown in Table 10, analytic

approaches have some advantages over synthetic ones:

• They do not require a formal representation of the scenarios (this is particularly relev

UCMs, which are semi-formal).

• The source and target modelling languages do not need to be restricted, i.e. their r

can be exploited to their fullest extent.

• The target model can additionally take into consideration further design constraint

non-functional requirements, which are not necessarily captured by the scenario mo

Structure

Results
(Coverage)

UCMs on
Structure

Test Suite
(LOTOS)

Results
(Functions)

Requirements

Allocation

Testing

Scenarios
(UCM)

Test Cases
Generation

Modify if
necessary

Construction

Prototype
(LOTOS)

Add tests if
necessary

➀

➁

➂

➄

➆

➇
➅

➃

126 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Construction Approach

ny of

vels of

ts of

een them

 which

ructs

 design

 vali-

enar-

bilities

 terms

ct-

 Charts.

ten

, and

ify-
5.1.1 Appropriateness of L OTOS

The choice of LOTOS as a target modelling language is motivated by several factors, ma

which were mentioned in Section 3.2, Section 3.4, and Table 1 on page 6:

• This language is capable of expressing behaviour at several stages of design or le

abstraction, including the initial ones where it is not yet known what the componen

the system are, what are their states, and what are the messages exchanged betw

(this is normally the situation at the early stages of design).

• LOTOS is mature in the sense that it is an established international standard, around

much useful theory and a number of useful tools have been developed.

• UCMs and LOTOS both focus on the ordering of actions and they share many const

that have similar semantics (such as sequence, alternative, parallelism, hierarchical

and structure), which result in simpler mapping and traceability relations.

• LOTOS is capable of specifying UCM with and without components.

• LOTOS specifications are executable prototypes that can be formally analyzed and

dated against the intended functionalities of informal requirements and individual sc

ios. Other types of liveness and safety properties can be verified as well. These capa

complement most of UCMs’ weak areas related to the analysis of requirements (in

of maturity, completeness & consistency, testing & simulation, verifiability & corre

ness).

• LOTOS enables the automated generation of diagrams such as Message Sequence

Sequences produced by a LOTOS prototype can be translated into MSCs, which are of

more suitable than UCMs for the visualization of detailed scenarios, for diagnostics

for providing scenario information to programmers, testers, and automated tools.

Use Case Maps and LOTOS therefore represent a good match with much potential for spec

ing and validating telecommunications systems.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 127

CHAPTER 5 From Use Case Maps to LOTOS in SPEC-VALUE

tion of

-

phony

c tele-

 only

onse-

 pass-

ot be

nes or

mpo-

 sys-

-ins,

 com-

quickly

a very

rpose

h that

r of an
5.1.2 Unfitness of TMDL
In his masters thesis [12], Amyot presented a methodology for the semi-automated genera

LOTOS specifications from unbound UCMs. The maps were manually described using the Timethread

Map Description Language (TMDL)1, and then a compiler (tmdl2lot) would generate the specifi

cation automatically [13]. Although this approach has been successfully used for a simple tele

system [14], TMDL lacks three major features that are necessary for the modelling of realisti

communications systems:

• Components: TMDL does not consider any structural artifact. Use case paths are the

type of object described (unbound maps). The resulting specification becomes c

quently purely functional in nature, like a service specification, without any message

ing. However, there comes a point in the design cycle where components cann

avoided, especially when multiple instances of a particular component (e.g. telepho

agents) need to be considered. The distribution of behaviour over a topology of co

nents is challenging and difficult to automate.

• Data types: TMDL does not have data types, yet many complex telecommunications

tems rely heavily on a data model for databases, conditions, and parameters.

• Composition: Since TMDL does not support hierarchical design with stubs and plug

the designer has to provide a single global UCM where all scenarios are correctly

posed. Unfortunately, as the system complexity increases, this approach becomes

unpractical for most realistic systems. Generating such a global map would result in

large picture, difficult to understand, maintain, and analyze, hence defeating the pu

of UCMs.

TMDL is essentially an example of the unfitness of an automated synthesis approac

excessively constrains the source modelling language. In the thesis, TMDL is put aside in favo

analytic approach.

1. Use Case Maps were previously called Timethread Maps.
128 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Construction Guidelines

e

ms

POTS)

hony

reless

 Net-

ations.

riments

oven

orous

ishing

 with

impler

n of

 Addi-

-

ponsi-

ted with

pped

posed
Analytic approaches suggest the use of guidelines for generating target models from sourc

models. Over the last seven years, many LOTOS specifications have been produced out of syste

designed with UCMs: a Telepresence system [12], a simplified Plain Old Telephone System (

[14], a Group Communication Server [15][17], the Group-Call service of the GPRS mobile telep

system [16][24], a feature-rich telephony system [18][22], an agent-based PBX [25], a Wi

Mobile ATM Network [32], and the Call Name Presentation service of the Wireless Intelligent

work [381]. The author has written or collaborated to the generation of most of these specific

The guidelines enumerated in the next section result from lessons learned during these expe

(some of which will be further explored in Chapter 8).

5.2 Construction Guidelines
This section presents guidelines for the construction of LOTOS specifications from UCMs. SPEC-

VALU E is limited to the provision of guidelines, which are informal mapping rules that have pr

to be useful but which may not necessarily be followed exactly by users at a given point. Rig

construction rules would essentially lead to the creation of synthesis algorithms, hence dimin

the flexibility targeted by analytic approaches. In this context, the guidelines are more in line

design patterns [101][144] than with formal transformation rules, although guidelines have a s

structure and are less detailed than conventional design patterns.

An overview of the main construction principles is given first, followed by an enumeratio

several guidelines illustrated with short examples inspired from the Tiny Telephone System.

tional comments on the partial automation of such guidelines conclude the section.

5.2.1 Overview
In a nutshell, the construction approach (step ➃ in Figure 21) consists in translating each UCM com

ponent into a LOTOS process that preserves the internal causality relationships between the res

bilities and events that are part of path segments crossing this component. This idea is illustra

the TTS Basic Call UCM, originally found in Figure 18(b), where the Caller component is ma

onto a LOTOS process (Figure 22(b)). The structure itself is converted to a set of processes com
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 129

CHAPTER 5 From Use Case Maps to LOTOS in SPEC-VALUE

ips

ecisions

ifi-

le that

g-ins is

ns in a

using the

s instan-

.

le path

f the

elines
through shared communication channels (LOTOS gates), as in Figure 22(c). The causal relationsh

between the components are also considered during the construction of the processes. D

related to the nature of the message exchanges must then be made and documented.

FIGURE 22. Construction of a LOTOS Specification from a UCM

The structure of the target model (a LOTOS specification in our case) and the selected spec

cation style will also influence the ease with which new scenarios can be introduced. A sty

reflects both the UCM structure of components and the use of responsibilities, stubs and plu

likely to be flexible and easy to handle when the time comes to specify changes or additio

UCM. This style is inspired from the conventional resource-oriented style [363], where components

and media are specified as communicating processes. However, the processes developed

guidelines of the next sections are not limited to the use of sequences, alternatives, and proces

tiations as in the conventional resource-oriented style; concurrency will also be used internally

Eight guidelines are developed in this chapter. Their main goal is to provide a traceab

from UCMs to LOTOS (and often in the other direction as well) where the intended behaviour o

UCMs is formalized. Sub-guidelines are also defined for different aspects of the general guid

Each component becomes
a process that implements
all the paths that cross it
(possibly from multiple
scenarios).

The structure is
mapped onto a set of
processes composed
through channels or
shared events.

specification TTS[req, sig, ring] :noexit
(* Abstract Data Types here... *)
behaviour
 hide Chan1, Chan2 in
 (Caller[req, sig, Chan1] ||| Callee[ring, Chan2])
 |[Chan1, Chan2]|
 Switch[Chan1, Chan2](idle, idle)
where
 (* Component processes here... *)
endspec (* TTS *)

process Caller[req, sig, Chan1] : noexit :=
 req ?calleeNum:PhoneNumber;
 Chan1 !request !calleeNum;
 Caller[req, sig, Chan1]
 []
 Chan1 ?ann:Announcement;
 sig !ann;
 Caller[req, sig, Chan1]
endproc (* Caller *)

(b) Structure of Components (c) Component Behaviour

Chan1 Chan2

CalleeCaller Switch

(a) TTS Basic Call, with Channels

req ring

sig

vrfy

[busy]
pbs

[idle]

prbs

upd
130 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Construction Guidelines

ers and

hese

educed

be as

idelines

d

-

 5.2.3).

ons are

in a

le-
and for special cases. The given guidelines should provide useful hints and guidance to beginn

intermediate users of SPEC-VALU E. However, experienced users may deviate occasionally from t

guidelines for various reasons (examples will be given in Chapter 8), sometimes at the cost of r

traceability.

The construction guidelines are structured into three families. Although they intend to

orthogonal as possible, many of the more detailed guidelines refer to other families. These gu

are meant to be used iteratively and no pre-defined order is suggested.

• Paths: focus on the construction of LOTOS behaviour expressions from UCM paths an

their elements (Section 5.2.2).

♦ Construction Guideline 1: Interpreting Interaction Points and Responsibilities

♦ Construction Guideline 2: Representing Causal Paths

♦ Construction Guideline 3: Interpreting Stubs and Plug-Ins

♦ Construction Guideline 4: Other Path Elements

• Structure: focus on the construction of LOTOS behaviour expressions from UCM compo

nents, the paths they contain, and the inter-component paths that link them (Section

This is where most challenges reside in terms of automation as many design decisi

required.

♦ Construction Guideline 5: Interpreting the Structure

♦ Construction Guideline 6: Integrating Multiple Unrelated Path Segments

Component

♦ Construction Guideline 7: Refining Inter-Component Causality

• Data: focus on the construction of a LOTOS data model and supporting infrastructure e

ments such as databases (Section 5.2.4).

♦ Construction Guideline 8: Representing Data
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 131

CHAPTER 5 From Use Case Maps to LOTOS in SPEC-VALUE

ilities,

e CG-

es can

recondi-

 predi-

this

e

rough

ponent

an be
5.2.2 Construction Guidelines for Paths

Construction Guideline 1: Interpreting Interaction Points and Responsibilities

Interaction points include start points, waiting places, and end points. Together with responsib

they are captured as LOTOS gates. Guideline CG-1 captures the general case whereas Guidelin

1.a considers how responsibilities and end points may affect value identifiers.

CG-1) Interaction points (start points, waiting places, and end points) and responsi-
bilities are specified as LOTOS gates.

These elements capture interactions with the environment: start points and waiting plac

be controlled during the validation whereas end points and responsibilities can be observed. P

tions associated with start points and waiting places can additionally be translated to selection

cates. Interaction points req, sig, and ring in Figure 22(b) were transformed to gates according to

guideline. Likewise for responsibilities vrfy, upd, prbs, and pbs. Similar names are given to improv

two-way traceability and understanding. If a name is not a valid LOTOS name (e.g. LOTOS keyword or

forbidden character), then it will need to be changed at the UCM level or to be made valid th

some documented translation. The visibility of these elements and their relationship to com

interfaces are further discussed in Guideline CG-5.c and Guideline CG-5.b respectively.

CG-1.a) UCM responsibilities and end points may affect the content of value identifi-
ers.

The effects of a responsibility’s computation or of an end point’s postcondition, if any, c

represented as modifications of variables (called value identifiers in LOTOS) in the behaviour expres-

sion that follows the corresponding action. For instance, if upd updates the callee’s status to busy ,

then this can be represented as:

upd; (let calleeStatus:UserState = busy in B)

where B is the behaviour expression that follows upd.
132 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Construction Guidelines

ring

be used

arame-

G-8.

ne CG-

handled

line

pecial

2].

e cap-

 sup-

ponent

is often
An interesting case is when B is a process instantiation (as it is often the case when captu

an end point or when the path exits the component, see Guideline CG-2): the values can

directly as process parameters. For example:

upd; Switch[Chan1, Chan2](callerStatus, busy)

where the switch maintains the status of the caller (first parameter) and of the callee (second p

ter, here updated to the value busy).

Value identifiers can also be modified through a database, as suggested in Guideline C

Construction Guideline 2: Representing Causal Paths

Causal paths inside a component are represented through the use of appropriate LOTOS constructs.

Sequences (possibly with recursion) represent the simplest way of capturing causality (Guideli

2). Various UCM constructs enable simple aggregations of sequential paths, and they are

directly by more specific guidelines: OR-forks with Guideline CG-2.a, AND-forks with Guide

CG-2.b, OR-joins and AND-joins with Guideline CG-2.c. Path interactions represent another s

case and they are treated by Guideline CG-2.d. Most of these guidelines were introduced in [1

CG-2) Linear causal paths are represented as sequences using the action prefix oper-
ator (possibly with recursion).

UCM path segments represent the linear progression of causality. This can obviously b

tured using the LOTOS action prefix operator. Ends of path segment in a component can also be

plemented by a reinstantiation of the component process. Such recursive calls enable com

persistence, i.e. a component can “execute” the causal paths multiple times, a quality that

required of reactive systems components.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 133

CHAPTER 5 From Use Case Maps to LOTOS in SPEC-VALUE

ay be

nches.

 two

s.
For example, the Caller process contains this partial behaviour:

req ?calleeNum:PhoneNumber; (* get a connection request *)
 Chan1 !request !calleeNum; (* send it to the switch *)
 Caller[req, sig, Chan1] (* get ready for the next request *)

CG-2.a) The choice operator is used to represent alternatives (OR-forks).

This requires little explanation as both operators denote similar concepts. Choices m

guarded when conditions are attached to paths leaving the OR-fork.

For example, the Switch process could contain the partial behaviour:

vrfy;
([idle] -> ...
 []
 [busy] -> pbs; ...)

The multiple use of the choice operator can represent OR-forks with more than two bra

CG-2.b) The interleave operator is used to represent concurrent paths (AND-forks).

Again, both concepts are very similar. The Switch process hence could contain:

 [idle] -> (upd; ...
 |||
 prbs; ...)

The multiple use of the interleave operator can represent AND-forks with more than

branches.

CG-2.c) AND-joins and OR-joins are specified with the enable operator or with hid-
den gates.

Concurrent paths and alternative paths entering an AND-join or OR-join need to exit (on

compatible values, if any). The enable operator (>>) is then used to capture AND-joins and OR-join
134 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Construction Guidelines

23(a)).

y the

 to start

).

 joined

path to

s itself

res this

oming

 UCM
This leads to the enabled segment (behaviour expression) that follows the joined paths (Figure

Alternatively, the exit can be replaced with a hidden synchronization gate, and the enable b

generalized synchronization operator. In this case, the segment following the joined path has

with the synchronization gate, which is also used in the synchronization operator (Figure 23(b)

FIGURE 23. Interpreting AND-Joins and OR-Joins

OR-joins may also be represented with duplicated behaviour expressions (one for each

path), particularly when the next UCM path element is an end point. If an OR-join causes a

loop on itself, then a sub-process, which specifies the loop path, is instantiated. It reinstantiate

recursively for each iteration, and it exits to terminate the loop. The enable operator then captu

exit and continues with the rest of the UCM path.

CG-2.d) Synchronous and asynchronous interactions between UCM paths are speci-
fied using the generalized synchronization operator.

Start points and waiting places may be triggered either synchronously by an end point c

from another UCM path, or asynchronously by an empty path segment coming from another

(...; r1; exit
 |||
 ...; r2; exit
 |||
 ...; r3; exit)
>>
joined; ...

(a) With exit and enable (b) With a hidden sync gate

r1

r2

r3

joined

r1

r2

r3

joined

hide sync in
(...; r1; sync
 |||
 ...; r2; sync
 |||
 ...; r3; sync)
|[sync]|
sync; joined; ...

(...; r1; exit
 []
 ...; r2; exit
 []
 ...; r3; exit)
>>
joined; ...

hide sync in
(...; r1; sync
 []
 ...; r2; sync
 []
 ...; r3; sync)
|[sync]|
sync; joined; ...
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 135

CHAPTER 5 From Use Case Maps to LOTOS in SPEC-VALUE

iggered

 inter-

 event

nded

tandard

e

ple in

rovided

 rela-

 process

hey can

iate the

nce of

ynamic

bs and
(see Figure A3 in Appendix A:). The UCM paths involved in the interaction are specified in LOTOS as

concurrent behaviour synchronized on the gate name of the start point or waiting place. The tr

path awaits this event. The triggering path will also wait for this event in case of a synchronized

action. However, in case of an asynchronous interaction, the triggering path will provide this

concurrently (|||) with the behaviour representing the rest of its path. Different types of exte

waiting places are defined in [12], but they are not considered here as they do not belong the s

UCM notation.

Construction Guideline 3: Interpreting Stubs and Plug-Ins

Stubs and plug-ins are also represented with the versatile LOTOS process. These guidelines will b

explained in general terms only, and they will be illustrated more completely with the TTS exam

Section 5.3.3. The generic guideline is presented in Guideline CG-3, and further details are p

for plug-ins (Guideline CG-3.a), stubs and selection policies (Guideline CG-3.b), and binding

tionships (Guideline CG-3.c).

CG-3) Stubs and plug-ins are processes linked through instantiations.

A plug-in can be used in multiple stubs, hence it is best represented as an independent

definition which can be instantiated at will. Stubs are also represented as processes so t

describe selection policies and be instantiated from multiple input segments. Stubs instant

plug-ins bound to them.

Since Figure 22 does not contain any stub, Figure 24 will be used to illustrate the esse

this guideline. The static stub S1 contains one plug-in and no selection policy, whereas the d

stub S2 contains two mutually exclusive plug-ins (whose selection could be guarded). All stu

plug-ins have their own process definitions.
136 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Construction Guidelines

 list of

ay be

 list of

ntiating

, hence

t of the

ess.

ined

tia-
FIGURE 24. Interpreting Stubs and Plug-Ins

CG-3.a) Plug-ins have parameter lists for input points and values, and for output
points and values.

In addition to data parameters needed by the plug-in, the process definition requires a

input points that represents the list of plug-in start points triggered by the calling stub (there m

more than one). In return, the process definition exits with resulting values and with another

points, which represents the resulting end points that were reached by the plug-in.

CG-3.b) The stub processes specify the selection policy, i.e. the type of composition
between the possible plug-ins.

Static stubs have no selection policy per se, hence their behaviour is reduced to insta

the plug-in process. Dynamic stubs however have to choose among potentially many plug-ins

the selection policy is captured as a behaviour expression inside the process definition. Mos

time, the selection policy will result in the deterministic instantiation of only one plug-in proc

Therefore, selection policies in LOTOS often make use of guarded process instantiations comb

with the choice operator ([]). However, more complex selection policies may require the instan

S1

Plug-in P1

S2

Parent map

Plug-in P2

(* Parent map behaviour *)
... S1[gates](parameters)
 >>
 accept values in
 (
 ... S2[gates](parameters)
 >>
 accept values in
 ...
)

process S1[gates](parameters) :=
 P1[gates](parameters)
 >> exit(values)
endproc (* S1 *)

process S2[gates](parameters) :=
 (* Specify the selection policy here *)
 [guard1] -> P1[gates](parameters)
 >> accept values in exit(values)
 []
 [guard2] -> P2[gates](parameters)
 >> accept values in exit(values)
endproc (* S2 *)

process P1[gates](parameters) :=
 ...; exit(values)
endproc (* P1 *)

process P2[gates](parameters) :=
 ...; exit(values)
endproc (* P2 *)
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 137

CHAPTER 5 From Use Case Maps to LOTOS in SPEC-VALUE

s upon

he entry

ed in a

ints is

inding

ion in

ments.

hapter

-4.a),

uide-

evices,

.) are not

ins with

ration of
tion of multiple plug-in processes, e.g. in sequence (with the enable operator >>) and/or in parallel

(with the interleave operator |||).

CG-3.c) A stub process specifies the binding relation between a stub and its plug-
in(s).

Stub processes receive a list of entry points as input and then output a list of exit point

termination. These lists correspond to the path segments enabled before and after a stub. T

points are used to determine the list of start points (Guideline CG-3.a) that need to be trigger

plug-in, according to the binding relation between the stub and its plug-in(s). The list of exit po

generated according to the end points resulting from the plug-in(s), again according to the b

relation. See Figure 36 for an example.

Though they have only one plug-in, static stubs still need to implement the binding relat

this way because the bound plug-in may be reused somewhere else.

Construction Guideline 4: Other Path Elements

The following elements are discussed in order to complete the coverage of the UCM path ele

However, they are not illustrated with the TTS example. More complex case studies, found in C

8, will make use of these guidelines.

There is no generic guideline here, only four independent cases: timers (Guideline CG

aborts (Guideline CG-4.b), failure points (Guideline CG-4.c), and dynamic responsibilities (G

line CG-4.d).

Other elements related to performance annotations (timestamp points, data stores, d

service requests, response time requirements, etc.) and goal annotations (goal tags, goals, etc

covered here. These are extensions to the UCM notation targeted towards specialized doma

objectives different that those addressed in the thesis, such as performance analysis and gene

goal-based implementations for agent systems.
138 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Construction Guidelines

n still

it their

ay sim-

 a hid-

is

 which

he reset

iour of

re both

pond-

be
CG-4.a) Timers are specified using a reset event and a timeout event.

LOTOS does not provide support for representing quantitative time. However, timers ca

be specified in an abstract way. They act like regular waiting places, except that they do not wa

triggering event (reset) forever. A reset is caused (a)synchronously by a triggering path, in a w

ilar to the interactions discussed in Guideline CG-2.d. A timeout is represented by a LOTOS action,

which can be internal or not. If hidden, this action may occur at any point. It is suggested to use

den gate name instead of the internal i action in order to improve traceability. If observable, th

action becomes under the control of the environment, which improves the overall ease with

validation can be performed. Once a timer is reached (i.e. set), there is a choice between t

event followed by the rest of the path behaviour and the timeout event followed by the behav

the timeout path. This choice is non-deterministic unless the reset and the timeout events a

made observable.

Figure 25 illustrates a timer which is reset synchronously by another path. In the corres

ing LOTOS code, the events resetAnswer and timeoutAnswer are hidden, but each of them could also

made observable.

FIGURE 25. Interpreting Timers

req connected

noAnswer

resetAnswer

answer

hide resetAnswer, timeoutAnswer in
 UCMpath1[...] |[resetAnswer]| UCMpath2[...]
where

 process UCMpath1[...] :=
 answer; resetAnswer; stop
 endproc

 process UCMpath1[...] :=
 req;
 (* Set timer *)
 (
 resetAnswer; connected; stop
 []
 timeoutAnswer; noAnswer; stop
)
 endproc

UCMpath1

UCMpath2
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 139

CHAPTER 5 From Use Case Maps to LOTOS in SPEC-VALUE

this is

hannels

he dis-

t.

force

ays has

tially be

 poten-

tinua-

-

CG-4.b) Aborts (exceptions) are specified using the disable operator.

A path may abort the progression of causality in another path. As discussed in [12],

specified as one process disabling the other one through a shared gate (different from the c

defined in the structure). The disabling process just performs the action and then carries on. T

abled process performs the same action and then stops or reinstantiates itself.

Figure 26 illustrates a path which aborted by another path, and abort is used as a shared even

FIGURE 26. Interpreting Aborts

In Lotos , the disable operator exhibits a controversial behaviour: there is no way to en

the choice of a disabling action over other ones. This means that if a component behaviour alw

a choice between the disabling action and other actions, then the disabling action could poten

delayed forever. However, one good thing about this type of behaviour is that it helps to expose

tial race conditions.

CG-4.c) Failure points are specified using failure events.

Failure points (Figure A7(c) in Appendix A:) are specified as a choice between the con

tion of the path behaviour and a failure event that leads to a stop behaviour. Like timeout events, fail

ure events can be hidden or visible, depending on the validation goals.

req connected

abort

hide abort in
 UCMpath1[...] |[abort]| UCMpath2[...]
where

 process UCMpath1[...] :=
 cancel; abort; canceled; stop
 endproc

 process UCMpath1[...] :=
 (req; connected; stop)
 [>
 abort; stop
 endproc

UCMpath2

cancel canceled

UCMpath1
140 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Construction Guidelines

e gates

 compo-

olved

e is that

ions for

r DC

in
CG-4.d) Dynamic responsibilities are represented as gates or as process instantiations.

Dynamic responsibilities used on a pool of components are specified as gates. Thes

have experiments that modify the content of a database that represents the pool of dynamic

nents (DC). Modifications are done according to the nature of the dynamic responsibility inv

(create, delete, get, put).

Figure 27 presents an example of how such gates could be used. The assumption her

there exist an abstract data type for describing pools as DC databases (DC_DB), with operat

adding DCs (insertDC), removing DCs (removeDC), or getting the attributes of a particula

(getAtt). Dynamic components also have identifiers (id , of type nat in the example), as suggested

Guideline CG-8.

FIGURE 27. Interpreting Dynamic Responsibilities Linked to Pools

+

_

get DC from pool

put DC in pool

create DC in pool

delete DC from pool

createDC ?id:nat !att [id eq next_id];
(* DC attributes (att) are provided and DC identifier is returned *)
(
 let pool:DC_DB = insertDC(DC(id, att), pool), (* Pool updated *)
 next_id:nat = succ(id) in (* Increment ID generator *)
 (* Rest of behaviour goes here *)
)

deleteDC !id; (* DC identifier is provided *)
(
 let pool:DC_DB = removeDC(id, pool) in
 (* Rest of behaviour goes here *)
)

getDC !id ?att:DC_attributes [att eq getAtt(id, pool)];
(* DC identifier is provided and DC attributes are extracted *)
(* Rest of behaviour goes here *)

putDC !id !att;
(* DC identifier and attributes are known *)
(
 let pool:DC_DB = insertDC(DC(id, att), pool) in
 (* Rest of behaviour goes here *)
)

Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 141

CHAPTER 5 From Use Case Maps to LOTOS in SPEC-VALUE

 as an

present-

ecified

 another

be

re some

 the gen-

faces are

, and
As for operation on slots, the creation of a component or a move into a slot is specified

instantiation of the relevant process. The assumption is that there exists a process definition re

ing the component (Guideline CG-5). The deletion of a component or a move out of a slot is sp

as a gate, followed potentially by a message (to ensure the continuation of the causal path in

component) and by the termination of the process representing the component (exit or stop).

Figure 28 present short LOTOS examples illustrating how dynamic responsibilities could

specified when bound to slots.

FIGURE 28. Interpreting Dynamic Responsibilities Bound to Slots

5.2.3 Construction Guidelines for Structures

Construction Guideline 5: Interpreting the Structure

The UCM structure of components is captured as a collection of synchronized processes, whe

actions may be hidden depending on the nature of the component. Guideline CG-5 represents

eral case. Guideline CG-5.a considers component roles as a special case. Component inter

handled by Guideline CG-5.b, Guideline CG-5.c further considers hiding of path elements

Guideline CG-5.d discusses the preservation of the hierarchical component structure.

(SlotProcess[gates](id, att)
 (* Slot process instantiated with new DC attributes *)
 |||
 (* Rest of path behaviour goes here *))

(SlotProcess[gates](id, att)
 (* Slot process instantiated with existing DC attributes, from pool *)
 |||
 (* Rest of path behaviour goes here *))

deleteDC;
 message; (* Used to ensure path continuity in next component *)
 stop (* Slot process is terminated *)

moveDCout !id !att; (* Slot process provides DC id and attributes *)
 message; (* Used to ensure path continuity in next component *)
 stop (* Slot process is terminated *)

+

_

move DC out of slot

move DC into slot

create DC in slot

delete DC from slot
142 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Construction Guidelines

objects,

n poten-

unicat-

bles

ed in

neral-

. For

 used in

ted to
CG-5) Components are specified as processes synchronized on their shared chan-
nels/gates.

LOTOS has a powerful concept, the process, that is general enough to represent active

passive objects, agents, groups of interacting objects, and so on. Therefore, any component ca

tially be mapped directly to a LOTOS process with the same name. This is the case of processes Caller,

Callee, and Switch in Figure 22.

When they are not provided, communication channels need to be added between comm

ing entities, which will then synchronize on these channels through the synchronization (|[...]|)

operator. For instance, the Switch synchronizes with Caller on Chan1 and with Callee on Chan2. The

Caller and the Callee do not communicate directly, hence they interleave (|||). Although synchroniza-

tion is achieved in LOTOS through a binary operator, its multiway rendezvous mechanism ena

complex topologies to be represented. A characterization of these topologies is provid

[12][60][140]. In fact, the structure is often specified in a resource-oriented style [364] using ge

ized parallel composition and interleaving operators.

CG-5.a) Roles of a component are merged before being mapped to a process.

UCMs may include multiple components that illustrate different roles of a single entity

instance, a user can assume the role of a caller or of a callee at different times. This concept is

Figure 20, where a user can be originator (User:O) or terminator (User:T). In LOTOS, there would be

only one process type (User) that would integrate both roles. As a consequence, the paths alloca

these roles also need to be integrated in this process (see Guideline CG-6.d)
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 143

CHAPTER 5 From Use Case Maps to LOTOS in SPEC-VALUE

inguish

s con-

n or the

ication.

e inter-

 com-

oints.

t, we

e such

system

between

r com-

reas

).
CG-5.b) If a component has a predetermined interface to the external world, then
interaction points and responsibilities are transformed into experiments (val-
ues) attached to a gate representing the interface.

The merging of several gates into one, to which experiments are added in order to dist

between the former gates, is called gate splitting [58]. This technique is a well known LOTOS correct-

ness preserving transformation that allows to satisfy both the spirit of Guideline CG-1 as well a

straints imposed by predetermined interfaces. Gate splitting also helps to cope with the additio

removal of start and end points because it simplifies the modifications to be done on the specif

As an example, suppose that the Caller component from Figure 22(a) provides a uniqu

face to the user (environment) called GUI. Then, the interaction points req and sig can be represented

by GUI!req and GUI!sig respectively, where the gate corresponds to the name of the interface or

munication channel, and where experiment values represent the names of the start and end p

CG-5.c) LOTOS gates representing UCM interaction points, responsibilities and chan-
nels that are not observable by the environment are made internal through the
hide operator.

Although the UCM notation does not specify explicitly what is observable and what is no

can establish conventions or provide supplemental information to make this distinction. On

convention can be inferred from the style guidelines G4 and G7 presented in Section 4.2.2:

start/end points, responsibilities, and waiting places are internal, and so are the channels

communicating entities. Start/end points, responsibilities, and waiting places allocated to acto

ponents (such as Caller and the Callee) are observable. For example, req, sig, and ring belong to actor

components and are therefore observable, i.e. they are part of the specification’s gate list, whevrfy,

upd, prbs, and pbs are hidden locally inside the Switch process (Figure 22). Channels Chan1 and Chan2

are hidden at the structure level (this still allows the processes to use them for communication
144 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Construction Guidelines

ociated

tch of

side the

les of

g other

uming

 sit-

de

lsewhere

re 29(b)

tained in
CG-5.d) Containment of components is maintained.

If a component, implemented by a process, contains sub-components, then their ass

processes are instantiated (and possibly defined) within the former process. If the Swi

Figure 22(a) had sub-components, then their respective processes would be instantiated in

Switch process. They could also be defined locally inside the Switch process with the LOTOS where

clause. This would improve separation of concerns and modularity. However, the scoping ru

LOTOS would also lead to the non-availability of the sub-processes in processes representin

components.

Containment can be specified indirectly through stubs and plug-ins. For instance, ass

that the Switch contains a stub S with a plug-in P that contains a component Database (Figure 29(a)),

then the corresponding Switch process would instantiate process S, which in turn would instantiate P,

which in turn would instantiate the Database process, hence satisfying containment. However, the

uation is slightly different for plug-ins that contain anchored components, which are declared outsi

the component that contains the parent stub. Anchored components are already contained e

and would possibly require the use of some communication mechanism to be accessed. Figu

shows an example where Database is contained in OtherComponent, which communicates with Switch.

In all cases, the component structure needs to be consistent, i.e. a component cannot be con

two disjoint parent components. This needs to be checked at the UCM level.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 145

CHAPTER 5 From Use Case Maps to LOTOS in SPEC-VALUE

R/

onent

ve trace-

idelines

 a not

e com-

erleave

r (e.g.
FIGURE 29. Containment and Plug-Ins

Construction Guideline 6: Integrating Multiple Unrelated Path Segments in a Component

Path segments are unrelated when they are not combined explicitly through UCM operators (O

AND fork/join, or (a)synchronous path interactions). When combining such segments in a comp

process, several decisions need to be taken and they must be documented in order to impro

ability and test case selection. The generic case is presented in Guideline CG-6, whereas Gu

6.a to 6.d illustrate specific treatments of four families of situations. Note that these situations

mutually exclusive and hence several may have to be considered simultaneously.

CG-6) If multiple unrelated path segments (possibly from different UCM scenarios,
maps or roles) cross one component, then they are integrated together in the
corresponding LOTOS process.

This guideline addresses multiple situations where unrelated path segments need to b

posed to form the behaviour of a component process. In general, the integration with the int

operator (|||) is the most permissive option, but it might however lead to undesirable behaviou

S

Process Switch[...]
 ... S[...] >>...
...
Process S[...]
 ... P[...] >>...
...
Process P[...]
 ... Database[...] ...
Process Database[...]
(* Database contained in Switch *)

Switch
Database

Plug-in P

S

Switch[...] |[...]| OtherComponent[...]
Process Switch[...]
 ... S[...] >>...
...
Process S[...]
 ... P[...] >>...
...
Process P[...]
 (* Communication with Database *)
Process OtherComponent[...]
 ... Database[...] ...
Process Database[...]
 (* Database contained in OtherComponent *)

Switch
Database

Plug-in P

(a) Database in Switch (b) Database in OtherComponent, outside Switch
146 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Construction Guidelines

nts (e.g.

e most

e) or to

of inte-

ne par-

ations

. In all

hould be

riginate

ing the
global sequences that should be refused) or to issues with respect to non-functional requireme

resource consumption, or security) which could be addressed in the high-level design. Th

restrictive option would be a sequential integration through the action prefix operator (;). Again,

problems could result due to undesirable behaviour (e.g. unexpected deadlock at validation tim

issues with non-functional requirements (e.g. performance). Often, the most appropriate level

gration lies in between, using choices ([]), generalized synchronizations (|[...]|), or a combina-

tion of all the operators seen so far.

Each of the synthetic construction approaches surveyed in Section 3.3.4 commits to o

ticular integration solution. The analytic approach used in SPEC-VALU E offers more flexibility for

dealing with various situations, at the cost of a manual integration. Four main families of situ

are identified in Figure 30, where multiple unrelated path segments cross the Database component:

• Unrelated path segments in one map, with component information: Figure 30(a)

• Unrelated path segments in one map, with contextual path information: Figure 30(b)

• Unrelated path segments from different maps: Figure 30(c)

• Unrelated path segments from different roles: Figure 30(d)

Each of these situations serves as a basis for a more specific construction guideline

cases, appropriate documentation, including comments added to the component behaviour, s

provided in order to trace the behaviour constituents to the path segments from which they o

as well as the rationale behind that specific integration. This information can be used later dur

selection of validation test cases.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 147

CHAPTER 5 From Use Case Maps to LOTOS in SPEC-VALUE

n have

UCM

mutual

 concur-

es), the

 More-

possible
FIGURE 30. Situations with Unrelated Path Segments

CG-6.a) The nature of the component can constrain the potential types of integration.

In real-time systems, components that are passive or that enforce mutual exclusion ofte

specific limitations, such as not allowing internal concurrency. This can be reflected in a

description (see Appendix A: Figures A8 and A9). Components may be protected (enforcing

exclusion), declared as passive objects, or declared as stacks to possibly limit the number of

rent instances or threads.

For example, because they are bound to a protected component (shown with double lin

two unrelated path segments from Figure 30(a) should not be allowed to evolve concurrently.

over, multiple concurrent instances of these path segments should be disallowed as well. One

solution could be to use the choice operator ([]) to integrate these two segments. The Database com-

ponent could be reinstantiated upon the termination of any segment, but not before.

S

Database

Plug-in P1

Database

Plug-in P2

Database Database Database

Database:Role1 Database:Role2

(a) In one map, with component information (b) In one map, with contextual path information

(c) From different maps (d) From different roles

or
148 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Construction Guidelines

etc.)

ctive of

opriate

tate the

nce one

e

after an

sts

terleave

suffi-

tion is

terrelate
CG-6.b) Contextual path information can help to determine an appropriate integra-
tion, but it should not be seen as a guarantee.

Contextual path information includes UCM constructs used before (AND-fork, OR-fork,

or after (OR-join, AND-join, sequence, etc.) path segments that are unrelated from the perspe

one particular component. That information can guide the designer in the choice of an appr

integration. However, in many cases, other concerns or non-functional requirements may dic

use of a different option.

Figure 30(b) shows two examples where the two path segments crossing the Database are

related outside the boundaries of that component. The first example uses an OR-fork, and he

might conclude that integrating the segments sequentially (;) is not judicious, and that an alternativ

([]) is the best option. In the second example, the bottom path segment follows the top one

arbitrarily long causal sequence of intermediate responsibilities somewhere outside the Database. One

could conclude that a sequential integration (;) is sufficient in this case.

However, in both examples, if the Database is intended to handle multiple concurrent reque

(performance requirement), then the path segments should probably be integrated using the in

operator (|||). This shows that although contextual information can be of some help, it is not

cient for deciding the best integration.

CG-6.c) The integration of unrelated path segments from different maps can be influ-
enced by the global context, including selection policies.

Different maps may include path segments crossing one same component. This situa

illustrated in Figure 30(c), where two plug-ins include a reference to the same Database. The path seg-

ments inside both anchored components need to be integrated. The way these two maps in

may have an impact on the appropriateness of the integration.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 149

CHAPTER 5 From Use Case Maps to LOTOS in SPEC-VALUE

. For

ible to

n

nrelated

.

lly will

rained.

d simul-

utually

 means

se

 to the

. anno-

 order

us on

7.a and

e satis-
Relevant contextual information in this example includes the stub selection policy

instance, if both plug-ins are intended to evolve concurrently in the stub, then it might be sens

allow these two segments to evolve concurrently (|||). If the plug-ins are mutually exclusive, the

the segments could potentially be integrated using the choice operator ([]), and so on.

CG-6.d) The integration of unrelated path segments from different roles need be con-
sidered.

Roles represent yet another dimension that needs to be considered when integrating u

path segments. Figure 30(d) shows an example where the Database can assume various roles

Whether the component can assume many roles simultaneously, exclusively, or sequentia

again have an impact on the potentially appropriate integrations (e.g. ||| vs. [] vs ;). The decision is

not necessarily done at the level of the whole component; the integration could be more fine g

For instance, two roles may be mutually exclusive for one scenario, and they could be assume

taneously for another scenario. Another interesting situation is when roles A and B are m

exclusive whereas roles A and C can be assumed simultaneously.

Construction Guideline 7: Refining Inter-Component Causality

Causality between responsibilities or events located in different components is represented by

of messages, i.e. events resulting from the synchronization of two LOTOS processes representing the

components. This guideline is at the core of the problem of MSC generation from UCMs. Due

complexity of the said problem, these guidelines do not discuss the additional information (e.g

tations to the responsibilities and inter-component path segments) that UCMs would require in

to automatically derive message patterns from inter-component causality. They rather foc

generic constraints that should be satisfied by any message-based refinement.

Guideline CG-7 captures the essence of the general case, whereas Guideline CG-

Guideline CG-7.b focus respectively on shared responsibilities and direction of messages. Th

faction of channel constraints are further illustrated in Guideline CG-7.c.
150 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Construction Guidelines

tion of

ed by

e sec-

s on the

n, then

ee-way

he pro-

5.b. In

ment

ctions

s

aths,

ltiple
CG-7) Causal paths that span two components may be refined through exchanges of
messages.

This guideline implies many design decisions that need to be taken during the construc

the LOTOS prototype. To ensure the causality between the responsibilities and events perform

two different components, message-like interactions are essentially required.

The simplest solution is for the first process to send a single notification message to th

ond process. The nature of this message and of its value experiments (parameters) depend

information available to the designers. For instance, if the protocol to be used is already know

the message can be concrete, otherwise it will be abstract or synthetic.

More complex exchanges of messages could be used if the protocol requires it (e.g. thr

handshake, remote procedure call, etc.). The specification could abstract from the details of t

cessing implied by such complex protocols while retaining the message patterns.

Sent messages are represented as gate experiments, similarly to Guideline CG-

Figure 22(c), the Caller sends a request message to the Switch (Chan1 !request !calleeNum) in

order to refine the <req, vrfy> inter-component causal sequence. It also receives an announce

(Chan1 ?ann:Announcement) that refines the <pbs, sig> and <pbrs, sig> causal sequences.

Symmetry is enforced in synchronized actions. For instance, in Figure 22(c), all the a

involving Chan1 in the Switch process must be reflected in the Caller process, with value experiment

on which both parties can agree.

CG-7.a) Shared responsibilities are refined through negotiations (exchanges of mes-
sages).

Shared responsibilities (Figure A7(d) in Appendix A:) act like inter-component causal p

but they explicitly imply the existence of a complex communication mechanism (e.g. mu
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 151

CHAPTER 5 From Use Case Maps to LOTOS in SPEC-VALUE

 beyond

panies

quires

Some

ing the

ge sent

on of

ded to the

ultiple

then the

 compo-

 act as
exchanges of messages satisfying some constraints, protocols, or negotiation rules) that goes

simple notification messages. This mechanism may be part of the documentation that accom

the UCM.

CG-7.b) Direction of messages is made explicit when necessary.

LOTOS synchronization is directionless, hence interpreting events as being directional re

contextual or additional information. This is essential for the generation of MSCs from UCMs.

gates may be interpreted as linking only two components in a specific direction, hence solv

issue. Ambiguity in the direction of a message may also be solved by analyzing the messa

through a bidirectional gate. For instance, the request message sent via Chan1 in Figure 22(c)

could imply that the sender is the Caller and the receiver is the Switch.

However, as the specification gets more complex, a more explicit definition of the directi

a message becomes unavoidable. The source and the destination of a message are then ad

message itself as new experiments. This solution also helps coping with issues related to m

instances of components. For example, if many callers and switches are involved in a system,

different types of message could be:

Channel ?source:CallerId ?dest:SwitchId ?msg:Message

and

Channel ?source:SwitchId ?dest:CallerId ?msg:Message

The assumption here is that channel names are unique, and that we know the types of

nents they are linking.

CG-7.c) Communication constraints imposed by pre-determined channels need to be
satisfied.

Component architectures may contain pre-determined communication channels that

constraints on the valid message exchanges. Such constraints have three implications:
152 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Construction Guidelines

annel

e.g. A

d to the

e

ath goes

en

m of an

 the

een in
• Inter-component causality between components A and B that are not linked by a ch

will require the participation of intermediate components (e.g. C, or C and D).

• The communication will be establish between the entities connected by channels (

with C, and C with B).

• The forwarding of messages in these intermediate components need to be integrate

rest of their behaviour (in a way similar to Guideline CG-6).

Figure 31 illustrates such a situation. The Caller and the Callee are not allowed to exchang

messages directly because they are not connected by a communication channel. Even if the p

directly from the Caller to the Callee, the Switch needs to be involved in any communication betwe

these two entities. One potential message exchange that is valid is shown on the right in the for

MSC. The messages m1 and m2 may be supplemented by information related to the sender,

receiver, and other relevant parameters.

FIGURE 31. Channel Constraints and Valid Message Exchanges

In this particular example, the behaviour of Caller needs to include the sending of m1 over

Chan1, and that of Callee should accept m2 from Chan2. The Switch is required to receive m1 from

Chan1 and then to send m2 over Chan2, even if no path segment crosses that component.

Again, this guideline is not self-contained and it can be coupled to the other guidelines s

this section (e.g. to handle more complex protocols or direction of messages).

Chan1 Chan2

CalleeCaller

Switch

send receive
pack unpack

Caller Switch Callee
send

pack

m1(...)
m2(...)

unpack

receive
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 153

CHAPTER 5 From Use Case Maps to LOTOS in SPEC-VALUE

ined in

 repre-

tinguish

ic

 extend

s with

orma-

 of

e speci-

R-fork.
5.2.4 Construction Guidelines for Data

Construction Guideline 8: Representing Data

Although seldom defined explicitly in UCMs, data types and related operations need to be def

LOTOS.

CG-8) Abstract data types are used to describe identifiers, operations, conditions,
and databases.

UCMs often assume the existence of a data model that needs formalization in order to

sent the following elements:

• Identifiers : enumerated types (explicit or based on the natural number data type) are used

to describe simple message names, to specify the direction of messages, and to dis

between multiple instances of a component. The LOTOS standard already provides bas

types (booleans, natural numbers, sets, etc.) and mechanisms to manipulate and

them.

• Operations: operations with parameters can be used to specify tuples (e.g. message

parameters, user profiles, etc.) and rewrite rules to manipulate them or to extract inf

tion from them.

• Conditions: conditions, used in LOTOS in guards and selection predicates, make use

comparison operators (based on the boolean data type) which evaluate to true or false.

• Databases: passive objects and pools are often represented as databases, which ar

fied using tuples, sets of tuples, sets of sets of tuples, and so on. LOTOS offers a set data

type with many predefined, extensible and modifiable operations.

In the example of Figure 22, messages are identified by values on gates Chan1 and sig, and the

Switch process would require the use of conditions to select the appropriate branch of the O

The required abstract data types would be defined before the behaviour clause.
154 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Construction Guidelines

s

an ana-

 par-

way to

he

lines

ototype

ns

 of the

eline,

rove

ns out-
5.2.5 Towards Partial Automation
Automatically generating a complete LOTOS model from UCMs is a very difficult task, as wa

explained in the discussion on synthetic construction approaches (Section 3.3.4). This is why

lytic approach is used in SPEC-VALU E. However, even an analytic approach does not prevent the

tial automation of some of the guidelines explored here. Such partial automation would be a

improve the maturity of SPEC-VALU E to the third level (Defined, or Transitional-Assisted) on t

Formal Specifications Maturity model scale (Section 9.1.3)

Table 14 provides an overview of the potential for automation of the eight major guide

defined in this chapter. This brief evaluation is based on the experience of the author with a pr

compiler (unbound UCMs to LOTOS [13]) and with the manual generation of various specificatio

from UCMs, accompanied by numerous discussions on this topic. Given the current status

UCM notation and supporting tools, a degree of automation difficulty is provided for each guid

from simple (1) to difficult (5). Additional information elements that would be required to imp

the situation are enumerated, but the format in which this information could be provided remai

side the scope of this thesis.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 155

CHAPTER 5 From Use Case Maps to LOTOS in SPEC-VALUE

red.
le to

s.
re-

d.

es is

ired.
ed.

ed by
TABLE 14. On the Partial Automation of Construction Guidelines

Construction
Guideline

Automatable?

P
at

hs

1. Interaction
points and
responsibilities

• Degree of difficulty: 2 (all guidelines).
• More precise information on the visibility (what is observable) and on interfaces is requi
• Pre/post conditions and value identifiers need to be expressed in a way that is mappab

LOTOS abstract data types and expressions.

2. Causal paths

• Degree of difficulty: 2 (all guidelines).
• The level of recursion and of concurrency of scenario paths needs to be described.
• Loop detection can be a problem, but an explicit UCM loop construct would alleviate it

(such a construct is now being supported by the UCM Navigator tool).

3. Stubs and
plug-ins

• Degree of difficulty: 3 (all guidelines).
• Skeletons can be generated for stub and plug-in processes, instantiations and binding
• Selection policies however need to be described in a precise language from which cor

sponding LOTOS behaviour expressions can be generated.

4. Other path
elements

• Degree of difficulty: 2 (Guidelines 4.a, 4.b, and 4.c).
• More precise information on the visibility of timeout, abort, and failure events is require
• Degree of difficulty: 4 (Guideline 4.d).
• The handling of dynamic responsibilities, slots, and pools is quite remote from LOTOS oper-

ators. Precise information on the exact nature and impact of the dynamic responsibiliti
required.

S
tr

uc
tu

re

5. Structure

• Degree of difficulty: 3 (all guidelines).
• More precise information on channels (interfaces) is required.
• Consistent containment relationship needs to be ensured.
• Arbitrary structures are sometimes impossible to capture directly with the LOTOS binary

synchronization operator, and additional transformations are then required.

6. Unrelated
path segments

• Degree of difficulty: 5 (all guidelines).
• Precise definitions of role attributes, map compositions and role compositions are requ
• Consistency with contextual path information and selection policies needs to be enforc
• The integration can be influenced by requirements outside the scope of UCMs.

7. Inter-compo-
nent causality

• Degree of difficulty: 4 (all guidelines).
• Precise definitions of channels, protocols and negotiation patterns (with their message

names), and of their parameters are required.
• Data flows need to be defined (possibly attached to UCM paths).
• Routing information is required when causality can be refined through several routes.

D
at

a

8. Data

• Degree of difficulty: 4 (all guidelines).
• A precise data model, compatible with LOTOS abstract data types, is required.
• Most definitions for databases, pools, and message encoding would need to be provid

designers and requirements engineers.
156 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Applying the Construction Guidelines to TTS

ents to

ntifiers,

onent is

y. These

 need for

ing

 construc-

ion than

issing

 pre-

d:

e

 CG-

se,

process

ompo-
5.3 Applying the Construction Guidelines to TTS
The construction process used here starts by analyzing the TTS UCM model and its compon

determine an appropriate specification structure. Then, data structures and operations for ide

messages, and databases are defined using ADTs. Finally, the behaviour of each comp

described in a process. Sub-processes for stubs and plug-ins may be needed along the wa

three steps are usually interleaved as the description of component processes may unveil the

new or different ADTs.

While constructing the prototype, the LOTOS designer makes choices concerning the mapp

of components, stubs, plug-ins, causal paths, path elements, messages, etc., according to the

tion guidelines. Traceability links between the UCM model and the LOTOS model are established

when these design decisions are taken. Since UCMs are used at a higher level of abstract

LOTOS, this analysis gives an opportunity to inspect the UCM documentation and to detect m

parts, contradictions, or other such problems.

The complete specification of TTS can be found in Appendix B. Several parts will be

sented or referenced in the following sections.

5.3.1 Structure of the TTS Specification
The integrated TTS UCM (Figure 20) shows that there are three types of components requireUser,

Agent, and OCSlist. Different instances of User and Agent, for originating and terminating roles, ar

also involved.

According to Guideline CG-5, process definitions are needed for User and Agent. Two process

definitions are sufficient because originating and terminating roles will be merged (Guideline

5.a). Since the OCSlist passive object is included in Agent and since it essentially represents a databa

the OCSlist will be specified as a process parameter (an ADT) rather than as an independent

(Guideline CG-8). Guideline CG-5.d does not apply because there is no longer any embedded c

nent.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 157

CHAPTER 5 From Use Case Maps to LOTOS in SPEC-VALUE

eline

ts and

med to

).

icating

 agent,

agents is

 other

named

e to

n of

 will be

e

es for

an hav-

over-

g pro-
User and Agent do not have a predetermined interface to the external world, hence Guid

CG-5.b is not used. The visible actions will include the start points and end points, namely req, ring,

sig, and disp. Gates are defined for these points (Guideline CG-1), whereas the other start poin

end points will be used internally for the binding of plug-ins to stubs. Responsibilities are assu

be internal in this model, so they will not be part of component interfaces (i.e. gate parameters

Guideline CG-5 suggests the creation of communication channels between commun

entities in the absence of explicit ones. A specific user will always communicate with the same

so using the users interface gates as channels is appropriate (in this system, the modelling of

more important than the modelling of users). However, an agent may communicate with any

agent. A new communication channel is hence required. The corresponding gate,

agent2agent , will be hidden (Guideline CG-5.c). In order to allow any agent to communicat

any other agent, a communication medium (the process Medium) is added.

To make the prototype more flexible, the specification will allow the dynamic instantiatio

user-agent pairs. These instances will possess their own identifiers and internal data, which

initialized at the beginning through an additional gate: init . As a result, each test scenario will b

able to provide an initial configuration composed of users and agents, with appropriate valu

their parameters (e.g. subscribed features). This leads to a less rigid approach to validation th

ing a fixed configuration, which often results in the creation of multiple specifications for the c

age of many variations and cases.

According to the decisions taken so far, the structure can be expressed by the followin

cess definitions and compositions (lines 414 to 448 in Appendix B):
158 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Applying the Construction Guidelines to TTS

rsive

er only

le, the

B).

mpo-

 in the

equiva-

wn in
414 behaviour
415
416 (* Gates not visible to the users are set to be internal. *)
417 hide
418 agent2agent (* Inter-agent communication channel *)
419 in
420 (
421 (* We create as many user/agent pairs as necessary. *)
422 UserAgentFactory [req, ring, sig, disp, init, agent2agent]
423 |[agent2agent]|
424 (* Agents communicate through some medium. *)
425 Medium[agent2agent]
426)
427
428 where
429
430 (**)
431 (* Process UserAgentFactory: To create and initialize users and agents. *)
432 (**)
433
434 process UserAgentFactory [req, ring, sig, disp, init, agent2agent]: noexit :=
435 init ?userId:User ?userFeatures:FList ?OCSlist:UserList ?state:UserState;
436 (
437 (* Create the user and its associated agent *)
438 (
439 User [req, ring, sig, disp] (userId)
440 |[req, ring, sig, disp]|
441 Agent [req, ring, sig, disp, agent2agent]
442 (info(userId, userFeatures, OCSlist), state)
443)
444 |||
445 (* Prepare to accept new creation requests *)
446 UserAgentFactory [req, ring, sig, disp, init, agent2agent]
447)
448 endproc (* UserAgentFactory *)

The UserAgentFactory process enables the instantiation of user-agent pairs in a recu

way. Each user can communicate with its agent, but agents can communicate with each oth

through the medium. The nature of the medium can be of many kinds. In the TTS examp

medium is specified as a bidirectional FIFO channel of length 2 (lines 451 to 473 in Appendix

The process composition is illustrated in Figure 32(a). Note that some groupings of co

nents in the specification structure differ from those of the abstract component structure found

integrated UCM. This is because LOTOS processes are composed using binary operators. However,

the resulting groupings and possible ways of establishing communications are semantically

lent (Guideline CG-5). The logical view of how the components communicate is best sho

Figure 32(b).
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 159

CHAPTER 5 From Use Case Maps to LOTOS in SPEC-VALUE

rs, lists

values.

tions, as

 and

s, ele-

res and

.

,

 the
FIGURE 32. Structure of the LOTOS Specification

5.3.2 TTS Data Types and Operations
The above component structure required different parameters for the processes: user identifie

of features, OCS screening lists, states, etc. Responsibilities are also likely to modify these

Appropriate abstract data types are needed to support these data structures and their opera

suggested by Guideline CG-8.

The LOTOS standard provides a library of common ADTs, some of which were included

adapted in the specification of TTS (lines 19 to 169 in Appendix B). Booleans, natural number

ments, and sets are at the basis of all other ADTs defined for the support of TTS data structu

operations. This is achieved through mechanisms like inheritance, renaming, and actualization

The ADTs specific to TTS (lines 170 to 361 in Appendix B) include:

• Identifiers : State (busy or idle), Announcement (callDenied, busySig, ringBack, etc.)

User (userA, userB, userC), and Feature (BC, CND, OCS). The type Direction (line

352) is also utilized to identify the direction of a message sent to or received from

medium (Guideline CG-7.b). Note how this type uses the renaming capabilities of LOTOS

to simplify its definition.

UserAgentFactory

User

Agent

req, ring,
sig, disp

Mediumagent2agent

UserA

AgentA

req, ring,
sig, disp

UserB

AgentB

req, ring,
sig, disp

UserN

AgentN

req, ring,
sig, disp

Medium

agent2agent agent2agent agent2agent

...

(a) Process Composition View (b) Logical View
160 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Applying the Construction Guidelines to TTS

f oper-

ts to

ators

d

ix B).

s,

ming

 roles

rated as

defini-

 CG-

r

• Operations: Most types include operations for comparing values such as eq (is equal to)

and ne (is not equal to). For enumerated types with many elements (e.g. Feature), the

operation map is used to map elements to natural numbers. This enables the reuse o

ations defined for natural numbers as well as additional flexibility in adding elemen

the type or removing elements from the type. The ADT UInfo (line 317) uses operations

to represent records and to extract information for these records.

• Conditions: Throughout the specification, conditions make use of comparison oper

in guards (e.g. lines 519 and 528) and selection predicates (e.g. line 539).

• Databases: the OCSlist passive object is represented as a set of users (type UserList , line

251), to which additional operations were added (type OCScheck, line 260). Another

database is used by each agent to maintain the list of subscribed features (type Flist , line

308). Many operations on databases are automatically inherited from the standarSet

ADT.

ADTs are also defined for stub entry points and exit points (lines 362 to 407 in Append

Identifiers (type StubPath) and databases (type SPList) are used in the binding of plug-ins to stub

as suggested by Guideline CG-3.c.

5.3.3 TTS Process Definitions
In this section, the construction guidelines are used to build process definitions for the User and Agent

components.

Process User

The process User is relatively simple as it considers only four short segments (Figure 33(a)) co

from the originating and terminating roles found in the root map and in the CND plug-in. Both

are merged according to Guideline CG-5.a, and their respective path segments are integ

explained in Guideline CG-6 and Guideline CG-6.d. Figure 33(b) shows the resulting process

tion: the req and sig points are integrated sequentially (as implied by the context, see Guideline

6.b) whereas the ring and disp segments are integrated as alternatives. The userId process paramete
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 161

CHAPTER 5 From Use Case Maps to LOTOS in SPEC-VALUE

th roles

ts.

onent

of as a

.c).

rocess

.a).

efined

b).

er has
enables the instantiation of multiple users that are unique and that can realistically assume bo

at the same time. The process reinstantiates itself recursively in order to handle the next even

FIGURE 33. Construction of Process User

Process Agent

The process Agent is more complex as it considers more path segments as well as inter-comp

causality relationships. This process can be found between lines 496 and 646 in Appendix B.Agent

includes the OCSlist, as suggested by Guideline CG-5.d, but as a process parameter instead

sub-process. The six responsibilities bound to the Agent component (chk , pds , vrfy , pbs , prbs and

upd) are represented as LOTOS gates (Guideline CG-1) and are locally hidden (Guideline CG-5

They come from both the originating and terminating roles, which are again integrated in one p

definition (Guideline CG-5.a). Several responsibilities, such as prbs , pbs , and pds , affect the value

of the sgnial returned to the originator, while upd updates the terminator’s status (Guideline CG-1

One interesting difference between the User component and the Agent component is that

agents contain stubs, which in turns contain plug-ins. According to Guideline CG-3, stubs are d

locally as sub-processes. This is effectively the case for processes SO and ST (lines 582 to 644). Rep-

resenting a dynamic stub, the stub process SO also specifies the selection policy (Guideline CG-3.

Conditions (guards) are used to provide priority to OCS over the default behaviour; if the us

User

req

sig

ring

disp

{
}

Te
rm

in
a

tin
g

O
rig

in
at

in
g

(a) Path Segments of User

480 process User [req, ring, sig, disp] (userId: User): noexit :=
481 (* Initiate a call request and get an announcement/signal *)
482 req !userId ?callee:User;
483 sig !userId ?msg:Announcement;
484 User [req, ring, sig, disp] (userId)
485 []
486 (* Receive a ring *)
487 ring !userId;
488 User [req, ring, sig, disp] (userId)
489 []
490 (* Observe a displayed phone number *)
491 disp !userId ?caller:User;
492 User [req, ring, sig, disp] (userId)
493 endproc (* User *)

(b) Process User
162 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Applying the Construction Guidelines to TTS

process

erefore

-

ents are

, except

eously.
subscribed to OCS, then the OCS plug-in process is instantiated, otherwise the default plug-in

is instantiated.

Guideline CG-3 also mentions that plug-ins are mapped to independent processes, th

process definitions are provided for Default , Terminating , OCS, and CND (lines 648 to776). Note

that the Terminating plug-in also contains a stub (SD) specified as a sub-process in Terminating . The

resulting process calling tree for the agent component is illustrated in Figure 34. The Default plug-

in process can be instantiated by two stub processes, namely SO and SD, so the consistency and reus

ability found at the UCM level are reflected in the LOTOS prototype.

FIGURE 34. Process Calling Tree for the Agent Component

Having processes for the plug-ins simplifies the integration of path segments in the Agent

process. The latter only has to cover the path segments found in the root map. These segm

integrated according to Guideline CG-6.c. Alternatives are used to integrate most segments

for the two segments coming out of stub ST found in the terminating role: its plug-in (Terminating)

contains an AND-fork which can lead to a behaviour where both segments are active simultan

Therefore, the interleave operator (|||) is used to integrate these two segments (line 563).

Agent

Terminating

OCS CNDDefault

SO ST

Component
process

Stub process

Plug-in process

LEGEND

SD
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 163

CHAPTER 5 From Use Case Maps to LOTOS in SPEC-VALUE

 are

s are

und in

line CG-

,

. This

in bind-

 by the

uide-
The process Terminating (Figure 35) represents a good illustration of how causal paths

represented inside a component. The OR-fork found in the Terminating plug-in (Figure 20) is mapped

to the LOTOS choice operator (line 694), as prescribed by Guideline CG-2.a. Both alternative

guarded by conditions representing those found on the UCM path segments. The AND-fork fo

the same plug-in is represented by the interleave operator (line 689), as suggested by Guide

2.b. The OR-join in the Terminating plug-in is captured by the exit operator (lines 686 and 698)

which outputs out4 as the end point to be connected to an outgoing segment in the calling stub

case of duplicated behaviour concords with what was explained in Guideline CG-2.c.

FIGURE 35. Extract from the Terminating Plug-in Process

Binding Plug-ins to Stubs

Each stub process is responsible for calling plug-ins with parameters such that the stub/plug-

ing relationship is preserved. This is achieved with the help of input/output segments specified

StubPath and SPList abstract data types. Figure 36 illustrates this idea, corresponding to G

line CG-3.c, by showing how the stub process SO uses the plug-in process OCS.

677 [state eq idle] ->
678 (
679 (
680 SD[disp](Insert(in3, EmptySPList), ui, state, userO)
681 >>
682 accept ui:UInfo, state:UserState, userO:User, piep:SPList
683 in
684 [out5 IsIn piep] ->
685 upd; (* Updates the busy status *)
686 exit (ui, busy, any Announcement, userO,
687 Insert(out3, Insert(out4, EmptySPList)))
688)
689 |||
690 prbs; (* Prepares the ringBack signal *)
691 exit (ui, any UserState, ringBack, userO,
692 Insert(out3, Insert(out4, EmptySPList)))
693)
694 []
695 [state eq busy] ->
696 (
697 pbs; (* Prepares the busy signal *)
698 exit (ui, state, busySig, userO, Insert(out4, EmptySPList))
699)

Guideline CG-2.a →

Guideline CG-2.b →

Guideline CG-2.c →

Guideline CG-2.c →
164 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Applying the Construction Guidelines to TTS

ig-

ameters

.

to their

e bind-

list of

y.

unicate

de-

essages.

inating
The first parameter of OCS is in1 (line 595), which corresponds to the plug-in start point tr

gered by the stub incoming segment of the same name (Guideline CG-3.a). The remaining par

are internal values of the Agent process, which can be used and modified by the plug-in processOCS

exits with another list of parameters whose last element, piep (stands for plug-in end points, line

599), is the list of end points reached by the plug-in. The elements of this list are then bound

respective stub output segment (lines 602 to 606), hence completing the implementation of th

ing relationship.

FIGURE 36. Binding of a Plug-in to a Stub in Process SO

For plug-ins that contain multiple start points that can be activated simultaneously, a

start point names (type SPList) should be used instead of a single start point name (type Stub-

Path).

Inter-Component Causality

The last topic to be addressed for the construction of the Agent process is inter-component causalit

Because there are paths crossing the originating and terminating roles, agents need to comm

with each other in order to support this causality.

The path that goes from the Agent:O to Agent:T in Figure 20 is used here as an example. Gui

line CG-7 states that inter-component causality needs to be refined through exchanges of m

The path of interest can be refined as a message sent from the originating agent to the term

594 (* First in1 parameter is the plug-in start point *)
595 OCS[chk, pds](in1, ui, state, userT)
596 >>
597 (* Connect the resulting end points to the stub exit paths *)
598 accept ui:UInfo, state:UserState, msg:Announcement, userT:User,
599 piep:SPList
600 (* piep is the resulting list of plug-in end points *)
601 in
602 [out1 IsIn piep] ->
603 exit (ui, state, msg, userT, Insert(out1, EmptySPList))
604 []
605 [out2 IsIn piep] ->
606 exit (ui, state, msg, userT, Insert(out2, EmptySPList))
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 165

CHAPTER 5 From Use Case Maps to LOTOS in SPEC-VALUE

e-

r is not

ction of

 appro-

nchro-

ort both

agents,

-compo-

g of

ns why

s sys-
agent. This message essentially forwards the call request, hence it will be named request . An agent

communicates with the medium through gate agent2agent . One possible message is:

522 agent2agent !toMedium !uid(ui) !userT !request;

The direction of the message (toMedium) is made explicit through gate splitting, as pr

scribed by Guideline CG-7.b. The source (uid(ui)) and destination (userT) are also included as

identifiers of sort User .

The terminating agent receives a request in the same way. Note that the originating use

known in advance, therefore a question mark is used to get its identifier. Note also that the dire

the message has been changed to the opposite direction, i.e. fromMedium .

546 agent2agent !fromMedium ?userO:User !uid(ui) !request;

The medium receives the first message from the originating agent and forwards it to the

priate terminating agent. Guideline CG-7 mentions that symmetry should be enforced in sy

nized actions. Since both agents are synchronized with the medium, the latter needs to supp

types of events, with parameters of the same sorts and in the same order. Indeed, the processMedium

possesses such events (e.g. lines 459 and 461 in Appendix B):

459 agent2agent !toMedium ?from:User ?to:User ?msg:Announcement;
461 agent2agent !fromMedium !from !to !msg;

The behaviour of the medium is also inferred by the forwarding of messages between

as suggested in Guideline CG-7.c. Other types of messages are used to implement the inter

nent relationship from terminating agents to originating agents.

5.4 Chapter Summary
This chapter proposes an analytic approach for the construction of LOTOS specifications from Use

Case Maps. Section 5.1 provides an overview of the approach in the context of the SPEC-VALU E

methodology. It recalls why LOTOS is appropriate as a specification language for the prototypin

telecommunications systems described with UCMs. This section also discussed the reaso

TMDL is unfit as a language for the synthesis of specifications for complex telecommunication
166 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Chapter Summary

al solu-

uide-

ually. A

ch as:

lements

(4), and

cribed

t com-

rous pos-

 would

cisions

L

on the

nts. The

, and

d the
tems. An analytical approach to the construction of specifications appears to be a more practic

tion.

The core of this chapter is found in Section 5.2, where three families of construction g

lines are presented (for paths, structures, and data) and where several are illustrated individ

total of 8 general guidelines and 22 small-grained guidelines cover many important topics su

interaction points and responsibilities (2), causal paths (5), stubs and plug-ins (4), other path e

(4), structure and components (5), unrelated path segments (5), inter-component causality

data (1). The application of these guidelines results in a LOTOS specification that is close to the UCM

model. Using this construction approach, the translation of telecommunication features des

with UCMs is systematic.

As discussed in Section 5.2.5, construction guidelines for UCM structures are the mos

plex to automate because designers and requirements engineers have to choose among nume

sible solutions. Some of these decisions could be embedded in the UCM description, but this

require further formalization of the notation and of annotations. How best to capture these de

in UCM terms is outside the scope of this thesis and is left as a topic for future work.

The guidelines are applied to the Tiny Telephone System example, and the resulting OTOS

specification (found in Appendix B) is discussed in Section 5.3. Particular emphasis is put

structure, on data types and operations, and on the definition of processes for users and age

complexity of the Agent process requires the use of many guidelines related to stubs, plug-ins

inter-component causality.

The next chapter will discuss the validation of this prototype against the UCMs an

requirements, as well as a testing framework based on UCMs and LOTOS.

Contributions

The following items are original contributions of this chapter:
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 167

CHAPTER 5 From Use Case Maps to LOTOS in SPEC-VALUE

con-

ion of
• Partial illustration of Contribution 1 (Section 1.4.1) regarding fast prototyping in SPEC-

VALU E.

• Partial illustration of Contribution 2 (Section 1.4.2) regarding the guidelines for the

struction of LOTOS specifications from UCMs in SPEC-VALU E.

• Illustration of step ➃ in SPEC-VALU E, i.e. from UCMs to LOTOS.

• 8 general construction guidelines and 22 small-grained guidelines for the generat

LOTOS prototypes from UCMs.

• Brief evaluation of the potential for automation of these guidelines.

• Construction of a LOTOS prototype for the Tiny Telephone System.
168 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

CHAPTER 6

UCM-LOTOS Testing Framework

Examining a program to see if it does not do
what it is supposed to do is only half of the
battle. The other half is seeing whether the
program does what it is not supposed to do.

Glenford J. Myers, 1979
Because

re made,

 for val-

n

d on a

lements

ues are

y of this
LOTOS prototypes can be constructed from Use Case Maps, as seen in the previous chapter.

an analytic construction approach represents a major step where important design decisions a

some of which are prone to mistakes, it is essential to verify the target LOTOS model against the

source UCM model. The current chapter addresses this issue by presenting a novel framework

idating requirements and designs described with Use Case Maps and prototyped in LOTOS. The con-

cepts behind this framework are founded on the LOTOS testing theory and on new test selectio

strategies based on UCMs.

The testing approach is first placed in the proper context with respect to the SPEC-VALU E

methodology (Section 6.1). Basic concepts related to the UCM-LOTOS testing framework, including a

new validation relation, are introduced in Section 6.2. Test goal selection techniques base

UCM-oriented testing pattern language are developed in Section 6.3, and Section 6.4 comp

the testing patterns with additional strategies for the generation of test cases. These techniq

applied to the TTS system example, and the results are presented in Section 6.5. A summar

important chapter is found in Section 6.6.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 169

CHAPTER 6 UCM-LOTOS Testing Framework

s. The

ection

ated to

me of

ng, and

tical and

m

es

 traces

d

aved.

cifica-

real-

can be

alence

ing is

ral)

 from

 more
6.1 Testing Approach in S PEC-VALUE

Testing is one technique among many others used for the validation and verification of system

main motivations behind this strategic choice for V&V are recalled in Section 6.1.1, whereas S

6.1.2 presents the context in which testing is used in the SPEC-VALU E methodology. Section 6.1.3

contrasts the concepts of validation testing (used in SPEC-VALU E) and conformance testing.

6.1.1 Justification for a Testing Approach
Many validation and verification concepts and techniques, with a special focus on those rel

LOTOS, were introduced in Section 2.3.7 and Section 3.4. A particular attention was given to so

the most popular ones, namely step-by-step execution, equivalence checking, model checki

testing. When compared to the three other approaches, testing appears to be the most prac

suitable technique for verifying that a LOTOS specification respects the intent of the UCMs fro

which it was constructed:

• With appropriate tool support, checking a LOTOS specification against a test case requir

less effort than covering the same traces with step-by-step execution. Many of these

are caused by the interleaving semantics of LOTOS combined with non-determinism an

internal actions in the specification under test. For one test case, a tool such as LOLA auto-

matically covers all the non-deterministic traces where internal actions are interle

Moreover, a test suite can be checked in batch, a useful feature for verifying the spe

tion each time it is modified. Step-by-step execution is laborious to use for verifying

istic telecommunications systems due to the numerous and lengthy traces to cover.

• Testing requires the presence of only one formal model to test, and test cases

derived or generated systematically from requirements or scenarios, whereas equiv

checking usually requires two formal models to be compared. Equivalence check

hardly useful in SPEC-VALU E (and in the early steps of the design process in gene

because the construction approach aims to produce a first high-level specification

informal requirements and semi-formal scenarios. Hence, testing appears to be

appropriate.
170 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Testing Approach in SPEC-VALUE

tionally

ilar to

ies, for

ario

oach in

 S

is does

niques

ibly by

 at the

ation,

-

tract

 abstract

sing

h

appro-

d modi-
• The requirements addressed in this thesis are expressed and captured mostly opera

as (UCM) scenarios. Test cases are small-grained properties defined at a level sim

the one offered by scenarios, whereas large-grained liveness and safety propert

which model checking is most useful, are often difficult to extract or infer from scen

descriptions (Section 3.4.1). Again, testing appears to be the most appropriate appr

our context.

 Note however that these approaches are not mutually exclusive but complementary.PEC-

VALU E focuses on testing because testing is unavoidable in any design process [51][68], but th

not prevent the use of additional V&V techniques. Provided sufficient resources, the other tech

can be used beyond testing:

• Step-by-step execution can be useful to debug a specification declared faulty, poss

an unexpected verdict resulting from the execution of a test.

• Equivalence checking can be used when refinements or improvements are done

LOTOS level only.

• Model checking can be used to cover additional properties, when they are available.

Despite the potential usefulness of a multi-technique approach to validation and verific

this thesis limits its scope to the testing approach about to be presented in this chapter.

6.1.2 Testing in S PEC-VALUE

SPEC-VALU E’s testing framework is illustrated in Figure 37. In a nutshell, LOTOS test cases are gener

ated manually from UCMs (step ➄). Test selection strategies make use of (unbound) UCMs to ex

abstract sequences, and the presence of an underlying component structure is optional. These

sequences are transformed into LOTOS test processes. The testing itself is performed by compo

the test cases with the LOTOS prototype (step ➅). This operation is performed automatically wit

LOLA, which then outputs the resulting verdict for each test. If a verdict is not satisfactory, then

priate modifications might be brought to the requirements (step ➇), which may result in cascading

modifications to the scenarios, the tests and the prototype. In many cases however, the require
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 171

CHAPTER 6 UCM-LOTOS Testing Framework

quire-

exe-

 satisfy

ncepts

s

 to the

ion 1.2.

rectly.

-

fications will be more localized (e.g. to the prototype or to the tests), without affecting the re

ments. Coverage measurements (step ➆) will be the topic of the next chapter.

FIGURE 37. UCM-Based Testing with SPEC-VALUE

Although the term testing is used most commonly in the sense of implementation testing,

cutable specifications and formal prototypes can also be tested in order to see whether they

requirements. The latter is essentially a validation activity, yet many of the methods and co

used in implementation testing also apply. In SPEC-VALU E, testing the prototype/specification i

really intended to be validation testing. In this context, the methodology helps to validate a LOTOS

prototype against its requirements by verifying (through testing) that this prototype corresponds

UCMs from which it was derived. This is essentially the research hypothesis discussed in Sect

An important assumption here is that UCMs capture the functional requirements cor

Users, requirements engineers and designers can all inspect the UCMs derived from informal require

Structure

Results
(Coverage)

UCMs on
Structure

Test Suite
(LOTOS)

Results
(Functions)

Requirements

Allocation

Testing

Scenarios
(UCM)

Test Cases
Generation

Modify if
necessary

Construction

Prototype
(LOTOS)

Add tests if
necessary

➀

➁

➂

➄

➆

➇
➅

➃

172 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Testing Approach in SPEC-VALUE

nt for

prove-

ires an

 behav-

e dif-

 the test

y as the

roblems

ation of

errors in

any of

 likely to

ification

r level of

 require-

ble to

ns.

ng

Frame-

cifica-

nother

ments),
ments, thus establishing their validity. UCMs are defined at a level of abstraction that is efficie

early inspection of the system design. Inspection is known to be a very cost-effective quality im

ment technique, especially for requirements documents [218]. Unlike inspection, testing requ

executable or formally defined artifact, which is, in SPEC-VALU E, the LOTOS prototype resulting

from the construction step. Testing acts as an essential supplement to inspection for detecting

ioural problems. It also improves the level of confidence in the validity and the consistency of th

ferent models involved.

There is an apparent circularity issue in the testing cycle of Figure 37. If the LOTOS prototype

and test cases are both correctly generated from the same UCMs, then one could think that

suite should not detect any problem. However, we believe this is seldom the case (especiall

complexity of the system increases) and several experimentations in Chapter 8 show that p

can indeed be detected. Constructing a component-based LOTOS specification from UCM involves

several design decisions caused by a more detailed level of description and by the transform

end-to-end scenarios into component behaviour. These decisions may introduce unexpected

the specification. However, when deriving functional test cases from end-to-end scenarios, m

these decisions need not be taken. Hence, functional tests are closer to the UCMs and more

be correct than a component-based specification that integrates all scenarios. Testing the spec

against these functional test cases can therefore lead to the detection of errors and to a highe

confidence when errors are no longer detected. Also, since we assume that UCMs capture the

ments correctly, functional testing based on UCMs becomes a validation technique applica

LOTOS prototypes as well as detailed design models and, possibly in the future, implementatio

6.1.3 Validation Testing and Conformance Testing
The validation testing offered by SPEC-VALU E is different from the conventional conformance testi

introduced in Section 3.4.2 and standardized in the Conformance Testing Methodology and

work (CTMF) [193]. Conformance testing usually requires a model (e.g. a formal protocol spe

tion) from which a black-box test suite is derived and then used to test an implementation or a

model. Test suites are generally abstract (e.g. not necessarily defined in terms of user require
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 173

CHAPTER 6 UCM-LOTOS Testing Framework

 target

 create

ses

 require-

gn cycle,

inte-

avalli

formed

of the

form-

er instan-

that of

test

ches to

n in

hether

s then
they are defined in a specification language with operational semantics (e.g. TTCN), and they

artificial coverage criteria defined in terms of the source model. In SPEC-VALU E, the test suite is

derived from informal requirements and semi-formal scenarios (the UCMs), and the goal is to

and check the first formal model (the LOTOS specification). This test suite, composed of test ca

whose purposes can be related to the requirements, is used to validate the model against the

ments, hence the term validation. Conformance testing can be used at a later stage of the desi

when an implementation is required to be declared conformant to the formal model.

The Formal Methods in Conformance Testing (FMCT) framework [196] was an effort to

grate new techniques based on several formal methods (SDL, Estelle and LOTOS) to the context of

conformance testing. Among many others, concepts and techniques adapted to LOTOS were proposed

by Brinksma [69], Carver and Chen [87], Tretmans [346], and van der Schoot and Ural [323]. C

et al. also included a conformance testing methodology for all specifications that can be trans

into a finite state machine [89]. This particular methodology will be discussed further in one

case studies (Section 8.5).

Although the means and the intent of validation testing are different from those of con

ance testing, many general concepts and techniques are common. To some extent, this chapt

tiates the FMCT framework in the context of UCMs and LOTOS, as suggested by Hogrefe et al. in

their final report [179]. Consequently, most of the terminology used here can be related to

FMCT.

6.2 UCM-LOTOS Testing Concepts
Several concepts for UCM-LOTOS testing need to be introduced before tackling the problem of

selection, which is addressed in Section 6.3. First, Section 6.2.1 presents how different approa

testing are combined in SPEC-VALU E. Then, a general structure for UCM-based test suites is give

Section 6.2.2. Section 6.2.3 defines the validation relation that will be used for determining w

the LOTOS prototype verifies the UCMs and hence validates the requirements. This relation i

compared to the conventional LOTOS conformance relation in Section 6.2.4.
174 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

UCM-LOTOS Testing Concepts

hat has

ram

t-

box), on

ch-

quiva-

Often,

and we

 also be

cification

 under-

entation.

d, obvi-

g time;

ated and

nted in

is flex-
6.2.1 Combination of Approaches
There exists an enormous number of testing techniques for formal methods. A classification t

been proposed by Poston identifies the three following categories [287]:

• Black box: testing based on externally visible behaviour of a specification or prog

[44].

• White box: testing based on the internal structure of a specification or program.

• Grey box: testing based on the design.

The UCM-LOTOS testing framework suggested in SPEC-VALU E uses ideas from all these ca

egories. It focuses mainly on causal sequences at the design level as defined by UCMs (grey-

the generation of functional tests in LOTOS (black-box), on structural coverage measurement te

niques for LOTOS (white-box), and on the use of relevant data values (boundary analysis and e

lence classes, i.e. black-box testing).

SPEC-VALU E makes use of several guidelines and assumptions related to testing.

UCMs are generic enough to provide for implicit equivalence classes of data and behaviour,

intend to take advantage of this characteristic during the selection of test cases. The focus will

on deterministic test cases (as sequences of events) whenever possible, i.e. when the spe

under test is deterministic. Such tests are usually faster to check and their results simpler to

stand. They can also be reused more easily in the stages of the design cycle closer to implem

Finally, recursion will not be given much attention, except for critical system functionalities.

6.2.2 Structure of UCM-Based Validation Test Suites
Test cases have to reflect the UCMs in order for them to be traceable to the requirements an

ously, to the UCMs themselves. This is particularly important when faults are detected at testin

traceability to the UCMs and to the requirements helps assessing where the problems are loc

what modifications should be made. The structure of test suites defined in CTMF and prese

Section 3.4.2 can help in the implementation of such a traceability relationship. This structure

ible and can be tailored to the context of SPEC-VALU E.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 175

CHAPTER 6 UCM-LOTOS Testing Framework

 to

set of

ilable).

or

. The

he

o UCM

priate

ally be

nd eas-

 post-

 are usu-

s,

t pur-

g lan-
A UCM-based validation test suite is a collection of test groups, where each group is linked

one UCM (in the case where multiple non-integrated UCMs are available) or to a particular

functionally related root maps and plug-ins (in the case where only the integrated UCM is ava

A test group may contain multiple (LOTOS) test cases, which are composed of the following parts:

• Test purpose: a pair <type, goal> where the test type is either acceptance (must test)

rejection (reject test). As explained at the end of Section 3.4.3, may tests are not really

helpful here because they require too much effort for the interpretation of verdicts

test purpose also contains a goal, which is the specific UCM route that is covered by t

test. This route is usually defined as an abstract sequence of events corresponding t

start points, responsibilities, waiting places, timers and end points.

• Test preamble: test events needed to bring the Specification Under Test (SUT1) in a state

that satisfies the preconditions attached to the UCM route corresponding to the test goal.

• Test body: test events corresponding to the selected goal, instantiated with appro

data values. Reusable test steps, representing fragments of routes, may option

defined and built upon. This can help to define test suites that are more consistent a

ier to extend.

• Test verification (optional): test events used to check that the SUT has reached the

condition attached to the UCM route corresponding to the goal. The verification is not

based on FSM techniques, such as unique input/output sequences, because FSMs

ally not available at requirement time.

The individual test cases that constitute the test suite are LOTOS processes where test event

which belong to preambles, bodies, and verification steps, are transformed into LOTOS events.

Table 15, which supplements the definitions found in Table 12, formalizes the notation for tes

poses. Note that this representation is significantly simpler than a full-fledge standard testin

1. In the thesis, SUT refers to a specification under test, not a system under test (implementation)
176 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

UCM-LOTOS Testing Concepts

at would

pe of

t over-

UCM,

r one for

e for each

ity rela-

bugging

emory

sal
guage such as TTCN. TTCN is not used here because it uses a format and a level of detail th

lead to unnecessarily long and verbose descriptions of test purposes.

TABLE 15. Notation for Test Purposes

A test suite TS can be partitioned into two mutually exclusive subsets according to the ty

test cases, i.e. acceptance and rejection test cases:

Definition 6.1: ACCEPT(TS) = { Tx | Tx ∈ TS ∧ Type(TP(Tx)) = Accept }

REJECT(TS) = { Tx | Tx ∈ TS ∧ Type(TP(Tx)) = Reject }

Definition 6.1 respects the two properties described in Section 3.4.3: the two sets do no

lap (REJECT(TS) ∩ ACCEPT(TS) = ∅) and they are complete (REJECT(TS) ∪ ACCEPT(TS) = TS).

Defining Tests Groups

For each individual UCM or functionally-related set of root maps and plug-ins in an integrated

it is desirable to create at least two test groups: one for acceptance test cases and anothe

rejection test cases. Groups can be described as a collection of sequential test processes, on

test case. This way of representing test groups has the benefit of establishing clear traceabil

tionships between test cases and requirements UCMs. They also simplify diagnostics and de

when unexpected verdicts are encountered, and they require a minimum quantity of m

Notations Definitions

ABSSEQ
Universe of all possible abstract causal sequences (linear LTSs).
ABSSEQ ⊆ SPECS.

TESTTYPE Acceptance or rejection test case. TESTTYPE = {Accept, Reject}

TP(Tx)
Test purpose of test case Tx, composed of a test type and of a goal (abstract cau
sequence). TP(Tx) ⊆ TESTTYPE × ABSSEQ.

Type(TP(Tx)) Projection of TP(Tx): type of test case Tx. Type(TP(Tx)) ∈ TESTTYPE.
Goal(TP(Tx)) Projection of TP(Tx): goal of test case Tx. Goal(TP(Tx)) ∈ ABSSEQ.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 177

CHAPTER 6 UCM-LOTOS Testing Framework

test pro-

est case

er test

ow-

internal

on 8.1.

tion test

ve a com-

any loss
resources from tools. However, to increase testing performances and to reduce the number of

cesses, test cases may be regrouped under one process, as illustrated by Group_of_Tests :

process Group_of_Tests [gatelist, Success] : noexit :=
 i ; TestSequence1... (* First test case *)
 []
 i ; TestSequence2... (* Second test case *)
 []
 ...
 []
 i ; TestSequenceN... (* Nth test case *)
endproc (* Group_of_Tests *)

Internal events usually need to be inserted to ensure the execution of all test cases. A t

that is not even able to perform its first action will not be detected as a failure if one of the oth

cases is successful. The choice ([]) operator hence must be used with caution in test groups. H

ever, if it is certain that the first action of each test case is accepted by the SUT, then these

actions can be removed. Such test groups are used in the GCS experiment discussed in Secti

Another way of regrouping test cases would be to merge related acceptance and rejec

cases. In many occasions, a rejection test case and its corresponding acceptance test case ha

mon prefix. For instance:

• Acceptance test case: a?x:int; b; c!x [x gt 3]; success; stop

• Rejection test case: a?x:int; b; c!x [x le 3]; reject; stop

These two test cases can be merged into the following acceptance test case, without

of testing power:

• New acceptance test case: a?x:int; b; (c!x [x gt 3]; success; stop

[]

c!x [x le 3]; reject; stop)
178 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

UCM-LOTOS Testing Concepts

ach test

anage-

case can

ints and

 if the

ant

 need to

cuted

ng the

initial

ing of

creased

atisfy

in a test

L

ight have

ndard

TCN-3
For complex test cases and complex specifications, the creation of one process for e

case is recommended. The state space resulting from the testing composition will be more m

able by the tools, and the overall test cases traceability and reusability improved.

Towards Implementation Test Suites

For LOTOS prototypes, test postambles are seldom used because the execution of each test

easily start with the initial state of the LOTOS specification (i.e. resetting a LOTOS SUT is not an

issue). Moreover, the selection of data values is eased by the fact that we only have constra

conditions associated to one path to satisfy, starting from a well-known initial state. However,

test suite is meant to be refined as an implementation test suite, then postambles become most relev

because the cost of resetting a real machine after each test might be too high. In this case, we

give much attention to four points:

• Ordering : the order in which test groups and test cases within test groups are exe

becomes relevant. An ordering strategy is needed for reducing the cost of executi

test suite.

• Postambles: they become necessary for bringing the SUT back to an acceptable

state, where the preamble of the next test case can satisfy its precondition. A merg

postambles and preambles can be performed in some cases, but at the cost of an in

coupling between test cases.

• Data values: their selection becomes critical as they have more constraints to s

across many test cases. They need to be carefully chosen and be consistent with

group.

• Target: tests need to be retargetable and readable by test equipment. Currently, OTOS

processes are not used in a standard way to describe test cases, and hence they m

to be translated into a more suitable representation. TTCN-3, the latest ITU-T sta

notation for the specification of abstract test cases, is such a representation [209]. T
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 179

CHAPTER 6 UCM-LOTOS Testing Framework

oice,

testing

 against

tation

s of the

build a

(h)). To

n 3.4.3).

-

provides sufficient support for LOTOS constructs used in most test cases (sequence, ch

interleave, process instantiation, value passing, etc.).

These issues will not be investigated further in the thesis as it focuses on specification

rather than on implementation testing.

6.2.3 Validity Relation
Checking the SUT against the test cases must help to establish the validity of the specification

the UCMs and the requirements. At this point, we assume that the test cases are LOTOS processes

derived from UCMs capturing the requirements faithfully. Several equivalence and implemen

relations for LOTOS have been presented in Section 2.3.6. Among them, the conf relation is the most

common for establishing the conformance of a model with respect to another. One weaknes

conf relation is that it focuses exclusively on acceptance testing, and it is always possible to

trivial model that conforms to another (e.g. a process that accepts everything, as in Figure 13

solve this weakness, rejection testing can be used in addition to acceptance testing (Sectio

This solution is at the basis of a new relation called val, which is used to determine the validity of a

SUT against a validation test suite.

Using the notations and definitions found in Table 12 and Table 13, suppose that TS is a vali-

dation test suite generated from informal requirements and/or a collection of UCMs (TS ⊆ TESTS). TS

is composed of finite sets of finite acceptance test cases (ACCEPT(TS), see Definition 6.1) and rejec

tion test cases (REJECT(TS)), as shown in Figure 38.

FIGURE 38. Partitioning of Acceptance and Rejection Test Groups and Test Cases

Validation Test Suite TS

ACCEPT(TS) REJECT(TS)

Test
Groups

TGA1 TGA2 ... TGR1 TGR2 ...

Test
Cases

TA1.1 ,

TA1.2 , ...

TA2.1 ,

TA2.2 , ...

... TR1.1 ,

TR1.2 , ...

TR2.1 ,

TR2.2 , ...

...
180 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

UCM-LOTOS Testing Concepts

is con-

ated to

ation of

valid

ness.

es use
Intuitively, a SUT is valid with respect to a validation test suite TS if and only if all acceptance

test cases in TS pass successfully and all rejection test cases in TS are rejected. Formally:

Definition 6.2: val : Validity relation. val ⊆ SPECS x PowerSet(TESTS).
SUT val TS ⇔ SUT passes ACCEPT(TS) ∧ SUT failsall REJECT(TS)

Conformance test suites can be sound, exhaustive or complete (Section 3.4.2), and th

cept is also applicable to a validation context. Assuming an idealized variant of val called val-id,

which could handle very large or even infinite sets of acceptance and rejection test cases, TS could be

characterized in the following way:

• Necessary condition for validity: TS is sound ⇔

(∀SUT ∈ SPECS, SUT val-id TS ⇒ SUT passes ACCEPT(TS) ∧ SUT failsall REJECT(TS))

• Sufficient condition for validity: TS is exhaustive ⇔

(∀SUT ∈ SPECS, SUT passes ACCEPT(TS) ∧ SUT failsall REJECT(TS) ⇒ SUT val-id TS)

• TS is complete ⇔ TS is sound ∧ TS is exhaustive.

For most realistic telecommunications systems, validation test suites have to be trunc

finite and manageable sets of acceptance and rejection test cases. Consequently, TS can be sound but

cannot be exhaustive (nor complete). In SPEC-VALU E, the soundness of TS will result from its deriva-

tion from UCMs (or from the requirements in some cases) interpreted in LOTOS. In practice, the lack

of completeness caused by testing limitations forces us to accept a more pragmatic interpret

the validity relation: if a SUT is not shown to be valid by a test suite, then it is considered in

(Proposition 1).

¬(SUT passes ACCEPT(TS) ∧ SUT failsall REJECT(TS)) ⇒ ¬(SUT val TS) (PROP. 1)

Proposition 1 is a direct result of the logical implication defining the concept of sound

This pragmatic interpretation can take other equivalent forms, one of which (Proposition 2) mak

of the fails relation defined in Table 13.

SUT fails ACCEPT(TS) ∨ ¬(SUT failsall REJECT(TS)) ⇒ ¬(SUT val TS) (PROP. 2)
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 181

CHAPTER 6 UCM-LOTOS Testing Framework

. This

h

exhibit

uite by

 to

equilib-

is also

and this

 that

 the rela-

canon-

l and

 by

ame
These two pragmatic propositions are insufficient to prove formally that SUT val TS, but this

was expected: it is not possible to prove formally that a formal model validates an informal one

issue is also connected to the limit of testability illustrated in Figure 15. This is a reality with whic

testers are already familiar, especially in the telecommunication field where complex systems

infinite behaviours. To cope with this limitation, testers need to increase the quality of the test s

improving its detectability, which will lower the testability limit (Section 3.4.2). This will help

detect more invalid SUTs and to increase the level of confidence in the system. However, an

rium between the quality of the test suite and the costs of its derivation and/or execution

required. Practical and efficient test selection techniques can help reaching such a balance,

issue will be addressed in Section 6.3.

6.2.4 Comparing Validity and Conformance in the Two Worlds
In a “perfect world”, requirements would already be formalized from the beginning. Assuming

the requirements can be represented as an LTS enables an interesting comparison between

tions val and conf. This comparison becomes possible by creating a test suite equivalent to the

ical tester of the requirements. In the “real world” however, requirements are usually informa

such canonical tester cannot be defined.

Suppose that Req represents the formalized requirements (Req ∈ SPECS) and that it is possible

to derive its canonical tester (CT(Req)) or a test suite with the same discriminatory power (denoted

TS ≅ {CT(Req)}, or TS ≅ CT(Req) for short). Definition 6.3 says that two test suites have the s

discriminatory power (≅) if and only if any SUT passes them both or fails them both.

Definition 6.3: ∀ SUT ∈ SPECS, TS1 ⊆ TESTS, TS2 ⊆ TESTS,
TS1 ≅ TS2 ⇔ (SUT passes TS1 ⇔ SUT passes TS2)

Proposition 3 suggests that an SUT passes the canonical tester CT(Req) (or the equivalent test

suite TS) if and only if this SUT conforms to the requirements.

SUT passes CT(Req) ⇔ SUT conf Req (PROP. 3)
182 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

UCM-LOTOS Testing Concepts

d in

cep-

ce

n

ria.

son is

es

cases.

d.
Proposition 3, which is proven in [69][242], is at the basis of the classification illustrate

Figure 39. Note that CT(Req) and the tests derived directly from this canonical tester are all ac

tance test cases. Intuitively, the expression SUT val ACCEPT(TS) means that each sequence or tra

refused by SUT is also refused by Req. Hence, similarly to the conformance relation, SUT is allowed

to be more deterministic and to have more behaviour than Req. However, the additional behaviour i

SUT must not be rejected by any rejection test case. Therefore, the set REJECT(TS) must also be a cri-

terion for comparing val and conf. Figure 39 classifies test suites according to these two crite

Although the signatures of these relations are not exactly the same, the mapping of conf’s signature to

val’s is made implicit by Proposition 3, which enables a more direct comparison. This compari

detailed through various propositions and illustrated with an example in Appendix C:

FIGURE 39. Comparison Between val and conf

The key points resulting from this comparison are:

• In the real world, conf is more powerful than val when there are no rejection test cas

involved. However, they are incomparable when there are rejection tests cases.

• In a perfect world, both relations are equivalent in the absence of rejection test

However, val becomes more powerful than conf when rejection test cases are considere

Real world
¬(ACCEPT(TS) ≅ CT(Req))

Perfect world
ACCEPT(TS) ≅ CT(Req)

Without
Rejection Tests
REJECT(TS) = ∅

With
Rejection Tests
REJECT(TS) ≠ ∅

val

conf

conf

val

val conf

conf

val
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 183

CHAPTER 6 UCM-LOTOS Testing Framework

, even

mprove

ich are

 title of

s result

cification

 of the

nst the

s section

t causal

 test

 design

M-based

fined in

mplex

ction of

nd caus-

ed test

0

• The use of rejection test cases permits the detection of invalid yet conforming SUTs

in the presence of incomplete acceptance test suites. Therefore, rejection tests i

detectability over conventional conformance testing for LOTOS, and they lower the limit of

testability, as suggested in Section 3.4.2.

This theoretical result does not solve the problem of test selection and generation, wh

the topics of the next two sections. However, as suggested by Myers’ citation (found below the

this chapter) and by Harel’s attention to rejection scenarios at the requirements level [167], thi

emphasizes the need to produce both acceptance and rejection tests when validating a spe

against requirements.

6.3 UCM-Oriented Testing Patterns for Test Goal Selection
The relation val presupposes the existence of a sound test suite used to establish the validity

LOTOS prototype, which integrates all the scenarios generated from the requirements, agai

intended functional requirements. Such test cases can be generated in numerous ways. Thi

introduces a novel approach where system UCMs are used in combination with testing patterns for

the selection of goals for test purposes in a test plan. These goals take the form of abstrac

sequences suitable for the generation of LOTOS test suites composed of acceptance and rejection

cases. The selection and generation of test cases corresponds to step ➄ in the SPEC-VALU E methodol-

ogy (Figure 37).

Section 3.4.5 already provided an overview of patterns in general, with an emphasis on

and testing patterns. Section 6.3.1 discusses how the pattern concept can be applied to UC

testing, and a template is tailored accordingly in Section 6.3.2. A testing pattern language is de

Section 6.3.3 in order to explain how to apply individual UCM-oriented testing patterns on a co

UCM. Sections 6.3.4 to 6.3.9 present the individual testing patterns with strategies for the sele

test goals based on alternatives, concurrent paths, loops, multiple start points, single stubs, a

ally linked stubs. These testing patterns, which capture the author’s experience in UCM-bas

selection, represent an important constituent of the UCM-LOTOS testing framework. Section 6.3.1
184 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

UCM-Oriented Testing Patterns for Test Goal Selection

the first

loit this

. These

st goals

][290].

cture of

re data

e L

 tests for

 goals to

 nowa-

stry. For

ally

onical

ents

annot be

n poten-

ether
attempts to relate UCM-oriented testing patterns to the conventional LOTOS testing theory. A sum-

mary of the main points and a brief discussion follow in Section 6.3.11.

6.3.1 Introduction to UCM-Oriented Testing Patterns
UCM scenarios are constructed from requirements. Not only can they be used to construct

design, but they also can be reused to guide the generation of functional test cases. To exp

idea, testing patterns will be defined based on the nature and target coverage of UCM paths

paths capture causal flows and they essentially become visual templates for the selection of te

at a development stage close to requirements definition.

This novel approach to test selection shares many concepts with white-box testing [267

However, the selection is done at a much higher level abstraction, and the focus is on the stru

a UCM (paths and constructs) rather than on the structure of a program. Each UCM route, whe

parameters are instantiated, is a candidate for becoming a functional test case applicable to thOTOS

prototype for validation purpose. Tretmans suggested the use of goals as a means to select

complex systems [346] (see Section 3.4.2), and UCM routes can indeed be interpreted as test

be fulfilled.

Testing Patterns as a Semi-Formal Approach to Test Selection

Testing patterns represent a trade-off between intuitive test case generation, still heavily used

days, and formal test case generation, more rarely used, even in the telecommunications indu

instance, in many LOTOS-based techniques, test selection is done either informally, or form

through a model like finite state machines (e.g. transition tours [143]) or LTSs (e.g. using a can

tester [69]). SPEC-VALU E targets the generation of the first system formal model from requirem

and scenarios that are not necessarily formalized, therefore a formal model-based strategy c

used here. Testing patterns happen to be rather useful in this particular context. Their users ca

tially benefit from the existence of visual requirements and design information (the UCMs) tog

with suggestions of mappings onto test cases. Testing patterns can be seen as a semi-formal approach
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 185

CHAPTER 6 UCM-LOTOS Testing Framework

 like

c-

he com-

-to-end

em, but

rns can

 forces.

esting

ver-

wever,

 or less

n. Test-

ments

r span-

uch test

rios will

oreover,

te test

 UCMs.

gained

bstract

 different

 indepen-
to test selection that fits nicely with the level of abstraction targeted by a semi-formal notation

Use Case Maps.

UCM paths and constructs represent forces (introduced in Section 3.4.5) related to the fun

tional coverage of the requirements, the quality of the tests, the number of tests to generate, t

plexity of each test, and the overall cost of testing. The higher the number of routes or end

paths covered in a UCM, the higher the coverage and the confidence in the validity of the syst

the longer the test suite and the higher the costs of its derivation and execution. Testing patte

help achieving good compromise solutions between cost and effectiveness by balancing these

A UCM may include many possible routes, some of which might not be necessary for t

purposes. In this context, the traditional question “how much testing is enough testing?” becomes

“what are the routes to be tested?”. There is no unique answer to this question. Achieving the co

age of all UCM path segments and constructs is certainly a sensible testing objective. Ho

depending on how critical, important, or relevant are the routes, a UCM may be tested more

thoroughly. The assumption here is that UCM constructs are where such decision can be take

ing patterns targeting UCM constructs hence helps concretizing test plans.

Naturally, the use of testing patterns is not the only way to derive test cases from require

and UCMs. For instance, UCMs could be transformed into an intermediate model (e.g. FSM o

ning tree) from which test cases could be generated using conventional techniques. However, s

cases would be rather synthetic, whereas the application of testing patterns to the UCM scena

lead to test cases that are closer to the requirements and the initial intent of the scenarios. M

we believe such patterns to provide more flexibility to the tester in the selection of appropria

cases; not all the information necessary to the generation of effective test suites is found in the

The eight UCM-oriented testing patterns defined in this chapter record the experience

during the validation of various specifications by the author (Chapter 8). They focus on how a

causal sequences, used as goals in test purposes, can be generated from UCMs containing

constructs. Because of the abstract nature of UCMs and because these testing patterns are
186 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

UCM-Oriented Testing Patterns for Test Goal Selection

ntexts,

s. These

ses and

t cover-

 relative

xisting

ons and

 is in

’s [51]

 is spe-

ces and

le now-

 his pat-

mplates
dent of underlying structures of components, the patterns can be applied to a multitude of co

and can be combined together (e.g. in a pattern language) for dealing with complex UCMs.

Targeted Coverage

The testing patterns we develop here target the coverage of scenarios described in UCM term

patterns aim to cover functional scenarios at various levels of completeness: all results, all cau

all results, all path segments, all end-to-end paths, all plug-ins, and so on. The rationale is tha

ing UCM paths leads to the coverage of the associated events and responsibilities (and of their

ordering) forming the requirements scenarios. The patterns are inspired partly from various e

test selection strategies for implementation languages constructs such as branching conditi

loops [44][267][290], or for cause-effect graphs [267][270]. The contribution of these patterns

their application to UCM scenarios at a level close to requirements.

6.3.2 Template for UCM-Oriented Testing Patterns
The UCM-oriented testing patterns are formatted according to a template inspired from Binder

and from generic templates used in the design pattern community (Section 3.4.5). The former

cifically tailored for test patterns in general whereas the latter suggest useful fields such as for

examples. In his book, Binder regrouped most test selection and generation techniques availab

adays for object-oriented and procedural models and programs, and he describes them using

tern template. Table 16 presents the template used in the thesis and how it relates to the te

mentioned above.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 187

CHAPTER 6 UCM-LOTOS Testing Framework

ommu-

rent

CMs are

nd

he same

 <

d for

stract

hes

ccep-
TABLE 16. Correspondence Between Templates for Design Patterns and Test Patterns

Problems are split into two fields: intent and fault model. Binder’s context field already con-

tains forces, but our template makes them more explicit, as suggested by the design pattern c

nity [256]. The entry and exit criteria used by Binder are useful for classifying very diffe

approaches to test selection and generation, but they are rather useless in our context where U

always involved. A solution, called strategy in our template, takes certain forces into account a

resolves some of them at the expense of others. Related solutions will be described under t

pattern for the sake of conciseness. Consequently, a testing pattern can include multiple triplesStrat-

egy, Example, Consequences>, accompanied by a unique strategy name for future reference an

traceability. As a visual convention, horizontal dashed lines will separate these triples.

In the following testing patterns, a UCM route (delimited by angle brackets) is an ab

causal sequence that represents the goal part of a test purpose (Section 6.2.2). A test goal establis

the traceability between the UCM and a test case, and it is independent of the type of test (accept or

reject). The type will be taken into consideration only when transforming a test goal into an a

tance or rejection LOTOS test process.

Design Patterns
(in general)

Binder’s Test
Design Patterns

UCM-Based
Testing Patterns

Definitions for UCM-Based Testing Patterns

Name Name Name Descriptive name that identifies the pattern

Problem
Intent Intent Type of tests produced by the pattern (test goals)

Fault Model Fault Model Type of faults targeted by the pattern

Context
Context

Context Situations under which the pattern applies

Forces Forces
Relevant factors contributing to the problem and
the solution/strategy, and their interactions

Solutions
Strategy

Strategy How the test goals are constructed
Entry/Exit Criteria

Example — Example Illustration of UCM with selected test goals

Consequences Consequences Consequences Benefits and drawbacks of using this strategy

Known Uses Known Uses Known Uses Related uses in terms of other UCM constructs

Related Patterns Related Patterns Related Patterns Related testing patterns (see also Section 6.3.3)

*

188 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

UCM-Oriented Testing Patterns for Test Goal Selection

s for a

 on one

erate to

r, The

-

tructs.

 patterns

y been

t. The

 than as a

bstitu-

an first

may be

ad

inal step

, con-

e same
6.3.3 UCM-Oriented Testing Pattern Language
A pattern language is a set of cooperating patterns that combine to provide solution guideline

problem in a particular context. Each of the testing patterns developed in this chapter focuses

particular type of UCM construct (alternative, loop, stub, and so on.). These patterns can coop

help solution more complex UCMs where multiple constructs of various type are used. Howeve

connections between patterns (how they relate with one another) are not always obvious.

The following UCM-oriented testing pattern language explains how the individual testing pat

terns can be connected together in order to derive test goals from UCMs with multiple cons

This language itself is expressed as a UCM that shows the various steps (static stubs) and

(dynamic stubs) involved (Figure 40). A similar way of expressing pattern languages has alread

used successfully by Andrade and Logrippo [33][35], and it seems appropriate in our contex

proposed combination of testing patterns should be seen as a general recommendation rather

strict procedure to be followed blindly. The testing pattern language is a guideline and is no su

tion for the test engineer’s judgement and experience.

FIGURE 40. UCM-Oriented Testing Pattern Language

Figure 40 shows the progression from UCMs to test goals through three steps. Stubs c

be substituted by their plug-ins in order to produce a collection of flattened maps (HandleStubs). Each

flattened map may contain multiple start points, and various subsets of these start points

enabled in order to generate test goals. HandleStartPoint shows how to select such subsets, which le

to further flattened maps where disabled start points are essentially considered absent. The f

(HandleConstructs) consists in generating test goals from flattened maps that contain alternatives

current segments, and loops. These three static stubs are refined by three plug-ins with th

names.

UCM Test Goals

HandleStubs HandleStartPoints HandleConstructs
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 189

CHAPTER 6 UCM-LOTOS Testing Framework

o

ned

d

d map

by the

ere

e of the

 (
The first step, captured by the HandleStubs plug-in in Figure 41, flattens the stubs using tw

testing patterns. First, if there are stubs that are causally linked (e.g. in sequence), then Testing Pattern

6—CAUSALLY LINKED STUBS is used (TP6 stub), for which three strategies are defined. Many flatte

maps could result from these strategies (shown with the 1:N AND-fork). They may however still con-

tain single stubs (TP5), which are flattened using one of the three strategies found in Testing Pattern 5—

SINGLE STUB. This pattern will generated multiple flattened maps for dynamic stubs (the secon1:N

AND-fork). In turn, if there are nested stubs in the plug-ins, they would appear in the flattene

and both testing patterns could be applied iteratively.

FIGURE 41. Plug-in HandleStubs (Step 1)

Flattened maps may contain multiple start points. If so, then they should be handled

Testing Pattern 4—MULTIPLE START POINTS as shown in Figure 42. This pattern leads to flat maps wh

different subsets of the start points involved are enabled and the other removed according to on

eight defined strategies. Again, some of them may lead to a multiplication of such flat maps1:N).

Maps with a single start points are assumed to have this start point enabled by default.

FIGURE 42. Plug-in HandleStartPoints (Step 2)

UCM Flattened
Maps

Causally [Y]

[N]

TP6

1:N
Single [Y]

[N]

TP5

1:N

LinkedStubs? Stubs?
Stubs
Left? [N]

[Y]

MultipleStartPoints?
[Y]

[N]

TP4

1:N

Flattened
Map

Flat Maps
with Enabled
Start Points
190 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

UCM-Oriented Testing Patterns for Test Goal Selection

urrent

ted or in

long

 origi-

verage-

e test

ies used

d start
Finally, the last step iteratively handles remaining UCM constructs for alternatives, conc

segments, and loops until an end point is reached (Figure 43). These constructs can be nes

sequence. Testing Pattern 1—ALTERNATIVE has 4 strategies, whereas Testing Pattern 2—CONCURRENT has 3

strategies and Testing Pattern 3—LOOP has 4 strategies. Multiple partial test goals are constructed a

the way (1:N), until they are finalized when end points are reached.

FIGURE 43. Plug-in HandleConstructs (Step 3)

This UCM-oriented testing pattern language helps to identify the paths to test from the

nal UCM by using combinations of patterns. The strategies described in these patterns are co

driven and aim to balance the various forces involved in order to come up with cost-effectiv

goals. The next five sub-sections define and illustrate the various testing patterns and strateg

in our testing pattern language.

6.3.4 Testing Pattern and Strategies for Alternatives

NAME: TESTING PATTERN 1—ALTERNATIVE

INTENT

To generate, for alternative UCM routes, test goals expressed in terms of sequentially linke

points, responsibilities, waiting places, end points, and other such events.

Test Goals

CheckConstructFlat Map
with Enabled
Start Points

[A
lte

rn
at

ive
]

TP1

[Loop]
1:NTP3

TP2

[C
oncurrent]

[E
ndPoint]
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 191

CHAPTER 6 UCM-LOTOS Testing Framework

nected

ure 44

 hide in

ation to

cted.

cover-

t suites,

cord-

.

 leading
CONTEXT

The functionality under test is captured as a UCM path that contains multiple routes con

through OR-forks. Some of these routes may also merge at a later point through OR-joins. Fig

shows a UCM used to illustrate strategies for alternatives. Four responsibilities (a to d) identify differ-

ent path segments found between the UCM start point (SP) and the end point (EP). Branches in OR-

forks may also be guarded by boolean conditions.

FIGURE 44. Reference UCM: Testing Pattern for Alternatives

FAULT MODEL

A test goal is a route from a start point to an end point. The fault model assumes that faults can

UCM path segments not traversed by any test goal. These faults are independent of their alloc

components, if any. The coverage of all path segments would ensure that these faults are dete

FORCES

Alternatives that join and then fork again lead to multiple end-to-end combinations (routes) for

ing the path segments. Generating test goals for all combinations leads to more thorough tes

but at a higher cost.

The following four strategies are inspired from control flow testing. They are ordered ac

ing to the completeness of their route coverage, from the least complete to the most complete

STRATEGY 1.A: A LTERNATIVE — ALL RESULTS

Each end point (result) is covered. There could be many end points connected by an OR-fork,

to the same number of goals.

a

b

c

d

SP EP
192 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

UCM-Oriented Testing Patterns for Test Goal Selection

plored.

t) one

uences

ranches

case. Such

expres-

ary.
EXAMPLE: { <SP, a, c, EP>}

CONSEQUENCE

Minimal coverage for all results. Very low cost, but some path segments might not be covered.

STRATEGY 1.B: A LTERNATIVE — ALL PATHS

All decisions (e.g. true or false) of conditions are exercised. Also referred to as “All branches”.

EXAMPLE: { <SP, a, c, EP>, <SP, b, d, EP> }

CONSEQUENCE

Minimal coverage for all segments. Some end-to-end paths might not be covered.

STRATEGY 1.C: ALTERNATIVE — ALL PATH COMBINATIONS

All combinations of conditions (e.g. True-True, True-False, False-True, False-False) are ex

Also referred to as “All branch combinations” or “All decision combinations”.

EXAMPLE: { <SP, a, c, EP>, <SP, a, d, EP>, <SP, b, c, EP>, <SP, b, d, EP> }

CONSEQUENCE

Minimal coverage for all end-to-end paths. There might be various ways of satisfying (or no

condition, and only one possibility is explored. This strategy may result in abstract causal seq

that are not feasible according to the conditions attached to the branches. For instance, if two b

from two consecutive OR-forks respectively have the conditions [c1] and [not(c1)] , then an

abstract sequence covering these two branches cannot be used to create an acceptance test

sequences however are good candidates for rejection test cases.

STRATEGY 1.D: ALTERNATIVE — ALL COMBINATIONS OF SUB-CONDITIONS

Complex conditions include more than one operator, and all combinations of basic boolean

sions can be explored. This strategy can further be applied to multiple conditions when necess
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 193

CHAPTER 6 UCM-LOTOS Testing Framework

t where

h rep-

ely with

t

y linked

nected

-joins.

due the

e predi-
EXAMPLE

Observe the following LOTOS guard: [(c1 AND c2) OR (c3 AND c4)] . Since c1 , c2 , c3 , and c4

can all evaluate to True or False, there are up to 16 possible combinations (24) for this condition

only1.

CONSEQUENCE

Results in thorough test suites when combined to Strategy 1.C, but at a very high price.

KNOWN USES

This testing pattern can also be applied to timers with time-out paths, which represent a poin

two alternatives are possible (time-out and no time-out). Also applicable to failure points, whic

resent yet another type of alternative.

RELATED PATTERNS

Alternative paths may further contain concurrent segments and loops, to be handled respectiv

Testing Pattern 2—CONCURRENT and Testing Pattern 3—LOOP. UCMs with stubs and multiple star

points are assumed to have been flattened during a previous step.

6.3.5 Testing Pattern and Strategies for Concurrent Paths

NAME: TESTING PATTERN 2—CONCURRENT

INTENT

To generate, for concurrent UCM path segments, test goals expressed in terms of sequentiall

start points, responsibilities, waiting places, end points, and other such events.

CONTEXT

The functionality under test is captured as a UCM path that contains multiple segments con

through AND-forks. Some of these segments may also merge at a later point through AND

Figure 45 shows a UCM used to illustrate strategies for path segments that run concurrently

presence of AND-forks.

1. If sub-conditions are not independent, some combinations might be impossible to satisfy. For instance, in th
cate [x < 3 OR x > 5], there is no solution such that x<3 is true and x>5 is true. See Section 6.4.3.
194 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

UCM-Oriented Testing Patterns for Test Goal Selection

es an

ome

verage

concur-

r

s, and

er cost.

nsibili-

nce,

 that are
FIGURE 45. Reference UCM: Testing Pattern for Concurrent Paths

FAULT MODEL

A test goal is a route from a start point to one or multiple end points. The fault model assum

interleaving semantics à la LOTOS for the concurrent path segments. Faults can result from s

interleaved combinations that are prevented undesirably by the prototype specification. The co

of all interleaved combinations would ensure that these faults are detected.

FORCES

The number of possible combinations in an interleaving semantics depends on the number of

rent path segments (k) and the number of responsibilities and events along these segments (nk). This

number can be computed by the function InterComb (interleaved combination — Definition 6.4). Fo

example, the concurrent segments in Figure 45 lead to InterComb(1, 2) = (1+2)!/(1!*2!) = 3 possible

combinations (<a, b, c>, <b, a, c>, <b, c, a>).

The interleaving semantics quickly produces a high number of possible combination

generating test goals for all combinations leads to more thorough test suites, but at a high

However, from a functional testing viewpoint, this number can reduced when concurrent respo

ties and events are hidden. For instance, if responsibilities a, b, and c in Figure 45 are bound to a

component, then the only visible events in the corresponding LOTOS prototype would be SP and EP.

With a tool such as LOLA, only one functional test case is sufficient to cover all combinations. He

we can abstract from hidden concurrent responsibilities and events when selecting test goals

intended to be used for the generation of LOTOS test cases.

bSP EPc

a

Definition 6.4: InterComb(n1, n2, ..., nk) =
(n1 + n2 + ... + nk)!

n1! × n2! × ... × nk!
=

Π
i=1

k

ni!

Σ
i=1

k

ni)(!
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 195

CHAPTER 6 UCM-LOTOS Testing Framework

ndled

ination

ency is

ffice.

vered.

ut when

ted, the

critical
Nested AND-forks and sequences of AND-forks separated by AND-joins can be ha

independently.

The following three strategies are ordered according to the completeness of their comb

coverage, from the least complete to the most complete.

STRATEGY 2.A: CONCURRENT — ONE COMBINATION

One combination is chosen. This simple strategy is to be used when the verification of concurr

not critical, i.e. any ordering of the responsibilities or events along the concurrent paths will su

EXAMPLE: { <SP, a, b, c, EP>}

CONSEQUENCE

Minimal coverage. Very low cost, but many combinations (and potential faults) might not be co

STRATEGY 2.B: CONCURRENT — SOME COMBINATIONS

Several combinations are chosen. This strategy is to be used when concurrency is important, b

the total number of possible combinations is too high. The higher the number of goals genera

higher becomes the level of confidence.

EXAMPLE: { <SP, a, b, c, EP>, <SP, b, a, c, EP> }

CONSEQUENCE

Affordable cost, but some combinations (and potential faults) might not be covered.

STRATEGY 2.C: CONCURRENT — ALL COMBINATIONS

All combinations are generated. This simple strategy is to be used only when concurrency is

and when the number of combinations is practical.

EXAMPLE: { <SP, a, b, c, EP>, <SP, b, a, c, EP>, <SP, b, c, a, EP> }

CONSEQUENCE

Total coverage, but potentially very high cost.
196 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

UCM-Oriented Testing Patterns for Test Goal Selection

hs. The

ith a

Testing

s

ed start

a UCM

n result

age of
KNOWN USES

This testing pattern can also be applied to asynchronous interactions between two UCM pat

UCM path triggered in passing evolves concurrently with the rest of the other UCM path, w

causal behaviour similar to an AND-fork.

RELATED PATTERNS

Concurrent paths may further contain alternatives and loops, to be handled respectively with

Pattern 1—ALTERNATIVE and Testing Pattern 3—LOOP. UCMs with stubs and multiple start point

are assumed to have been flattened during a previous step.

6.3.6 Testing Pattern and Strategies for Loops

NAME: TESTING PATTERN 3—LOOP

INTENT

To generate, for looping UCM path segments, test goals expressed in terms of sequentially link

points, responsibilities, waiting places, end points, and other such events.

CONTEXT

The functionality under test is captured as a UCM path that contains loops. Figure 46 shows

used to illustrate relevant strategies.

FIGURE 46. Reference UCM: Testing Pattern for Loops

FAULT MODEL

A test goal is a route from a start point to an end point. The fault model assumes that faults ca

from the prototype specification allowing an incorrect number of iterations in a loop. The cover

all numbers of iterations would ensure that these faults are detected.

SP EP

b

a

Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 197

CHAPTER 6 UCM-LOTOS Testing Framework

ded

upper

s valid

,

lete-

t utterly

er test.

 faults)
FORCES

Loops (specified using recursion in LOTOS) may have a minimal number of iterations (m, which could

be 0) and a maximal number of iterations (n). In this case, the overall number of test goals is boun

by n-m. However, this number may be too large for practical testing. In the absence of an

bound, this number may even be infinite. Compromise solutions are needed for such cases.

In some cases, it may not be sufficient to check that the prototype specification accept

numbers of iteration. Some invalid number of iterations (e.g. <m or >n) should also be rejected. Also

different strategies can be used on nested loops and series of loops independently.

The following four strategies, inspired from [44][267], are ordered according to the comp

ness of their iteration coverage, from the least complete to the most complete.

STRATEGY 3.A: L OOP — ALL SEGMENTS

A minimal number of iterations that covers all path segments (MAX (1, m) iterations) is selected. This

strategy generates one test goal for the loop and should be used when testing the loop is no

important, for instance when focusing on some other aspect or construct of the UCM path und

EXAMPLE: { <SP, a, b, a, EP>} (if m = 0)

CONSEQUENCE

The looping path is tested at a minimal cost, but some numbers of iterations (and potential

might not be covered.

STRATEGY 3.B: L OOP — AT MOST K ITERATIONS

A maximal number of iterations k is selected (m ≤ k ≤ n). This strategy generates of k-m+1 test goals

for the loop and should be used when n-m is very large or when n is undetermined. The closer k gets

to n, the better the coverage but the higher the cost.
198 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

UCM-Oriented Testing Patterns for Test Goal Selection

l faults)

t

bounds

wever

s

ould be

 test

bounds

ndaries,

How-
EXAMPLE: { <SP, a, EP>, <SP, a, b, a, EP>, <SP, a, b, a, b, a, EP> } (if m = 0 and k = 2)

CONSEQUENCE

The looping path is tested at a pragmatic cost, but some numbers of iterations (and potentia

might not be covered.

STRATEGY 3.C: LOOP — VALID BOUNDARIES

The valid boundaries in terms of iterations are selected: m, m+1, n-1, and n. This strategy generates a

most 4 test goals for the loop and should be used when n-m is practical.

EXAMPLE: (if m = 0 and n = 4)

{ <SP, a, EP>, <SP, a, b, a, EP>, <SP, a, b, a, b, a, b, a, EP>, <SP, a, b, a, b, a, b, a, b, a, EP> }

CONSEQUENCE

The looping path is tested at a pragmatic cost, with an emphasis on the lower and upper

(where many faults usually occur). Some numbers of iterations (and potential faults), ho

unlikely, may still not be covered. Also, invalid boundaries are not checked.

STRATEGY 3.D: LOOP — ALL BOUNDARIES

The valid boundaries in terms of iterations (m, m+1, n-1, and n) together with the invalid boundarie

(m-1 and n+1) are selected. This strategy generates at most 6 test goals for the loop and sh

used when n-m is practical. Note that the invalid boundaries target the generation of rejection

cases.

EXAMPLE: (if m = 1 and n = 5)

{ <SP, a, EP>, <SP, a, b, a, EP>, <SP, a, b, a, b, a, EP>, <SP, a, b, a, b, a, b, a, b, a, EP>,

 <SP, a, b, a, b, a, b, a, b, a, b, a, EP>, <SP, a, b, a, b, a, b, a, b, a, b, a, b, a, EP> }

CONSEQUENCE

The looping path is tested at a pragmatic cost, with an emphasis on the lower and upper

(where many faults usually occur). Invalid abstract sequences are also checked for both bou

i.e. if m or n is incorrectly specified in the loop conditions, then the problem can be detected.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 199

CHAPTER 6 UCM-LOTOS Testing Framework

s often

nt exits a

ectively

linked

e start

 event.
ever, some numbers of iterations (and potential faults) might not be covered, although this i

unlikely.

KNOWN USES

This testing pattern can also be applied to loops attached to stubs, e.g. when a path segme

stub and enters it again.

RELATED PATTERNS

Looping paths may further contain alternatives and concurrent segments, to be handled resp

with Testing Pattern 1—ALTERNATIVE and Testing Pattern 2—CONCURRENT. UCMs with stubs and

multiple start points are assumed to have been flattened during a previous step.

6.3.7 Testing Pattern and Strategies for Multiple Start Points

NAME: TESTING PATTERN 4—MULTIPLE START POINTS

INTENT

To generate, for UCM with multiple start points, test goals expressed in terms of sequentially

start points, responsibilities, waiting places, end points, and other such events.

CONTEXT

The functionality under test is captured as a UCM that contains multiple start points. Thes

points can be triggered concurrently, representing multiple potential causes for a resulting

Figure 47 shows a UCM used to illustrate relevant strategies.

FIGURE 47. Reference UCM: Testing Pattern for Multiple Start Points

SP1

SP2

SP3

EP
200 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

UCM-Oriented Testing Patterns for Test Goal Selection

s devel-

ies while

d point.

imulta-

st

 subsets

ld pro-

dition-

ly the

we can

 [267]

at-

everal

coverage

erdict.

e fol-

in

 are to be

viour is
In Figure 47, EP can be caused either by SP1 alone, or by SP2 in conjunction with SP3

(responsibilities could be added, but they have no impact on the rationale behind the strategie

oped here). This example is generic enough to capture all cases and derive general strateg

avoiding superfluous constructs.

FAULT MODEL

A test goal is a route (or many route segments that join) from one or many start points to an en

The fault model assumes that faults can result from a subset of the start points triggered s

neously. The coverage of all such subsets would ensure that these faults are detected.

FORCES

There could be numerous subsets to check (2n, where n is the number of start points). Generating te

goals for all subsets leads to more thorough test suites, but at a higher cost. Some of these

could provide insufficient stimuli for the observation of the expected result. Some subsets cou

vide redundant stimuli, whereas others could provide just the right set of necessary stimuli. Ad

ally, stimuli could be given in may sequential orders. These combinations would again multip

number of test goals.

STRATEGY OVERVIEW

In order to determine which start points need to be triggered for reaching a specific end point,

use path sensitization algorithms such as the ones suggested for cause-effect graphing by Myers

and by Nursimulu and Probert [270]. Starting from an end point (EP), we follow the path backward to

find the causes (SPn) that need to be triggered. Weyuker et al. [373] also suggested test selection str

egies for boolean specifications (without behaviour however) from which the representation of s

ideas discussed in this section were inspired. Different strategies can be defined based on the

of the start points and on how easy diagnostics can be established in case of an unexpected v

In logical terms, considering start points and end points only, Figure 47 translates to th

lowing boolean expression: EP ⇔ SP1 ∨ (SP2 ∧ SP3). The corresponding truth table is shown

Table 17, where T and F denote the presence and absence of a triggering event. Cases 1 to 7

addressed by the following eight strategies. Case 0 is not really interesting because no beha
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 201

CHAPTER 6 UCM-LOTOS Testing Framework

ase,

h

se

s are at

simple

attached

 of rejec-

li order-

eared to
initiated. Although in this case the goal <EP> could be used for the generation of a rejection test c

the latter is unlikely to be effective (very low yield).

When EP is expressed as a minimal sum of product terms (term1 ∨ term2 ∨ ... ∨ termn), then

each termi taken individually characterizes a subset of necessary stimuli (start points). Moreover, eac

subset of stimuli that falsifies EP is qualified as insufficient. Racing stimuli are subsets that can cau

two or more resulting events EP (i.e. two or more product terms evaluate to true), whereas redundant

stimuli are the subsets that do not belong to any of the other categories. These four categorie

the basis of eight strategies for multiple start points:

• Necessary subsets: Strategies 4.A, 4.B, and 4.C

• Redundant subsets: Strategies 4.D and 4.E

• Insufficient subsets: Strategies 4.F and 4.G

• Racing subsets: Strategy 4.H

Note that some of these strategies may collapse (i.e. become indistinguishable) for

maps. Note also that some test goals may not be feasible due to contradicting preconditions

to different start points. These sequences need to be filtered out or be used for the generation

tion test cases. The following strategies also consider whether one, some, or all possible stimu

ings in a subset should be selected for the generation of test goals. The combinations that app

TABLE 17. Truth Table for Multiple Start Points Example (from Figure 47)

Case # SP1 SP2 SP3 SP1 ∨ (SP2 ∧ SP3) Subset

0 F F F F Insufficient stimuli. Not interesting.

1 F F T F Insufficient stimuli

2 F T F F Insufficient stimuli

3 F T T T Necessary stimuli

4 T F F T Necessary stimuli

5 T F T T Redundant stimuli

6 T T F T Redundant stimuli

7 T T T T Racing stimuli
202 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

UCM-Oriented Testing Patterns for Test Goal Selection

e of these

 that can

.

lowed is

mal set of

leaving

d path to

 the mini-

est cases.
be most pragmatic are covered here. Finally, strategies from different subsets are not mutually exclu-

sive and can be used in combination.

STRATEGY 4.A: MULTIPLE START POINTS — ONE NECESSARY SUBSET, ONE GOAL

When multiple necessary subsets can cause the end point (case 3 or case 4), then select on

subsets and generate one goal accordingly. This strategy targets the minimal set of causes

lead to the end result. It produces test goals useful for the generation of acceptance test cases

EXAMPLE: { <SP2, SP3, EP>} (if case 3 is selected)

CONSEQUENCE

The coverage of end points is insured, but not that of start points (for instance, SP1 is not covered). In

case of an unexpected verdict, the diagnostic is simple because the end-to-end path to be fol

known.

STRATEGY 4.B: MULTIPLE START POINTS — ALL NECESSARY SUBSETS, ONE GOAL

Select one test goal for each necessary subset (cases 3 and 4). This strategy targets the mini

causes that can lead to the end result, and it targets the generation of acceptance test cases.

EXAMPLE: { <SP2, SP3, EP>, <SP1, EP>}

CONSEQUENCE

The coverage of start points linked to the target end point is complete, but not that of the inter

start points. In case of an unexpected verdict, the diagnostic is simple because the end-to-en

be followed is known.

STRATEGY 4.C: MULTIPLE START POINTS — ALL NECESSARY SUBSETS, ALL GOALS

Select all possible test goals for each necessary subset (cases 3 and 4). This strategy targets

mal set of causes that can lead to the end result, and it targets the generation of acceptance t
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 203

CHAPTER 6 UCM-LOTOS Testing Framework

ng start

st goal is

elation-

ace con-

ts are

nce

 possi-

st goal is

ation-

ace con-

ts are
EXAMPLE: { <SP2, SP3, EP>, <SP3, SP2, EP>, <SP1, EP>}

CONSEQUENCE

The coverage of start points linked to the target end point is complete, as well as the interleavi

points (two such situations for case 3). Diagnostics remain simple.

STRATEGY 4.D: MULTIPLE START POINTS — ONE REDUNDANT SUBSET, ONE GOAL

The necessary causes are present, plus some redundant (but insufficient) causes. One te

selected for one redundant subset. This strategy is non-minimal with respect to the causal r

ship. It is useful for the generation of acceptance test cases for testing robustness and partial r

ditions on top of expected functionalities. It can be used in a context where the start poin

connected to OR-joins and AND-joins.

EXAMPLE: For case 6, SP1 can cause EP by itself, and this should remain the case in the prese

of SP2: {<SP1, SP2, EP>}

CONSEQUENCE

Start point coverage is partial, and diagnostics are difficult due to the presence of irrelevant and

bly interfering events and responsibilities.

STRATEGY 4.E: MULTIPLE START POINTS — ALL REDUNDANT SUBSETS, ONE GOAL

The necessary causes are present, plus some redundant (but insufficient) causes. One te

selected for each redundant subset. This strategy is non-minimal with respect to the causal rel

ship. It is useful for the generation of acceptance test cases for testing robustness and partial r

ditions on top of expected functionalities. It can be used in a context where the start poin

connected to OR-joins and AND-joins.
204 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

UCM-Oriented Testing Patterns for Test Goal Selection

ither

ossibly

bstract

that the

 that the

 them-

 higher

itical,

ce, such
EXAMPLE: SP1 can cause EP by itself, and this should remain the case in the presence of e

SP2 (case 6) or SP3 (case 5): {<SP1, SP2, EP>, <SP3, SP1, EP>}

CONSEQUENCE

Start point coverage is total, but diagnostics are difficult due to the presence of irrelevant and p

interfering events and responsibilities. Rejection test cases could also be derived from a

sequences to which a second EP (which should not be observed) is added at the end.

STRATEGY 4.F: MULTIPLE START POINTS — ONE INSUFFICIENT SUBSET, ONE GOAL

Select a test goal for one subset with insufficient stimuli (cases 1 or 2). This strategy checks

end result cannot be reached, and it targets the generation of rejection test cases.

EXAMPLE: { <SP2, EP>}(if case 2 is selected)

CONSEQUENCE

Incomplete coverage of the start points, but simple diagnostics.

STRATEGY 4.G: MULTIPLE START POINTS — ALL INSUFFICIENT SUBSETS, ONE GOAL

Select a test goal for each subset with insufficient stimuli (cases 1 and 2). This strategy checks

end result cannot be reached, and it targets the generation of rejection test cases.

EXAMPLE: { <SP3, EP>, <SP2, EP>}

CONSEQUENCE

Still an incomplete coverage of the start points (if some start points are necessary stimuli all by

selves, like SP1 for instance), but simple diagnostics.

Strategies where all test goals for all insufficient subsets are considered may lead to a

cost with limited gain in effectiveness (if any). Unless the scenario or application is highly cr

such strategies will produce numerous rejection test cases that are unlikely to be useful. Hen

strategies are not discussed here.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 205

CHAPTER 6 UCM-LOTOS Testing Framework

left very

ist, and

ct term

ner-

ossibly

hey can

points.

aiting

 applied

s) and

ring
STRATEGY 4.H: MULTIPLE START POINTS — SOME RACING SUBSETS, SOME GOALS

This strategy targets the testing of race conditions with acceptance test cases (case 7). It is

loose in terms of path coverage and interleaving of stimuli because many test goals could ex

selecting the most appropriate ones should be based on the functionality under test.

EXAMPLE: { <SP1, SP3, SP2, EP, EP>, <SP2, SP3, SP1, EP, EP>}

The example includes sequences where the stimuli associated to each produ

(SP1 and (SP2 ∧ SP3)) are used sequentially. Note that two resulting events are ge

ated, and they could be distinguished if necessary (e.g. EPSP1 and EPSP2∧SP3).

CONSEQUENCE

Start point coverage is partial (in general), and diagnostics are difficult due to the presence of p

interfering events and responsibilities. However, the resulting goals are of interest because t

detect race conditions that would not be detectable otherwise (high-yield test goals).

KNOWN USES

This testing pattern can also be applied to (a)synchronous interactions involving multiple start

The waiting places or timers involved then have a behaviour similar to an AND-join. When a w

place or timer is triggered by many alternative end points, then this testing pattern needs to be

to each alternative end point separately.

RELATED PATTERNS

Sensitized paths may further contain alternatives (OR-forks), concurrent segments (AND-fork

loops, to be handled respectively with Testing Pattern 1—ALTERNATIVE, Testing Pattern 2—CON-

CURRENT, and Testing Pattern 3—LOOP. UCMs with stubs are assumed to have been flattened du

a previous step.
206 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

UCM-Oriented Testing Patterns for Test Goal Selection

erms of

nts.

lug-ins

relevant

e).

es that

d be a

maps,

 would

ubs or

refore,

different
6.3.8 Testing Pattern and Strategies for a Single Stub and its Plug-ins

NAME: TESTING PATTERN 5—SINGLE STUB

INTENT

To generate, for UCM paths that contain a single stub with plug-ins, test goals expressed in t

sequentially linked start points, responsibilities, waiting places, end points, and other such eve

CONTEXT

The functionality under test is captured as a UCM path that contains a single stub. Various p

may be included in dynamic stubs, and stubs can be nested. Figure 48 is used to illustrate

strategies. It shows a UCM containing a stub (left side) together with a set of plug-ins (right sid

FIGURE 48. Reference UCM: Testing Pattern for Single Stubs

FAULT MODEL

A test goal is a route from a start point to one or multiple end points. The fault model assum

faults hide in a plug-in or in the selection of appropriate plug-ins in one stub (e.g. there coul

non-deterministic choice between two plug-ins). The coverage of all plug-ins in flattened

where the stub is substituted with appropriate plug-ins according to the binding relationships,

ensure that these faults are detected.

FORCES

By flattening a UCM that contains stubs and plug-ins, the resulting UCM no longer contains st

plug-ins, but it may contain alternatives, concurrent paths, loops, and multiple start points. The

the testing patterns previously presented can be applied. However, a plug-in can be used in

S
IN1 b

a

d

c

Plug-in 1

Plug-in 2

SP

EP1

EP2

OUT1

OUT2

IN1

IN2

OUT1

OUT2

OUT1

OUT2
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 207

CHAPTER 6 UCM-LOTOS Testing Framework

re can

ashed

als is

rnative,

n:

lug-in).

map.

n this

s seen

he flat-

g-in is

ntext is

tegy
stubs (contexts). For dynamic stubs, the use of the selection policy in the flattening procedu

help reducing the number of valid combinations of plug-ins in a stub.

The following three strategies are ordered according to the number of plug-ins covered.

STRATEGY 5.A: S INGLE STUB — STATIC FLATTENING

The stub S in Figure 48 is assumed to be static (would be shown as a diamond without the d

lines), hence it contains only one plug-in without any selection policy. The selection of test go

based on the simple substitution of the stub by its plug-in. The testing patterns seen so far (alte

concurrent, loop, and multiple start points) can then be used on the flattened map.

EXAMPLE 1: if Plug-in 1 is used in S, together with Strategy 1.B: Alternative — All paths:

{ <SP, a, EP1>, <SP, b, EP2>}

EXAMPLE 2: if Plug-in 2 is used in S, together with Strategy 2.A: Concurrent — One combinatio

{ <SP, c, d, EP2, EP1>}

CONSEQUENCE

For static stubs, all the plug-ins are obviously covered by the strategy (since there is only one p

The resulting path coverage is as good as that offered by the strategies used on the flattened

STRATEGY 5.B: S INGLE STUB — DYNAMIC FLATTENING, SOME PLUG-INS

The stub S in Figure 48 is dynamic, hence it contains many plug-ins and a selection policy. I

strategy, the selection of test goals is based on the substitution of the stub by a subset of the plug-ins

bound to that stub. Multiple flattened maps may result from this procedure. The testing pattern

so far (alternative, concurrent, loop, and multiple start points) can then be used on each of t

tened maps. This pattern is useful when the same plug-in is bound to many stubs. If this plu

already tested in another stub, then the tester might wish not to cover it again, even if the co

different.

EXAMPLE: Assume this selection policy, where both plug-ins are bound to the stub S:

if (condition==true) then use Plug-in 1 else use Plug-in 2 .

Now, suppose that Plug-in 1 is already tested elsewhere in another stub. This stra
208 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

UCM-Oriented Testing Patterns for Test Goal Selection

ntexts

ed on the

binations

n this

 so far

attened

(stubs)

from

can

ttened

 cover-
would suggest that Plug-in 2 be used in S, but not Plug-in 1. One flattened map would

result, on which Strategy 2.A: Concurrent — One combination can be used:

{ <SP, c, d, EP2, EP1>}

CONSEQUENCE

All plug-ins are tested, but possibly in different stubs. The plug-ins are not tested in all the co

where they belong. The resulting path coverage is as good as that offered by the strategies us

flattened maps. This strategy leads to fewer test goals than Strategy 5.C because some com

of plug-ins in stubs are not covered.

STRATEGY 5.C: SINGLE STUB — DYNAMIC FLATTENING, ALL PLUG-INS

The stub S in Figure 48 is dynamic, hence it contains many plug-ins and a selection policy. I

strategy, the selection of test goals is based on the substitution of the stub by all the plug-ins bound to

that stub. Multiple flattened maps may result from this procedure. The testing patterns seen

(alternative, concurrent, loop, and multiple start points) can then be used on each of the fl

maps. This pattern is useful when a high coverage of the plug-ins in all their potential contexts

is required.

EXAMPLE: Assume this selection policy, where both plug-ins are bound to the stub S:

if (condition==true) then use Plug-in 1 else use Plug-in 2 .

A first flattened map would result from the use of Plug-in 1 in S, and then Strategy

1.B: Alternative — All paths can be used. A second flattened map would result

the use of Plug-in 2 in S, and then Strategy 2.A: Concurrent — One combination

be used. The final collection of goals is the union of those selected for each fla

map: {<SP, a, EP1>, <SP, b, EP2>, <SP, c, d, EP1, EP2> }

CONSEQUENCE

All plug-ins are tested in each of the stubs where they are bound (contexts). The resulting path

age is as good as that offered by the strategies used on the flattened maps.

KNOWN USES

No other uses at this point.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 209

CHAPTER 6 UCM-LOTOS Testing Framework

attened

st goals

ts, and

namic

 a

ture

 shows
RELATED PATTERNS

Flattened maps may contain multiple start points, in which case Testing Pattern 4—MULTIPLE START

POINTS should be used. UCMs with causally linked dynamic stubs are assumed to have been fl

during a previous step using Testing Pattern 6—CAUSALLY LINKED STUBS.

6.3.9 Testing Pattern and Strategies for Causally Linked Stubs

NAME: TESTING PATTERN 6—CAUSALLY LINKED STUBS

INTENT

To generate, for UCM paths that contain causally linked dynamic stubs (e.g. in sequence), te

expressed in terms of sequentially linked start points, responsibilities, waiting places, end poin

other such events.

CONTEXT

The functionality under test is captured as a UCM path that contains multiple causally linked dy

stubs. Various plug-ins may be included, and stubs can be nested. Stubs are assumed to havedefault

plug-in representing the absence of specific features at this location. Plug-ins are used to capfea-

tures that deviate from the basic behaviour. Figure 48 is used to illustrate relevant strategies. It

a UCM containing two stubs (left side) together with their plug-ins (right side). Plug-in 1 is the

default behaviour for both stubs S1 (End is bound to OUT2) and S2 (End is bound to OUT4). Plug-in 2

belongs to S1 whereas Plug-in 3 is used by S2.

FIGURE 49. Reference UCM: Testing Pattern for Causally Linked Stubs

S1
IN1 b

a
Plug-in 2

SP

EP1

EP3
OUT1

OUT2

IN1

OUT1

OUT2

d
c

Plug-in 3 IN2

OUT3

OUT4

Plug-in 1 Start
End

S2
IN2

EP2

OUT3

OUT4
210 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

UCM-Oriented Testing Patterns for Test Goal Selection

es that

 inter-

substi-

 faults

ubs or

atterns

pecially

 numer-

but at a

n help

irable

these

 is per-

ive, con-
FAULT MODEL

A test goal is a route from a start point to one or multiple end points. The fault model assum

faults result from combinations of plug-ins bound to causally linked stubs (potentially a feature

action). The coverage of all combinations of plug-ins in flattened maps, where all stubs are

tuted with appropriate plug-ins according to the binding relationships, would ensure that these

are detected.

FORCES

By flattening a UCM that contains stubs and plug-ins, the resulting UCM no longer contains st

plug-ins, but it may contain alternatives, concurrent paths, and loops. Therefore, the testing p

previously presented can be applied. However, there might be many possible combinations, es

in situations where a UCM has many levels of nested stubs and plug-ins or where stubs have

ous plug-ins. Generating test goals for all combinations leads to more thorough test suites,

higher cost. For dynamic stubs, the use of the selection policy in the flattening procedure ca

reducing the number of combinations of plug-ins in a stub and across causally linked stubs.

The following three strategies are ordered according to the likelihood of finding undes

interactions between plug-ins (from low-yield test goals to high-yield test goals). Note that

strategies are not mutually exclusive and can be used in combination.

STRATEGY 6.A: CAUSALLY LINKED STUBS — DEFAULT BEHAVIOUR

The default plug-ins are used in all the causally linked stubs, and the selection of test goals

formed based on the resulting flattened map, where the testing patterns seen so far (alternat

current, loop, and multiple start points) can be used.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 211

CHAPTER 6 UCM-LOTOS Testing Framework

lug-ins.

ap. The

ausally

 selec-

rns seen

sulting

verage of

 flat-

 on the

nd mul-
EXAMPLE: Plug-in 1 is used in S1 and in S2. With Strategy 1.B: Alternative — All paths:

{ <SP, EP3>}

CONSEQUENCE

Targets the validation of default behaviour, in the absence of features captured by untested p

The resulting path coverage is as good as that offered by the strategies used on the flattened m

coverage of plug-in combinations is very weak (low-yield test goals).

STRATEGY 6.B: CAUSALLY LINKED STUBS — INDIVIDUAL FEATURES

One feature (plug-in) is used in one stub, while the default plug-ins are used in all the other c

linked stubs. Multiple flattened maps may result from this procedure, one for each feature. The

tion of test goals is performed based on the resulting flattened maps, where the testing patte

so far (alternative, concurrent, loop, and multiple start points) can be used.

EXAMPLE: A first flattened map results from Plug-in 1 being used in S1 and Plug-in 3 in S2. The

second map results from Plug-in 2 being used in S1 and Plug-in 1 in S2. With Strategy

1.B: Alternative — All paths, the overall set of test goals is:

{ <SP, a, EP1>, <SP, b, EP3>, <SP, c, EP2>, <SP, d, EP3>}

CONSEQUENCE

Targets the validation of individual feature behaviour, in the absence of other features. The re

path coverage is as good as that offered by the strategies used on the flattened maps. The co

plug-in combinations is still weak (low-yield test goals).

STRATEGY 6.C: CAUSALLY LINKED STUBS — FEATURE COMBINATIONS

All combinations of two or more features (plug-ins) are used in causally linked stubs. Multiple

tened maps may result from this procedure. The selection of test goals is performed based

resulting flattened maps, where the testing patterns seen so far (alternative, concurrent, loop, a

tiple start points) can be used.
212 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

UCM-Oriented Testing Patterns for Test Goal Selection

rent

d on the

t inter-

6.B, i.e.

las-

 use of

t goals

ns, as

re than

s a link

s to

r testing
EXAMPLE: The flattened map results from Plug-in 2 being used in S1 and Plug-in 3 in S2. With

Strategy 1.B: Alternative — All paths, the set of test goals becomes:

{ <SP, a, EP1>, <SP, b, c, EP2> , <SP, b, d, EP3> }

CONSEQUENCE

Targets the validation of feature interactions resulting from combination of plug-ins in diffe

dynamic stubs. The resulting path coverage is as good as that offered by the strategies use

flattened maps. The coverage of plug-in combinations is good (high-yield test goals). The mos

esting test goals are those different from the goals generated by Strategy 6.A and Strategy

{ <SP, b, c, EP2> , <SP, b, d, EP3>} in the example above. Some of these interactions might be c

sified as undesirable by designers and requirements engineers; they should be prevented by the

appropriate conditions and selection policies at the UCM level, and the corresponding tes

should be used as a basis for the generation of rejection test cases.

KNOWN USES

No other uses at this point.

RELATED PATTERNS

Flattened maps may still contain individual stubs, to be handled by Testing Pattern 5—SINGLE STUB.

Rather than covering all possible combinations of features, checking all pair-wise combinatio

suggested by Williams [375], could represent a sensible and cost-effective solution when mo

two stubs are causally linked.

6.3.10 DISCUSSION

This section discusses three topics related to UCM-oriented testing patterns. First, it provide

between testing patterns and the LOTOS testing theory. Second, it briefly compares these pattern

closely related test patterns written by Binder. Last, the test purposes generated through ou

patterns are compared to other types of test purposes found in the literature.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 213

CHAPTER 6 UCM-LOTOS Testing Framework

formal

of

nts,

bstract

onal def-

ced by

y

-

n-

the
Relating Testing Patterns to the LOTOS Testing Theory

Test goals are selected by applying testing patterns on a given UCM. If individual UCMs were

models, then our testing patterns could be linked to the LOTOS testing theory. Under the assumption

the existence of a LOTOS interpretation for each UCM obtained from the functional requireme

which could be constructed according to the guidelines described in the previous chapter, a

causal sequences could be compared to reductions of canonical testers. Table 18 gives additi

initions for unbound UCM paths (without components) that can be described in terms of LTSs:

TABLE 18. Notation for UCMs Interpreted in LOTOS

There may be many UCMs involved in the construction of a LOTOS prototype. Each of them

could be transformed, while abstracting from underlying components, into a separate LOTOS model

LUn. The generation of sound test cases for the integrated prototype model can be reinfor

checking that test goals (abstract sequences) selected from UCMn respect the behaviour described b

LUn. In other words, test goals used in acceptance test cases should be reductions (red) of the canoni-

cal tester of the corresponding individual model LUn. We suggest this as a soundness property that

must be satisfied by our goals. This is described by Property 1, where UCMn is used for the construc

tion of LUn and for the selection of test goals in a test group TGn (see Table 15).

∀LUn, ∀Tx, Tx ∈ ACCEPT(TGn) ⇒ Goal(TP(Tx)) red CT(LUn) (PROPERTY 1)

As for rejection test cases in the test suite TS, their goals must not be reductions of the cano

ical tester of any LUn (Property 2).

∀LUn, ∀Tx, Tx ∈ REJECT(TS) ⇒ ¬(Goal(TP(Tx)) red CT(LUn)) (PROPERTY 2)

Notations Definitions

LOTUCMS
Set of LOTOS interpretations (behaviour expressions) of UCM paths used for
construction of a specification under test. LOTUCMS ⊆ SPECS

LUn LOTOS interpretations of UCMn. LUn ∈ LOTUCMS.
214 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

UCM-Oriented Testing Patterns for Test Goal Selection

le in

t

der to

ct) (c).

6).
To illustrate the effect of Property 1, the UCM of Figure 45 is reused as an examp

Figure 50, where several steps are identified:

FIGURE 50. Individual UCM in LOTOS with its LTS, Canonical Tester and Test Purposes

n A LOTOS behaviour expression LU (b) is constructed from an individual UCM withou

components (a) according to the guidelines in Section 5.2.

o According to Section 6.3.5, Strategy 2.C can be applied to the same UCM (a) in or

generate goals for test purposes (the latter also include test types, i.e. accept or reje

p LU (b) can be transformed into a labelled transition system (d) (see Section 2.3.5).

q A canonical tester CT(LU) (e) is generated from the LTS (d) (discussed in Section 2.3.

a c

a b

b

SP

TP1 = <Accept, <SP, a, b, c, EP>>

TP2 = <Accept, <SP, b, a, c, EP>>

TP3 = <Accept, <SP, b, c, a, EP>>

bSP EPc

a

Application of
Strategy 2.C

Application of
Construction Guidelines

LU := SP;
 (
 a; exit ||| b; c; exit
)
 >>
 EP; stop

c

i

EP

c a

i

EP

i

EP

i i

i i

a

SP

b

c

EP

a c

c

EP

a

EP

b

(d) LU (LTS form) (e) CT(LU)

(b) LU (LOTOS form)

(c) Test purposes

n o

p r

q

s

Application of
Property 1

(a) Individual UCM, without components

Goals
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 215

CHAPTER 6 UCM-LOTOS Testing Framework

p gen-

s of the

rty that is

s and

r gen-

ny UCM

 terms

nables

c-

lly

ly, more

rposes

ent the

ead to

g con-

ons
r According to Property 1, the goal of each test purpose in the (acceptance) test grou

erated from the UCM needs to be a reduction of CT(LU). Indeed:

Goal(TP1) red CT(LU), Goal(TP2) red CT(LU), and Goal(TP3) red CT(LU).

Step r shows that the test goals are sound, and hence the confidence in the soundnes

LOTOS test cases to be generated is increased. The soundness of the test cases is a prope

required for the val relation to hold. Property 1 can therefore help ensuring that testing pattern

their strategies generate sound test purposes.

Applications of Property 2 are of a similar nature. If a test goal is intended to be used fo

erating a rejection test case, then this goal must not be a reduction of the canonical tester of a

considered in the requirements.

The existence of a canonical tester for an individual UCM, which is more manageable in

of complexity and size than the canonical tester of the whole integrated set of UCMs, also e

another strategy to be used on top of testing patterns for the selection of test purposes. Steps sug-

gests that test purposes can be derived directly from CT(LU), provided that they are irreducible redu

tions of this canonical tester. Conventional LOTOS test selection techniques could therefore potentia

be used at this point, but these techniques are outside the scope of this thesis. Alternative

detailed test purposes (represented as trees) could be generated from a goal combined to LU through

techniques like Probert and Wei’s Non-deterministic Ripple Sets [295]. However, such test pu

would no longer be sequential and could include inconclusive verdicts, two things that augm

difficulty of assessing validity and of establishing simple diagnostics.

Note that for non-deterministic choices, the application of some testing patterns may l

test goals that violate Property 1. For example, if a UCM OR-fork is guarded by two overlappin

ditions (X>3 and X<5), selecting X=4 for any of the two path would result in a test goal that is not a

reduction of the canonical tester of the UCM interpreted in LOTOS, and to a may pass verdict at test-

ing time. This could be detected by step r before applying the test case to the prototype. Soluti
216 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

UCM-Oriented Testing Patterns for Test Goal Selection

ves and

 of the

els of

L

op cov-

ristics,

red to

equire-

odels

strate-

h are

at are

uch as

ling

 the use

 design

 sim-

rated in

iate

th use
could involve modifying the conditions in the UCM (see Section 6.4.3) or using step s to augment

the test case until it satisfies Property 1. The resulting test would become a tree with alternati

would no longer be linear.

Comparison with Binder’s Test Patterns

In his book, Binder presented test patterns for object-oriented systems [51]. To the knowledge

author (and to mine), this is the most comprehensive collection of such patterns. Multiple lev

details are addressed, from classes to applications to regression testing.

Two of his test patterns stand out as being related to the ones defined in this chapter:

• Round-trip Scenario Test [50]: its intent is to extract a control flow model from a UM

sequence diagram and then develop a path set that provides minimal branch and lo

erage (similar to Testing Patterns 1 and 3). The proposed solution, based on heu

leads to fairly synthetic tests. Our testing patterns are more flexible and better tailo

UCMs, and they lead to test goals and test cases of higher quality and closer to r

ments. Binder’s solution does not consider concurrency (partial orders) and sub-m

(e.g. plug-ins). The UCM-oriented test patterns handle such constructs and provide

gies for coping with related issues such as scalability and state explosion whic

avoided altogether by Binder. Since his book focus on OO models and programs th

mostly sequential in nature, topics relevant to concurrent and distributed systems (s

telecommunications systems) are covered only to a very limited extent.

• Extended Use Case Test: its intent is to develop a system-level test suite by mode

essential capabilities as extended use cases. Binder cites many benefits related to

of use cases: close to requirements, developed by various stakeholders, leverage

information, capture main functionalities and relationships, and so on. UCMs provide

ilar advantages, together with a better management of several disadvantages enume

this pattern: difficult to find the right level of abstraction (UCMs provide an appropr

level of abstraction for early design stages), performance is usually not specified wi
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 217

CHAPTER 6 UCM-LOTOS Testing Framework

re

lu-

te test

 way of

aknesses

est)

 UCMs

nts corre-

t cases

tegrate

they are

rmance

quire-

 prose

work.

nied by

 set of

t pur-
cases (it can be with UCMs), and UML extend and include relationships for use cases a

difficult to flatten (flattening is simpler with the UCM stub/plug-in mechanism). The so

tion proposed is very generic and is not of much help for the generation of concre

goals, whereas the UCM-oriented testing pattern language offers a more systematic

generating test goals.

UCM-oriented testing patterns, language and strategies hence address some of the we

of Binder’s patterns related to the testing of telecommunications systems.

Comparison with Related Types of Test Purposes

In this thesis, a test purpose is a pair <type, goal> where the test type is either acceptance (must t

or rejection (reject test). The testing patterns target the selection of functional test goals from

capturing requirements or high-level designs. These test goals are abstract sequences of eve

sponding to UCM start points, responsibilities, waiting places/timers, and end points. The tes

generated from such test purposes aim to validate formal specifications (prototypes) that in

functionalities of complex telecommunications systems expressed as Use Case Maps.

Test goals and test purposes have often been used in various contexts. In general,

combined to formal specifications (assumed to be correct and valid) in order to generate confo

test cases. Here is a brief comparison between our test purposes and related ones:

• The Conformance Testing Methodology and Framework (CTMF) [193] use test pur-

poses to describe well-defined test objectives, focusing on a single conformance re

ments or a set of related conformance requirements, in a rather informal way using

descriptions. How to generate these test purposes is outside the scope of this frame

• The Formal Methods in Conformance Testing (FMCT) framework [196] defines a

generic and formal test purpose as an abstract requirement or behaviour accompa

an implementation or satisfaction relation. Such test purpose hence describes the

implementation models that should contain this behaviour or requirement. Our tes
218 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

UCM-Oriented Testing Patterns for Test Goal Selection

st goal

s from

 (e.g.

turing

ey are

et

s com-

e. The

tion

 from

 using

 non-

ses is

ing test

e).

and

tions

 LTS,

stem.

ate or
pose is essentially an instantiation of this concept, where the requirement is the te

and the satisfaction relation is val combined with the test type.

• Grabowski et al. [158], Ek et al. [123], and more recently Probert et al. [297][298] spec-

ify test purposes as MSCs and use them to guide the generation of TTCN test case

an SDL specification. This is one of the techniques currently supported by SDL tools

Telelogic’s). Due to their graphical nature, MSCs represent an attractive way of cap

test goals. Unfortunately, how these MSCs are generated is not discussed (th

assumed to be given or validated by customers). Moreover, these test purposes targMay

tests as they describe successful sequential traces, and the SDL specification help

puting other branches that fail or that are inconclusive in the corresponding test cas

test purposes emphasized in this thesis lead to Must tests and Reject tests, which lead to

simpler diagnostics and clearer assessments.

• Probert and Wei [295] use prose test purposes in an algebraic semantic context (Non-

deterministic Ripple Sets — NRS) to guide the generation of test cases for the valida

and conformance checking of implementations. Much in line with test goals derived

UCMs, their concept of test purpose implies a specific, biased set of paths (specified

choice patterns) that have the potential to be traversed. Again, a correct and possibly

deterministic service specification (LTS) is required, and the origin of the test purpo

not discussed (assumed to come from the requirements). The leaves of the result

case (trees) also have to be tagged manually with a verdict (pass, fail, or inconclusiv

• Bertolino et al. [48] use “architectural descriptions” of systems in abstract LTS form

derive test purposes directly from them in order to test conformance of implementa

against software architectures. The difficulty here resides in the complexity of the

which becomes very large (or even infinite) for any realistic telecommunications sy

Also, the LTS is assumed to be correct, whereas our test goals aim to validate the LOTOS/

LTS specification that integrates all the functionalities expressed with UCMs.

• Jard et al. [214][217] use graphs (partial LTSs) as test goals and use them to gener

validate test cases using a formal specification (in SDL or LOTOS) and the TGV toolkit. In
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 219

CHAPTER 6 UCM-LOTOS Testing Framework

cking is

ct.

CM

ls

te

 of test

 vari-

ction of

 semi-for-

ion like

plate to

ategies

raceable

ces (test

nd

ce they

ng

es were

ns sys-
general, how these test goals are generated remains unclear (although model che

presented as a candidate) and the formal specification is again assumed to be corre

• Charfi uses a path traversal algorithm adapted from Miga’s [258] to traverse a U

model (augmented with key annotations in LOTOS) and extract test goals [91]. These goa

are then used, in combination with a LOTOS specification and the TGV toolkit, to genera

acceptance test cases. Although the level of automation is rather high, the quantity

goals generated becomes difficult to manage for any complex collection of UCMs.

Note that a recent addition to the UCM language called scenario definitions [84][258] offers

another alternative to UCM designers for defining test goals using an initialization of global path

ables. Applications to the generation of tests is however future work.

6.3.11 Section Summary
UCM scenarios that describe the requirements or the design should also be used for the sele

appropriate test goals. This section argues that testing patterns can be used as a sensible and

mal approach to test selection that fits the level of abstraction targeted by a semi-formal notat

Use Case Maps.

This section provides a UCM-oriented testing pattern language and an appropriate tem

support this selection. Six testing patterns and a total of twenty-five coverage-directed str

based on UCM constructs were defined, motivated, and illustrated. The patterns represent a t

link between functional requirements and test cases. They produce abstract causal sequen

goals) which in turn can be used for the generation of sound LOTOS test processes (acceptance a

rejection). These patterns are independent of any underlying structure of components, hen

apply to a wide variety of systems.

A relation between testing patterns and the LOTOS testing theory was established. The testi

patterns were compared to those of Binder’s, and the resulting test goals and test purpos

briefly compared with relevant techniques that also use test purposes in the telecommunicatio

tem domain.
220 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Complementary Strategies and Test Case Generation

opriate

 L

 using

s linking

d non-

on pro-

he con-

 also

nsibili-

in the test

eration

ponsi-

on situ-

sages/

oints

ility.

 and
Although UCM-based testing patterns represent a major step in the selection of appr

test cases, additional information still needs to be considered for the generation of detailedOTOS

processes from abstract sequences. This topic is addressed in the next section.

6.4 Complementary Strategies and Test Case Generation
In order to generate LOTOS test cases from Use Case Maps, test goals first need to be selected

the testing patterns defined in the previous section. However, several problems remain, such a

an abstract sequence to the design decisions made during the construction of the LOTOS prototype

(Section 6.4.1), selecting appropriate values (Section 6.4.2), dealing with incompleteness an

determinism (Section 6.4.3), and generating rejection tests (Section 6.4.4). The current secti

poses several complementary strategies as elements of solution for the UCM-LOTOS testing frame-

work.

6.4.1 From Test Goals to Test Cases
Dealing with telecommunications systems often involves the use of components and data. T

struction of a LOTOS specification from UCMs is based on several guidelines (Section 5.2), but

on design decisions related to the definition of data, messages, parameters, visibility of respo

ties and events, etc. Beside the obvious consistency required between the gate names used

cases and in the specification (CG-1), these design decisions influence the generation of a LOTOS test

case from a test purpose. More precisely, the following elements need to be taken into consid

(the relevant construction guidelines are cited):

• Visibility : due to the presence of components in the original set of UCMs, some res

bilities and events from the abstract sequence may be hidden at some level. Comm

ations involve responsibilities and events located inside a component or mes

interactions between two given components (CG-5.c). Timers (CG-4.a) and failure p

(CG-4.c) may also have visible events in order to improve controllability and testab

Since a LOTOS process can only synchronize on visible gates, hidden responsibilities

events should not be part of the test cases.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 221

CHAPTER 6 UCM-LOTOS Testing Framework

ommon

s (CG-

n two

essages

rection

cted,

rom an

ht be

was

ppropri-

e little

 already

tion of

redicates

 num-

 a good

 be cre-

 used at
• Parameters: when a responsibility or an event is specified with parameters in the LOTOS

prototype, these parameters need to be included and instantiated in the test case. C

cases include the use of dynamic responsibilities (CG-4.d) and component interface

5.b). Parameter values need to conform to the type definitions (CG-8).

• Messages: if visible messages are used to specify the causality relationship betwee

responsibilities in the abstract sequence under consideration (CG-7), then these m

need to be included in the test case as well. Shared responsibilities (CG-7.a) and di

of messages also need to be considered (CG-7.b).

• Preambles: if a precondition is attached to the UCM from which a test goal was sele

then this precondition needs to be satisfied by the test case. To bring the system f

initial state to a state that satisfies this precondition, an appropriate preamble mig

necessary.

• Verification steps: if a postcondition is attached to the UCM from which a test goal

selected, then this postcondition needs to be tested by the test case. To do so, an a

ate sequence of verification steps might be necessary.

Note that stubs (CG-3) and the integration of path segments (CG-2 and CG-6) hav

impact on how to go from test goals to test cases because most of the related decisions are

embedded in the goals generated from the testing patterns.

Additional selection strategies, discussed in the next two sections, can guide the selec

suitable data values for parameters.

6.4.2 Strategies for Value Selection
When parameters need to be instantiated, the values must satisfy the guards and selection p

accompanying the LOTOS events that correspond to the selected goal. However, a possibly large

ber of such values might exist, and selecting one combination might not be sufficient to ensure

coverage of parameters. If some data-oriented coverage is required, multiple test cases could

ated for each test goals. Conventional strategies related to traditional black-box testing can be
222 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Complementary Strategies and Test Case Generation

r analy-

.

mple,

se

s, there

ss and/or

 pass

 pass

en test

er to get

-forks

cification

sed in

.8).
this point [44]. Two of the best-known strategies are equivalence classes and boundary interio

sis [267]. Note that the UCM-LOTOS testing framework does not focus on data-oriented coverage

6.4.3 Completeness and Determinism Issues
UCMs may contain some non-deterministic behaviour due to overlapping conditions. For exa

suppose a two-branch OR-fork where two conditions C1 and C2 are located, one per branch. The

conditions use variables whose type is a subset of natural numbers ([0..5]). For these condition

are four cases where the generation of test cases can be influenced by the lack of completene

determinism:

• Complete and disjoint conditions: assume that C1 is X>3 and C2 is X≤3

The simplest case. Any value will lead to the selection of one specific alternative.

• Complete conditions with conjunction: assume that C1 is X>3 and C2 is X<5

X=4 is a value that will result in a non-deterministic execution (and possibly to a may

verdict).

• Incomplete and disjoint conditions: assume that C1 is X>3 and C2 is X<3

X=3 is a value that will cause a deadlock.

• Incomplete conditions with conjunction: assume that C1 is 0<X<3 and C2 is 1<X<5

X=2 is a value that will result in a non-deterministic execution (and possibly to a may

verdict). X=5 is a value that will cause a deadlock.

The choice of a specific value in a test case can influence the resulting verdict for a giv

goal. The second case indicates a UCM where refinement of conditions may be needed in ord

a deterministic specification. The last two cases are symptoms of a problematic UCM. For OR

in general and for selection policies in dynamic stubs, Parnas tables can help to assess, at spe

time, that a collection of conditions is deterministic and complete [276]. Such tables could be u

combination with testing patterns for alternatives and for stubs/plug-ins (Sections 6.3.4 and 6.3
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 223

CHAPTER 6 UCM-LOTOS Testing Framework

perties

s can

ly target

scenarios

can go

rategies

inspired

utput

ppen),

enta-

 testing

 detec-

 whereas

o a later

ctly

idden

n only

 1.C).
6.4.4 Strategies for Rejection Test Cases
Deriving rejection test cases from requirements is a challenging task. If some scenarios or pro

are explicitly forbidden (e.g. as suggested by Harel and his play-in scenarios [167]), then UCM

be used to capture them, and then the proposed testing patterns and strategies, which main

acceptance test cases, could be used to derive rejection test cases. However, such forbidden

are usually missing from the requirements. Often in telecommunications systems, anything

wrong and the number of potential rejection test cases is unlimited. Consequently, selection st

for rejection test cases appear just as necessary as for acceptance test cases.

Several rejection test case selection strategies are introduced in this section. They are

by various sources and techniques, including: invalid output, invalid input resulting in a valid o

(in black-box testing [267]), use of explicit safety properties (i.e., something bad should not ha

and “dirty” testing [44], which is automatable to some extent for testing robustness of implem

tions [234]. Our strategies adapt some of these techniques and ideas to the LOTOS-UCM testing

framework. These strategies focus on high-level specifications and may not all be relevant for

real implementations. For instance, implementations are usually required to handle errors with

tion routines and exceptions (hence, acceptance test cases should cover these situations),

high-level specifications (such as the ones we use in this thesis) may defer such treatment t

stage in the design process.

We suggest the following non-exhaustive list of five strategies:

R1.Forbidden scenarios from requirements: several rejection test cases can be generated dire

from requirements or safety properties. The generation is usually straightforward when forb

scenarios are defined as explicit requirements.

R2.Use of testing patterns: several goals generated from testing patterns and their strategies ca

be used for rejection test cases. The most notable ones are:

• Unsatisfiable set of conditions in successive alternatives found in OR-forks (Strategy

• m-1 iterations in a loop, where m is the minimal number of iterations, or n+1 iterations in a

loop, where n is the maximal number of iterations (Strategy 3.D).
224 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Complementary Strategies and Test Case Generation

d 4.E).

).

trate-

mic

alue

tion test

n an

id

can be

nting its

 For

nce

 found

guages

r

odi-

re not

xclusive

xperi-
• Redundant stimuli that cause two instances of the resulting event (Strategies 4.D an

• Insufficient stimuli that still cause the resulting event (Strategies 4.F and 4.G).

• Unsatisfiable set of conditions attached to multiple start points (Strategies 4.A to 4.H

• Unsatisfiable set of conditions found in selection policies of nested dynamic stubs (S

gies 5.B and 5.C)

• Unsatisfiable set of conditions found in selection policies of causally linked dyna

stubs, e.g. undesirable feature interactions (Strategy 6.C).

R3.Incomplete conditions: several collections of conditions can be incomplete. Selecting a v

that is not covered by any of these conditions, as seen in Section 6.4.3, leads to a rejec

case. This however is usually a symptom of a problem in the UCMs.

R4.Off-by-one value: an invalid output for a given set of valid inputs translates, in UCM terms, i

incorrect resulting event. Since LOTOS allows non-deterministic behaviour, valid and inval

resulting events could be offered simultaneously to a test case. Invalid resulting events

detected with a rejection test case by using the acceptance test case and by compleme

resulting values. The same LOTOS gate is used, but the accepted values are totally disjoint.

instance, using appropriate predicates, the resulting event EP !Display !3 could be comple-

mented into EP !Display ?n:number [n ne 3] or into EP ?msg:MsgType ?n:number

[(msg ne Display) or (n ne 3)] . This fault model seems rather simple yet, in the abse

of explicit forbidden scenarios, it increases the confidence that the expected result, usually

in a corresponding acceptance test, is the only one the system can offer. Specification lan

such as SDL have explicit catch-all constructs (e.g. OTHERWISE clause) that can be used in simila

situations.

R5.Off-by-one gate: similar to the off-by-one value strategy, only this time the gate name is m

fied. This gate mutation is particularly useful when values and gate splitting (interfaces) a

used, i.e. only the gate name represents the expected result. This strategy is not mutually e

with the off-by-one value strategy.

Some of these strategies will be further illustrated with the TTS example and with the e

ments discussed in Chapter 8.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 225

CHAPTER 6 UCM-LOTOS Testing Framework

he ini-

usually

as

nt that

equire-

pond to

to the

 in the

 list of

ved.

 genera-

r vali-

(Section

ected in

r reject).

 accord-
Rejection Test Cases and Incomplete Requirements

A difficulty appears when requirements are incomplete, which is to be expected especially in t

tial stages of system development. An incomplete set of UCMs and validation test cases

results from such situations. Some rejection test cases constructed following strategies such R2 to

R5 (described above) can be problematic as they might imply the rejection of a valid requireme

has not been specified explicitly. Accordingly, rejection test cases should be inspected by r

ments engineers in order to assess their correctness and to confirm that they do not corres

implicit and valid requirements. Incorrect rejection test cases can motivate modifications

requirements, and hence to the specification.

Also, as requirements evolve, several constraints expressed as forbidden situations

requirements may be relaxed to allow the creation of new functionalities and features. The

rejection test cases needs to be revised accordingly and some of them might have to be remo

6.5 Testing the TTS System
The TTS Use Case Maps, together with the defined testing patterns, enable the selection and

tion of functional test cases for verifying that the prototype satisfies the UCM scenarios and fo

dating scenario integration. First, abstract causal sequences are selected from the UCMs

6.5.1). Additional abstract sequences aiming to test the robustness of the prototype are sel

Section 6.5.2. All these abstract sequences are test goals, which are then transformed into LOTOS test

processes in Section 6.5.3. The results of their execution are presented in Section 6.5.4.

6.5.1 Test Goals for TTS
Test purposes are composed of test goals extracted from the UCMs and of test types (accept o

Since many test goals may exist, guidance is required for selecting the ones most appropriate

ing to the test plan. Testing patterns can help in this selection process.
226 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Testing the TTS System

point

g pattern

re are

two

ubs,

 to four

not the

tives,

inations

ceptance

c

tegy

goals,

nd

one is
The integrated UCM view of the Tiny Telephone System (Figure 20) is the starting

where testing patterns can be applied. The three steps suggested in the UCM-oriented testin

language (Section 6.3.3) are used here.

The first step (Figure 41) consists in flattening the stubs contained in the TTS UCM. The

no causally linked stubs at the beginning, so Strategy 5.A is applied to stub ST, which is therefore

replaced by its plug-in (TERMINATING). This results in an intermediate flattened map where

dynamic stubs (SO and SD) are causally linked. Since the number of plug-ins is small for both st

all three strategies in Testing Pattern 6 are applied. As a result, four combinations of stubs lead

flat UCMs (i.e. without stubs).

The second step (Figure 42) handles flat maps that have multiple start points. This is

case for any of the maps here, so Testing Pattern 4 is not used.

The third step (Figure 43) consists in handling the remaining UCM constructs (alterna

concurrent segments, loops) for each flat map. Four test groups are created for the four comb

of stubs (flat maps), and each group will contain test goals than can be used to generate ac

and/or rejection test cases.

Combination 1: SO = DEFAULT , ST = TERMINATING, SD = DEFAULT

This combination, resulting from Strategy 6.A applied to stubs SO and SD, corresponds to the basi

call UCM of Figure 18. Strategy 1.B (Alternative — All paths) is applied to the OR-fork and Stra

2.B (Concurrent — Some combinations) to the AND-fork. This leads to the following three test

where hidden responsibilities are marked by a star (*). Conditions found along the selected paths a

in the selection policies are also enumerated (A is the originating party, B is the terminating party, and

C is a third party). For all these sequences, A and B are not subscribed to any feature. Note that A is

originally busy at the beginning (see the informal requirements in Section 4.3.1); A is not yet involved

in any call, but A cannot receive any call request (this is similar to a situation where a user’s ph

initially off hook).
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 227

CHAPTER 6 UCM-LOTOS Testing Framework

com-

ibili-

ND-
• Abstract sequence: <req, vrfy*, prbs*, upd*, sig, ring>

Constraints: [not(has(A, OCS))], [busy(A)], [not(has(B, CND))], [idle(B)]

Informally: A calls B (idle), ringback first.

• Abstract sequence: <req, vrfy*, prbs*, upd*, ring, sig>

Constraints: [not(has(A, OCS))], [busy(A)], [not(has(B, CND))], [idle(B)]

Informally: A calls B (idle), ring first.

• Abstract sequence: <req, vrfy*, pbs*, sig>

Constraints: [not(has(A, OCS))], [busy(A)], [not(has(B, CND))], [busy(B)]

Informally: A calls B (busy).

In these constraints, has(A, OCS) means that A has subscribed to OCS, busy(A) means A is

busy, idle(B) stands for B is idle, and so on.

Note that the application of Strategy 2.B to the AND-fork resulted in the coverage of all

binations of visible events (sig and ring), just as Strategy 2.C would have because hidden respons

ties are not used in test cases.

Combination 2: SO = DEFAULT , ST = TERMINATING, SD = CND

This combination, resulting from Strategy 6.B applied to stubs SO and SD, corresponds to the CND

UCM of Figure 19(b). Again, Strategy 1.B is applied to the OR-fork and Strategy 2.B to the A

fork. There are three test goals:

• Abstract sequence: <req, vrfy*, prbs*, disp, upd*, ring, sig>

Constraints: [not(has(A, OCS))], [busy(A)], [has(B, CND)], [idle(B)]

Informally: A calls B (idle), displays, ring first.

• Abstract sequence: <req, vrfy*, prbs*, disp, upd*, sig, ring>

Constraints: [not(has(A, OCS))], [busy(A)], [has(B, CND)], [idle(B)]

Informally: A calls B (idle), displays, ringback first.
228 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Testing the TTS System

hether

 through

d on

 to the

te
• Abstract sequence: <req, vrfy*, pbs*, sig>

Constraints: [not(has(A, OCS))], [busy(A)], [has(B, CND)], [busy(B)]

Informally: A calls B (busy), no display.

Note that the last test goal is the same as the last one from the previous combination. W

B has subscribed to CND or not is of no consequence because the selected path does not go

stub SD. Consequently, only the two first sequences will be used in the test suite.

Combination 3: SO = OCS, ST = TERMINATING, SD = DEFAULT

This combination, also resulting from Strategy 6.B applied to stubs SO and SD, corresponds to the

OCS UCM of Figure 19(a). This time, Strategy 1.C (Alternative — All path combinations) is use

the two consecutive OR-forks, and Strategy 2.A (Concurrent — One combination) is applied

AND-fork because the ordering between ring and sig is not critical and because the intermedia

responsibilities involved are hidden. There are three new test goals:

• Abstract sequence: <req, chk*, vrfy*, prbs*, upd*, ring, sig>

Constraints: [has(A, OCS)], [busy(A)], [allowed(B)], [not(has(B, CND))], [idle(B)]

Informally: A calls B (idle), allowed.

• Abstract sequence: <req, chk*, vrfy*, pbs*, sig>

Constraints: [has(A, OCS)], [busy(A)], [allowed(B)], [not(has(B, CND))], [busy(B)]

Informally: A calls B (busy), allowed but busy.

• Abstract sequence: <req, chk*, pds*, sig>

Constraints: [has(A, OCS)], [busy(A)], [denied(B)], [not(has(B, CND))], [busy(B)]

Informally: A calls B, denied.

The condition allowed(B) implies that B is not part of A’s OCS list, whereas denied(B) means the

opposite.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 229

CHAPTER 6 UCM-LOTOS Testing Framework

xplicitly

repre-

th fea-

 Three

mbina-

f test-

st goals

ate than
Combination 4: SO = OCS, ST = TERMINATING, SD = CND

This last combination, resulting from Strategy 6.C applied to stubs SO and SD, allows for the detec-

tion of undesired behaviour when both features are active, an interesting case that was not e

considered when capturing the requirements with individual UCMs. The following test goals

sent desired fine-grained liveness properties which might be violated by the prototype where bo

tures are integrated. Strategy 1.B is used for both OR-forks and Strategy 2.A for the AND-fork.

test goals are hence sufficient, but two of them are similar to sequences defined for previous co

tions:

• Abstract sequence: <req, chk*,vrfy*,prbs*, disp, upd*,ring, sig>

Constraints: [has(A, OCS)], [busy(A)], [allowed(B)], [has(B, CND)], [idle(B)]

Informally: A calls B (idle), allowed, displays.

• Abstract sequence: <req, chk*, vrfy*, pbs*, sig>

Constraints: [has(A, OCS)], [busy(A)], [allowed(B)], [has(B, CND)], [busy(B)]

Informally: A calls B (busy), allowed but busy. Already covered.

• Abstract sequence: <req, chk*, pds*, sig>

Constraints: [has(A, OCS)], [busy(A)], [denied(B)], [has(B, CND)], [busy(B)]

Informally: A calls B, denied. Already covered.

Combining the Test Goals

A total of nine original test goals were extracted from the integrated UCM (Table 19). The use o

ing patterns led to three duplicate goals which will not be included in the test suite. Because te

are described at a high level of abstraction, duplicate test goals are easier to detect and elimin

duplicate test cases and this elimination results in a more optimized test suite.
230 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Testing the TTS System

. All the

atterns.

cenarios

sis [55],

obustness
TABLE 19. Test Goals Extracted from UCMs Through Testing Patterns

Test purposes include these goals together with test types, i.e. acceptance or rejection

test goals seen here will be used to create test cases of both types.

6.5.2 Further Test Goals for Robustness Testing
It should be emphasized that one should not limit the testing to the goals set through testing p

Further goals can be defined for other types of requirements (e.g. robustness), concurrent s

along the same paths, or data values prone to errors (e.g. using boundary analysis). Risk analy

business goals and non-functional requirements can be used to suggest scenarios useful as r

tests. The following five test goals are used as an illustration of such cases:

• Abstract sequence: <req, vrfy*, pbs*, sig>

Constraints: [not(has(A, OCS))], [busy(A)]

Informally: A calls A (busy), should return a busy signal.

• Abstract sequence: <req, vrfy*, upd*, ring, sig, req, vrfy*, pbs*, sig>

Constraints: [not(has(A, OCS))], [busy(A)], [not(has(B, CND))], [idle(B)], [busy(C)]

Informally: A calls B (idle), then C calls B (busy). The busy state of B should be set.

Test
Group #

Stub SO Stub ST Stub SD
Test

Goal #
Abstract Sequence

1 DEF. TERM. DEF.

1 <req, vrfy*, prbs*, upd*, sig, ring>

2 <req, vrfy*, prbs*, upd*, ring, sig>

3 <req, vrfy*, pbs*, sig>

2 DEF. TERM. CND
4 <req, vrfy*, prbs*, disp, upd*, ring, sig>

5 <req, vrfy*, prbs*, disp, upd*, sig, ring>

3 OCS TERM. DEF.

6 <req, chk*, vrfy*, prbs*, upd*, ring, sig>

7 <req, chk*, vrfy*, pbs*, sig>

8 <req, chk*, pds*, sig>

4 OCS TERM. CND 9 <req, chk*,vrfy*,prbs*, disp, upd*,ring, sig>
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 231

CHAPTER 6 UCM-LOTOS Testing Framework

nt)

’t care

oints

ch goal.

ues are
• Abstract sequence: <req, req, vrfy*, vrfy*, pbs*, pbs*, sig, sig>

Constraints: [not(has(A, OCS))], [busy(A)], [busy(B)]

Informally: A calls B (busy) while B calls A (busy).

• Abstract sequence: <req, chk*, pds*, sig>

Constraints: [has(A, OCS)], [busy(A)], [denied(A)]

Informally: A calls A, denied (A is on its own OCS list).

• Abstract sequence: <req, chk*, pds*, sig, req, chk*, pds*, sig>

Constraints: [has(A, OCS)], [busy(A)], [denied(B)], [denied(C)]

Informally: A calls B, denied, then A calls C, denied (tests OCS list longer than 1 eleme

These test goals are summarized in Table 20, where the “-” symbol is used as a don

value, i.e. any plug-in could be used.

TABLE 20. Further Test Goals for Robustness

6.5.3 Test Cases Generation
Now that the test goals are available, LOTOS test cases can be generated by considering the p

cited in Section 6.4.1. Multiple acceptance and rejection test cases can be generated for ea

However, for the sake of simplicity and because many decisions related to the choice of val

implicit, only one test case of each type will be generated for each test goal.

The test goal #1 (Table 19), composed of the abstract causal sequence <req, vrfy*, prbs*, upd*,

sig, ring>, will be used as an example. Since the actions annotated by a star (*) are hidden, they will not

Test
Group #

Stub SO Stub ST Stub SD
Test

Goal #
Abstract Sequence

5

DEF. TERM. - 10 <req, vrfy*, pbs*, sig>

DEF. TERM. DEF. 11 <req, vrfy*, upd*, ring, sig, req, vrfy*, pbs*, sig>

DEF. TERM. - 12 <req, req, vrfy*, vrfy*, pbs*, pbs*, sig, sig>

OCS - - 13 <req, chk*, pds*, sig>

OCS - - 14 <req, chk*, pds*, sig, req, chk*, pds*, sig>
232 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Testing the TTS System

cause

 gener-

n of the

 and

rocess.

nce test:
be part of the test case. The constraints associated to this test goal ([not(has(A, OCS))], [busy(A)],

[not(has(B, CND))], [idle(B)]) require a preamble that will initialize the SUT with users A and B, their

subscribed features, and their initial state. In terms of the current prototype, this translates to:

init !userA !Insert(BC, EmptyFList) ?dummy:UserList !busy;
init !userB !Insert(BC, EmptyFList) ?dummy:UserList !idle;

The dummy value identifier used here for the OCS screening list is a don’t care value be

these users are not subscribed to OCS.

The test body is composed of three events corresponding to req, sig, and ring:

req !userA !userB;
sig !userA !ringBack;
ring !userB;

These five LOTOS actions represent an acceptance test case. A rejection test case can be

ated by choosing one of the strategies discussed in Section 6.4.4. For instance, the applicatio

“Off-by-one value” strategy leads to a mutation of the last action into:

ring ?dummy:User [dummy ne userB]

This action means that a phone other than B’s is ringing. Because the acceptance test case

the rejection test case differ only by their last event, they can be regrouped into a single test p

As discussed in Section 6.2.2 (page 178), such a combined test process becomes an accepta

process t1 [req,ring,sig,disp,init,reject,success]: noexit :=
 init !userA !Insert(BC, EmptyFList) ?dummy:UserList !busy;
 init !userB !Insert(BC, EmptyFList) ?dummy:UserList !idle;
 req !userA !userB;
 sig !userA !ringBack;
 (
 ring !userB; success; stop
 []
 ring ?dummy:User [dummy ne userB]; reject; stop
)
endproc (* t1 *)
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 233

CHAPTER 6 UCM-LOTOS Testing Framework

u-

r way.

tance test

-by-one

-

f a test

ing to

g diag-

euristics

e L

 all the

 to accep-

id with

sts have

 fixed

pter 8).

 eases

 be
This process contains a success event (for the acceptance part) and a reject event (for the

rejection part). The testing tool LOLA will look for success as the indication of a successful exec

tion, and a must pass verdict is expected.

A total of 14 test processes (see Appendix B, lines 778 to 947) were created in a simila

Each process uses one of the 14 test goals (Table 19 and Table 20) as the basis for an accep

case and a rejection test case. The rejection parts are all generated according to the “Off

value” strategy.

6.5.4 Results from Test Execution
The TestExpand command of LOLA allows for the execution of LOTOS test cases [279]. This com

mand has parameters for limiting the depth of the expansion resulting from the composition o

process and the specification, for maintaining internal events or for simplifying them accord

testing equivalence, for specifying the expected verdict (from the test purpose), for generatin

nostic traces, and for doing partial expansions according to state space and memory usage h

[280].

LOLA was used to check the 14 test cases composing the TTS test suite (TS). The resulting

verdicts were all as expected, i.e. must pass for each test case. Formally, this means that thOTOS

prototype (TTS) constructed from the UCMs passed all the acceptance test cases and failed

rejection test cases (TTS passes ACCEPT(TS) ∧ TTS failsall REJECT(TS)). Note that there were no

rejection test processes as such in the test suite, because rejection test cases were integrated

tance test cases. According to Definition 6.2, the conclusion is that the TTS specification is val

respect to the UCMs and the requirements (TTS val TS).

Naturally, several small defects and discrepancies between the specification and the te

been found during the construction and the validation of this prototype, but they were easily

because the TTS system is rather simple (more interesting problems are discussed in Cha

LOLA allows for the tester to look at execution traces ending with an unexpected result, which

diagnostics and debugging. Also, LOLA allows for batch testing. All test groups or test cases can
234 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Chapter Summary

 simple

ecomes

lidated

 based

d to

ting,

abstract

ction of

 abstract

propri-

Ms, are

underly-

ked to

ddress

tions.

. Con-

 II (Cele-
ental
executed in sequence, and their individual expected result can be checked. With the help of

shell scripts, any unexpected result of a test can be discovered very quickly. This approach b

very useful for regression testing. A change to the specification or to the test suite can be va

within a few seconds by re-checking the whole test suite1.

6.6 Chapter Summary
This chapter presented a novel framework for the validation of high-level system specifications

on UCMs and on LOTOS testing theory and tools. This testing approach to validation, integrate

SPEC-VALU E and motivated in Section 6.1, is different from conventional conformance tes

although many of the terms and concepts used here are instantiated from CTMF.

In Section 6.2, test purposes are defined by a type (acceptance or rejection) and an

causal sequence known as the test goal. A new validity relation (val) was defined in terms of sound

acceptance/rejection test cases. Differences between val and the well-known LOTOS conformance

relation conf were discussed and they are illustrated thoroughly in Appendix C:.

UCM scenarios describing requirements or designs are used in Section 6.3 for the sele

appropriate test goals. Six testing patterns regrouping 25 selection strategies, used to extract

causal sequences from UCM structures, are defined and illustrated in conformance with an ap

ate template. These patterns, which suit the level of abstraction and formality addressed by UC

connected in a UCM-oriented testing pattern language. The patterns are independent of any

ing structure of components, hence they apply to a wide variety of systems. They are also lin

the LOTOS testing theory, and were compared to Binder’s test patterns (which do not really a

complex issues such as concurrency and nesting of sub-paths) and to other test purpose nota

The generation of LOTOS processes from abstract sequences is addressed in Section 6.4

sideration needs to be given to the design decisions made during the construction of the LOTOS proto-

1. Compiling the TTS specification and checking the 14 test cases takes less than three seconds on a Pentium
ron) 300MHz with 64MB RAM and Windows 98. This is fast enough to be used in an iterative and increm
design cycle.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 235

CHAPTER 6 UCM-LOTOS Testing Framework

missing

egies

t goals

 test pro-

ording to

-

his sec-

S

re

uite

tegies

s spec-

lidate
type and the selection of appropriate values. The generation of rejection test cases, which is

from most LOTOS test derivation techniques, is explored through the application of multiple strat

based on requirements, conditions, testing patterns, and the structure of the UCMs.

The testing patterns were applied to the TTS UCMs in order to select appropriate tes

and to generate acceptance and rejection test cases (Section 6.5). A test suite composed of 14

cesses was described and executed. Following the successful execution of the test suite acc

the expected verdict of each test case, it was concluded that the LOTOS prototype was a valid represen

tation of the UCMs and the requirements. The testing patterns were used rather precisely in t

tion, but experienced testers are likely to use them more informally in practice.

Contributions

The following items are original contributions of this chapter:

• Partial illustration of Contribution 1 (Section 1.4.1) regarding test case generation in PEC-

VALU E.

• Partial illustration of Contribution 2 (Section 1.4.2) regarding a UCM-LOTOS testing

framework integrated to the SPEC-VALU E methodology.

• Illustration of step ➅ in SPEC-VALU E, i.e. from UCMs to LOTOS test cases.

• The validation relation val, which is well suited for validation testing and which is mo

discriminating than the conf relation when the latter is evaluated through a finite test s

(Section 6.2.3).

• A UCM-oriented testing pattern language that explains how 25 coverage-driven stra

regrouped under six testing patterns can collaborate to select test goals from system

ified by UCMs (Section 6.3).

• Motivation and strategies for generating rejection test cases in LOTOS (Section 6.4.4).

• Application of the framework (test case selection, generation, and execution) to va

the Tiny Telephone System example (Section 6.5).
236 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

'il
 à
ur
e

CHAPTER 7

Structural Coverage

Le doute sage et vraiment philosophique (s
existait) consisterait donc à éteindre (ou plutôt
voiler) les lumières qui nous éblouissent, po
juger par un autre organe de l'esprit que celui d
sa vue.

Joseph Joubert, 1808
f system

at this

y

rage

w tech-

in

h-

lustrates

ontext of

stem in

en the
The use of testing patterns for the selection of test cases ensures an appropriate coverage o

functionalities according to the UCM scenarios and the test plan. However, one can doubt th

coverage measure is sufficient when the LOTOS prototype is taken into consideration. As implied b

Joubert in his citation (found below this chapter’s title), a different point of view on the cove

could be wise and beneficial. This new viewpoint will be based on the structure of the prototype, not

on its functionalities, the latter being already covered by the test suite.

This chapter, which uses coverage concepts introduced in Section 3.4.4, presents a ne

nique for measuring the structural coverage of LOTOS specifications. This technique is first placed

the proper context with respect to the SPEC-VALU E methodology (Section 7.1). Because the tec

nique uses instrumentation with probes, some issues are raised in Section 7.2. Section 7.3 il

how probes are used in sequential programs, whereas Section 7.4 adapts this idea to the c

LOTOS specifications. The technique is used to measure the structural coverage of the TTS sy

Section 7.5. A brief discussion of other potential applications is included (Section 7.6), and th

chapter summary follows.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 237

CHAPTER 7 Structural Coverage

cation is

est-

er such

erage is

r

age, the
7.1 Structural Coverage in S PEC-VALUE

The generation of test cases from scenarios or from requirements is an a priori approach to validation.

Such test cases can be constructed in parallel with the specification, or even before the specifi

written. In SPEC-VALU E, the functional coverage is achieved, according to the test plan based on t

ing patterns and related strategies, when the test suite is executed successfully (i.e. SUT val TS). This

functional coverage is a semantic measure of the correctness of a specification.

Observing the structure of the specification, composed of branches, events, and oth

constructs can further enhance the quality of the test suite. The structural coverage of a test suite

relates to the parts of the specification that have been visited by test cases. When this cov

unsatisfactory, new test cases can be added a posteriori (step ➆ in Figure 51). New types of faults o

defects can be uncovered along the way. Under the assumption of a complete functional cover

structural coverage can be used as a basis for test suite completeness.

FIGURE 51. Structural Coverage with SPEC-VALUE

Structure

Results
(Coverage)

UCMs on
Structure

Test Suite
(LOTOS)

Results
(Functions)

Requirements

Allocation

Testing

Scenarios
(UCM)

Test Cases
Generation

Modify if
necessary

Construction

Prototype
(LOTOS)

Add tests if
necessary

➀

➁

➂

➄

➆

➇
➅

➃

238 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Issues in the Use of Probes

on

t suite

ite is

ll probes

detection

est suite

antics

cessary

 por-

 probes

these

ate that

 based

ed

on the

easure

Other

 cover-
This chapter is concerned with the syntactic measure of the coverage of a formal specificati

by a validation test suite. This is different from implementation coverage by a conformance tes

derived (often automatically) from a formal specification. In our case, the validation test su

obtained manually, hence coverage measures become necessary at the specification level.

The focus is on the structural coverage of LOTOS specifications using probe insertion [26]. We

can instrument a specification and then assess that the structural coverage is achieved when a

are visited by at least one test case. The main goals are to provide hints and assistance in the

of unreachable portions of real-size specifications, and to measure the completeness of the t

with respect to the syntactic structure of the specification under test, and not its underlying sem

or functionalities. Another goal is to cast these ideas in a pragmatic environment where the ne

steps for coverage measurement are automated as much as possible.

7.2 Issues in the Use of Probes
Probe insertion is a well-known white-box technique for monitoring software in order to identify

tions of code that has not been yet exercised (Section 3.4.4). A program is instrumented with

(counters) without any modification of its functionality. When executed, test cases trigger

probes, and counters are incremented accordingly. Probes that have not been “visited” indic

part of the code is not reachable with the tests in consideration.

The following four points are notable software engineering issues related to approaches

on probe instrumentation of implementation code or of executable specifications:

1. Preservation of the original behaviour. New instructions shall not interfere with the intend

functionalities of the original program or specification, otherwise tests that ran successfully

original behaviour may no longer do so.

2. Type of coverage. Because probes are generally implemented as counters, it is easier to m

the coverage in terms of control flow rather than in terms of data flow or in terms of faults.

techniques, summarized by Charles in [92], are more suitable for the two last categories of

age criteria.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 239

CHAPTER 7 Structural Coverage

tion,

he most

t repre-

st cases?”

text of

l num-

ith a

r

3. Optimization. In order to minimize the performance and behavioral impact of the instrumenta

the number of probes shall be kept to a minimum, and the probes need to be inserted at t

appropriate locations in the specification or in the program.

4. Assessment. What is assessable from the data collected during the coverage measuremen

sents another issue that needs to be addressed. Questions such as “Are there redundant te

and “Why hasn’t this probe been visited by the test suite?” are especially relevant in the con

SPEC-VALU E.

These issues will be discussed for sequential program in the next section, and for LOTOS spec-

ifications in Section 7.4.

7.3 Probes in Sequential Programs
For well-delimited sequential programs, Probert suggests a technique for inserting the minima

ber of statement probes necessary to cover all branches [291]. Table 21 illustrates this concept w

short Pascal program (a) and an array of counters named Probe[] . The counters indicate the numbe

of times each probe has been reached.

TABLE 21. Example of Probe Insertion in Pascal

a) Original Pascal code b) Three probes inserted c) Optimal number of probes

statement1;
if (condition)
then
 begin
 statement2
 end
else
 begin
 statement3
 end
{end if} ;

statement1;
inc(Probe[1]);
if (condition)
then
 begin
 inc(Probe[2]);
 statement2
 end
else
 begin
 inc(Probe[3]);
 statement3
 end
{end if} ;

statement1;
inc(Probe[1]);
if (condition)
then
 begin
 inc(Probe[2]);
 statement2
 end
else
 begin
 {No probe here!}
 statement3
 end
{end if} ;
240 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Probe Insertion in Lotos

he pro-

ation,

e

over all

copini

xist

maller

o

ternally

trumen-

ation

rnal

t part of
Intuitively, (b) shows three statement probes being inserted on the three branches of t

gram. In (c), the same result can be achieved with two probes only. Using control flow inform

the number of times that statement3 is executed is computed from Probe[1]-Probe[2] . After

the execution of the test suite, if Probe[2] is equal to Probe[1] , then the conclusion is that th

‘else’ branch that includes statement3 has not been covered.

It has been proved in [291] that the optimal number of statement probes necessary to c

branches in a well-delimited sequential program is |E| - |V| + 2, where |E| and |V| are respectively the

number of edges and the number of vertices of the underlying extended delimited Böhm-Ja

flowgraph of the program.

The four issues raised in Section 7.2 are covered as follow:

1. Preservation of the original behaviour: if the probe counters are variables that do not already e

in the program, then the original functionalities are preserved.

2. Type of coverage: the coverage is related to the control flow of the program.

3. Optimization: there exists a way to minimize the number of statement probes so it can be s

than the number of statements.

4. Assessment: this technique covers all branches in a well-delimited sequential program.

7.4 Probe Insertion in L OTOS

Similarly to probe insertion in well-delimited sequential programs, LOTOS constructs could be used t

instrument a specification at precise locations while preserving its general structure and its ex

observational behaviour. Although the execution of test cases can be slowed down by this ins

tation, it is not desirable to affect the functionality of the specification or the results of the valid

process.

Among the LOTOS constructs, the most likely candidate for incarnating a probe is an inte

event with a unique identifier. Such event can be composed of a hidden gate name that is no
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 241

CHAPTER 7 Structural Coverage

u-

re

re dis-

ed by

nd there-

ding a

 event
any original process in the specification (e.g. Probe), followed by a unique value of some new en

merated abstract data type (e.g. P_0, P_1, P_2, P_3, etc.).

A simple probe insertion strategy for LOTOS is presented in Section 7.4.1, followed by a mo

optimized version in Section 7.4.2. The interpretation of coverage results and tool support a

cussed respectively in Sections 7.4.3 and 7.4.4.

7.4.1 A Simple Insertion Strategy
According to Table 3 on page 31, a basic behaviour expression (BBE) is either the inaction stop , the

successful termination exit , or a process instantiation (P[...]). In LOTOS, a behaviour expression

(BE) can be one of the following1:

• A BBE.

• A BE prefixed by a unary operator, such as the action prefix (;), a hide , a let , or a guard

([predicate]->).

• Two BEs composed through a binary operator, such as a choice ([]), an enable (>>), a dis-

able ([>), or one of the parallel composition operators (|[...]| , || , or |||).

• A BE within parentheses.

In this chapter, a sequence is defined as a BBE preceded by one or more events, separat

the action prefix operator (e1; e2; ... en; BBE). A BBE that is not preceded by any event is called a sin-

gle BBE.

Probes enable the measure of the coverage of every event in a behaviour expression, a

fore in a whole specification. The simplest and most straightforward strategy consists in ad

probe after each event at the syntactic level. For each event e and each behaviour expression B, the

expression e; B is transformed into e; Probe!P_id; B where Probe is a hidden gate and P_id a unique

identifier. A probe that is visited guarantees, by the action prefix inference rule, that the prefixed

1. We consider a very common subset of LOTOS where there are no generalized Par or Choice operators.
242 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Probe Insertion in Lotos

alidation

in

e

ue value

ar-

 testing

.4.2.

seman-

t

d refused
has been performed. In this case, if all the probes are visited by at least one test case in the v

test suite, then the test suite has achieved a total event coverage, i.e. the coverage of all the events

the specification (modulo the value parameters associated to these events).

Table 22 illustrates this strategy on a very simple specification S1 (a). Since there are thre

occurrences of events in the behaviour, three probes, implemented as hidden gates with uniq

identifiers, are added to S1 to form S2 (b). The validation test suite is somehow derived from scen

ios or requirements according to some test plan or functional coverage criteria (e.g. UCMs and

patterns). In this example, it is composed of two test cases (Test1 and Test2), which remain

unchanged during the transformation. The third specification (c) will be discussed in Section 7

Probe insertion is a syntactic transformation that also has an impact on the underlying

tic model. Table 23 presents the LTSs resulting from the expansion of S1 and S2. A LOTOS exit is

represented by δ at the LTS level. When a test case ending by exit is checked (e.g. Test1), LOLA

automatically transforms such δ into i followed by Success. Although the LTSs (a) and (b) are no

equal as trees, they are observationally equivalent. Therefore, the tests that are accepted an

by S1 will be the same as those of S2.

TABLE 22. Simple Probe Insertion in LOTOS

a) Original L OTOS specification (S1) b) 3 probes inserted in the
 specification (S2)

c) 2 probes inserted, using
 the improved strategy (S3)

specification S1[a,b,c]: exit
 ... (* ADTs *)

behaviour
 a; exit
 []
 b; c; stop

where
 process Test1[a]: exit :=
 a; exit
 endproc (* Test1 *)

 process Test2[...]: noexit :=
 b; c; Success; stop
 endproc (* Test2 *)
endspec (* S1 *)

specification S2[a,b,c]: exit
 ... (* ADTs *)

behaviour
 hide Probe in
 (
 a; Probe!P_1; exit
 []
 b; Probe!P_2;
 c; Probe!P_3; stop
)

where
 ... (* Test1 and Test2 *)
endspec (* S2 *)

specification S3[a,b,c]: exit
 ... (* ADTs *)

behaviour
 hide Probe in
 (
 a; Probe!P_1; exit
 []
 b; c; Probe!P_2; stop
)

where
 ... (* Test1 and Test2 *)
endspec (* S3 *)
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 243

CHAPTER 7 Structural Coverage

und in

, but

ted from

 as it is

 made:

specifi-

f the

nal and

th its

ic
Table 23(c) presents two traces, resulting from the composition of each test process fo

Table 22(a) with S2, that cover the events and probes of S2. Test1 covers P_1 in the left branch of (c)

whereas Test2 covers P_2 and P_3 in the right branch. Neither of these tests covers all probes

together they cover all three probes, and therefore the event coverage is achieved, as expec

such a validation test suite. The fact that the entire LTS is covered here is purely coincidental,

usually not the case for complex specifications.

Going back to the four issues enumerated in Section 7.2, the following observations are

1. Preservation of the original behaviour: probes are unique internal events inserted after each event

(internal or observable) of a sequence. They do not affect the observable behaviour of the

cation. This insertion can be summarized by Proposition 4, which coincides with one o

LOTOS congruence rules found in the standard [191] (congruence rules preserve observatio

testing equivalences in any context):

e; B ≈c hide Probe in (e; Probe!P_id; B) = e; i; B (PROP. 4)

2. Type of coverage: the coverage is concerned with the structure of the specification, not wi

data flow or with fault models. The resulting event coverage makes abstraction of the semant

values in the events (e.g. the expression dial?n:nat abstracts from any natural number n).

TABLE 23. Underlying LTSs

a) Original L OTOS

 specification(S1)
b) 3 probes inserted in the
 specification (S2)

c) Composition of S2 with two
 test cases: Test1 & Test2

a b

δ c

a b

i (* P_1 *) i (* P_2 *)

δ c

i (* P_3 *)

i (* P_1 *) i (* P_2 *)

i (* δ *) c

Success i (* P_3 *)

Success

a b
244 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Probe Insertion in Lotos

 speci-

basic

umber

multiple

n prob-

d by any

ds to be

s, fol-

rted just

e

ger the

r

e

3. Optimization: the total number of probes equals the number of occurrences of events in the

fication. Reducing the number of probes is the focus of the next section.

4. Assessment: this strategy covers all events syntactically present in a specification. Single

behaviour expressions are not covered.

7.4.2 Improving the Probe Insertion Strategy
The simple insertion strategy leads to interesting results, yet two problems remain. First, the n

of probes required can be very high. The composition of a test case and a specification where

probes were inserted (and transformed into internal events) can easily result in a state explosio

lem. Second, this approach does not cover single BBEs as such, because they are not prefixe

event. Single BBEs may represent a sensible portion of the structure of a specification that nee

covered as well. This section presents four optimizations that help solving these two problem

lowed by an assessment of this improved strategy.

First Optimization: Sequences

In a sequence of events, the number of probes can be reduced to one probe, which is inse

before the ending BBE. If such a probe is visited, then LOTOS’ action prefix inference rule leads to th

conclusion that all the events preceding the probe in the sequence were performed. The lon

sequence, the better this optimization becomes. Table 22(c) shows specification S3 where two probes

are used instead of three as in S2. This sequence coverage implies the coverage of events with fewe

probes or the same number in the worst case.

Second Optimization: Parentheses

The second optimization concerns the use of parenthesis in e; (B), where B is not a single BBE. In this

case, no probe is required before (B). The behaviour expression B will most certainly contain probes

itself, and a visit to any of these probes ensures that event e is covered (again, by the prefix inferenc

rule).
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 245

CHAPTER 7 Structural Coverage

 issues

e

ny

e can

rator

should

ept

m that

oing

n

ion.

tion is

further

single
Third Optimization: Single BBEs

For the structural coverage of single BBEs (without any action prefix), there are some subtle

that first need to be explored. Suppose that * is one of the LOTOS binary operators enumerated at th

beginning of Section 7.4.1 ([] , >>, [> , |[...]| , || , |||). If a single BBE is prefixed with a probe

in the generic patterns BBE * BE and BE * BBE , then care is required in order not to introduce a

new non-determinism. Additional non-determinism could lead some test cases to fail. A prob

safely be inserted before the single BBE unless one of the following situations occurs:

• BBE is stop : This is the inaction. No probe is required on that side of the binary ope

(*) simply because there is nothing to cover. This syntactical pattern is useless and

be avoided in the specification.

• BBE is a process instantiation P[...] : A probe before the BBE can be safely used exc

when * is the choice operator ([]), or when * is the disable operator ([>) with the BBE on

its right side. In these cases, a probe would introduce undesirable non-determinis

might cause some test cases to fail partially: LOLA would return a may pass verdict instead

of a must pass. A solution would be to guard the process instantiation. One way of d

so in many cases would be to partially expand process P with the expansion theorem so a

action prefix would appear. Another solution is presented below, in the last optimizat

• BBE is exit : The constraints are the same as for the process instantiation. The solu

also to prefix this exit with some event.

Fourth Optimization: Process Instantiations as BBEs

When a process P is not defined as a single BBE, then the necessary number of probes can be

reduced when P is instantiated in only one place in the specification (except for recursion in P itself).

In this case, a probe before P is not necessary because probes inserted within P will ensure that the

instantiation of P is covered. This is especially useful when facing a process instantiation as a

BBE. For example, suppose a process Q that instantiates P in one place only, where P is not a BBE and

P is not instantiated in any process other than Q and P itself:
246 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Probe Insertion in Lotos

 to

d

s in

tance, the

 in this

rocess.

ge of the

ach

rvable

ressed

-deter-

e

s and

single

y usually
Q[...] := e1; e2; e3; stop [] P[...]

A probe inserted before P would make the choice non-deterministic, which could lead

undesirable verdicts during the testing. However, if P is not a single BBE and if it is not instantiate

anywhere else, then no probe is required before P in this expression. Any probe covered in P would

ensure that the right part of the choice operator in Q has been covered. This situation often happen

processes that act as containers for aggregating and handling other process instances. For ins

process representing a UCM stub would instantiate plug-in processes. If a plug-in is used only

stub, then the stub process does not need any probe in front of the instantiation of this plug-in p

Comments on Probe Insertion Issues

Regarding the four issues enumerated in Section 7.2, the improved strategy achieves a covera

specification that is larger than the simple strategy, and it takes fewer probes to do so.

1. Preservation of the original behaviour: probes are unique internal events inserted before e

BBE. When such BBE is prefixed by an event, then the probe does not affect the obse

behaviour of the specification (Proposition 4). When the BBE is not prefixed, a case not add

by the simple strategy, then special care must be taken in order not to introduce new non

minism.

2. Type of coverage: the sequence and single BBE coverage, which implies the event coverage of th

simple strategy, is also concerned with the structure of the specification.

3. Optimization: the total number of probes is less or equal to the total number of sequence

BBEs in the specification.

4. Assessment: this strategy covers all events syntactically present in a specification, as well as

BBEs other than stop (which should not be found in a LOTOS specification anyway).

7.4.3 Interpreting Structural Coverage Results
Several problem sources can be associated to probes that are not visited by a test suite. The

fall into one of the following categories:
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 247

CHAPTER 7 Structural Coverage

ode

be satis-

 algo-

[110].

acha-

ifica-

ecifi-

.

 the

sed by

ng the

etected

 beings

at all

owever,

losion

ng, the

tually

 L

he

 first

.

• Incorrect specification. In particular, the specification could include unreachable c

caused by processes that cannot synchronize properly or by guards that can never

fied. Note that there is a well-known theoretical result that shows there can be no

rithm to determine whether or not a particular statement of a program is reachable

Similarly, one cannot determine automatically that a probe in a specification is unre

ble.

• Incorrect test case. This is usually detected before probes are inserted, during the ver

tion of the functional coverage of the specification.

• Incomplete test suite. Caused by an untested part (an event or a single BBE) of the sp

cation (e.g. a feature of the specification that is not part of the original requirements)

• Discrepancy. Due to the manual nature of the construction of the specification from

UCMs, there could be some discrepancy between a test and the specification cau

ADTs, guards, the choice ([]) operator, or other such constructs.

Code inspection and step-by-step execution of the specification can help diagnosi

source of the problem highlighted by a missed probe. Although unreachable code cannot be d

automatically, practical experience and various empirical experiments have shown that human

are, in fact, quite good at determining whether or not code is reachable [371][372].

LOLA’s FreeExpand could also be used to expand the specification in order to check th

probes are in the underlying LTS. This would ensure that no part of the code is unreachable. H

for most real-size specifications, this approach is not likely to work because of the state exp

problem and incomplete evaluation of guards and predicates. Using on-the-fly model checki

verification of an appropriate property, which would state that a particular probe could be even

reached, seems a more practical solution. Goal-oriented execution, a technique based onOTOS’

static semantics proposed by Haj-Hussein et al. in [165], represents a promising approach to t

determination of the reachability of a uniquely identified probe. However, this technique would

have to be extended in order to allow specific internal events (the probes) to be used as goals
248 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

TTS Structural Coverage Results

ial

ique

original

nd the

con-

te

(

ainst

r

probes

s still

 to han-

lexible,

 BBEs.

e BBE

25+22)
7.4.4 Tool Support
A filter tool called LOT2PROBE, written in LEX, was built for the automated translation of spec

comments manually inserted in the original specification (e.g. (*_PROBE_*)) into internal probes

with unique identifiers (e.g. Probe!P_0;). A new abstract data type that enumerates all the un

probe identifiers is also added to the specification. Care is taken not to add any new line to the

specification, in order to preserve two-way traceability between the transformed specification a

original one.

Since most LOTOS prototypes specified in a resource-oriented style (including those

structed from UCMs) do not contain any full synchronization operator, the Probe gate was hidden at

the topmost level of the specification (the behaviour section), and was added to the list of ga

parameters of all process definitions and instantiations. Where a full synchronization operator ||) is

used, the tool suggests the use of the generalized synchronization operator (|[...]|) to avoid unex-

pected deadlocks.

Batch testing under LOLA can then be used for the execution of the validation test suite ag

the transformed specification. Several scripts, written in PERL and LEX, compute probe counts fo

each test and output textual and HTML summaries of the probes visited, with a highlight on

that were not covered by any test.

Though full automation of probe insertion is possible, the solution developed so far i

semi-automatic because of some special cases (i.e. with problematic BBEs) that are not trivial

dle. However, the manual insertion of these probe comments has the benefit of being more f

and it can be done at specification time or after the initial validation.

7.5 TTS Structural Coverage Results
The improved strategy was used to insert probes in the TTS specification (see the (*_PROBE_*)

comments in Appendix B). This specification contains 25 events, 18 sequences, and 22 single

The simple insertion strategy of Section 7.4.1 would have required 25 probes, but no singl

would have been covered. To cover all events and single BBEs straightforwardly, 44 probes (
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 249

CHAPTER 7 Structural Coverage

can be

t by the

re instan-

n

e same

ected. It

pile the

e

be

h which

e struc-

e done.

onds for

erage is

the left
are required. However, by using the optimizations discussed in Section 7.4.2, this number

reduced to 26, which represents a very good improvement. This reduction is explained in par

presence of sequences and by the high number of stub processes and plug-in processes that a

tiated only once.

The TTS specification was transformed by LOT2PROBE into a new but equivalent specificatio

where the (*_PROBE_*) comments are translated to Probe gates with a unique identifier, from P_0

to P_25. The test suite was executed against this new specification, and the tests resulted in th

verdicts as with the original specification, so no new non-determinism had been added, as exp

took 140 seconds to create the new specification, to compile it, to execute the tests and to com

test results automatically through scripts and batch files1. Most of this time (>95%) was spent on th

testing itself, the latter is a laborious task for LOLA because internal actions can no longer

abstracted using simplifications based on testing equivalence. This is caused by the approac

requires the probe (internal) events to be output in the execution traces in order to measure th

tural coverage. If these probes are not explicitly part of the traces, then no measure can b

Although this coverage measurement takes a few minutes to be computed instead of a few sec

a simple validation of the specification against the test suite, the impact is minimal for SPEC-VALU E

because structural coverage measurements are done sporadically, once the functional cov

achieved.

7.5.1 Summary of Coverage Results
The results of this experiment are summarized in Table 24, with 26 probe identifiers shown on

(together with their respective line number) and 14 test case identifiers at the top.

1. On a Celeron 300MHz, 64 MB RAM, running LOLA on Windows 98.
250 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

TTS Structural Coverage Results

ation is
The test suite covers all 26 probes, therefore the structural coverage of the TTS specific

complete. All the specification code is reachable and no additional test case is required.

TABLE 24. TTS Structural Coverage Results

Test # →
Probe #, line ↓ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Test

Suite

P_0, line 462 9 16 8 16 9 16 8 16 2 73 87 260

P_1, line 467 21 21

P_2, line 484 1 1 0* 2 28 1 33

P_3, line 488 1 1 1 1 1 5

P_4, line 492 1 1 1 3

P_5, line 523 1 1 1 1 1 1 1 1 1 17 9 35

P_6, line 532 0* 1 1

P_7, line 541 2 2 4 56 64

P_8, line 559 4 4 2 4 4 4 2 4 1 24 30 83

P_9, line 569 2 2 2 2 2 10

P_10, line 574 1 1 1 9 8 20

P_11, line 577 2 1 2 2 1 2 1 16 20 47

P_12, line 603 1 1 1 3

P_13, line 606 1 1 2 4

P_14, line 616 1 1 1 1 1 1 9 7 22

P_15, line 638 1 1 1 8 8 19

P_16, line 641 1 1 1 1 1 1 1 7

P_17, line 661 2 2 1 1 1 1 1 10 7 26

P_18, line 686 1 1 1 1 1 1 1 7

P_19, line 691 1 1 1 1 1 1 1 7

P_20, line 698 1 1 1 8 8 19

P_21, line 721 1 1 1 3

P_22, line 731 1 1 1 1 4

P_23, line 751 1 1 1 3

P_24, line 756 1 1 2 4

P_25, line 774 1 1 1 3

Traces no probe 1 3 1 6 2 3 1 1 6 1 3 127 1 1 157

Traces, probes 16 24 12 24 16 24 12 1 24 2 95 223 1 1 475
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 251

CHAPTER 7 Structural Coverage

tions to a

xplains

of probes.

w inter-

g func-

fault

rs), the

owever,

S and

rement

 were not

 the

of the

s. Test

o, and

ulta-

or free
7.5.2 Comments on L OLA and Missing Probes
For the TTS specifications (with and without probes), the number of traces generated by LOLA for the

test cases can be found at the bottom of each column. Because probes add new internal ac

specification, the number of possible traces gets higher in the presence of interleaving. This e

why many more end-to-end sequences are executed for a same test case in the presence

When a specification gets complex and when many probes are inserted, this interleaving of ne

nal actions can result in an explosion of the number of states. To avoid this problem, the testin

tionalities of LOLA come with optional heuristics for the partial expansion instead of the de

exhaustive expansion. In our experience (six specifications with probes in the last three yea

probe coverage given by a heuristic expansion is the same as with an exhaustive expansion. H

heuristic expansions lead to an important reduction (nearly 99%) of the size of the resulting LT

of the time required for the expansion. This option was used in the structural coverage measu

of the TTS specification.

Table 24 also shows that some robustness test cases (#10 to #14) covered probes that

visited by the UCM-based validation test suite (#1 to #9). This is the case for P_1, visited only by test

#12, and for P_6 visited only by test #14 (grey cells in Table 24):

• Probe P_1 (line 467 in Appendix B): this probe belongs to the process definition of

medium used by agents to communicate with each other. This medium is not part

UCMs, hence no specific validation test case was generated using testing pattern

#12 is covering this probe because this medium represents a FIFO buffer of size tw

it takes two simultaneous calls for reaching this probe. Only test #12 initiates two sim

neous call requests.

• Probe P_6 (line 532 in Appendix B): the TestExpand command of LOLA indicates that

this probe is not covered by tests #1 to #9. However, using step-by-step execution

expansion of the test #8, the resulting traces indicate that probes P_6 and P_2 (see the

black cells in Table 24) are visited on top of those discovered by TestExpand. For instance:
252 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Discussion

e

dded to

m can

.

ase, the

f many

measure-

est case

cov-

and one

m, and
init ! usera ! ...;
req ! usera ! userb;
i; (* chk *)
i; (* pds *)
i; (* probe ! p_24 *)
i; (* exit (...) *)
i; (* probe ! p_13 *)
i; (* exit (...) *)
sig ! usera ! calldenied;
i; (* probe ! p_2 *)
i; (* probe ! p_6 *)
success;

This discrepancy is caused by a bug in the TestExpand command which stops when th

success event is reached, even if further internal events can be executed and a

the trace. In fact, test #14 could have given the same inexact result. This proble

be solved using step-by-step execution or free expansion (FreeExpand) on the test

cases which are suspected to cover probes that are not visited using TestExpand.

Using LOLA, if a probe is not covered, then the bug in TestExpand might just be the real cause

Else, the four possible explanations described in Section 7.4.3 must be considered. In any c

use of a heuristic expansion is more efficient and does not affect the coverage result.

7.6 Discussion
Section 7.6.1 comments on the compositional coverage of the structure in the presence o

probes whereas Section 7.6.2 addresses the impact of the specification style on the coverage

ment. Section 7.6.3 gives a brief overview of how coverage measurements could be used for t

management.

7.6.1 Compositional Coverage of the Structure
A full structural coverage of a LOTOS specification does not imply that inserted probes need to be

ered all at once. Since probes do not affect the observable behaviour of the specification, a composi-

tional coverage of the structure becomes possible. Probes can be covered independently,

could even do this one probe at a time. This reduces the size of the resulting LTSs to a minimu
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 253

CHAPTER 7 Structural Coverage

roach is

 (Section

asures

its

eted as

cesses

t they

ieve the

st, these

 visited.

 cases) is

 a rele-

t suites

rmined

ber of

e at the

ld help
thus helps avoiding the state explosion problem. The LOT2PROBE filter allows different variations of

the probe comment in the specification (e.g. (*_PROBE_A_*) , (*_PROBE_B_*) , etc.). Different

groups of probes can therefore be transformed into hidden gates, one group at a time. This app

applied to another case study, where there are too many probes to handle all at the same time

8.2).

7.6.2 Specification Styles
Two equivalent specifications written using different styles might lead to different coverage me

for the same test suite. The way a LOTOS specification is structured usually reflects more than

underlying LTS model. For instance, in a resource-oriented style, the structure can be interpr

the architecture of the system to be implemented [364]. In a constraint-oriented style, pro

impose local or end-to-end constraints on the system behaviour.

 This problem is also true of programs in general, as observed in Weyuker’s anti-extensionality

property, which states that the semantic equality of two programs is not sufficient to imply tha

should necessarily be tested the same way [371]. In any situation, the important thing is to ach

target functional and structural criteria.

7.6.3 Test Case Management Based on Structural Coverage
Structural coverage results could be used for test case management in at least two ways. Fir

results could help detecting redundant test cases by providing useful hints in terms of probes

A test case whose visited probes are all already visited by another test case (or by a set of test

an indication of redundancy from a structural perspective. If this test case is not motivated by

vant rationale (functionality, robustness, etc.), then it could be removed from the test suite. Tes

could be reduced in size while retaining the same structural coverage.

Second, the optimization of the order of passage of the test cases could also be dete

structurally according to similar criteria. For instance, the tests that visit the highest num

probes, i.e. the largest probe coverage, could be executed first. If a larger structural coverag

specification level implies a larger coverage at the implementation level, then such criteria cou
254 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Chapter Summary

ntation

tructural

onsis-

 of con-

en test

n is

c (func-

so posi-

ur

 theory

 7.3. In

ns while

es, dis-

on, with

ue

ch-

ositional

otential
sort test cases with the hope of finding faults and errors earlier when validating an impleme

with the test suite.

7.7 Chapter Summary
This chapter presented a new theory and a semi-automated technique for the measure of s

coverage of LOTOS specification against test suites. This coverage can improve the quality and c

tency of both the specification and the validation test cases, hence resulting in a higher degree

fidence in the system’s description. This technique provides an assessment of how well a giv

suite has covered a LOTOS specification rather than providing a guideline on how the specificatio

to be covered for testing implementations.

Section 7.1 motivated the need for a syntactic measure that complements the semanti

tional) coverage achieved when a validation test suite is successfully executed. This section al

tioned the structural coverage approach in the SPEC-VALU E methodology. Section 7.2 presented fo

general issues related to the instrumentation of programs and specifications with probes. The

behind an existing probe insertion technique for sequential programs was reviewed in Section

Section 7.4, a similar theory is tailored for a process algebra with concurrency, namely LOTOS. This

section presented a probe insertion strategy that covers events and basic behaviour expressio

maintaining observational equivalence and minimizing the number of probes.

The coverage results provided by this technique can help detect incomplete test suit

crepancy between a specification and its test suite, and unreachable parts of the specificati

respect to the requirements and UCMs in consideration. A tool set composed of LOT2PROBE and

other scripts supports this technique. Although LOLA is conveniently used in this thesis, the techniq

and tool set are independent from the LOTOS execution environment. Section 7.5 applied the te

nique to the TTS example and discussed the coverage results. Section 7.6 discussed the comp

coverage of specifications, the impact of specification styles over coverage results, and the p

use of structural coverage for test case management and optimizations of test suites.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 255

CHAPTER 7 Structural Coverage

 new

 Tele-
Contributions

The following items are original contributions of this chapter:

• Partial illustration of Contribution 2 (Section 1.4.2) regarding a new theory and a

technique for the structural coverage of LOTOS specifications, integrated to SPEC-VALU E.

• Illustration of step ➆ in SPEC-VALU E, i.e. coverage measures.

• Partial tool support: from manually inserted (*_PROBE_*) comments to coverage

reports. Probe insertion is not automated yet.

• Application of the technique and tools to measure the structural coverage of the Tiny

phone System example.
256 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

!

CHAPTER 8

Experiments with S PEC-VALUE

Que dites-vous?... C'est inutile?... Je le sais!
Mais on ne se bat pas dans l'espoir du succès
Non! non, c'est bien plus beau lorsque c'est
inutile!

Cyrano de Bergerac
Edmond Rostand, 1897
ns sys-

ical

remen-

ons that

cussions.

nerated

plica-

Carle-

e found

 GCS
This chapter introduces six experiments based on real-life and hypothetical telecommunicatio

tems used to validate the SPEC-VALU E methodology and techniques. Five of them contain techn

descriptions as well as lessons learned during the specification and the validation of the afo

tioned communicating systems (Sections 8.1 to 8.5). Most of these case studies include secti

provide overviews of the system and the UCM descriptions, of the resulting LOTOS specification, of

the selection and execution of test cases, of the structural coverage achieved, and general dis

A sixth experiment uses mutation analysis to study the effectiveness of validation test cases ge

from testing patterns in finding faults (Section 8.6). A global summary follows in Section 8.7.

8.1 Group Communication Server (GCS)
The Group Communication Server (GCS) was an academic exercise used to demonstrate the ap

bility of multiple specification, validation, and performance evaluation techniques developed at

ton University and the University of Ottawa, two of which were UCMs and LOTOS. The SPEC-VALU E

methodology was mainly developed at the same time as this experiment, whose details can b

in a technical report [17] and a publication [15]. Also, UCM-based performance analysis of the

is studied by Scratchley and Woodside in [324][325].
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 257

CHAPTER 8 Experiments with SPEC-VALUE

estroyed

n of the

nd pub-

ges con-

oup via

y have

ay also

 defined

 or not,

rator),

 func-

 dele-

hange

 describ-

 were

s, receiv-

 are also

ough the

narios

tions
8.1.1 System Overview and UCM Descriptions
A GCS allows the multicasting of messages to members of a group. Groups are created and d

dynamically as the need arises. A GCS offers the core services required for the implementatio

server side of systems such as mailing lists, Internet Relay Chat (IRC), videoconferences, a

lish-and-subscribe systems. Users are permitted to join and quit one or many groups. Messa

sist in a variety of types (voice, video, data, etc.) and are multicast to the members of the gr

different communication channels, selected to suit the requirements of the group. A group ma

an administrator whose tasks include registration management and group deletion. A group m

have a moderator whose task is to approve or reject messages sent to the group. A group is

according to different parameters, some of which can be changed dynamically: administered

moderated or not, public subscription or private subscription (i.e. performed by the administ

and open multicasting or closed multicasting (i.e. posting by group member only).

Twelve individual scenarios, described as UCMs, were extracted from the twelve GCS

tionalities drafted in the informal requirements: group creation, list groups, get attributes, group

tion, member registration, list group members, member deregistration, multicast, c

administrator, change open attribute, change private attribute, and change moderator. Tables

ing the responsibilities and conditions supplemented the UCMs. Different potential structures

defined and evaluated, and the selected one includes a dozen components, including sender

ers, database objects, and group and multicast processes. Different communication channels

identified. Group teams and multicast processes are created and destroyed when required thr

use of dynamic responsibilities.

This collection of UCMs does not use any stubs or plug-ins; the integration of the sce

was done at the LOTOS level by using preconditions attached to UCM start points and postcondi

attached to end points.
258 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Group Communication Server (GCS)

ly into

en in

ocess

d upon

y useful

e cre-

rd-coded

 time,

hine (as

-

 a mes-

ification

 rest of

, the

ne

mes-

des a

ber of

cast

 at once.

ging to
8.1.2 Construction of the L OTOS Prototype
The prototype was constructed by integrating the GCS functionalities (UCM scenarios) direct

the LOTOS specification. The twelve functionalities were integrated one by one, in the order giv

the previous section.

The structure of the GCS specification is intended to be flexible and dynamic. The pr

definition of a group contains sub-processes (one per functionality), one of which is instantiate

the arrival of the corresponding service request from the sender. This type of structure was ver

for the incremental integration and validation of the required functionalities. Also, groups can b

ated and destroyed dynamically. In fact, no predefined set of users or groups needed to be ha

in the specification. This flexibility enables the use of different system configurations at testing

at the cost of having a specification that cannot be represented as a finite LTS or state mac

required by some LOTOS tools like CÆSAR [146]). Another level of flexibility is found in the modular

ity of the multicast process. The requirements and the UCMs were not specific about the way

sage was to be multicast by the group communication server to the receivers. Hence, the spec

includes a generic solution where the multicast protocol can be changed without affecting the

the specification. In this experiment, three such protocols were included as examples:

• Sequential Multicast: instead of sending the messages to receivers concurrently

sending is done sequentially in a LIFO order.

• Best Effort Sequential Multicast: as for Sequential Multicast, the sending is do

sequentially in a LIFO order. However, problems may occur during the sending of

sages, or during their reception if the sending is synchronous. This protocol inclu

timeout mechanism to ensure that such failures do not block the protocol. The num

successful messages sent is also counted.

• Broadcast: instead of using point-to-point communication, some underlying broad

mechanism (such as IP broadcast) is used to send a message to all group members

Receivers are responsible for the filtering of relevant messages based on their belon

specific groups.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 259

CHAPTER 8 Experiments with SPEC-VALUE

 com-

s, were

ders and

 groups

 of 56

 mutating

 (strate-

ere

r the use

eed for

 is

 com-

ur

strategy

optimi-

ents and

 taken

 55 sec-

 bug in

on, so
The resulting GCS specification contains 29 abstract data type definitions (800 lines of

mented LOTOS code) and 19 process definitions (750 lines). Passive components, i.e. database

specified as process parameters. Since the focus was on the server side, the clients (i.e. sen

receivers) were not specified.

8.1.3 Test Selection and Execution
The application of testing patterns to the 12 UCMs lead to the definition of 12 acceptance test

and 12 rejection test groups (one of each type per UCM, to improve traceability), for a total

acceptance test cases and 51 rejection test cases. Most rejection test cases were created by

the last action in an abstract sequence, or by mutating the values accepted on this last action

gies off-by-one gate and off-by-one value in Section 6.4.4). Two additional acceptance test cases w

added to illustrate other testing possibilities, such as the use of abstract timers in test cases o

of generic test process definitions that make use of verification steps (in order to reduce the n

rejection tests). The number of lines of commented LOTOS code used to describe these 109 tests

close to 1600. LOLA executed all the tests properly in less that 5 seconds, including the time for

piling the specification1.

8.1.4 Structural Coverage
The GCS specification contains a total of 57 LOTOS events, as well as 35 simple basic behavio

expressions (BBEs). The events are structured in 40 different sequences. Using the improved

and its optimizations, a total of 54 probes were inserted in the prototype. This strategy and the

zations hence resulted in a 41% reduction of the number of probes necessary to cover all ev

BBEs (i.e. (57 + 35 - 54) / (57 + 35)). Owing to the presence of more internal actions, the time

to measure the coverage was higher, but still manageable in an iterative process: 3 minutes

onds. Five probes were missed during the first measure. Two of these were caused by the

LOLA’s TestExpand command (see Section 7.5.2) and they could be reached through simulati

they are not really problematic. The three other probes were missed for the following reasons:

1. In this chapter, all times are measured on a Celeron 300MHz, 64MB RAM, running Windows 98.
260 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Group Communication Server (GCS)

CMs,

ft).

oblem

tained

between

in such

M

e other

us sec-

al cov-

L

d lead to

/or the

no guar-

s

equire-
• Two probes were related to a feature that was not part of the requirements or the U

but that was specified in LOTOS anyway (a group is deleted when there is no member le

As such, relevant test cases could not have been derived from the UCMs. This pr

was solved by documenting the UCM appropriately and by adding two test cases, ob

from a step-by-step simulation of the specification, which cover these probes.

• One probe was not covered because a UCM path had been specified as a choice

two guarded behaviour expressions with different values. It seemed easier to code

a way this particular UCM path in LOTOS. However, the test case derived from the UC

covered one alternative only. Another test case, which covers the probe found on th

alternative, was added to the corresponding acceptance test group.

The three additional test cases are already included in the numbers given in the previo

tion.

8.1.5 Discussion
This specification went through several small iterations as the SPEC-VALU E methodology gained in

maturity. A large proportion of the construction guidelines, the testing patterns, and the structur

erage techniques were developed during this experiment.

One lesson learned during this experiment is that modifications to the scenarios at the OTOS

level may have an impact on the Use Case Maps and on the requirements, and hence coul

modifications at these levels of abstraction. Deviations may be caught by the test suite and

structural coverage measurement (e.g. the missing probes in this GCS example), but there is

antee that they will. It is the responsibility of the LOTOS specifier to evaluate the impact of deviation

from UCM paths and construction guidelines and to report to the UCM designers and/or the r

ments engineers in order to determine what needs to be updated.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 261

CHAPTER 8 Experiments with SPEC-VALUE

uro-

d and

ogies of

r

f the

point in

stagi-

 repre-

Other

og-

ta.

 artifi-

ys-

 stan-

onents
8.2 GPRS Group Call (PTM-G)
The General Packet Radio Service (GPRS) is a mobile telephony service standardized by the E

pean Telecommunications Standards Institute (ETSI) [128]. It allows its subscribers to sen

receive data in an end-to-end packet transfer mode. Built on top of the concepts and technol

Global System for Mobile Communications (GSM) [127][264], a connection-oriented service fo

mobile telephony, GPRS provides connectionless packet transfer within the Public Land Mobile Net-

work (PLMN) in interworking with external networks (such as X.25 and TCP/IP). The focus o

experiment was on one specific GPRS service: the Point-To-Multipoint-Group Call (PTM-G). This

service allows transmissions to specific groups of users in specific geographical areas. At any

time, the network has the knowledge of the number of users and their location.

This experiment was done in collaboration with an industrial partner and a student (“

aire”) from France during the first standardization stage of GPRS. This evolving draft standard

sented a great opportunity for assessing the usefulness and adequacy of SPEC-VALU E in a

standardization context. Details on this experiment can be found in two publications [16][24].

papers presenting LOTOS specifications of GSM and GPRS include contributions from Tuok and L

rippo [348][349] and from Ghribi et al. [36][151].

8.2.1 System Overview and UCM Descriptions
The PTM-G service is composed of six operations: Initiate Call, to create a group call; Terminate

Call, to delete a group call; Call Status, to get the attributes of a group call; Join Call, to join an exist-

ing group call; Leave Call, to quit a joined group call; and Data Transfer, to send messages and da

In order to model the Terminate Call and Leave Call operations invoked by the network, three

cial operations were also defined. Two of them are located in the underlying services: Attach GPRS

and Detach GPRS. The third one, Change Zone, emulates the routing operation triggered by the ph

ical layer.

As no concrete structure or architecture was imposed in the preliminary version of the

dard, we defined an abstract structure (using logical entities) independent of the physical comp
262 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

GPRS Group Call (PTM-G)

rvice is

ivers are

easily

 draft

SM and

oints.

ter (a

l data-

gate noti-

provide

e basic

 a simi-
of GPRS. Figure 52(a) presents the 15 components included in this structure. The PTM-G se

transparent to the user, so it is located inside the PLMN component. The requesters and rece

roles that can be assumed by the users, identified by their mobile stations (MS).

Nine UCMs were created, one for each operation. The first six UCMs were obtained

since PTM-G operations are described rather operationally, although very informally, in the

standard [128]. The three others were created according to our general understanding of G

GPRS. All nine UCMs start with a single start point, leading to one or possibly many end p

Figure 52(a) shows the UCM for the Initiate Call operation, which is triggered by a reques

mobile station). Without getting into the details of the example, this operation updates severa

bases (represented as objects), returns an acknowledgement to the requester, and may propa

fications concurrently to the receivers who are members of the group. Tables were used to

details related to the UCM responsibilities and conditions (Figure 52(b)).

FIGURE 52. UCM and Responsibilities Information for “Initiate Call” Operation

The PTM-G scenarios are in essence quite similar to those of the GCS, i.e. the sam

behaviour patterns are found in both systems. The UCMs themselves were also constructed in

Requester Receivers

 PLMN

DBCM*

Controller_Team

Sender_TeamAnswer_Team

Req_Init

Err_Init
Ack_

Ind_Init
[r]

[a]

u1

u2

[n] DBSM*

DBZS

Init

DBGC* DBCI*

Ident.

Resp. Type Parameters Alloc. Comments

Req_
Init

Request M_ID, IMGI, DTM,
QoS, GeoZone,
join_leave,
send_to_all, call_not

Requester Request creation of a
group call, with requester
attached.

Err_
Init

Error IMGI, M-ID, cause Requester Request rejected (wrong
GeoZone, wrong IMGI,...)

Ack_
Init

Ack. IMGI, C-ID,
Cipher_Key

Requester Acknowledgement of call
creation.

Ind_
Init

Indic. IMGI, C-ID Receivers Indication of call creation.

[r] Cond. Controller Request refused.

[a] Cond. Controller Request accepted.

u1 Internal Controller Update DBCM, DBSM.

u2 Internal Informer Update DBGC, DBCI.

[n] Cond. Controller Call Notification needed.

s Internal Senders Sending notification.

s

(a) Initiate Call UCM (b) Description of Responsibilities, Events, and Conditions

Controller
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 263

CHAPTER 8 Experiments with SPEC-VALUE

onents

elines

s were

pro-

ation, all

types

h were

ication

defini-

ditions

ustness,

 in an

pecifica-

ice was

 S
lar way (no integration with stubs and plug-ins, structure that involves the same types of comp

and channels, use of tables for detailed descriptions, etc.).

8.2.2 Construction of the L OTOS Prototype
Building on the experience gained with the GCS system (Section 8.1), the construction guid

(Section 5.2) were applied to the nine UCMs without any major problem. Again, the scenario

integrated at the LOTOS level rather than at the UCM level. The core of the logic is found in the

cess Controller (see Figure 52(a)), which receives all requests and select the appropriate oper

of which are specified as individual LOTOS processes for improved modularity.

The construction complexity resulted mainly from the large number of abstract data

required to represent the various databases involved in this system. LOTOS ADTs are cumbersome

when used to describe complex data structures such as lists of lists of lists of records, whic

used on several occasions in this experiment.

Whereas only the server side was specified in the GCS experiment, the PTM-G specif

includes both the server side (PLMN) and the client side (MS). The PLMN and MS process

tions were constructed in a robust way; if one side does not work properly, then additional con

and behaviour would ensure that the other side would go back to a stable state. Such rob

although claimed to be desirable in the draft standard requirements [128], was described

obscure, ambiguous, and incomplete way. Hence, several design decisions were taken at the s

tion level.

The resulting specification is composed of 53 ADT definitions (1125 lines of LOTOS code), 7

processes for the MS (300 lines), and 23 processes for the PLMN, where the group call serv

defined (1100 lines). To date, this is one of the most complex specifications constructed usingPEC-

VALU E.
264 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

GPRS Group Call (PTM-G)

ting test

e rejec-

accepts

es. The

st cases,

ification

 scenario

include

ets prop-

ct of the

Call Sta-

tract

 consis-

ases

ay that

xamina-

 suffi-

ferent

tached

tually

 clients

server is

The ver-
8.2.3 Test Selection and Execution
Testing patterns were used on each individual UCM in order to generate test goals. The resul

suite was limited mainly to acceptance tests (35 test cases divided into 9 test groups). Only on

tion test was created, essentially for illustrative purpose, because the robust PLMN server

almost any operation at any time and always replies with acknowledgements or error messag

absence of rejection tests was partially compensated by the use of verification steps in the te

which are more suited to this type of robust specification.

Many abstract sequences derived from the UCMs were reused as preambles and ver

steps for other tests. Preambles are sequences of events that satisfy the preconditions of a

under test. For instance, to test the Initiate Call operation (Figure 52(a)), the preamble could

abstract sequences from the Attach GPRS and Join Call UCMs to ensure that the requester g

erly attached to the network. Verification steps are sequences of events that check some aspe

system’s current state. At the end of a test for Initiate Call, an abstract sequence based on the

tus UCM could be invoked to verify that the group call was correctly initiated in the PLMN. Abs

sequences were very reusable in the context of this experiment, and they helped improving the

tency among the test cases.

The PTM-G specification was initialized with a static configuration of users and datab

used as the main context for the execution of the test suite. This configuration was defined in w

enables the satisfaction of the preconditions of all the UCM paths selected as test purposes. E

tion of these test preconditions revealed that a single configuration with six mobile stations is

cient for allowing all the 36 test purposes to be fulfilled. These six mobile stations have dif

identities, locations, and privileges, they belong to diverse groups, and they are all initially de

from the GPRS network. The five databases are initialized with sufficient information to even

satisfy all the preconditions associated to the UCMs.

The test suite was checked first against the composition of the servers (PLMN) and the

(MS), and then against the server alone. The rationale for testing the server alone is that the

no longer constrained by well-behaved clients, and robustness can be checked more easily.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 265

CHAPTER 8 Experiments with SPEC-VALUE

did not

e speci-

). After

 2

length of

 of such

nitions

pecifi-

n

in smaller

structural

 for the

LMN

.

ely sat-

ion of a

nd the

t cannot

, the cov-

 used on
dicts provided by LOLA were however the same in both cases because the validation test suite

explicitly test robustness.

As expected, the test suite led to incorrect traces that were used to diagnose bugs in th

fication (due to the ADTs, to the guards, or to unfeasible synchronizations between processes

several small iterations, the 36 test cases (800 lines of LOTOS code) were successfully executed in

minutes. While the length of these test cases varied between 2 and 31 observable events, the

some execution traces (test runs) reached 155 events with the internal events. The verification

large 155-event deep LTS explains the time taken by LOLA to validate the specification.

8.2.4 Structural Coverage
The improved insertion technique was used to instrument the MS and PLMN process defi

respectively with 30 and 69 probes. This addition of 99 new internal event to an already-large s

cation resulted in a state explosion problem, and LOLA’s TestExpand command could not be used. I

deed, the length of some traces exceeded 185 events. However, since probes can be covered

groups by checking the test suite against each sub-group (as suggested in Section 7.6.1), the

coverage could be measured compositionally. Coverage measurements were first collected

specification with probes in the MS (client), and then for the specification with probes in the P

(server). LOLA was able to cope with this state space and it returned results after several hours

The long time taken to measure the structural coverage in this experiment was not entir

isfactory. An alternative solution came up through the use of LOLA’s OneExpand command. Rather

than attempting to do a full exploration of the state space, this command allows for the generat

given number of random traces (partial exploration) reachable from the composition of a test a

specification. Moreover, OneExpand does not suffer from the bug found in TestExpand (Section

7.5.2). A partial exploration is more than adequate to show that a probe can be reached, but i

ensure that a probe is unreachable by a test. Nevertheless, by extracting 5 traces for each test

erage results provided by OneExpand were the same as those provided by TestExpand, only this time

81 seconds were necessary to generate them. This pragmatic and efficient solution was also

all the other specifications discussed in this chapter (see row z in Table 30).
266 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

GPRS Group Call (PTM-G)

ur in the

 Another

e that

everal

d for the

bust-

serve as a

s. How-

dard.

 S

ave

nd-

it diffi-

lls

curity

e stan-

lities is
Since the robustness of the PLMN and the MS was defined at the LOTOS level but not in the

UCMs, ten probes were expected to remain unvisited as a result of events that should not occ

normal use of the system. Indeed, these ten probes were missed by the validation test suite.

probe was however missed in the PLMN; this unvisited probe highlighted a portion of the cod

was useless. This code and its probe were removed from the specification.

The validation test suite was meant to be used on the composition of the PLMN and s

MS. It could have been completed with robustness test cases for the PLMN process alone an

MS process alone. LOLA demonstrated that it was possible to create traces that visit these “ro

ness” probes using step-by-step execution of the corresponding processes. These traces can

basis for the generation of additional robustness test cases for the PLMN and the MS processe

ever, such tests were not added as part of the experiment.

8.2.5 Discussion
The application of SPEC-VALU E to PTM-G service raised many questions about the GPRS stan

Multiple errors, inconsistencies, and ambiguities were unveiled as a result of the application ofPEC-

VALU E. Some of the problems that were uncovered include:

• Sending of indications: for the successful execution of operations Join Call and Le

Call, it is not clear whether an indication is sent to all participants or not.

• Rejection cause: when a rejection is provided (e.g. for a Call Initiation request), the e

user receives an ambiguous answer that can be interpreted in many ways, making

cult to diagnose the reason of the rejection.

• Restrictions of joining calls: in a Join Call operation, there is no restriction to the ca

which a subscriber could ask to join. This potential flaw in the design raises many se

and privacy issues. It was decided to constrain the use of this operation in the LOTOS pro-

totype.

In most cases, the descriptions are operational and supported by informal figures in th

dard. Nevertheless, they represent only partial scenarios, and no system view of the functiona
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 267

CHAPTER 8 Experiments with SPEC-VALUE

oiding

 consis-

by an

ding

ve sce-

ce. He

eneric

systems

enarios

ystem.

 of the

e

essage

impact

 the new

ts/pro-

res more

mea-

l cover-
provided. Improving these descriptions with UCMs would represent a good step towards av

problems similar to those enumerated above. Moreover, such standards could gain in quality,

tency and completeness if rigorously tested and validated using an approach like SPEC-VALU E.

The first versions of the PTM-G UCMs, prototype and test suite were created mainly

undergraduate student (P. Forhan), who initially was not familiar with any of GPRS, UCMs, LOTOS

and its tools, or SPEC-VALU E. Nevertheless, it took him less than 5 months to gain an understan

of this mobile group call service and to produce useful documentation, concise and descripti

narios, a validated specification, and a test suite in which we have a high level of confiden

based his work on an earlier study of the GCS system, for which the UCM scenarios were g

enough to be reused for the design of the PTM-G service. Since the structures of these two

are not alike, this reuse of scenarios would have been more difficult with component-based sc

such as Message Sequence Charts.

This experiment also showed that functionalities can be added incrementally to the s

For PTM-G, the integration and validation started with the operations that were independent

others, followed by the operations whose dependencies were already specified (in order:Attach

GPRS, then Detach GPRS, then Initiate Call, then Call Status, then Join Call, Data Transfer and

Change Zone, then Leave Call and Terminate Call). With UCMs, adding new functionalities when th

structure is stable is no more difficult than doing it with scenarios based on components and m

exchanges. However, when a new functionality requires modifications to the structure, the

appears to be softened when UCMs are involved. The scenario paths can be easily adapted to

structure by reallocating the responsibilities, hence providing a traceable link to the componen

cesses in the specification whose behaviour needs to be adapted. Doing this remodeling requi

efforts with scenarios based on MSCs or the like.

The limitations of LOLA in terms of handling large state spaces for structural coverage

surement were reached with this example. Fortunately, relief strategies based on compositiona
268 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Feature Interactions (FI)

 be

uld the

), but it

ne enti-

in the

ased on

d in the

us-

 experi-

 between

ion sys-

ging

h is in

ed

ures in

e

imul-

, detect,

ing sur-
age of probes and on the use of OneExpand for partial exploration of the state space have proven to

effective and pragmatic.

Another lesson relates to specification structures. In client-server systems, not only sho

specification be suitable for system-level validation (e.g. testing clients composed with servers

should also allow for unit-level robustness testing (e.g. testing clients and servers as standalo

ties). The PTM-G specification was created and tested in this way.

Finally, when robustness is involved in the specification but not in the requirements or

UCM scenarios, then verification steps appear to be more useful than rejection test cases b

mutation of acceptance test cases.

8.3 Feature Interactions (FI)
This section discusses the specification and validation of a set of telephony features describe

First Feature Interaction Contest [161]. As explained in Section 2.1.2, the telecommunication ind

try usually understands features as customer services packaged into marketable units. In this

ment, a special emphasis is put on the avoidance and the detection of undesirable interactions

features. Such interactions still represent nowadays a complex problem that telecommunicat

tems designers must face [65][85][159][230][385], and this situation is likely to remain challen

in the future.

By definition, features interact with each other and with the basic system services, whic

many cases the so-called Plain Old Telephone System (POTS). However, a feature might be prevent

from working according to its intent because of some unexpected interactions with other feat

the system. This is at the heart of the feature interaction (FI) problem. Similar challenges can b

found in the agent community where agent goals might be conflicting and impossible to fulfil s

taneously [42][160]. For the last decade, many partial solutions have been suggested to avoid

analyze, and solve feature interactions at design time and run time. Keck provides an interest

vey on the FI problem and related solutions in [227].
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 269

CHAPTER 8 Experiments with SPEC-VALUE

oidant

totype.

gration

hrough

tems.

 L

re

 (Faci

er

ists in

ion is

imbler

ns

]. The

nce at

ectly.

charac-

com-

te

 proto-

ailed

Addi-
The approach taken in this experiment aims to facilitate the creation of an interaction-av

design, and to detect remaining interactions at design time with the help of an executable pro

Avoidance of interactions between operational requirements is achieved through the visual inte

of scenarios expressed with UCMs, and the detection of remaining interactions is achieved t

testing of LOTOS prototypes.

LOTOS has been used for years for the specification and validation of telephony sys

Boumezbeur, Faci, Logrippo and Stépien have pioneered many approaches based onOTOS

[66][129][130][133]. The availability of executable LOTOS prototypes enabled the detection of featu

interactions. Different such techniques were developed by Logrippo and his collaborators

[131][132], Fu et al. [141][142], Kamoun [222][223], and Stépien [338][339]), by Turn

[352][353][354][355], and by Thomas [343]. One of the challenges in using this language cons

writing the first system specification from informal requirements. However, once a specificat

available, rigorous methods can be used to validate and verify the specification.

Use cases have been utilized for the analysis of interactions in telephony systems by K

and Søbirk [229]. More recently, Buhr et al. used UCMs to tackle the problems of feature interactio

and resolution of conflicts in plain telephone systems [79] and in multi-agent systems [77][78

UCM notation helps designers with the visualization of problematic situations and their avoida

a high level of abstraction. However, UCMs do not support formal validation and verification dir

With such knowledge and experience available, a methodology that would use the best

teristics of UCMs (e.g. visual description and integration of features) and LOTOS (e.g. powerful theory

and tools for validation and verification) for the avoidance and detection of interactions in tele

munications systems seems like a natural evolution. SPEC-VALU E is therefore suited as a candida

for demonstrating that integrating UCMs together helps avoiding many interactions before any

type is generated, and that LOTOS prototypes can be used to detect remaining interactions. Det

descriptions of this experiment can be found in a technical report [18] and a publication [22].

tional insights on the use of UCMs as a feature description notation can be found in [28].
270 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Feature Interactions (FI)

e

ction of

e fea-

rvices.

ing place

ed by

 so UCM

ctly to

ce the

 con-

ereas

n fea-

hen

is by

y’s

 a
8.3.1 System Overview and UCM Descriptions
The first FI detection contest, organized by Griffeth et al. in [161], describes twelve features whos

choice has been dictated by the need for them to interact. The network is modeled as a colle

black boxes communicating with each other via defined interfaces. Definitions for POTS and th

tures are given as informal requirements (in English) and as Chisel diagrams [4].

The graphical language Chisel is used for defining requirements of communication se

Chisel diagrams are trees whose branches represent sequences of (synchronous) events tak

on component interfaces, whereas UCMs are described in terms of responsibilities perform

components. In essence, the Chisel language is at the level of synchronous messages, and

scenarios have to abstract from this level. Although it is possible to use Chisel diagrams dire

generate LOTOS specifications and test cases, this is not the purpose of this experiment. Sin

focus of SPEC-VALU E is on the capture of informal requirements, the given Chisel diagrams are

sidered as such. Further information on the transition from Chisel to UCMs is given in [18], wh

Turner discusses the direct translation of Chisel into LOTOS [354].

Features

The twelve features include switch-based services as well as services based on the Intelligent Net-

works (IN) reference model [202]. On top of POTS, the first phase of the contest described te

tures, but this experiment mainly focuses on four of them:

• IN Teen Line (INTL): restricts outgoing calls based on the time of day (i.e. hours w

homework should be the primary activity). This can be overridden on a per-call bas

anyone with the proper personal identity number (PIN).

• Calling Number Delivery (CND): allows the called telephone to receive a calling part

directory number and the date and time.

• IN Freephone Billing (INFB): allows the subscriber to pay for incoming calls.

• Terminating Call Screening (TCS): restricts incoming calls from lines that appear on

screening list.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 271

CHAPTER 8 Experiments with SPEC-VALUE

o

witch,

erating

become

e

The six remaining features were IN Freephone Routing, Call Forwarding Busy Line, Three-

way Calling, IN Call Forwarding, Call Waiting, and Charge Call. The second phase contained tw

additional features, namely Cellular (air-time fees) and Return Call. The UCMs developed in this

phase considered a third additional feature as well, namely Automatic Call Back.

Use Case Maps

As an example, Figure 53 shows a partial UCM for the INTL feature. Components like the S

the users (Originator role and Terminator role), the Service Control Point (SCP), and the Op

System (OS) are all described in the original requirements. Some events in the requirements

responsibilities local to the switch (like setting the busy status of the originator), others becom

responsibilities that the user can observe (like getting an announcement askForPIN), and others

remain events that the user can trigger (like off-hook).

FIGURE 53. Partial UCM for INTL

Switch

Service Control Point (SCP) Operating System (OS)

Orig Term

... continues with POTS

off-hook reject

dial

dial stop

busy
Orig

[UnrestrictedTime]

[R
estrictedT

im
e]

[ValidPIN]

[InvalidP
IN

]

askFor
PIN ToneTone

invalid
PIN

dial PIN
272 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Feature Interactions (FI)

also be

 at

sed as

, events

differ-

he most

 might

design

. This

ts

he first
Similar individual scenarios were defined for POTS and for all thirteen features.

Integration of UCM Scenarios

Individual scenarios are useful for understanding the behaviour of one feature, but they can

integrated together to form a global UCM. The assumption here is that performing the integration

this level of abstraction provides early insights in possible conflicts between features expres

scenarios. Integration helps to ensure early consistency between individual maps. For instance

and responsibilities that are labeled incorrectly, omitted, at different levels of abstraction, or in

ent orders become hard to integrate. Integration also helps to avoid ambiguous situations, t

common being non-determinism. A path segment that is a prefix to two different scenarios

imply the need for a way to decide which alternative to take in a global scenario. Many such

decisions can be made during the integration.

The following root map results from the integration of the twelve features of the contest

integration was done using the UCM Navigator tool [257]. The root map in Figure 54(a) represen

the global context in which sub-maps representing the features are plugged in.

FIGURE 54. Global UCM and INTL Plug-in

One constructs a complete scenario by selecting appropriate plug-ins for the stubs. T

stub in the root map, pre-dial, has one entry point (IN1), and two exit points (OUT1, OUT2). The pre-

Switch

Service Control Point (SCP) Operating System (OS)

Orig Term

off-hook

busy
Orig

reject

dial

dial stop
ToneTone

invalid
PIN

IN1

OUT2

OUT1

pre-dial post-dial

billing

billed

reject

rej
Msg

busy

busy
Tone

orig
Connected

term
Connected

Orig Term

Switch

Service Control Point (SCP) Operating System (OS)

INTL goReject

dial PIN

[UnrestrictedTime]

[R
estrictedT

im
e]

[ValidPIN]

[InvalidP
IN

]

askFor
PIN

goDial

(a) Root map for global UCM (b) INTL plug-in for pre-dial stub
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 273

CHAPTER 8 Experiments with SPEC-VALUE

 the

TL for

n to be

osition

grated

date of

nt

h the

CM

lt

r-

created

 to the

extracted

ment.

overall

ractions

airwise
dial stub has two plug-ins, one of which (INTL) is illustrated in Figure 54(b). The binding of

INTL plug-in is {(INTL, IN1), (goDial, OUT1), (goReject, OUT2)}.

The other (default) plug-in for the pre-dial stub is an empty path that links IN1 to OUT1. The

preconditions attached to these two plug-ins are disjoint, i.e. the user must be subscribed to IN

this plug-in to be selectable, and the user must not be subscribed to INTL for the default plug-i

selectable. Hence, the two plug-ins can never be active simultaneously. This alternate comp

within the stub results from the nature of the individual features and from how they were inte

together. In essence, INTL is the only feature that deviates from all the others between the up

the busy status (busyOrig) and the dial tone (dialTone), and it overrides POTS according to the inte

of INTL.

When an originator user is subscribed to INTL only, the flattening of the root map wit

INTL plug-in in the pre-dial stub and default plug-ins in the other stubs results in the individual U

of Figure 53. As for the other features of interest, the post-dial static stub contains only one defau

plug-in in which two other stubs are composed in sequence. The process-call stub contains plug-ins

for TCS, INFB, and default behaviour, while the display stub contains a CND plug-in that can ove

ride the default plug-in.

A total of 23 plug-ins are used to describe the 13 features. A second root map was also

to take care of the disconnection phase in the system. The latter was not explicitly integrated

other maps as the disconnection was easier to represent independently. These UCMs were

from the contest description mainly by D. Petriu, a master’s student collaborating to this experi

Avoiding Feature Interactions

Integrating scenarios together at the level of UCMs promotes high-level reasoning about the

system and helps avoid many interactions between features. For instance, many potential inte

between INTL, INFB (or TCS), and CND are avoided because the features in each possible p
274 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Feature Interactions (FI)

quence

some-

tub (e.g.

this

ing on

 stubs.

asier to

ecified

he inte-

n helps

 interac-

cture of

eatures

ports

UCMs.

ented

feature

dresses,

e names.

for the

s in the
combination are allowed to proceed independently in the map. They are integrated using a se

of three different stubs that encapsulate the features from their environment.

Important design decisions still need to be made at integration and composition time,

thing that cannot be easily automated. For example, interactions between features in one s

INFB and TCS in process-call) are still possible, depending on the selection policy used within

stub. Maps with stubs show how localized the impact of a feature can be. This helps focus

issues related to how a plug-in (i.e. dynamic behaviour) is selected in one or more dynamic

Since only a limited number of smaller UCMs have to be considered in a stub, it becomes e

check that they have disjoint and complete preconditions (to avoid non-determinism and unsp

behaviour), or that priorities need to be established. Hence, the design decisions are simpler. T

gration then becomes a useful step in a design process that includes UCMs. The UCM notatio

us to reason about architectures and behaviour in order to create systems in which undesirable

tions are avoided early in the development cycle, rather than merely detected at a later stage.

8.3.2 Construction of the L OTOS Prototype
The construction guidelines have been used to build appropriate abstract data types, a stru

components representing the architecture, and internal process behaviour. Although only four f

are fully described and validated (INTL, CND, TCS and INFB), the resulting specification sup

the representation and the manipulation of information for the thirteen features described as

Also, the structure of the UCMs (with recursive definitions of stubs and plug-ins) is fully repres

in LOTOS.

The abstract data types are mostly derived from the tabular representation of the

parameters found in the contest description. Simple enumerated types describe time, user ad

personal identification numbers, announcements, trigger names, response types, and featur

More complex ADTs handle a database of subscriber information in the switch, log records

billing in the OS, lists of features, feature parameters in the SCP, and a database of status item

switch.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 275

CHAPTER 8 Experiments with SPEC-VALUE

ompo-

on

ibility in

senting

een the

ile oth-

ser and

-switch,

llability

ork

s

t

ion of

quire-

lidation

tterns
LOTOS gates are used to represent individual events shared between the five network c

nents (see Figure 53). These components are represented as LOTOS processes and are synchronized

common gates. Each event in the Chisel diagrams of the contest description (i.e. each respons

the UCMs) is mapped onto a unique gate. Therefore, instead of using gate splitting for repre

the on-hook and off-hook events on the user/switch interface (as in user2switch!onHook and

user2switch!offHook), we have two individual gates (onHook and offHook). Having individual

gates permits more specific compositions between processes and, more importantly, betw

specification and the test processes.

Since this system is designed from the user’s viewpoint, some events are observable wh

ers remain hidden within the system. The observable events are the ones on the switch-to-u

user-to-switch interfaces, whereas the hidden events are those on the switch-to-SCP, SCP-to

and to-OS interfaces. Three additional visible events are also created to improve the contro

and testability of the prototype. Init allows the initialization of all the databases used by the netw

components with users’ values (likely to come from a test case). CreateUser is used to create user

(originators and terminators) and specify their initial state. Finally, Query ’s purpose is to allow a tes

case to verify the billing log at the end of the test.

The resulting specification is composed of 39 data types (750 lines of LOTOS code) and 13

process definitions (800 lines).

8.3.3 Test Selection and Execution
The test selection strategy used in this experiment differs slightly from that of a plain applicat

testing patterns to the set of UCMs. The availability of a semi-formal representation of the re

ments (in the form of Chisel diagrams) enable the use of a more rigorous technique for the va

of the functional behaviour of the basic call model (POTS) and of individual features. Testing pa

were mostly used for validating the expected interactions between pairs of features.
276 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Feature Interactions (FI)

rough

art of

 test cases

ese pro-

nce

on

n behav-

es, and

any test

 cases.

ey are

ism are

internal
Test Suite Structure

Often, LOTOS test processes are sequential, monolithic, and deterministic in nature. However, th

process instantiation, LOTOS test processes can be built on top of each other, hence reusing p

previous test processes in new ones. Shared processes, which represent sub-sequences of

corresponding to common UCM abstract sequences, are used to structure the test suite. Th

cesses are called common behaviours and they act in a way similar to test steps in the conforma

testing methodology and framework [193].

Figure 55(b) shows the bottom level of LOTOS test processes, composed solely of comm

behaviour processes for POTS. They are reused by the POTS test cases, and also by commo

iour processes for individual features. On top of the latter, test processes for individual featur

also for each pair of features, are constructed. Common behaviour processes are reused by m

cases, which simplifies the generation of test suites and increases the consistency among test

FIGURE 55. Construction of the FI Test Suite

Figure 55(c) presents the typical code structure in common behaviour processes. Th

mainly composed of simple expressions that terminate with an exit code (exit(n)). With LOLA, test

cases do not need to be sequential or deterministic, so alternatives and explicit non-determin

allowed in common behaviour processes. Note that many alternatives are preceded by the

POTS

Common Behaviour

Individual Features

Common Behaviour

POTS

Test Cases

Individual Features

Test Cases

Pairs of Features

Test Cases

Init ! databases ...;
CreateUser ! userA ! FListA ;
CreateUser ! userB ! FListB ;
CommonBehaviour...
(* Check the Log. *)
>> accept exitCode:Nat in
(
 [(exitCode eq 0)] ->

 Query ! LogValue ...;
Success; stop

 []
 [(exitCode eq succ(0))] ->

 Query ! OtherLogValue ...;
Success; stop

)

Event1 !userA;
(
 i ; Event2 !userA;

 exit (0)
 []
 i ; Event3 !userB;
 POTS_5...
)

(a) Typical Code Structure
in Test Cases

(b) Test Cases Constructed on Top of
Common Behaviour Processes

(c) Typical Code Structure
in Common Behaviour
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 277

CHAPTER 8 Experiments with SPEC-VALUE

under

m con-

 by

date the

tes an

case for a

rly when

tive fea-

use ini-

cessary

onding

ns why

equences

ines of

uted by

 For
action i . This non-determinism (motivated by the “canonical” nature of the testers) ensures,

LOLA, that all branches in the test case will by selected and covered at testing time.

In Figure 55(a), the typical code structure illustrates that a test case provides the syste

figuration and verifies the exit codes. More specifically, the system is first initialized (with Init),

users are created dynamically (with CreateUser), and the test cases themselves are performed

instantiating common behaviour processes. The exit code is then captured and used to vali

billing log against its predicted value. This verification step is performed on the Query gate.

During the testing, a deadlock in a test case for POTS or for an individual feature indica

error that needs to be fixed. When all these test cases pass successfully, a deadlock in a test

pair of features indicates an unexpected interaction.

Testing POTS and Individual Features

Test cases generated from POTS and individual features check that each feature acts prope

being the only one active (Strategy 6.B), and that POTS acts properly in the absence of any ac

ture (Strategy 6.A). Often, more than one test case is required to cover one requirement, beca

tial states and conditions are necessary. POTS has only one precondition: whether or not the

terminator side is busy. Hence, two test processes, one for each initial configuration, are ne

(200 lines of LOTOS code). They make use of six POTS common behaviour processes, corresp

to POTS states referred to by the Chisel diagrams of other features. This is one of the reaso

such common behaviour can be so easily reused. The two POTS test cases cover all the s

found in the corresponding Chisel diagram.

Ten test processes are used to validate the features INTL, CND, INFB and TCS (400 l

LOTOS code). They make use of six additional common behaviour processes. Each test is exec

providing an initial configuration according to the conditions included in the individual UCMs.

instance, three configurations are required for INTL: UnrestrictedTime, RestrictedTime ∧ ValidPIN,
278 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Feature Interactions (FI)

nd in

).

uring

and per-

viour of

 cannot

e prob-

 UCM

ditions

e intent

ses for

the pair

strated

r is

d

 the OS

-in was
RestrictedTime ∧ InvalidPIN. They cover the three partial UCM routes (abstract sequences) fou

Figure 53. In effect, this corresponds to the application of Strategy 1.B (Alternative — All paths

Detecting Unexpected Interactions

In theory, if the same type of integration used for merging the individual UCMs is used again d

the generation of the test cases for pairs of features, then there should not be any problem,

haps not a single unexpected interaction. In practice however, integrating the expected beha

two features in a test sequence is much easier than integrating n features in a system (where n > 2).

This is one of the main reasons why tests for pairs of features are necessary. Although they

cover everything there is to check, they represent a pragmatic and efficient way of attacking th

lems of conformance to the requirements and interoperability between features.

A set of 25 test cases (725 lines) was generated by application of Strategy 6.C to the

paths where plug-ins for pairs of features are selected. The meaningful combinations of precon

also helped selecting these test cases, which aimed to validate the features according to th

expressed by the global UCM. In the first iteration after the successful execution of test ca

POTS and individual features, all the FI test cases passed successfully, except the test for

INFB-TCS. LOLA returned three traces that led to unexpected deadlocks. One such trace is illu

as an MSC in Figure 56: the idle terminator (B) has subscribed to INFB and TCS, and the originato

not on the screening list. In this scenario, the originator (A) on-hooks first, but it is also billed instea

of the terminator. The error in the billing was detected when the test case queried the log from

and could not synchronize on the expected value. The problem here is that the TCS plug

selected, but not INFB. Hence, the person to be billed was the default one, i.e. the originator.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 279

CHAPTER 8 Experiments with SPEC-VALUE

e, the

rough

s, it

rk prop-

his is a

nd rig-

B in

d and

TS, indi-

o remain
FIGURE 56. A Feature Interaction Between TCS and INFB

The second interaction trace is similar, but the originator on-hooks first. In the third trac

originator is on the terminator’s screening list. The call should be blocked by TCS, but it goes th

because INFB was selected while TCS was not.

The choice between the TCS plug-in and the INFB plug-in in stub process-call, which both

override the default plug-in, was left open (i.e. non-deterministic). When integrating the UCM

was not clear whether other types of constraints were necessary for these two features to wo

erly together. Even from a UCM perspective, a mutual exclusion would cause problems, but t

detail that was buried down in the selection policy within the stub. This is why a more precise a

orous detection technique appears necessary once the integration is completed.

A sensible solution to this problem would be to give a sequential priority to TCS over INF

the stub, i.e. INFB would be selected only if TCS allows it. This new composition was specifie

the FI test cases adapted according to this new composition. In the end all the test cases (PO

vidual features, and pairs of features) passed successfully. No expected interactions seemed t

in the global specification.

msc fiINFB_TCS_case1a

Off-hook (A)

process User Switch

TCS selected

A B
process User OS

DialTone (A)

Dial (A, B)

Start AudibleRinging (A, B)

Start Ringing (B, A)

Off-hook (B)

Stop AudibleRinging (A, B)

Stop Ringing (B, A)

LogBegin (A, B, A, t0)

LogEnd (A, B, t1)

A and B talking

On-hook (A)

Disconnect (B, A)

On-hook (B)

Error in billing
280 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Feature Interactions (FI)

L

65 sec-

d to be

used by

by the

ing seg-

ing fea-

uctural

w fea-

nd the

uite. In

the first

l UCM.

o a plug-

more a

ssary.

 the

fying the
8.3.4 Structural Coverage
This specification was instrumented with 55 probes in order to cover of 49 sequences (94 OTOS

events) and 27 simple BBEs. Structural coverage measures were taken using LOLA’s TestExpand and

OneExpand commands. Both approaches provided the same results, but TestExpand required 1

onds whereas OneExpand only took 37 seconds.

The testing performed in Section 8.3.3 being quite exhaustive, no probe was expecte

missed. However, four probes were not covered by the test suite. This partial coverage is ca

the specification of only four features out of the thirteen described in the UCMs rather than

incompleteness of the test suite. The specification includes paths corresponding to stub outgo

ments (hooks) that are not used by the four selected features. The specification of the remain

tures and the generation of their validation test cases would undoubtedly lead to a full str

coverage.

8.3.5 Discussion
This FI experiment leads to the discussion of four new topics: the incremental addition of ne

tures, the adequacy of the underlying call structure, some limitations of the UCM notation, a

benefits of this approach when compared to related techniques for feature interactions.

Incremental Addition of New Features

Adding new features has a direct impact on the global UCM, the specification, and the test s

this experiment, the integration of three new features (the second phase of the FI contest) to

ten ones, which were already integrated together, did not have a major impact on the globa

The root map did not have to change, but a new stub and a new output path had to be added t

in. The impact has shown to be proportional to how coupled the features are in a map. The

map is modularized (by using stubs), the less it is likely that major modifications will be nece

Since the LOTOS specification reflects the global UCM, the impact on the prototype is basically

same. A few new gates and appropriate data structures, together with new processes for speci

new plug-ins, are required.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 281

CHAPTER 8 Experiments with SPEC-VALUE

of pairs

 pair

vered.

ondi-

wever,

hs and

everthe-

f sev-

oupled

es (e.g.

roved.

 decoupled

ould be

M

ything

sake of

y prob-

riment,

s at the
The addition of a feature however has a profound impact on the test suite. The number

among n features is n*(n+1)/2 (if we assume that a feature may interact with itself), and for each

the number of test cases grows exponentially with the number of distinct conditions to be co

The impact of the integration of a new feature will be higher if new types of conditions (e.g. prec

tions attached to start points or OR-forks) have to be accounted for in the input domain. Ho

UCMs can help determine some unnecessary combinations of conditions by following the pat

their associated conditions. For instance, when UnrestrictedTime is true in INTL (Figure 53), whether

the PIN is valid or not has no impact, hence one of these two combinations can be dropped. N

less, more scenarios need to be pruned out for combinations of features.

Structure Adequacy

The abstract underlying structure in the UCMs appears to be insufficient for the specification o

eral remaining features. The current behaviour of the switch component (Figure 53) is tightly c

to the progression of one unique call session. For call sessions involving more than two parti

for the three-way calling and call waiting features), the current call structure needs to be imp

Call sessions need to be instantiated upon request, and the user status database needs to be

from the switch process in order to be accessible to these sessions. Such improved structure w

similar to those used in many LOTOS specifications for telephony systems [129][133]. The UC

structure, derived from the network architecture given in the requirements, did not specify an

about the internals of the switch, and it was specified as is in the prototype. However, for the

extensibility of the specification, new components are needed at the specification level, and the

ably need to be mirrored at the UCM level. Such improved structure was not used in this expe

but the lesson here is that complex scenarios might lead to the discovery of new component

UCM and LOTOS levels.

Limitations of Plug-ins, Bindings, and Compositions

The following limitations of the UCM notation were observed while integrating the scenarios:
282 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Feature Interactions (FI)

amic

isual-

 better

nding

t one of

 the use

osition

om-

able

are dis-

ates very

roniza-

n

ilarly

d expe-

ation.

s said to

calable

ided in

Ms are
• Although the stub/plug-in mechanism is useful for abstraction, modularity, and dyn

behaviour, its use in a global map makes the end-to-end scenarios more difficult to v

ize at a first glance. Often, the reader has to mentally flatten the global map to get a

understanding of these scenarios.

• The binding of a plug-in to a stub is done through an external mechanism (the bi

relation, together with an optional selection policy), which is not visual.

Care has to be taken when using stubs and plug-ins, otherwise their use might defea

the intents of UCMs which is to provide a useful bird’s eye view of the system.

Comparison with Related Techniques

In [132], Faci presents a FI detection technique also based on the integration of scenarios and

of the LOTOS testing theory. This approach makes a distinction between the concepts of comp

and integration. Composition, noted f1|[]|f2, expresses the synchronization of features on their c

mon actions with POTS and their interleaving on their independent actions. Integration, noted f1* f2,

expresses the extension of POTS with n features (two in his examples), such that each feature is

to execute all of its actions which are allowed in the context of POTS, when the other features

abled. Features are captured as labeled transition systems instead of as UCMs. Integration rel

well to the UCM integration, whereas the composition simply represents the generalized synch

tion operator and does not relate to anything specific in SPEC-VALU E. Faci’s approach states that a

interaction exists between n features if their integration does not conform to their composition.

Conformance is checked through validation test cases, from the user’s point of view, sim

to what was done in this FI experiment. Test cases are derived manually (using “knowledge an

rience”) from the composition specification, and then they are applied to the integration specific

When a deadlock occurs between a test case and the integration specification, an interaction i

be detected. This last specification is generated manually at the LTS level, which is far less s

and modular than generating specifications from global UCMs. Indeed, all the examples prov

this thesis contained only two features integrated together, for obvious complexity reasons. UC
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 283

CHAPTER 8 Experiments with SPEC-VALUE

mplex

 easily

is very

atically

grated

av-

system

hey are

res

es

atures.

fter the

te space.

tection

sing

 cap-

-deter-

s are

n man-

anism

lve or
a means to integrate scenarios while avoiding some interactions, and they allow for multiple co

features to be considered.

Faci’s approach leads to multiple feature interactions that are somewhat spurious or

avoidable. Indeed, any integration operator (*) other than the generalized synchronization (|[]|)

likely to cause deadlock situations. The test suite, although it could be generated almost autom

from the composition, is of low quality as it does not consider the way the features were inte

together. Many test cases are may tests and would deadlock when composed with the original beh

iour. The test suites generated from UCMs are much more representative of the intended

behaviour, they lead to simpler diagnostics (due to their acceptance/rejection nature), and t

more likely to be reusable down the road towards the implementation.

In [141][142], Fu et al. applied two different FI detection techniques to the set of featu

described in the FI detection contest and prototyped in LOTOS. The first one uses observer process

that check, at run-time, whether individual feature properties hold in the presence of other fe

The second technique uses the billing information (log) to catch interactions both during and a

execution of test scenarios. These scenarios are very loose and cover large portions of the sta

In an integrated approach to the specification and verification of features, both these FI de

techniques could potentially be used in addition to the UCM-based prototyping and validation.

Turner applied CRESS, reviewed in Section 3.3.4, to the same set of features [354][357]. U

the CRESS toolset, LOTOS models are constructed automatically from formalized Chisel diagrams

turing the individual features. Several types of interactions (e.g. related to consistency or non

minism) are detected at integration time using static semantic rules. Additional interaction

detected using conventional LOTOS techniques, including testing with LOLA. The author claims that

the specifications produced by this toolset are smaller better structured than similar ones writte

ually in [142]. However, these specifications suffer from a pre-determined composition mech

and target mainly the detection of interactions, not necessarily an integration that would so
284 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Agent-Based Simplified Basic Call (SBC)

lection

help

 These

ult plug-

lt plug-

e taken.

er

epre-

s only)

ed onto

 to the

l

artner

 private

ins in a

t, the

an 100

ling of

an exam-

Basic

c-

nd the
avoid them as it is the case with UCMs and selection policies. There is no strategy for the se

and generation of test cases, especially for the ones targeting desirable feature interactions.

Nakamura et al. [268] and Hassine [170] recently proposed filtering approaches that

extracting interaction-prone scenarios based on the configuration of UCM stubs and plug-ins.

techniques are based on an assumption used in this experiment, i.e. features that override defa

ins in different stubs are not likely to interact whereas features that attempt to override defau

ins in the same stubs are likely to interact unless appropriate measures (selection policies) ar

Hassine’s approach further validates these scenarios using a LOTOS specification. Gorse uses anoth

FI filtering technique in combination with UCMs, only this time it is based on a more abstract r

sentation of the requirements (preconditions, input events, and resulting events/postcondition

[156][157]. For each suspected interaction, scenarios can be generated directly and mapp

UCMs or LOTOS test cases. Other filtering techniques (e.g. Keck’s [226]) could also be adapted

UCM context. All of these can be combined to SPEC-VALU E to improve the detection of potentia

interactions and the selection of suitable validation test cases.

8.4 Agent-Based Simplified Basic Call (SBC)
This experiment is part of a proof-of-concept study for an industrial project. The industrial p

provided a collection of integrated UCMs representing the high-level design of an agent-based

branch exchange (PBX). These UCMs include many features structured with stubs and plug-

way similar to the FI specification of Section 8.3 and to the TTS example. In this experimen

basic call model was extracted from these UCMs and then simplified. The initial set of more th

UCMs was reduced to a collection of 4 UCMs which no longer contained any stub; the hand

stubs and plug-ins was postponed to a later phase of this project. These UCMs were used as

ple to demonstrate the potential of the SPEC-VALU E approach in an industrial context.

This section reports on the prototyping and validation of this agent-based Simplified

Call (SBC) model. The application of SPEC-VALU E to the whole set of UCMs and features (the se

ond phase of this industrial project), together with the generation of functional test cases a
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 285

CHAPTER 8 Experiments with SPEC-VALUE

ase are

eir own

ndustrial

nd-

ivi-

ween a

f a

Bs

 a sce-

 LEBs

ructural

s:

all.

mi-

ection
detection of undesirable interactions, is discussed further in [25]. The results of this second ph

not included in this thesis because the work was mainly done by other students as part of th

theses.

8.4.1 System Overview and UCM Descriptions
The system in consideration uses a new agent-based architecture being designed by the i

partners [369]. Call processing goes through four types of components:

• Device Entity Blocks (DEBs): Device agents handling the devices, i.e. the physical e

point of a call (e.g. a telephone, a computer capable of voice over IP, a diary, etc.).

• Communication Entity Blocks (CEBs): Personal agents aware of the restrictions and pr

leges given to specific users. They also know about the preference relationships bet

user and his/her devices. CEBs communicate with DEBs and LEBs.

• Logical Entity Blocks (LEBs): Agents representing the functional role of the end point o

call (e.g. president, director, secretary, etc.).

• Call Objects (COs): Dynamically instantiated objects that handle calls by binding LE

together in a call session.

Many instances of these components can be active simultaneously for one user. From

nario perspective, it is also helpful to distinguish between the roles played by DEBs, CEBs, and

(e.g. originating or terminating). Call objects are similar to the call sessions suggested as a st

improvement for the FI specification in Section 8.3.5.

SBC is modeled using four UCMs, related through their preconditions and postcondition

• SimplifiedBasicCall, the main UCM, where the originating party attempts to initiate a c

This UCM, created with the UCM Navigator [257], is showed in Figure 57.

• Answer: this UCM follows SimplifiedBasicCall when the phone is ringing on the ter

nating side. If the terminating party answers, then the phone stops ringing, the conn

timer is released, and the connection is established.
286 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Agent-Based Simplified Basic Call (SBC)

ke a

xity of

ns in

d and

 start

ons. All
• HangUpOrig: UCM that represents the termination of a call or of an attempt to ma

call by the originating party.

• HangUpTerm: UCM symmetrical to HangUpOrig, but involving the terminating party.

FIGURE 57. SimplifiedBasicCall UCM for SBC

The three last UCMs, although not shown here, are rather simple. The apparent comple

the SimplifiedBasicCall UCM results from the flattening of numerous stubs with default plug-i

the initial collection of UCMs. The use of stubs and plug-ins in the latter makes it more structure

readable.

In Figure 57, originating and terminating roles are used for DEBs, CEBs and LEBs. The

points leading to the DEBs and the end points coming out of the DEBs represent user interacti

the responsibilities are hidden in their respective components.

CallObject

DEB:Originating CEB:Originating LEB:Originating

LEB:TerminatingCEB:TerminatingDEB:Terminating

offHook

dialTone SetBusydial

toneOff

FindLE FindCalleeAddress

CreateCall

Find2ndPartyLE

FindCEFindDERing

callInProgress

GetCE

ConTimer

reorderTone

ringingOff

ClearCall

ClearCallClearCallStopRinging

ringingOn

ringBackTone

[S1]

busyTone

[S2]

[F1]

[S3]

[F3]
[F2]

dialTone
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 287

CHAPTER 8 Experiments with SPEC-VALUE

ning an

us

8.

nnels

tified,

st in the

e and

and the

 a more

multa-

nstances

ynami-
8.4.2 Construction of the L OTOS Prototype
The construction guidelines and the experience gained with the FI experiment helped determi

appropriate structure for the LOTOS prototype. The integration of the four UCMs cited in the previo

section is done directly at the LOTOS level, in a way similar to the GCS and PTM-G examples.

The DEBs, CEBs, LEBs and COs are represented as LOTOS processes, as shown in Figure 5

Multiple instances of these components are used to represent the different users such as A (originating

party) and B (terminating party). These components communicate through unidirectional cha

specified as gates (arrows in Figure 58). Also, individual component instances, uniquely iden

use gate splitting to communicate.

FIGURE 58. Structure of the LOTOS Specification

A single Database process is used to simulate all the data repositories assumed to exi

components but which are not defined explicitly in the UCMs.

In this structure, DEBs are instantiated statically: for any particular DEB, there exists on

only one instance. Each DEB process is instantiated with values corresponding to its identifier

user with whom it is associated. Other Agents (CEBs, LEBs and Call Objects) are managed in

dynamic fashion. CEBs and LEBs can be involved in several communication scenarios si

neously. To permit this, CEB and LEB processes are designed such that there may be many i

of them at the same time (up to three in this specification). Call Objects (COs) are created d

DEB
(userA)

DEB
(userB)

CEBs
(cebA)

CEBs
(cebB)

LEBs
(lebA)

LEBs
(lebB)

DE_to_CE CallObjectCreator

Call
Object

Database

GetCE, FindLE,
Find2ndPartyLE,
FindCE,FindDE

USER_to_DE,

RingingTimeOut

DE_to_USER CE_to_DE

CE_to_LE,

LE_to_CE

LE_to_CO,

CreateCall

LE_to_CE
288 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Agent-Based Simplified Basic Call (SBC)

f LEBs,

tion.

ges and

to

 the

. The

-

ever, the

 cover-

 of the

enarios

checked

re based

d inside

f a race

he

 SBC
cally by LEBs through the CallObjectCreator process. The COs may be used by any number o

so this structure enables multi-party calls, something that was possible to do in the FI specifica

Simple abstract data types are defined to describe, compare and manipulate messa

component identifiers (8 ADTs, 200 lines of LOTOS code). Nine process definitions are used

describe the components and their associated factories (750 lines of LOTOS code).

One particularity of this prototype is that it includes a timeout mechanism, resulting from

construction guideline CG-4.a, used to specify the timer found in the SimplifiedBasicCall UCM

timeout event is made visible in order to improve the controllability at testing time.

8.4.3 Test Selection and Execution
For the validation, the structure was initialized with two users (A and B), as shown in Figure 58. Sim

ple testing patterns were used to guide the construction of nine acceptance test cases. How

goal was to produce examples of functional scenarios, without much concern for the complete

age of the UCM paths. Two rejection test cases were also added to this collection.

The first four test cases (A1 to A4 in Table 25) target the normal and expectable usage

system, whereas tests A5 to A9 represent unsuccessful communications or exceptional sc

which highlighted several problems with the prototype. In a sense, these last five test cases

the robustness of the specification.

Tests R1 and R2 are two rejection test cases whose expected verdict is Reject. They a

on informal requirements rather than on the UCMs themselves.

Three problems were detected. Test A6 shows that the communication mechanism use

CEBs and LEBs cannot always handle simultaneous hang-ups from both parties because o

condition. Test A7 indicates that the situation is even worse when B hangs up at the same time as t

timeout occurs in the LEB. Both these unexpected verdicts imply deficiencies in the way the

specification handles these two race conditions. This needs to be fixed at the LOTOS level since UCMs

abstract from such details.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 289

CHAPTER 8 Experiments with SPEC-VALUE

y goes

re

 situa-

proved

he total

l

,

-

e
Test R2 indicates a problem with the disabling of the CallInProgress signal when a part

on hook. Not only this needs to be fixed at the LOTOS level, but such a problem may also requi

remodeling or more details at the UCM level.

These problems were not fixed in this experiment as the goal was to show problematic

tions that validation test cases could uncover.

8.4.4 Structural Coverage
Though the SBC specification is not valid according to Definition 6.2 (val relation), the structural

coverage was measured in order to determine additional potential problems. Using the im

insertion strategy, 64 probes were inserted in the specification, which represents only 29% of t

number of LOTOS events (204) and simple BBEs (20).

TABLE 25. SBC Test Suite and Verdicts

Test Description Verdict Problem

A
cc

ep
ta

nc
e

A1 A calls B, A hangs up first. MUST

A2 A calls B, B hangs up first. MUST

A3 A calls B, B is busy. MUST

A4 A calls B, no answer (timeout). MUST

A5 A calls A, gets busyTone. MUST

A6 A talks to B, and they hang up at the
same time.

MAY CEBs and LEBs were unable to propagate interna
messages in both directions at the same time,
hence resulting in some unexpected deadlocks.

A7 A calls B, and B off-hooks at the same
time as the ringing timeout occurs.

REJECT Race condition causing unexpected internal dead-
locks (LEBs) in all test executions.

A8 A calls B, B is busy. A hangs up, tries
again, and gets busyTone.

MUST

A9 Tests A1 and A2 in sequence (2 calls). MUST

R
ej

ec
tio

n

R1 B off-hooks twice before hanging up. REJECT

R2 CallInProgress signal should not
occur after onHook/toneOff.

MUST Test case that illustrates a problem with the UCMs
which was coded as is in the prototype. Since the
callInProgress tone is sent to the originator concur
rently with the rest of the call (see Figure 57), it is
possible for this event to be observed even after th
originator has gone on-hook.
290 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Agent-Based Simplified Basic Call (SBC)

ed 17

, these

 cate-

eck the

EBs,

neces-

e cur-

stance

another

ehav-

sed sys-

s too

might be

t plan

 not the

ncom-

UCMs

tgoing

 Call
Using LOLA’s OneExpand command, the resulting coverage measurements emphasiz

probes missed by the validation test suite. Two main reasons explain this surprising result:

• Failure conditions are handled by several UCM paths (e.g. [F1] , [F2] and [F3] in

Figure 57) and the specification detects and reports them as appropriate. However

conditions are not checked by the validation test suite. 12 unvisited probes fall in this

gory. Additional test cases are necessary to cover these UCM paths and hence ch

robustness of the SBC design.

• As explained in Section 8.4.2, several instances (up to 3 in the specification) of C

LEBs, and COs can be active simultaneously for one user. This type of structure is

sary to support several multi-party features designed on top of this SBC. However, th

rent validation test suite does not make use of all these instances at once. No third in

is ever created for any component, and hence 5 probes are not covered. This is

example of a specification structure that is intended to be extended with additional b

iour (features in this case).

Again, the validation test suite was not completed in this experiment.

8.4.5 Discussion
The SBC case study illustrated several types of problems that could be detected in an agent-ba

tem using SPEC-VALU E. One lesson learned during this experiment is that if test cases focu

much on the paths related to expected user functionalities, then the robustness of the design

forgotten along the way, even if this robustness is explicitly defined at the UCM level. The tes

should ensure that, through the use of testing patterns, all UCMs paths are covered. If this is

case, then it is likely that the functional and structural coverages of the prototype will remain i

plete.

In the second phase of this project, SBC was extended to support the original set of

(including stubs and plug-ins) [25]. The features considered so far are of different types (Ou

Call Screening, Call Forward Always, Call Forward on Busy, Call Hold, Recall, Call Pickup and
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 291

CHAPTER 8 Experiments with SPEC-VALUE

). The

t of this

dology

cess.

s con-

s. MAP

onents.

stablish-

tion.

-

 spec-

sulting

nami-

n

ritten

 of this
Transfer), and new ones are to be added (Auto-Recall, Timed Reminder, and Call Waiting

approach for FI avoidance and detection used in Section 8.3 is being applied. The main resul

experiment is to have shown, to the satisfaction of the industrial partner, that a design metho

for telephony switches based on the combined use of UCMs and LOTOS is feasible and effective in

practice. Part of this methodology is also being integrated to the industrial partner’s design pro

8.5 Self-Coverage of GSM Mobile Application Part (MAP)
SPEC-VALU E’s structural coverage technique is applicable to specifications developed in variou

texts. This experiment involves GSM’s Mobile Application Part (MAP) [127], an ETSI standard

which maintains consistency among databases frequently modified by mobile telephone user

is composed of nine protocols for message exchanges between specific pairs of GSM comp

The MAP specification and the test suite used here were not developed using SPEC-VALU E. This

experiment discusses the use of the structural coverage technique presented in Chapter 7 for e

ing the self-coverage of a specification by a test suite automatically generated from this specifica

8.5.1 Construction of the L OTOS Prototype
A student (H. Ben Fredj) derived a MAP specification in LOTOS directly and manually from the stan

dard [127]. Scenarios and UCMs were not involved in the construction of this specification. The

ifier validated the prototype manually through simulations and step-by-step execution. The re

specification contains 14 process definitions (850 lines of LOTOS code) and 22 ADT definitions (375

lines). This specification is written in a fairly static style, i.e. processes are not instantiated dy

cally. This style was chosen in order for tools such as CÆSAR to be able to extract a finite automato

from the specification [135][146].

8.5.2 Test Generation
The project aimed to generate an abstract conformance test suite automatically from the MAP specifi-

cation in LOTOS and to compare it to a similar test suite generated from a MAP specification w

in SDL. TESTGEN is the tool used to generate both abstract conformance test suites. The results

comparison are outside the scope of the thesis, and hence are not discussed further.
292 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Self-Coverage of GSM Mobile Application Part (MAP)

st

e

)

er

e

ed spec-

ecause

t to be
As shown in Figure 59, the specification is first translated into an automaton by CÆSAR, and

the resulting graph is minimized by ALDÉBARAN [135]. TESTGEN then generates a conformance te

suite by doing a tour of the graph and by using Cavalli’s Unique Event sequences [89][196], a uniqu

identification of each state adapted to LOTOS from the concept of Unique Input/Output (UIO

sequences [360]. This test suite is converted back to LOTOS test processes in order to check wheth

or not the structural coverage of the “validated” MAP specification is achieved (hence the namself-

coverage). A 100% coverage is obviously expected.

FIGURE 59. Self-Coverage of the MAP Specification

8.5.3 Structural Coverage
Three major iterations were needed to achieve a satisfactory structural coverage and a validat

ification. In the first one, less than half of the probes were visited by the test suite (417 tests) b

of a problem with the data types and guards which caused about half of the specification no

reachable. This problem was totally missed during the initial validation.

Original MAP
Specification

Conformance
Test Cases

Automaton

Minimized
Automaton

MAP Spec
with Probes

LOTOS Test
Cases

LTSs with
Internal
Events

Coverage
Results

TESTGEN

ALDÉBARAN

CÆSAR LOT2PROBE

Merging

Translation

LOLA (OneExpand)

Statistics

Spec with
Test Cases
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 293

CHAPTER 8 Experiments with SPEC-VALUE

e (603

ing non-

 which

ration

.

ns men-

00 sec-

rmance

 MAP

me

overage

 added

ique has

nsuring

nd in the

ective-

ecdotal

gy. This
The second iteration fixed this bug and resulted in an improved and longer test suit

tests), whose results are shown in Table 30. Several verdicts were wrong because of remain

determinism in the specification. This also caused problems with the generated test suite,

couldn’t cover 17 probes in the specification.

A third version (not shown here) fixed this non-determinism problem and led to the gene

of 684 test cases. Full structural coverage of the specification was achieved with this test suite

Owing to the finite and fairly deterministic nature of the MAP specification, LOLA took

between 10 and 18 seconds to validate the numerous tests associated with the different versio

tioned above. However, because of a very high number of test cases, almost 17 minutes (10

onds) were required by OneExpand to measure the structural coverage.

8.5.4 Discussion
The use of the structural coverage technique helped preventing the generation of a faulty confo

test suite from an incorrect specification constructed and validated manually. As shown by this

experiment, tests derived automatically from a LOTOS specification can be checked against this sa

specification in order to help detecting unreachable code and non-determinism. Such a self-c

approach to conformance testing is an interesting by-product of the technique and provides

value to specifications and test suites at a very low price. It also shows that the coverage techn

its place even in the absence of validation test suites.

8.6 Test Suite Validation Using Mutation Analysis
In SPEC-VALU E, test suites generated from UCMs help validating LOTOS prototypes against those

same UCMs and against functional requirements. The structural coverage approach helps e

the completeness of the test suite in terms of the events and basic behaviour expressions fou

specification. In a sense, this is one way to “validate” the validation test suite. However, the eff

ness of the test suite at finding faults is yet to be determined. So far, this chapter provided an

evidence of the usefulness of these test suites through various applications of the methodolo
294 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Test Suite Validation Using Mutation Analysis

-

a-

ion of

tion

bserva-

sed to

m, e.g. a

lid pro-

r-

by a

m is

over-

rimen-

f a test

. Muta-

d to dis-
section provides an additional experiment that uses mutation analysis to better measure the effective

ness of test suites at detecting faults in mutants, which are minor variations of the original specific

tions.

Section 8.6.1 introduces the concept of mutation in a validation context. The generat

LOTOS mutants in SPEC-VALU E is presented in Section 8.6.2, with an application to TTS. Muta

analysis is performed on TTS and three other specifications in Section 8.6.3, and the main o

tions and lessons are discussed in Section 8.6.4.

8.6.1 Mutation Analysis and Validation
Mutation analysis is a fault-based technique inspired by mutation testing, which was developed more

than two decades ago for testing software in general [112]. Mutation testing is traditionally u

create test cases that are sensitive to small changes to the (syntactic) structure of a progra

modification to an operator, a condition, a variable, or a value. Such a change applied to a va

gram results in a mutant, and tests are constructed in a way to detect (or kill) invalid mutants.

Mutation testing is based on two major assumptions:

• Competent programmer hypothesis: Competent programmers tend to write “nearly co

rect” programs, i.e. if they are not correct they will differ from the corrected version

few relatively simple faults.

• Coupling effect: A test suite sensible enough to uncover all simple faults in a progra

implicitly capable of detecting more complex faults. This assumption is more contr

sial in nature, but it has been justified on numerous occasions in empirical and expe

tal studies [271].

The mutation analysis used in this thesis aims mainly to measure the effectiveness o

suite at killing mutant specifications rather than to generate test suites that can kill all mutants

tion analysis represents an opportunity to validate the various test suites constructed so far an

cuss the adequacy of the testing patterns and strategies defined in Chapter 6.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 295

CHAPTER 8 Experiments with SPEC-VALUE

e pro-

stituted

uta-

s, and

heck-

ations.

ned

simple

 num-

n

utants

mutants

bserve

f these

col-

t spec-

d static
8.6.2 Mutant Generation and S PEC-VALUE

Mutation analysis is applicable to executable specifications just as it is applicable to softwar

grams. The assumptions are adapted accordingly, i.e. “programmer” and “program” are sub

with “specifier” and “specification”. Notable examples include Probert and Guo [292] with a m

tion testing technique for Estelle, Woodward [378] with a technique for algebraic specification

Amman and Black [11][52] with another technique based on temporal logic (CTL) and model c

ing. To our knowledge, mutation analysis has never been applied to LOTOS specifications.

There exist various strategies for the generation of mutants from programs and specific

The basic strategy is called strong mutation and consists in generating all mutants for pre-determi

types of operators and faults. Variations of this approach include weak mutation and firm mutation

[231]. Unfortunately, these strategies lead to an explosion in the number of mutants for all but

specifications. Since the testing of mutants is a computationally intensive task, minimizing the

ber of mutants becomes rapidly a necessity. Selective mutation was presented as a potential solutio

to this problem [272], but this technique is still rather synthetic and would produce numerous m

for large specifications such as the ones studied in this chapter. Furthermore, many of the

produced with these techniques would be in violation of the strong static semantics of LOTOS and

would be caught at compilation time. For the purpose of the current experiment, which is to o

the effectiveness of test suites on real-size specifications, and because the applicability o

mutant generation strategies to LOTOS specifications is beyond the scope of this thesis, a limited

lection of mutants will be selected and generated manually.

Mutation Operators

The generation of mutants requires some specific constructs to be changed. Mutation operators are at

the heart of mutation analysis as they identify the syntactic modifications responsible for mutan

ifications. These operators should model plausible errors and faults while satisfying syntax an

semantics rules checked by compilers.
296 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Test Suite Validation Using Mutation Analysis

that

uction

eneration

L

ries of

orrectly

osition

s can

issive

ative

ulting

mpo-

or non-

s, as

ns of

meters.

 3).
In the context of SPEC-VALU E, mutation operators should target the design decisions

need be taken during the construction of the specification from the UCMs. Several constr

guidelines presented in Section 5.2 require many such decisions and are hence prone to the g

of erroneous specifications. Mutation operators should also relate to common mistakes in OTOS

specifications and to other details that are generally overlooked. In this experiment, six catego

mutation operators are used:

• Structure: Construction Guideline 5 requires decisions as to how the LOTOS processes

capturing the components should be represented and connected. Gates may be inc

hidden or observable, and process synchronization (one fewer/more gate) and comp

(||| ↔ []) can be erroneous.

• Segment integration: Construction Guideline 6 suggests that unrelated path segment

be integrated in many ways. Consequently, the integration can be made more perm

(from sequential to alternative to concurrent) or restrictive (from concurrent to altern

to sequential).

• Terminations: Construction Guidelines 1 and 2 indicate that sequences of events res

from linear causal paths can end with the inaction (stop) or with process instantiation

(e.g. for recursion). AND-joins and OR-joins may also lead to the use of exit . Problems

may result from the wrong type of termination (stop ↔ exit ↔ process instantiation).

• Messages: Construction Guideline 7 promotes the use of messages to refine inter-co

nent causality. Errors may be introduced easily in these messages, e.g. incorrect

deterministic ordering, source/destination, type, values, etc.

• Plug-in bindings: Plug-ins and stubs are connected through binding relationship

mentioned in Construction Guideline 3. These bindings span the process definitio

stubs and plug-ins, and errors may be introduced in input/output segments and para

• Selection policies: Stub processes specify selection policies (Construction Guideline

These policies may be mutated by changing selected plug-ins or conditions.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 297

CHAPTER 8 Experiments with SPEC-VALUE

curring

ed in

t cases

 CG-

able 26.

ants that

e

d.

 from a

nt

ions,
The constructs cited in these categories can be mutated to simulate plausible errors oc

during the construction of the prototype specification. Note that the definition of ADTs (cover

Construction Guideline 8) is not covered here as it is not the focus of UCMs and validation tes

as used in SPEC-VALU E. Note also that simple construction guidelines (e.g. CG-2.a, CG-2.b, and

4) are not covered because they are seldom the subject of interpretation errors.

TTS Mutants

The mutation operators are applied to the TTS specification and 30 mutants are presented in T

These 30 mutants were selected manually. Care was taken to prevent the generation of mut

are syntactically incorrect or that do not satisfy LOTOS’ static semantics. Such mutants would b

declared incorrect during their compilation by tools such as LOLA.

Additionally, mutants that are equivalent to the original specification are also not selecte

Equivalent specifications (according to testing equivalence in this case) would be undetectable

testing perspective and would also be valid according to val. Common instances include equivale

conditions (e.g. [n > 3] is the same as [not(n ≤ 3)]) and behaviours (e.g. a; stop ||| b; stop

is the same as a; stop |[c]| b; stop).

The limited number of mutants will be useful for our goal of providing general observat

but more mutants would be required for a full-fledge empirical study.
298 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Test Suite Validation Using Mutation Analysis
TABLE 26. TTS Mutants Generated Using Six Categories of Mutation Operators

Name Line Mutation Comment

S
tr

uc
tu

re

m1 418 hide disp gate Hiding of an extra responsibility

m2 508 hide sig gate Hiding of an extra responsibility

m3 423 add ring in synchronization set Decreased concurrency

m4 440 remove disp from synchronization set Increased concurrency

m5 463 [] → ||| Increased concurrency

m6 466 msg2 → msg Erroneous communication channel

S
eg

. I
nt

eg
ra

tio
n

m7 527 [] → ||| More permissive integration

m8 535 [] → ||| More permissive integration

m9 535 [] → exit >> Less permissive integration

m10 543 [] → ||| More permissive integration

m11 563 ||| → [] Less permissive integration

m12 482 sequence → recursion followed by choice More permissive integration

m13 489 recursion followed by choice → sequence Less permissive integration

Te
rm

.

m14 577 recursion → stop Recursion removed

m15 532 recursion → stop Recursion removed

m16 686 exit (...) → stop Exit (and parameters) removed

m17 756 exit (...) → stop Exit (and parameters) removed

M
sg

. m18 531 !msg → ?msg:Announcement Increased non-determinism

m19 568 !uid → ?user:User Increased non-determinism

m20 540 uid(ui) → userA Fixed message parameter

P
lu

g-
in

 b
in

di
ng

m21 548 in2 → in1 Erroneous input segment (stub)

m22 595 in1 → in2 Erroneous input segment (plug-in)

m23 726 in1 → in2 Erroneous input segment (plug-in)

m24 717 userO → userA Fixed plug-in parameter

m25 717 userO → userB Fixed plug-in parameter

m26 640 out3 → out2 Erroneous output segment (stub)

m27 642 out4 → out2 Erroneous output segment (stub)

S
el

. p
ol

. m28 609 OCS → CND Erroneous condition

m29 724 [CND NotIn fl(ui)] → [true] Erroneous condition

m30 717 CND → Default Erroneous plug-in selection
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 299

CHAPTER 8 Experiments with SPEC-VALUE

asured

ot be

nt

e start.

a-

enerated

ion that

ld be

ements

 poten-
Effectiveness and Mutation Scores

According to Weyuker and Ostrand's definition [370], the effectiveness of a test suite can be me

by computing mutation scores. Traditionally, a mutation score is defined as:

where Mkilled is the number of mutants killed by the test suite, Mgen is the total number of mutants

generated, and Meq is the number of equivalent mutants generated. Equivalent mutants cann

killed by any test case. If MS<1, then the remaining live mutants require the addition or improveme

of test cases in order to get killed.

In this experiment, equivalent mutants are prevented from being generated right from th

However, some mutants might still be appropriate, even when not equivalent to the original specific

tion. Appropriate mutants in our case represent alternate specifications that could have been g

from the same set of UCMs and that would be valid according to val. Unlike equivalent mutants,

appropriate mutants could be distinguished by test cases. A common situation is a specificat

allows for more behaviour, which is not forbidden by rejection test cases. A live mutant cou

killed by the addition of a rejection test case, or be declared appropriate. It is up to the requir

engineers and designers to make such decision.

This more relaxed interpretation of mutation score lead to the following definition:

Definition 8.1: The mutation score (MS), where Mapp is the number of appropriate

mutants, is computed as follows:

This definition will be used to measure the effectiveness of test suites and to determine

tial holes in test selection.

MS
Mkilled

Mgen Meq–-------------------------------=

MS
Mkilled

Mgen Mapp–------------------------------=
300 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Test Suite Validation Using Mutation Analysis

nted in

 tests 10

y

messag-

 killed

idered

ation of

ore. The

tructed

put seg-

nt in the

ability

termin-

 (m24)

 4) could
8.6.3 Application to Case Studies
The results of the mutation analysis of the TTS specification and its test suite are prese

Table 27. The Xs represent mutants that have been killed by individual test cases.

Tests 1 to 9 are those generated through the exclusive use of testing patterns whereas

to 14 are additional robustness test cases. In the Killed column, (Y) represents a mutant killed b

robustness tests only. Mutants m6 is killed only by test 12 because this test targets mainly the

ing system used, which was not specified at the UCM level. Mutants m14, m15, and m20 were

by tests that involve users A and B in roles other than originator and terminator respectively.

Overall, 23 mutants were killed by the test suite. Out of the 7 surviving ones, 5 are cons

acceptable. Mutants m7, m8, m10 and m12 are specifications that have more permissive integr

path segments. These mutants support all the functionalities expected from the system, and m

additional behaviour could be declared forbidden and rejection test cases could be cons

accordingly, but this does not seem necessary here. Mutant m21 is also acceptable as the in

ment identifier, even if modified, is not checked later on because there is only one such segme

stub. The use of this identifier could be removed altogether, but it is left there to improve trace

to the UCMs.

Two mutants are still considered unacceptable. The first (m19) sends a message non-de

istically and hence would require an appropriate rejection test case to get killed. The second

has a variable that is incorrectly set to a fixed value. One of the acceptance test case (e.g. test

use different users for the originating and terminating roles in order to detect this problem.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 301

CHAPTER 8 Experiments with SPEC-VALUE

.92
The effectiveness of the TTS test suite is its mutation score: MS = 23/(30-5) = 23/25 = 0

TABLE 27. Mutation Analysis of TTS and its Test Suite

Mutant
TTS Test Cases

Killed Acceptable
mutant?1 2 3 4 5 6 7 8 9 10 11 12 13 14

S
tr

uc
tu

re

m1 X X X Y

m2 X X X X X X X X X X X X X X Y

m3 X X X X X X X Y

m4 X X X Y

m5 X X X X X X X X Y

m6 X (Y)

S
eg

. I
nt

eg
ra

tio
n

m7 N Y

m8 N Y

m9 X X X X X X X X X X X X Y

m10 N Y

m11 X X X X X X X X X X X Y

m12 N Y

m13 X X X Y

Te
rm

.

m14 X X X (Y)

m15 X (Y)

m16 X X X X X X X Y

m17 X X X Y

M
sg

. m18 X X X Y

m19 N N

m20 X X (Y)

P
lu

g-
in

 b
in

di
ng

m21 N Y

m22 X X X X X X Y

m23 X X X X Y

m24 N N

m25 X X X Y

m26 X X X X X X X Y

m27 X X X X X X X Y

S
el

. p
ol

. m28 X X X Y

m29 X X X Y

m30 X X X Y

TOTAL: 9 9 3 14 14 10 4 5 15 4 10 7 6 7 23/30 23/25

Effectiveness .36 .36 .12 .56 .56 .40 .16 .20 .60 .16 .40 .28 .24 .28 0.92 (i.e. 92%)
302 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Test Suite Validation Using Mutation Analysis

arized in

ions in

ted here

verage,

ausally

 (28%)
Effectiveness of Testing Patterns

The testing patterns and strategies used in the selection of test cases from UCMs are summ

Table 28. This information can be combined to Table 27 in order to provide additional observat

the context of the mutation analysis of TTS.

In Chapter 6, Strategy 6C was suspected to lead to high-yield test cases. This is suppor

by the number of mutants killed by test 9, which has the highest effectiveness (60%).

Also observe that the tests involving concurrent segments (Testing Pattern 2) have, on a

a much higher effectiveness (47%) than those without concurrent segments (16%). As for c

linked stubs (Testing Pattern 6), tests targeting the default behaviour have an effectiveness

lower than those targeting individual features (38%) or combinations of features (60%).

TABLE 28. Testing Pattern Strategies Used in TTS Test Cases

Testing Pattern Strategy
TTS Test Cases

1 2 3 4 5 6 7 8 9

1. ALTERNATIVE

1.A—ALL RESULTS

1.B—ALL PATHS X X X X X X

1.C—ALL PATH COMBINATIONS X X X

1.D—ALL COMBINATIONS OF SUB-CONDITIONS

2. CONCURRENT

2.A—ONE COMBINATION X X

2.B—SOME COMBINATIONS X X

2.C—ALL COMBINATIONS X X

3. LOOP None applicable

4. MULTIPLE
START POINTS

None applicable

5. SINGLE STUB

5.A—STATIC FLATTENING X X X X X X X X X

5.B—DYNAMIC FLATTENING , SOME PLUG-INS

5.C—DYNAMIC FLATTENING , ALL PLUG-INS

6. CAUSALLY
LINKED STUBS

6.A—DEFAULT BEHAVIOUR X X X

6.B—INDIVIDUAL FEATURES X X X X X

6.C—FEATURE COMBINATIONS X
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 303

CHAPTER 8 Experiments with SPEC-VALUE

ble 29.

ecifica-

re gener-

 UCMs

eclared

 is pre-

ven that

nd rep-

:

 valid-

.

Mutation Analysis of Three Other Specifications

Results of the mutation analysis of the GCS, PTM-G, and FI specifications are reported in Ta

The SBC specification was not used because its test suite is too incomplete, and the MAP sp

tion and test cases were not generated from UCMs so they cannot be used either. Mutants we

ated manually for each of the mutation operator categories, except for GCS and PTM-G whose

do not use stubs and plug-ins. Two segment integration mutants remained alive but were d

appropriate: one for GCS and another one for PTM-G. The effectiveness of each test suite

sented at the bottom of the table.

8.6.4 Discussion
Mutation analysis enabled us to take a hard look at the test suites generated using SPEC-VALU E.

Overall, the effectiveness of the test selection and generation strategies are rather good gi

mutation coverage was not a priority and that the mutants generated here are of a fair quality a

resentative of plausible problems. Nevertheless, this experiment resulted in interesting lessons

• Errors in a specification may be undiscovered by a test suite generated from UCMs.

• The use of testing patterns and rejection testing strategies is not sufficient to ensure

ity. Robustness test cases have shown their usefulness in detecting additional errors

TABLE 29. Mutation Analysis of GCS, PTM-G, and FI

Mutation Operator Category GCS PTM-G FI Total

Structure (3 mutants each) 3 3 3 9 / 9

Segment Integration (3 mutants each) 2 (-1) 2 (-1) 2 6 / (9 - 2)

Termination (3 mutants each) 2 2 2 6 / 9

Messages (3 mutants each) 2 3 3 8 / 9

Plug-in Bindings (3 mutants for FI only) - - 1 1 / 3

Selection Policies (3 mutants for FI only) - - 3 3 / 3

Total 9 / (12 - 1) 10 / (12 - 1) 14 / 18 33 / (42 - 2)

Effectiveness (Definition 8.1) 82% 91% 78% 83%
304 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Chapter Summary

y are

ecking

 with

nd of

es that

l. How-

nts will

ussed in

mmary.

-

 7) are

ent the

CMs,

 single

a-

infinite

ined

.4.3:
• There may be many appropriate specifications for a given set of UCMs, even if the

not testing equivalent.

• Mutation analysis of four specifications suggest the use of longer test cases for ch

terminations, of additional rejection test cases for killing unacceptable mutants

behaviour that should be forbidden (due to concurrency level or non-determinism), a

variations in the data values used in the test cases.

• It is still premature to suggest general conclusions regarding the selection strategi

lead to the highest effectiveness. Such conclusions may not even be possible at al

ever, this experiment supports the idea that a test goal that covers more path segme

generally be more effective, but obviously at a higher cost.

8.7 Chapter Summary
The characteristics of the different UCMs, specifications, test suites, and coverage results disc

this chapter are all summarized in Table 30. The TTS case study is also included in this su

Several results and lessons related to these four main parts of SPEC-VALU E (Use Case Maps—Chap

ter 4, LOTOS prototypes—Chapter 5, test suites—Chapter 6, and structural coverage—Chapter

recalled below.

Note that Table 30 follows the general structure used in this Chapter. Columns repres

sections (GCS, PTM-G, FI, SBC, and MAP), and groups of rows refer to the sub-sections (U

LOTOS, tests, and coverage). To give a better idea of the testing complexity involved, rows n and o

indicate the maximum numbers of states and transitions resulting from the composition of a

test and the specification (taking into account LOLA’s graph minimization based on testing equiv

lence). This measure is more useful than the plain size of a specification’s LTS, which is often

in our approach. Rows u and v, which are not discussed in the previous sections, will be expla

later. The legend for row x respects the interpretation of coverage results discussed in Section 7

n Unreachable code or error in the LOTOS specification.

o Incomplete test suite.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 305

CHAPTER 8 Experiments with SPEC-VALUE

ch

e GCS,

ed the

ls (e.g.
p Discrepancies between the LOTOS specification and the test suite or the UCMs from whi

these tests were derived.

Use Case Maps

The UCM style and content guidelines (Section 4.2.2) were developed at the same time as th

PTM-G, and FI experiments. They were used on the UCMs for TTS and SBC and they improv

understandability of the scenarios as well as the traceability between UCMs and other mode

TABLE 30. Summary of Experiments with SPEC-VALUE

System GCS PTM-G FI SBC MAP TTS

U
C

M
s a) # Root UCMs 12 9 2 4 - 1

b) # Plug-in UCMs 0 0 23 0 - 4

c) # UCM components 12 15 5 7 - 6

L
O

T
O

S

d) # Process definitions 19 30 13 9 14 11

e) # Lines of behaviour 750 1400 800 750 850 375

f)# Abstract data types 29 53 39 8 22 19

g) # Lines of ADTs 800 1125 750 200 375 400

h) # Lines of tests 1600 800 1325 300 7725 375

i) Total number of lines 3150 3325 2875 1250 8950 1050

Te
st

s

j) # Acceptance functional tests 56 35 37 4 603 14

k) # Rejection functional tests 51 1 0 2 0 14

l) # Other tests (e.g. robustness) 2 0 0 5 0 5

m) # Unexpected verdicts 0 0 1 3 6 0

n) Max # states by one test 124 2961 850 4277 21 393

o) Max # transitions by one test 142 3248 1019 4278 21 519

p) Time to compile & test (sec.) 5 120 11 64 16 5

C
ov

er
ag

e

q) # LOTOS events 57 126 94 204 156 25

r) # LOTOS single BBEs 35 86 27 20 46 22

s) # Sequences 40 74 49 60 67 18

t) # Probes inserted 54 99 55 64 83 26

u) Optimizations reduction 28% 38% 28% 20% 27% 35%

v) Overall reduction 41% 53% 55% 71% 59% 47%

w) # Missed probes 3 11 4 17 17 0

x) Reasons for missed probes p n, p p o, p n -

y) Time to measure, TestExpand 235 - 165 - - 140

z) Time to measure, OneExpand 31 81 37 18 1000 9
306 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Chapter Summary

 with the

ially in

e stub/

 as sug-

hrough

d reus-

enarios

g stubs

fferent

lection

narios

ystem

 conclu-

f these
LOTOS, execution traces, and message sequence charts). They also proved to be compatible

construction guidelines of Section 5.2.

UCMs were useful to evaluate architectural alternatives in numerous occasions, espec

the GCS and PTM-G experiments.

The scenarios for GCS and PTM-G were not integrated at the UCM level, because th

plug-in concept was not well established at the time these experiments were done. However,

gested by Section 4.2.3 and as shown by the FI and TTS experiments, integrating UCMs t

stubs and plug-ins offers interesting benefits:

• UCM behaviour patterns can be extracted as plug-ins and made more consistent an

able across different stubs in a design and across designs. End-to-end individual sc

proved to be reusable across designs in the GCS and PTM-G experiments, but usin

and plug-ins would have improved this reusability even more.

• Integration helps making decisions that can avoid undesirable interactions among di

scenarios and features. Inspection for interactions can be localized to stubs and se

policies early in the development cycle.

• Stubs and plug-ins help evaluating the impact of the incremental addition of new sce

and features to an existing system.

The SBC UCMs from Section 8.4.1 are not integrated, but an improved version of this s

description, where UCMs are integrated and several features are included, also lead to similar

sions for the use of stubs and plug-ins [25].

LOTOS Prototypes

Most of the construction guidelines introduced in Section 5.2 were applied to one or many o

systems, as shown in Table 31.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 307

CHAPTER 8 Experiments with SPEC-VALUE

s are

rmed at

-

Specification of path behaviour in component processes appears simpler when UCM

structured with stubs and plug-ins because a large part of the scenario integration is then perfo

the UCM level. A direct mapping from stubs and plug-ins to LOTOS processes modularizes the inte

TABLE 31. Construction Guidelines Usage

Construction Guideline GCS PTM-G FI SBC TTS

P
at

hs

1. Interaction points and
responsibilities

CG-1 X X X X X

CG-1.a X X X X

2. Causal paths

CG-2 X X X X X

CG-2.a X X X X X

CG-2.b X X X X X

CG-2.c X X X X

CG-2.d X X X

3. Stubs and plug-ins

CG-3 X X

CG-3.a X X

CG-3.b X X

CG-3.c X X

4. Other path elements

CG-4.a X

CG-4.b

CG-4.c

CG-4.d X X

S
tr

uc
tu

re

5. Structure

CG-5 X X X X X

CG-5.a X X X X

CG-5.b X X X

CG-5.c X X X X X

CG-5.d X X X

6. Unrelated path
segments

CG-6 X X X X X

CG-6.a X X

CG-6.b X X X X

CG-6.c X X X X X

CG-6.d X X X X X

7. Inter-component causality

CG-7 X X X X X

CG-7.a X

CG-7.b X X X X

CG-7.c X X X X X

D
at

a

8. Data
CG-8

X X X X X
308 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Chapter Summary

 of the

-

 rea-

o L

s at the

er, new

t

d

t.

v-

signers

in the

xperi-

stract

 strat-

ffort is

n used

ese case

attern
gration of path behaviour. When the burden of the integration is pushed down to the level of LOTOS,

designers not familiar with this language may have a hard time coping with the construction

specification. Moreover, other people not involved in the LOTOS part (clients, marketing, manage

ment, etc.) would not know anything about how the individual UCMs fit together. For these two

sons, although the GCS and GPRS experiments were successful in the sense that moving tOTOS

directly also resulted in correct specifications and validated test suites, integrating the scenario

UCM level seems a better alternative.

UCMs ease architectural reasoning and the discovery of appropriate structures. Howev

system components may be also discovered at the LOTOS level. For instance, the FI experimen

showed that call session objects are required in the LOTOS prototype and should probably be include

in the UCMs as well. These component corresponds to the Call Objects in the SBC experimen

Deviations from the original scenarios at LOTOS level may be captured by validation and co

erage measurements, but it is better when they are reported directly by specifiers to UCM de

for an appropriate update of the UCMs.

Test Suites

Validation test suites were helpful in finding ambiguities, errors and undesirable interactions

different specifications, UCMs, and informal requirements or standards involved in these e

ments. The most important points are:

• Testing patterns help covering UCM paths in a cost-effective way. UCMs already ab

from many details, so it is important to cover all their paths with the test cases. When

egies other than testing patterns are used (e.g. for SBC and FI), then additional e

required to ensure the coverage of UCM paths. Most of the testing patterns have bee

in the case studies (see Table 32). Testing pattern 3 has not been exercised on th

studies because their UCMs do not contain any loop. This pattern is present in our p

language in order to improve the coverage of the UCM notation.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 309

CHAPTER 8 Experiments with SPEC-VALUE

d helpful

ifica-

ected

 showed

es (test
• Test suites based on acceptance and rejection test cases proved to be practical an

in eliminating problems in the prototype (GCS and TTS). Acceptance tests with ver

tion steps are also very useful for checking robust specifications (PTM-G) or exp

interactions among features (FI).

• Test suites do not have to be composed of sequential test cases. The FI experiment

that they can be structured to promote consistency and reuse of partial sequenc

steps).

TABLE 32. Testing Patterns Usage

Testing Pattern Strategy GCS PTM-G FI SBC TTS

1. ALTERNATIVE

1.A—ALL RESULTS X X X

1.B—ALL PATHS X X X X

1.C—ALL PATH COMBINATIONS X X

1.D—ALL COMBINATIONS OF SUB-CONDITIONS X X

2. CONCURRENT

2.A—ONE COMBINATION X X X X X

2.B—SOME COMBINATIONS X X X

2.C—ALL COMBINATIONS X

3. LOOP

3.A—ALL SEGMENTS

3.B—AT MOST K ITERATIONS

3.C—VALID BOUNDARIES

3.D—ALL BOUNDARIES

4. MULTIPLE
START POINTS

4.A—ONE NECESSARY SUBSET, ONE GOAL X X X

4.B—ALL NECESSARY SUBSETS, ONE GOAL

4.C—ALL NECESSARY SUBSETS, ALL GOALS

4.D—ONE REDUNDANT SUBSET, ONE GOAL

4.E—ALL REDUNDANT SUBSETS, ONE GOAL

4.F—ONE INSUFFICIENT SUBSET, ONE GOAL

4.G—ALL INSUFFICIENT SUBSETS, ONE GOAL

4.H—SOME RACING SUBSETS, SOME GOALS X

5. SINGLE STUB

5.A—STATIC FLATTENING X X

5.B—DYNAMIC FLATTENING , SOME PLUG-INS X

5.C—DYNAMIC FLATTENING , ALL PLUG-INS

6. CAUSALLY
LINKED STUBS

6.A—DEFAULT BEHAVIOUR X X

6.B—INDIVIDUAL FEATURES X X

6.C—FEATURE COMBINATIONS X X
310 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Chapter Summary

in test

n indi-

cate-

riate

ght a

 devel-

tions,

plica-

 linked

ion and

 experi-

able parts

olved,

covered

ted at

Another
• For telecommunications systems with multiple features, a test suite should conta

cases for the basic system without features, for the basic system with features take

vidually, and for the basic system with multiple features (usually pairs). In the last

gory, the number of possible configurations can grow very quickly, and approp

methods need to be used to filter out the configurations that are unlikely to highli

problem. The FI experiment used a very simple one, but other approaches are being

oped [268].

• Mutation analysis demonstrated that errors may still remain in validated specifica

and that various non-equivalent but appropriate specifications may result from the ap

tion of the construction guidelines. Also, the effectiveness of test cases seems to be

to the length of test goals rather than to the use of a particular testing pattern.

Structural Coverage

Ensuring the structural coverage can improve the quality and consistency of both the specificat

the tests, hence resulting in a higher degree of confidence in the system’s description. The

ments presented in this chapter demonstrate that coverage results can help detecting unreach

or errors in specifications (n — PTM-G and MAP), incomplete test suites (o — SBC), and discrep-

ancies between specifications and their tests (p — GCS, PTM-G, FI and SBC).

Results can also be output quickly and at low cost. When complex specifications are inv

the structural coverage can be measured compositionally (PTM-G and MAP). Probes can be

independently, even one at a time, through multiple executions of the test suite. The LOT2PROBE filter

allows different variations of the probe comment in the specification (e.g. (*_PROBE_A_*) ,

(*_PROBE_B_*) , etc.), which represent different groups of probes. Having fewer probes inser

once reduces the number of internal actions and helps avoiding the state explosion problem.

alternative is to use LOLA’s OneExpand command, which provides faster results than TestExpand but

with a potentially incomplete coverage.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 311

CHAPTER 8 Experiments with SPEC-VALUE

t the

luate the

ces and

nts

308

and 58%

y from

 con-

gh the

PTM-

erv-

f con-

.

le fea-
The reduction in the number of probes also helps coping with complexity. By looking a

number of events, simple basic behaviour expressions and sequences, it is possible to eva

reduction achieved by the probe insertion strategy presented in Section 7.4. Row u in Table 30 shows

the reduction achieved by the improved probe insertion strategy over the number of sequen

single BBEs (u = (r+s-t)/(r+s)) whereas row v shows the overall reduction over the number of eve

and single BBEs (v = (q+r-t)/(q+r)). Considering all the experiments (662 events, 236 BBEs,

sequences, and 381 probes), the reduction amounts roughly to 30% (sequences and BBEs)

(events and BBEs).

This technique is valuable for scenario-based approaches such as SPEC-VALU E and also for

checking, through self-coverage, the quality of conformance test suites generated directl

LOTOS specifications (MAP experiment).

Contributions

The following items are original contributions of this chapter:

• Illustration of Contribution 3 (Section 1.4.3) regarding the validation of the SPEC-VALU E

methodology and main constituents (UCM style and content guidelines, prototype

struction guidelines, testing patterns, testing theory, and structural coverage) throu

study of two hypothetical communicating systems (GCS and FI), a draft standard (

G) and an industrial system (SBC).

• Application of SPEC-VALU E to different telecommunications areas such as network s

ers, mobile communication, switch-based telephony, and agent-based telephony.

• Additional study of structural coverage technique and tools to the self-coverage o

formance test suites generated automatically from LOTOS specifications (MAP).

• Development of mutation analysis and definition of mutation operators for LOTOS, and

application to the validation and effectiveness measurement of validation test suites

• Development of a novel framework for the avoidance and the detection of undesirab

ture interactions.
312 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

a,
CHAPTER 9

Conclusions and Future Work

Nuée de colombes
Au-dessus du lycée;
C'est la fin des classes...

(Koutou Ni Hato Ooki Hi Ya Sotugyou Su)

Japanese Haiku by Kusatao Nakamur
Haijin poet.
search

ection

e

ss sev-

 of

isually

1.2) is:
In this chapter, we first review the main contributions of the thesis and relate them to the re

hypothesis, to the expected contributions, and to the Formal Specifications Maturity Model (S

9.1). In Section 9.2, we briefly compare SPEC-VALU E to related methodologies and we provid

insights on how it can be integrated to design processes with a wider scope. Finally, we discu

eral research issues in Section 9.3.

9.1 Hypothesis and Contributions

9.1.1 Validation of the Research Hypothesis
This thesis presents SPEC-VALUE, which is a methodology for the specification and early validation

telecommunications systems. Requirements are captured with Use Case Maps, which v

describe causal scenarios bound to component structures. The research hypothesis (Section

In the process of designing complex telecommunications systems, requirements

described using the Use Case Map causal scenario notation can guide the generation

of LOTOS specifications useful for validating high-level designs systematically through

numerous techniques, including functional testing based on UCMs.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 313

CHAPTER 9 Conclusions and Future Work

pes in

-

ection

d from

-

ct rep-

 a more

ossibly

 S

dation

blems,

s, were

inst the

nted by

 a form

al view

s set to

 fulfills

ation
Chapter 5 shows that UCMs can guide the construction of high-level designs and prototy

the form of formal LOTOS specifications. The availability of a LOTOS specification enables the appli

cation of numerous validation and verification techniques, many of which were introduced in S

2.3.7 and in Section 3.4.3. In particular, Chapter 6 describes how functional test cases derive

UCMs help to gain confidence in the conformance of a LOTOS prototype to the UCMs it was gener

ated from. UCM scenarios and their corresponding tests are more likely to be faithful and corre

resentations of the requirements than a specification that integrates all the requirements into

detailed and complex description based on components. Hence, testing the LOTOS specification

against the UCMs becomes an indirect means of validating the high-level design against the (p

informal) requirements.

This research hypothesis was validated through the theoretical framework supportingPEC-

VALUE and through the successful application of this methodology to the specification and vali

of telecommunications systems of various complexities and nature (Chapter 8). Many pro

related to these systems’ functional requirements and to their integration in high-level design

uncovered while creating the specifications and test suites, and when checking the latter aga

former. In Chapter 6, we also suggested that the UCM-based testing technique be suppleme

other forms of validation, for instance robustness testing based on requirements expressed in

other than UCMs. Being scenarios, UCMs are necessarily incomplete and only provide a parti

of the overall set of requirements. Nevertheless, UCMs represent a very important piece of thi

which users and other stakeholders can relate, hence their usefulness for validation.

9.1.2 Contributions of the Thesis
Three major contributions were announced in Section 1.4. This section details how this thesis

these expected contributions.

Contribution 1: SPEC-VALU E Methodology

SPEC-VALU E has several benefits, difficult to find all at once in other design and standardiz

methodologies (Chapter 4):
314 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Hypothesis and Contributions

le, in

erns

alities,

a high

sability

tecture

tion

 of the

abil-

able.

n of

he gen-

totype

e test

 muta-

 subse-

e go

 used

system

lso

 docu-
• Separation of functionalities from the underlying structure: this is a characteristic of

UCMs that can be reflected in the prototype specification as well since it is possib

LOTOS, to specify behaviour with or without components. This separation of conc

enables designers and requirements engineers first to focus on the desired function

and then to map them to a suitable underlying structure. Architectural reasoning at

level of abstraction hence becomes possible. This separation also improves the reu

of scenarios across architectures and across different versions of an evolving archi

as scenarios and components are modified or added incrementally.

• Fast prototyping: formal prototypes can be generated in LOTOS from UCMs (with or

without components). LOTOS already supports most UCM constructs, and the construc

guidelines provided in this thesis bring experience and guidance in the actualization

UCM-to-LOTOS mapping at a system level. Formal prototyping adds rigor and execut

ity to scenario-based design with UCMs, the latter being semiformal and non-execut

• Test case generation: UCM scenario paths are used to guide, through the applicatio

testing patterns and complementary strategies, the selection of test goals used for t

eration of abstract functional test cases. This enables the verification of the pro

against the UCMs and its validation against the informal functional requirements. Th

suite can itself be validated using structural coverage criteria on the model, or using

tion analysis. It can be reused as a basis for functional or regression test suite in the

quent steps of the development process.

• Design documentation: the documentation of requirements and designs is done as w

along the development cycle. UCMs focus on system-level functionalities and can be

as a common language between various stakeholders, from marketing people to

architects, designers, and testers. The LOTOS specification and the abstract test cases a

provide useful and traceable views of the system design and should be part of its

mentation.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 315

CHAPTER 9 Conclusions and Future Work

 the

ll illus-

which

Ms

tegies

s spec-

ating

 a

ele-

muni-

cover a

ation,

tools are

 suites
Contribution 2: Theories and Techniques Supporting SPEC-VALU E

In order to support the SPEC-VALU E methodology and complement existing theories and tools for

testing of LOTOS specifications (step ➅ in Figure 2) and for the visual editing of UCMs (steps ➀, ➁,

and ➂ in Figure 2), several theories and techniques were developed in this thesis. They were a

trated with an ongoing example, the Tiny Telephone System (TTS).

• Guidelines for the construction of LOTOS specifications from UCMs: Chapter 5 pro-

vides a total of 8 general construction guidelines and 22 small-grained guidelines,

relate to step ➃ in Figure 2.

• UCM-L OTOS testing framework: Chapter 6 defines a testing framework based on UC

and LOTOS in order to support step ➄ in Figure 2. The validation relation val is defined

and compared to the conventional conformance relation conf. The framework contains

UCM-oriented testing pattern language that explains how 25 coverage-driven stra

regrouped under six testing patterns can collaborate to select test goals from system

ified with UCMs. The framework also includes motivations and strategies for gener

rejection test cases in LOTOS.

• Structural coverage for LOTOS: In relation with step ➆ in Figure 2, Chapter 7 presents

new technique for automatically measuring the structural coverage of LOTOS specifica-

tions by a test suite. This technique includes a theory for the insertion of probes in LOTOS

specifications and for coverage measurement together with partial tool support.

Contribution 3: Illustrative Experiments Validating S PEC-VALU E

Chapter 8 validates the SPEC-VALU E methodology and its supporting techniques against five t

communications systems of various complexity. These experiments include hypothetical com

cating systems (GCS and FI), a draft standard (PTM-G) and an industrial system (SBC). They

wide range of areas including network servers, mobile communication, group communic

switch-based telephony, and agent-based telephony. The structural coverage technique and

also applied to a context different from validation, i.e. to the self-coverage of conformance test
316 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Hypothesis and Contributions

ere

tion of

ali-

of test

-

 in

ction

.3).

aches

ns

eature
generated automatically from LOTOS specifications (MAP example). Most of these experiments w

done in collaboration with industrial partners, professors, and other students. The specifica

these systems with UCMs and LOTOS improved the understanding of these systems, while their v

dation improved their quality and the overall confidence in their description. The effectiveness

cases is further studied through mutation analysis, adapted to LOTOS for the purpose of this experi

ment.

Additional Contributions

The development of SPEC-VALU E required the study of many different domains, which resulted

additional contributions of this thesis:

• Quick tutorial on the Use Case Maps notation (Section 2.2).

• Quick tutorial on the formal description technique LOTOS (Section 2.3).

• Evaluation of six specification techniques against thirteen comparison criteria (Se

3.2).

• Evaluation of thirteen scenario notations against eight comparison criteria (Section 3

• Survey and brief comparison of twenty analytic and synthetic construction appro

(Section 3.3.4).

• Argument supporting that UCMs and LOTOS are compatible and complementary notatio

(Chapters 3 and 4, summarized in Section 4.1 and in Table 1).

• Style, content, and integration guidelines for Use Case Maps (Section 4.2).

• Development of a framework for the avoidance and the detection of undesirable f

interactions. (Section 8.3).

• Definition of mutation operators for LOTOS specifications constructed with SPEC-VALU E

(Section 8.6.2).
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 317

CHAPTER 9 Conclusions and Future Work

dology

 com-

ng to

 beyond

nd 3 in

thods

s close

 human

eering

ividuals

 quite

d lead

mal

s

 is still

 fit the

ther
9.1.3 SPEC-VALUE and the Formal Specifications Maturity Model
In addition to the research hypothesis, Section 1.2 suggests that SPEC-VALU E could improve the

maturity of design processes based on formal specifications. To support this claim, our metho

can be measured against the Formal Specifications Maturity model (or FSM model), based on the

CMM and defined by Fraser and Vaishnavi [138]. This FSM model, summarized in Table 33, is

posed of five levels of maturity, the first one being the lowest level. Each level possesses generic strat-

egies describing typical operations performed to develop formal specifications [137]. Accordi

this model, the sole use of formal specification languages does not guarantee maturity levels

the first one (initial).

The need for semiformal specifications and notations, which is at the basis of levels 2 a

the FSM model, is motivated among other things by the following two points. First, formal me

have an implicit assumption: they are useful for detecting detailed problems when the model i

to being complete and correct. Hence, this requires spadework at another level, closer to the

way of thinking. Second, as suggested in the recommendations made by Craigen et al. [104], there is

a clear need for improved integration of formal methods techniques with other software engin

practices, and emphasis should be put on developing notations more suitable for use by ind

not expert in formal methods or mathematical logic. Semiformal notations like UCMs can be

useful in this context, and they could potentially broaden the accessibility to formal methods an

to their wider acceptance by the software community [105][277].

SPEC-VALU E proposes the introduction of a semiformal description (UCM) between infor

requirements and design-oriented formal specifications (LOTOS). The methodology also support

stepwise refinement and incremental construction of specifications. However, this construction

manual; it is supported by guidelines rather than by synthesis tools. These characteristics

“Transitional-Unassisted” generic strategy described in Table 33. Therefore, SPEC-VALU E can

improve design processes based on formal specifications by moving them from an initial level of

maturity (level 1) to a repeatable level of maturity (level 2) on the FSM scale. This represents ano

contribution of the methodology.
318 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

SPEC-VALUE and Related Methodologies

al

pe.

l

-

s

-

9.2 SPEC-VALUE and Related Methodologies
This section briefly compares SPEC-VALU E to related methodologies. It also provides addition

insights on how SPEC-VALU E can be integrated to more general methodologies with a wider sco

TABLE 33. Summary of the Formal Specifications Maturity (FSM) Model (Extracted from [138])

Level Generic Strategies in FSM

1- Initial

analyst dependent

Direct-Unassisted:

• Direct formalization process relying on problem elicitation, structuring, and require-
ments specification skills of the requirements engineer.

• Requirements engineer has thorough knowledge of the application domain.

• Requirements engineer can grasp and formalize the whole problem in its entirety.

2- Repeatable

process
management

Transitional-Unassisted:

• One or more semiformal specifications provide mediating increments or formality
between informal natural language specifications (i.e. informal requirements) and forma
specifications.

• Translation from semiformal to formal specifications performed by the requirements
engineer without computer assistance.

• Can guide stepwise refinement of formal specifications.

3- Defined

process defined with
computerized rules

Transitional-Assisted:

• Use of semiformal specifications to mediate between informal natural language specifi
cations and formal specifications.

• Computer assistance is available to move between semiformal and formal specification
to replace human labor and to reduce errors in writing formal specifications.

4- Managed

incorporate measure
into process by
computerization

Direct-Assisted:

• Relies on computer-based support to develop formal specifications directly from infor-
mal natural language specifications or requirements.

• Computer assistance via knowledge-based support for eliciting, discovering, and creat
ing formal specifications.

5- Optimizing

continuous
improvement and
optimization

Advanced-Direct-Assisted:

• Advanced version of direct-assisted strategy that uses domain-dependent analogies.

• A learning system with capability to maintain and increase a rich repository of analogies
and to provide commonly occurring operations for which schemas are available at high
syntactic levels.

• Capable of use on increasingly complex systems.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 319

CHAPTER 9 Conclusions and Future Work

S

enarios

nly

ctures,

tation of

 it

ch as

ology

yles for

e obvi-

 imple-

tely, it

 most

he alge-

 alge-

nment.
9.2.1 Comparing S PEC-VALUE to Related Methodologies
The following methodologies, many of which are introduced in Chapter 3, are compared to PEC-

VALU E because they support the design of telecommunications or reactive systems with sc

and/or formal methods.

Timethreads-LOTOS

SPEC-VALU E builds on previous work on the formalization of Timethreads (an earlier version of

UCMs) in LOTOS. The Timethreads-LOTOS technique addresses the specification of UCM paths o

[12][13][14], and the system end-to-end functionalities are not allocated to component stru

hence resulting specifications are simpler and less complete. Issues related to the implemen

causal relationships across components are not addressed. SPEC-VALU E addresses these issues, and

also provides a comprehensive testing framework for validation. Additional UCM constructs, su

stubs and plug-ins, are also supported by SPEC-VALU E.

LOTOSphere

The LOTOSphere project [57][302] was an international effort to formulate an integrated method

for the development of communications software. LOTOSphere based itself on LOTOS and correctness-

preserving algebraic transformations. Requirements were to be written in LOTOS constraint-oriented

style, which subsequently would be transformed into state-oriented and resource-oriented st

implementation [364]. Other transformations of the specifications would provide test cases. Th

ous advantage of this approach is that one could hope that these transformations would be

mented in tools, thus guaranteeing conformance throughout the whole process. Unfortuna

turned out that constraint-oriented specifications are difficult to write, especially because

designers seem to be more used to think in terms of scenarios than in terms of constraints. T

braic transformation approach could not be practically applied to realistic specifications, and

braic transformation tools were not made available. We believe that SPEC-VALU E, even if limited to

the first stages of development cycles, has a better chance to be applied in an industrial enviro
320 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

SPEC-VALUE and Related Methodologies

ols are

changed

 be for-

ultiple

ist, and

k

 of

aturity

e design

ts. Pre-

 the sys-

behind

.

 interac-

alizing

ssages.

L and

ed to

ible

 and
SDL and MSCs

This is one of the most popular approaches, for which industrial support exists and powerful to

available [20]. MSCs represent scenarios visually in terms of sequences of messages ex

between system components. They guide the generation of component behaviour, which can

mally specified and validated with SDL, and they can also be used to test SDL models. M

methodologies based on the combined use of SDL and MSCs (or similar types of scenarios) ex

many were described in Chapter 3 (e.g. Eberlein’s RATS service development methodology [120],

Regnell’s Usage Oriented Requirements Engineering [304], Mansurov and Zhukov’s [255], Khende

and Vincent’s [228], Probert et al.’s [297][298], and Dulz’s [118]). Emerging tools for the synthesis

SDL models from MSCs have started to appear and they promote this approach to the third m

level on the FSM scale. However, components and messages need to be identified early in th

process for both MSCs and SDL. SDL also requires the definition of states for the componen

mature decisions often need to be taken on the sole basis of informal requirements. Moreover,

tem view of functionalities and causal relationships between activities tends to be hidden

clouds of details, especially as the scale of the system increases. Sales et al. have started working on

the transformation of UCMs to SDL in order to address several of these issues [262][318][317]

Unified Modeling Language

UML includes sophisticated diagram notations [274], among which we find use case diagrams [212],

which show relationships among prose descriptions of behaviour. These diagrams present the

tions between actors and the system in a black-box fashion, and they do not help much in visu

system behaviour or causality relationships. Sequence diagrams (similar to MSCs) and statechart dia-

grams do focus on behaviour, but at a detailed design level that include objects, states, and me

Unfortunately, these component-based diagrams suffer from problems similar to those of SD

MSCs. Activity diagrams can illustrate causality between events, but they are usually unrelat

components (swimlanes provide functional grouping only), and their sub-diagrams are less flex

and less powerful than UCM stubs [27]. UML, as used in the Rational Unified Process (RUP) [303],

is a modelling notation and is not intrinsically concerned with formal validation of prototypes
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 321

CHAPTER 9 Conclusions and Future Work

 MSCs

ur. Tele-

ese

grams

],

n this

ined by

t which

se

s more

s lim-

s.

r-

xecut-

stem

he

e, again,

is done

ystem

tional

li-
generation of test suites, whereas SPEC-VALU E focuses on these two aspects. UML-RT, a variant of

UML adapted to real-time systems, enables validation through limited testing. Requirements

are then compared to MSCs generated from a statechart model describing component behavio

logic Tau/UML improves validation for UML designs via a conversion to SDL. Unfortunately, th

two tool-supported methodologies do not really enforce or even suggest the use of activity dia

to capture requirements scenarios.

RT-TROOP

The Real-Time TRaceable Object-Oriented Process (RT-TROOP), defined by Bordeleau [61][62

uses scenario textual descriptions (use cases), UCMs, (H)MSCs, and ROOM (UML-RT). I

approach, UCM scenarios (extracted from use cases) are first transformed into HMSCs, ref

MSCs, and then transformed into hierarchical CFSMs. Patterns, which are fewer in number bu

are more elaborated than SPEC-VALU E’s construction guidelines, provide partial guidance for the

transformations. Traceability relationships are also defined in this process. RT-TROOP focuse

on design than on requirements validation because verification of the ROOM/UML-RT model i

ited. Unlike SPEC-VALU E, RT-TROOP does not really develop any validation or testing strategie

Rigorous Object-Oriented Analysis

In their Rigorous Object-Oriented Analysis (ROOA) method [263], Moreira and Clark integrate fo

mal techniques with object-oriented analysis methods (i.e. OMT [314]) in order to generate e

able prototypes (in LOTOS) and validate them against the requirements. ROOA considers the sy

as a set of concurrent objects, modeled by LOTOS processes. The method starts by identifying t

object model, and then scenarios are created to model the system dynamics. Scenarios ar

sequences of interactions between the objects, just like the SDL/MSC approach. Validation

through simulation, testing, and symbolic execution. However, regrouping OMT classes into s

components for the specification (i.e. going from a static model to a more dynamic and func

one) remains difficult. Unlike SPEC-VALU E, ROOA does not really develop any strategy for the va

dation or the derivation of test cases.
322 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

SPEC-VALUE and Related Methodologies

 into a

MT

 (static

ve their

iagrams

, have

tes with

ns-

le

es are

sed on

ch com-

oach

ed that

e con-

 their

ereas

 opera-
OMT and L OTOS

Wang and Cheng [365][366][367] propose an approach where requirements are transformed

LOTOS formal specification through the semiformal graphical modelling notation OMT [314]. O

offers three types of models, which are integrated during the formalization. Class diagrams

object model) are mapped to abstract data types. Statechart diagrams (dynamic model) ha

states transformed into processes and their transitions into process instantiations. Dataflow d

(functional model), which share some characteristics with UCMs but with a heavy focus on data

their data objects mapped to sorts and operations, while their services are translated to ga

experiments. Similar to SPEC-VALU E, formalization guidelines are provided to support these tra

formations. However, SPEC-VALU E produces LOTOS specifications earlier in the development cyc

than this OMT-LOTOS approach. Abstract causal scenarios and (optionally) component structur

all that is required, whereas OMT uses class diagrams and definitions of object behaviour ba

state machines, which are at a lower and more detailed level of abstraction and demand mu

mitment. Also, the OMT-LOTOS approach does not use scenarios. As for validation, this appr

uses static checking of ADTs provided by LOTOS and its tools (like SPEC-VALU E), together with

additional checking of algebraic assertions on these ADTs via Larch tools [163]. It is suggest

the dynamic behaviour be validated with LOTOS testing and tools such as LOLA. However, this valida-

tion framework provides no guidance on what should be tested to get a high confidence in th

formance of the LOTOS model to the OMT model, in the correctness of these two models, and in

validity with respect to the requirements. The UCM-LOTOS testing framework in SPEC-VALU E

addresses such issues.

CRESS and ANISE

Both CRESS (Chisel Representation Employing Structured Specifications) [354] and ANISE (Architec-

tural Notions In Service Engineering) [355], developed by Turner, use LOTOS as the underlying lan-

guage for the formal description and validation of telecommunication features [356][357]. Wh

CRESS uses a formalized version of the Chisel scenario notation to describe features [4], ANISE con-

sists in an architectural language that includes collaboration patterns and feature combination
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 323

CHAPTER 9 Conclusions and Future Work

 feature

.

guage

rted in

om a

atures

 not

ed in

es

osed in

overage

l sce-

Many

y S

-level

grating

es, for

cap-

es) to

tiv-

 use

iled-
tors tailored for telecommunications systems. Both languages support the static detection of

interactions and can be translated automatically to LOTOS for dynamic detection and validation

ANISE also hides LOTOS to a large extent as test cases are described with a companion lan

(ANTEST) using the vocabulary found in the feature description language. Errors are also repo

ANTEST terms, which improves overall understandability. Both approaches however suffer fr

lack of strategy for the derivation of validation test cases and from several limitations in how fe

can be composed. For instance, ANISE descriptions can only be used to modify a base system,

another feature. Given this limitation, a feature like Call Display Blocking cannot be describ

terms of modifications to a Call Display feature. SPEC-VALU E is not as automated as these techniqu

and does not support static verification mechanisms yet, but it enables features to be comp

more ways, and it includes validation test selection strategies (testing patterns) together with c

metrics at the LOTOS level. ANISE is also a textual language and is less appealing than a visua

nario notation like UCMs.

9.2.2 Integrating S PEC-VALUE to Related Methodologies
SPEC-VALU E is meant to be integrated to other methodologies rather than replacing them.

existing and forthcoming methodologies have a scope much wider than what is addressed bPEC-

VALU E. However, when the capture, specification, and validation of requirements and high

designs becomes a concern, these other methodologies could potentially benefit from inte

SPEC-VALU E. For instance, such integration can be envisaged for the UML-based methodologi

standardization methodologies, and for test-oriented methodologies such as SPEC-TO-TEST.

UML-Based Methodologies

UML activity diagrams are conceptually very similar to UCM paths [27]. However, UCMs also

ture dynamic run-time behaviour (with dynamic stubs) and allocation of responsibilities (activiti

components. SPEC-VALU E could be used to derive formal specifications from enhanced UML ac

ity diagrams and to provide a suitable validation framework. Another possibility would be to

SPEC-VALU E (with UCMs and LOTOS) between informal requirements (or use cases) and deta
324 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

SPEC-VALUE and Related Methodologies

s. This is

idation.

n

tive,

vour to

e case

el. Col-

ap to fill

eans of

etween

ts and

plex and

ges are

context.

iate

ing a

ISDN

 with

involved

ith the

nt cycle,

oniza-

tarted to
design notations such as sequence diagrams, collaboration diagrams, and statechart diagram

in a way similar to the process suggested by Bordeleau [62], but with an early emphasis on val

As an example, Gomaa’s COMET (Concurrent Object Modelling and Architectural Desig

Method) [155] could benefit from the inclusion of UCMs and early validation. COMET is an itera

use-case driven methodology that uses UML stereotypes extensively to provide a real-time fla

various UML diagram elements and concepts. COMET’s process starts with rather informal us

diagrams (requirements model) and then jumps to collaboration diagrams for the analysis mod

laborations involve components and sequences of messages, just like MSCs. There is a big g

here, and many design decisions need to be taken along the way. COMET provides limited m

ensuring consistency between the two models. UCMs could lead to a smoother transition b

COMET's requirements and analysis models by helping to identify and structure componen

objects, to discover appropriate messages and negotiation mechanisms, and to avoid com

costly iterations in the evaluation of alternative architectures where components and messa

required to be identified. To some extent, UCMs could even replace use case diagrams in this

Furthermore, the UCM-LOTOS testing framework provides a means to validate this intermed

model and to produce test cases applicable to the analysis model.

Standardization Methodologies

Telecommunication standards (from ANSI, ETSI, TIA, ISO, etc.) are often developed follow

three-stage methodology first developed by ITU-T to describe services and protocols for

[134][200][204]. Services are first described from the user's point of view in prose form and

tables (stage 1), then with sequences of messages between the different functional entities

(stage 2), and finally with specifications of protocols and procedures (stage 3).

It is being recognized that formal description techniques and tools could help to cope w

increasing complexity of the services being standardized, to shorten the standards developme

to introduce formal test methodologies, and to assist in rapid validation and verification, harm

tion, and evolution of standards. MSCs are now often used at stage 2 whereas SDL has s
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 325

CHAPTER 9 Conclusions and Future Work

osed a

and the

 well

plex ser-

, and

 Visser

myot

f

ted a

 drive

dard

ilar to

tions of

-

nica-

ndidate

 Use

luding
replace the traditional and informal pseudo-code used at stage 3. Recently, Monkewich prop

quality assurance methodology (to be supported by ITU-T) that emphasizes the use of FDTs

generation of tests [261].

SPEC-VALU E fits nicely in the first stage of this generic standardization methodology, as

as in the transition between stages 1 and 2. It uses notations adapted to the description of com

vices in the early stages, while providing support for formalization, rapid prototyping, validation

test case generation (in line with [261]). For wireless mobile telephony standards, Hodges and

already suggested UCMs for stage 1 descriptions and MSCs for stage 2 descriptions [178]. Aet

al. also agree on UCMs for stage 1, but they propose the use of LOTOS to support the generation o

consistent sets of MSCs from UCMs in stage 2 [20].

SPEC-VALU E has already been used in part by Yi [381], who constructed and valida

LOTOS prototype based on UCM descriptions of a Wireless Intelligent Network (WIN) feature. WIN

is a standard being developed by the Telecommunication Industry Association (TIA) [38] to

Intelligent Network (IN) capability into wireless networks based on the North-American stan

ANSI-41 [37]. With the help of validation test cases, Yi also generated MSC scenarios sim

those found in the draft standard [344]. UCMs are now being used to capture stage 1 descrip

numerous WIN features as well as new IMT-2000 features in the 3GPP2 (3rd Generation Partnership

Program) standardization effort. Andrade also used SPEC-VALU E to describe and validate require

ments and analysis patterns for mobile wireless systems and standards [33][35].

ITU-T Study Group 17 has also initiated work towards the standardization of a User Require-

ments Notation [82][203], which targets the representation of requirements for future telecommu

tion systems and services. At this early stage of its development, URN contains one ca

notation for the representation of non-functional requirements (GRL — Goal-oriented Requirements

Language [83][247]) and a complementary scenario notation for functional requirements: the

Case Map notation (Z.152) [84]. Relations between URN and other formal languages (inc
326 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Research Issues

l test

e Maps.

l test

om the

ically.

ns

s,

lidate

ecalls

egorize

n of

CM

ented
transformations) will be defined in the Z.153 companion standard. A mapping from UCMs to LOTOS

is likely to be considered for standardization, and SPEC-VALU E may represent the starting point.

SPEC-TO-TEST

This methodology, which is developed at the University of Ottawa, aims to develop functiona

cases in TTCN from telecommunications systems informal requirements captured as Use Cas

Many paths are being investigated. The first path uses LOTOS for prototyping and validating the

UCMs quickly, together with feature interaction detection. This specification uses functiona

cases to generate MSCs. An SDL specification is then constructed from these MSCs and fr

original UCMs. Industrial-strength SDL tools can finally generate TTCN test cases automat

The second path investigates the direct generation of TTCN test cases from LOTOS specifications,

whereas the third path bypasses the LOTOS step and targets the generation of SDL specificatio

directly from UCMs. In this process, SPEC-VALU E can be used in its entirety in the two first path

and the third path can still benefit from the generation of test goals from UCMs in order to va

the SDL specification and to generate TTCN test cases from it.

9.3 Research Issues
Many items left for future work are distributed among the previous chapters. The following list r

the most important ones, which target the automation and generalization of this work, and cat

them into medium-term and long-term research issues.

9.3.1 Medium-Term Research Issues
The following issues relate to how to improve computer-based support of SPEC-VALU E in order to

reach the defined level of maturity (level 3) in the FSM model (Table 33):

• Definition of a data dictionary for early consistency and completeness verificatio

UCM scenarios, with tool support. This tool, which could be part of the existing U

Navigator tool, would also check compliance to the style and content guidelines pres

in Section 4.2.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 327

CHAPTER 9 Conclusions and Future Work

-

cations

les.

ned in

ead to

ion.

e

iers,

e (and

search

aces,

ompo-

ack-

 ACME

is of

needs
• Automated generation of LOTOS skeleton specifications that would cover the most autom

atable construction rules as discussed in Section 5.2.5. These skeleton specifi

would still require to be completed by specifiers for the most complex construction ru

• Automated selection of test goals from UCMs according to preset strategies as defi

the testing patterns of Section 6.3.

• Automated insertion of probes (without the (*_Probe_*) comments) in LOTOS specifi-

cations according to the optimized strategy presented in Section 7.4.2. This would l

fully automated structural coverage measurements and fewer errors in instrumentat

9.3.2 Long-Term Research Issues
These issues are concerned with how to widen the scope of SPEC-VALU E and how to automate this

methodology in order to reach the managed and optimizing levels of maturity (levels 4 and 5) in th

FSM model (Table 33). Solving these issues would pave the way to rapid and automated prototyping

and validation of high-level designs of telecommunications systems.

The first set of issues is concerned mainly with the semantics of the UCM notation:

• Definition of a data model for UCMs in order to define precisely data types, identif

operations, conditions, databases, etc. Whether a limited data model or a full-fledg

standard) language such as ASN.1 or ADTs is necessary remains an important re

question.

• Definition of a flexible component model with concepts such as actors, ports/interf

channels, etc. Having such a model would enable one to use UCM paths on top of c

nent notations other than Buhr’s, including ROOMcharts, UML collaborations and p

ages, SDL blocks and processes, and Architecture Description Languages such as

[147][148]. A flexible component model would enable better description and analys

software architectures and improve the adaptability of the notation to the culture,

and knowledge of specific design teams.

• More precise definition of the dynamic semantics of UCMs.
328 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Research Issues

ept of

ould

d nota-

 def-

 rela-

ld

d test

ructural

s [239]

 could

r diag-
• Distinction between normal and exceptional scenarios at the UCM level. The conc

scenario definition can be used in this context [258].

• All these semantic precisions, which could be standardized for instance in [84], w

enable better and more automatable integrations of UCMs to other languages an

tions, including UML, MSCs, and SDL.

The second set of issues relates to the application of SPEC-VALU E:

• Definition of libraries of reusable and instantiable UCM behaviour patterns of feature

initions and other generic scenarios, with tool support.

• Definition of libraries of message exchange patterns for inter-component causality

tionships, with tool support.

• Automated synthesis of LOTOS specifications from these improved UCMs. This wou

require additional details (design decisions) to be provided at the UCM level.

• Algorithms for the generation of rejection test goals from UCMs, with tool support.

• Automated generation of specification test cases (in LOTOS) from UCM-based test goals.

• Automated generation of implementation test cases (e.g. in TTCN) from UCM-base

goals.

• Automated generation of LOTOS mutants for test suite evaluation.

• Optimization of test suites and test case management through metrics based on st

coverage, as suggested in Section 7.6.3.

• Use of underlying semantic models that capture causality better that LOTOS’s LTSs, for

instance causal trees [108], dynamic causal trees [319], or bundle event structure

(discussed in Section 3.1). Tool-supported causal testing based on such models

potentially lead to a reduced number of testing patterns and test goals, and to bette

nostics.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 329

CHAPTER 9 Conclusions and Future Work
330 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

References
from

Test
e

Toler-
s,

uire-

W'98)
[1] Abdalla, M.M., Khendek, F. and Butler, G. (1999) “New Results on Deriving SDL Specifications
MSCs”. In: SDL’99, Proceedings of the Ninth SDL Forum, Montréal, Canada. Elsevier.

[2] Abdurazik, A. and Offut, J. (2000) “Using UML Collaboration Diagrams for Static Checking and
Generation”. In: <<UML>>2000, 3rd International Conference on the Unified Modeling Languag,
York, UK, October 2000. LNCS 1939, 383-395.

[3] Adams, M., Coplien, J., Gamoke, R., Hanmer, R., Keeve, F., and Nicodemus, K. (1998) “Fault-
ant Telecommunication System Patterns”. In: L. Rising (ed.), The Patterns Handbook: Technique
Strategies, and Applications, Cambridge University Press, New York, 189-202.
http://www.bell-labs.com/~cope/patterns/telecom/PLoP95_telecom.html

[4] Aho, A., Gallagher, S., Griffeth, N., Scheel, C., and Swayne, D. (1998) “Sculptor with Chisel: Req
ments Engineering for Communications Services”. In: K. Kimbler and L. G. Bouma (Eds), Fifth Inter-
national Workshop on Feature Interactions in Telecommunications and Software Systems (FI,
Lund, Sweden, September 1998. IOS Press, 45-63.
http://www-db.research.bell-labs.com/user/nancyg/sculptor.ps

[5] Alexander, C., Ishikawa, S., and Silverstein, M. (1977) A Pattern Language. Oxford University Press,
New York, USA

[6] Alexander, C. (1979) The Timeless Way of Building. Oxford University Press, New York, USA.

[7] Alur, R. and Dill D. (1994) “A theory of timed automata”. In: Theoretical Computer Science (126),
183-235.

[8] Alur, R. Holzmann, G. and Peled, D. (1996) “An Analyzer for Message Sequence Charts”. In: Software
Concepts and Tools, 17(2):70-77. http://cm.bell-labs.com/cm/cs/what/ubet/papers/aAfMSCs.ps.gz
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 331

 References

:
-

 from
eth-
.ps

 Sets”.

i-
s.pdf

tech-

r

mes
.),

ing a

 Fea-

ility
stems

Use
[9] Alur, R., Etessami, K., and Yannakakis, M. (2000) “Inference of Message Sequence Charts”. In22th
International Conference on Software Engineering (ICSE 2000), Limerick, Ireland, ACM Press, 304
313.

[10] Ammann, P.E., Black, P.E., and Majurski, W. (1998) “Using Model Checking to Generate Tests
Specifications”. In: Proceedings of 2nd IEEE International Conference on Formal Engineering M
ods (ICFEM'98), Brisbane, Australia, December. http://hissa.ncsl.nist.gov/~black/Papers/icfem98

[11] Ammann, P.E. and Black, P.E. (2000) “A Specification-Based Coverage Metric to Evaluate Test
In: International Journal of Reliability, Quality and Safety Engineering, World Scientific Publishing,
Singapore (December 2000). http://hissa.ncsl.nist.gov/~black/Papers/ijrqse.ps.

[12] Amyot, D. (1994) Formalization of Timethreads Using LOTOS. M.Sc. thesis, Dept. of Computer Sc
ence, University of Ottawa, Ottawa, Canada. http://www.site.uottawa.ca/~damyot/phd/mscthese

[13] Amyot, D. (1994) LOTOS Generation from Timethread Maps: A Language and a Tool. CSI 5900 project
report, Dept. of Computer Science, University of Ottawa, Canada.
http://www.site.uottawa.ca/~damyot/ucm/tmdl/tmdl.pdf

[14] Amyot, D., Bordeleau, F., Buhr, R.J A., and Logrippo, L. (1995) “Formal support for design
niques: a Timethreads-LOTOS approach”. In: G. von Bochman, R. Dssouli, O. Rafiq (Eds.), FORTE
VIII, 8th International Conference on Formal Description Techniques, Montréal, Canada, Octobe
1995. Chapman & Hall, 57-72. http://www.site.uottawa.ca/~damyot/phd/forte95/forte95.pdf

[15] Amyot, D., Logrippo, L., and Buhr, R.J.A. (1997) “Spécification et conception de systè
communicants : une approche rigoureuse basée sur des scénarios d’usage”. In: G. Leduc (EdCFIP
97, Ingénierie des protocoles, Liège, Belgium, September 1997. Hermès, 159-174.
http://www.site.uottawa.ca/~damyot/cfip97/cfip97.pdf

[16] Amyot, D., Hart, N., Logrippo, L., and Forhan, P. (1998) “Formal Specification and Validation us
Scenario-Based Approach: The GPRS Group-Call Example”. In: Selic, B. (Ed.), ObjecTime Workshop
on Research in OO Real-Time Modeling, Ottawa, Canada, January 1998.
http://www.site.uottawa.ca/~damyot/wrroom98/wrroom98.pdf

[17] Amyot, D. (1998) Group Communication Server: A Scenario-Based Design Exercise. CITO report
#1388, Ottawa, Canada, June 1998. http://www.site.uottawa.ca/~damyot/gcs/

[18] Amyot D. (1998) Use Case Maps for the Design and the Validation of Interaction-Free Telephony
tures. CITO report #1430, Ottawa, Canada. http://www.site.uottawa.ca/~damyot/FI/

[19] Amyot, D. (1999) “Éditorial : Problèmes (ré)partis?”. In: APIIQ, L’Expertise informatique, Vol. 4, n°
1, 18-22, winter 1999, p.2. http://www.apiiq.qc.ca/expertise/

[20] Amyot, D., Andrade, R., Logrippo, L., Sincennes, J., and Yi, Z. (1999) “Formal Methods for Mob
Standards”. In: IEEE 1999 Emerging Technology Symposium on Wireless Communications & Sy,
Richardson, Texas, USA, April 1999. http://www.UseCaseMaps.org/pub/ets99.pdf

[21] Amyot, D. and Andrade, R. (1999) “Description of Wireless Intelligent Network Services with
Case Maps”. In: SBRC’99, 17º Simpósio Brasileiro de Redes de Computadores, Salvador, Brazil, May
1999, 418-433. http://www.UseCaseMaps.org/pub/sbrc99.pdf
332 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

 Vali-
n

2000)

W'00)

ch-

s”. In:

. Ryan

Sys-

stems
g

 1995.

reless

obile
ics,
o,
[22] Amyot, D., Buhr, R.J.A., Gray, T., and Logrippo, L. (1999) “Use Case Maps for the Capture and
dation of Distributed Systems Requirements”. In: RE'99, Fourth IEEE International Symposium o
Requirements Engineering, Limerick, Ireland, June 1999, 44-53.
http://www.UseCaseMaps.org/pub/re99.pdf

[23] Amyot, D. and Miga, A. (2000) Use Case Maps Linear Form in XML, version 0.20, July 2000.
http://www.UseCaseMaps.org/xml/

[24] Amyot, D. and Logrippo, L. (2000) “Use Case Maps and LOTOS for the Prototyping and Validation of
a Mobile Group Call System”. In: Computer Communication, 23(12), 1135-1157.
http://www.UseCaseMaps.org/pub/cc99.pdf

[25] Amyot, D., Charfi, L., Gorse, N., Gray, T., Logrippo, L., Sincennes, J., Stepien, B., and Ware, T. (
“Feature description and feature interaction analysis with Use Case Maps and LOTOS”. In: Sixth Inter-
national Workshop on Feature Interactions in Telecommunications and Software Systems (FI,
Glasgow, Scotland, UK, May 2000. http://www.UseCaseMaps.org/pub/fiw00lotos.pdf

[26] Amyot, D., and Logrippo, L. (2000) “Structural Coverage for LOTOS—A Probe Insertion Technique”.
In: H. Ural, R.L. Probert and G.v. Bochmann (eds) Testing of Communicating Systems: Tools and Te
niques (TestCom 2000). Kluwer Academic Publishers,19-34.

[27] Amyot, D. and Mussbacher, G. (2000) “On the Extension of UML with Use Case Maps Concept
<<UML>>2000, 3rd International Conference on the Unified Modeling Language, York, UK, Octo-
ber 2000. LNCS 1939, 16-31. http://www.UseCaseMaps.org/pub/uml2000.pdf

[28] Amyot, D. (2000) “Use Case Maps as a Feature Description Language”. In: S. Gilmore and M
(Eds), Language Constructs for Designing Features. Springer-Verlag. 27-44.
http://www.UseCaseMaps.org/pub/fireworks2000.pdf

[29] Amyot, D. and Eberlein, A. (2001) “An Evaluation of Scenario Notations for Telecommunication
tems Development”. In: 9th International Conference on Telecommunications Systems (ICTS'01), Dal-
las, USA, March 2001. http://www.UseCaseMaps.org/pub/icts01.pdf

[30] Amyot, D. and Mussbacher, G. (2001) “Bridging the Requirements/Design Gap in Dynamic Sy
with Use Case Maps (UCMs)”. Tutorial in: 23rd International Conference on Software Engineerin
(ICSE'01), Toronto, Canada, May 2001. http://www.UseCaseMaps.org/pub/icse01.pdf

[31] Andersson, M. and Bergstrand, J. (1995) Formalizing Use Cases with Message Sequence Charts. Mas-
ter thesis, Department of Communication Systems, Lund Institute of Technology, Sweden, May
http://www.efd.lth.se/~d87man/EXJOBB/Title_Abstract_Preface.html

[32] Andrade, R. (2000) “Applying Use Case Maps and Formal Methods to the Development of Wi
Mobile ATM Networks”. In: Lfm2000, The Fifth NASA Langley Formal Methods Workshop, Williams-
burg, Virginia, USA, June 2000. http://www.UseCaseMaps.org/pub/lfm2000.pdf

[33] Andrade, R. and Logrippo, L. (2000) “Reusability at the Early Development Stages of the M
Wireless Communication Systems”. In: Proceedings of the 4th World Multiconference on System
Cybernetics and Informatics (SCI 2000), Vol. VII, Computer Science and Engineering: Part I, Orland
Florida, July 2000, 11-16. http://www.UseCaseMaps.org/pub/sci2000.pdf
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 333

 References

ility
000)

obile

Vali-
-

s to

nd Oln-
s —

apid

liga-
n

ms
rloo,

ring:
nts

 the
[34] Andrade, R., Bottomley, M., Logrippo, L., and Coram, T. (2000) “A Pattern Language for Mob
Management”. In: Proc. of the 7th Conference on the Pattern Languages of Programs (PLoP 2,
Monticello, Illinois, August. http://lotos.site.uottawa.ca/ftp/pub/Lotos/Papers/plop2000

[35] Andrade, R. (2001) Capture, Reuse, and Validation of Requirements and Analysis Patterns for M
Systems. Ph.D. thesis, SITE, University of Ottawa, Canada, May 2001.
http://lotos.site.uottawa.ca/ftp/pub/Lotos/Theses/ra_phd.pdf

[36] Andriantsiferana, L. Ghribi, B., and Logrippo, L. (1999) “Prototyping and Formal Requirement
dation of GPRS: A Mobile Data Packet Radio Service for GSM”. In: Proceedings of the 7th Interna
tional Working Conference on Dependable Computing For Critical Applications (DCCA-7), San Jose,
CA, USA, 99-118. http://lotos.site.uottawa.ca/ftp/pub/Lotos/Papers/dcca7.ps.gz

[37] ANSI/TIA/EIA (1997) ANSI-41-D, Cellular Radiotelecommunications Intersystem Operations.

[38] ANSI/TIA/EIA (1998) ANSI 771, Wireless Intelligent Networks (WIN). Additions and modification
ANSI-41 (Phase 1). TR-45.2.2.4, December 1998.

[39] Ardis, M.A., Chaves, J.A., Jagadeesan, L. J., Mataga, P., Puchol, C., Staskauskas, M.G., a
hausen, J.V. (1996) “A Framework for Evaluating Specification Methods for Reactive System
Experience Report”. In: IEEE Transactions on Software Engineering, 22 (6), 378-389.

[40] Ashkar, P. (1992) Symbolic Execution of LOTOS Specifications (SELA). M.Sc. thesis, Dept. of Com-
puter Science, University of Ottawa, Ottawa, Canada.
http://lotos.site.uottawa.ca/ftp/pub/Lotos/Theses/ashkar_msc.pub.ps.gz

[41] Balzer, R.M., Goldman, N.M., and Wile, D.S. (1982) “Operational Specification as the Basis for R
Prototyping”. In: ACM SIGSOFT Software Engineering Notes, vol. 7, no. 5, December 1982, 3-16.

[42] Barbuceanu, M., Gray, T., and Mankovski, S. (1998) “How To Make Your Agents Fulfil Their Ob
tions”. In: H.S. Nwana and D.T. Ndumu (Eds), PAAM’98, Third Conference on Practical Applicatio
of Intelligent Agents and Multi-Agents, London, UK, March 1998, 255-276.

[43] Baumgarten, B. and Wiland, H. (1998) “Qualitative Notions of Testability”. In: 11th International
Workshop on Testing of Communicating Systems (IWTCS’98), Tomsk, Russia.

[44] Beizer, B. (1995) Black box testing. John Wiley & Sons.

[45] Ben-Abdallah, H. and Leue, S. (1997) MESA: Support for scenario-based design of concurrent syste.
Technical Report 97-12, Department of Electrical & Computer Engineering, University of Wate
Canada, October.

[46] Ben Achour, C., Rolland, C., Maiden, N.A.M., and Souveyet, C. (1999) “Guiding Use Case Autho
Results of an Empirical Study”. In: RE'99, Fourth IEEE International Symposium on Requireme
Engineering, Limerick, Ireland, June 1999, 36-43.

[47] Benner, K.M., Feather, M.S., Johnson, W.L., and Zorman, L.A. (1993) “Utilizing Scenarios in
Software Development Process”. In: Information System Development Process, Elsevier Science, B.V.
North-Holland, 117-134.
334 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

tec-

ions”.

ter

plica-

nsfor-
J., and

hesis,

ps to
ms

icat-
er-
[48] Bertolino, A., Corradini, F., Inverardi, P. and Muccini, H. (2000) “Deriving Test Plans from Archi
tural Descriptions”. In: 22th International Conference on Software Engineering (ICSE 2000), Limer-
ick, Ireland, ACM Press, 220-229.

[49] Biermann, A.W. and Lrishnaswamy, R. (1976) “Constructing Programs from Example Computat
In: IEEE Transactions on Software Engineering, SE-2, 141-153.

[50] Binder, R.V. (1998) “How to test UML Sequence Diagram scenarios”. In: Object Magazine, 7(9),
March 1998, 16-19.

[51] Binder, R.V. (2000) Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison Wesley
object technology series.

[52] Black. P.E., Okun, V. and Yesha, Y. (2000) “Mutation Operators for Specifications”. In: 15th Auto-
mated Software Engineering Conference (ASE2000), Grenoble, France, September, IEEE Compu
Society, pages 81-88. http://hissa.ncsl.nist.gov/~black/Papers/opers.ps

[53] Bochmann, G.v. (1993) “Specification languages for communication protocols”. In: CHDL’93, Con-
ference Proceedings of the IFIP Conference on Hardware Description Languages and their Ap
tions, OCRI Publications, Ottawa, Canada, 365-382.

[54] Boehm, B. (1988) “A Spiral Model of Software Development and Enhancement”. In: IEEE Computer,
May, 61-72.

[55] Boehm, B. (1991) “Software Risk Management: Principles and Practices”. In: IEEE Software, Janu-
ary, 32-41.

[56] Bolognesi, T. and Brinksma, E. (1987) “Introduction to the ISO Specification Language LOTOS”. In:
Computer Networks and ISDN Systems, vol. 14, no. 1, 25-59.

[57] Bolognesi, T., van de Lagemaat, J., and Vissers, C. (1995) LOTOSphere: Software Development with
LOTOS. Kluwer Academic Publishers, The Netherlands.

[58] Bolognesi, T., De Frutos, D., Langerak, R., and Latella, D. (1995) “Correctness Preserving Tra
mations for the Early Phases of Software Development”. In: Bolognesi, T., van de Lagemaat,
Visser, C., LOTOSphere: Software Development with LOTOS. Kluwer Academic, The Netherlands.

[59] Boni Bangari, A. (1997) A Use Case Driven Validation Framework and Case Study. M.Sc. t
SITE, University of Ottawa, Ottawa, Canada.

[60] Bordeleau, F. (1993) Visual Descriptions, Formalisms and the Design Process. M.Sc. thesis, School of
Computer Science, TR-SCE-93-35, Carleton University, Ottawa, Canada.

[61] Bordeleau, F. and Buhr, R.J.A. (1997) “The UCM-ROOM Design Method: from Use Case Ma
Communicating State Machines”. In: Conference on the Engineering of Computer-Based Syste,
Monterey, USA, March 1997. http://www.UseCaseMaps.org/pub/UCM-ROOM.pdf

[62] Bordeleau, F. (1999) A Systematic and Traceable Progression from Scenario Models to Commun
ing Hierarchical Finite State Machines. Ph.D. thesis, School of Computer Science, Carleton Univ
sity, Ottawa, Canada. http://www.UseCaseMaps.org/pub/fb_phdthesis.pdf
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 335

 References

essage

 in

.Z

sson,

itative
.

. In F.
delling

-

evel,
H.S.

nt
[63] Bordeleau, F. and Cameron, D. (2000) “On the Relationship between Use Case Maps and M
Sequence Charts”. In: 2nd Workshop of the SDL Forum Society on SDL and MSC (SAM2000), Greno-
ble, France, June 2000. http://www.UseCaseMaps.org/pub/sam2000.pdf

[64] Boudol, G. and Castellani, I. (1990) “Three equivalent semantics for CCS”. In: LNCS, vol 469,
Springer-Verlag, 96-141.

[65] Bouma, L.G., and H. Velthuijsen (eds), Second International Workshop on Feature Interactions
Telecommunications Systems, IOS Press, Amsterdam, Netherlands, 1994.

[66] Boumezbeur, R. and Logrippo, L. (1993) “Specifying telephone systems in LOTOS”. IEEE Communi-
cations Magazine, 31(8), August, 38-45. http://lotos.site.uottawa.ca/ftp/pub/Lotos/Papers/svtsl.ps

[67] Bowen, J. and Hinchley, M. (1995) “Seven More Myths of Formal Methods”. In: IEEE Software, July,
34-41.

[68] Bowen, J. (2000) “The Ethics of Safety-Critical Systems”. In: Communications of the ACM, 43(4),
April, 91-97

[69] Brinksma, E. (1988) “A theory for the derivation of tests”. In: S. Aggarwal and K. Sabnani (Eds),Pro-
tocol Specification, Testing and Verification VIII, North-Holland, 63-74, June 1988.

[70] Brinksma, E., Tretmans, J., and Verhaard, L. (1991) “A Framework for Test Selection”. In: B. Jon
J. Parrow, and B. Pehrson (Eds.), Protocol Specification, Testing and Verification XI, Elsevier Science
Publishers B.V.

[71] Brinksma, E., Kaoten, J.-P., Langerak, R. and Latella, D. (1998) “Partial order models for quant
extensions of LOTOS”. In: Computer Networks and ISDN Systems, 30, Elsevier Science B.V., 925-950

[72] Brinksma, E. and Tretmans, J. (2000) “Testing transition systems: An annotated bibliography”
Cassez, C. Jard, B. Rozoy, and M. Ryan (eds) Proceedings of Summer School MOVEP'2k Mo
and Verification of Parallel Processes, Nantes, July 2000, 44-50.
http://fmt.cs.utwente.nl/publications/deposite/BrTr00.ps.gz

[73] Brinksma, E. (2000) “Verification is Experimentation!”. In: 11th International Conference on Concur
rency Theory (CONCUR’2000), Pennsylvania, USA, August 2000.

[74] Buhr, R.J.A. and Casselman, R.S. (1996) Use Case Maps for Object-Oriented Systems, Prentice-Hall,
USA. http://www.UseCaseMaps.org/pub/UCM_book95.pdf

[75] Buhr, R.J.A. (1998) High Level Design and Prototyping of Dynamic Agencies, research project
description. http://www.sce.carleton.ca/rads/agents/

[76] Buhr, R.J.A. (1998) “Use Case Maps as Architectural Entities for Complex Systems”. In: IEEE Trans-
actions on Software Engineering, Special Issue on Scenario Management. Vol. 24, No. 12, December
1998, 1131-1155. http://www.UseCaseMaps.org/pub/tse98final.pdf

[77] Buhr, R.J.A., Amyot, D., Elammari, M., Quesnel, D., Gray, T., and Mankovski, S. (1998) “High L
Multi-agent Prototypes from a Scenario-Path Notation: A Feature-Interaction Example”. In:
Nwana and D.T. Ndumu (Eds), PAAM’98, Third Conference on Practical Application of Intellige
Agents and Multi-Agents, London, UK, March 1998, 277-295.
http://www.UseCaseMaps.org/pub/4paam98.pdf.
336 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

ture-
uma
 Sys-

ulti-
es

rame-

ents

tion

4) “A

ss,

istrib-

ting of
.

p-

arious
r-
[78] Buhr, R.J.A., Amyot, D., Elammari, M., Quesnel, D., Gray, T., and Mankovski, S. (1998) “Fea
Interaction Visualization and Resolution in an Agent Environment”. In: K. Kimbler and L. G. Bo
(Eds), Fifth International Workshop on Feature Interactions in Telecommunications and Software
tems (FIW'98), Lund, Sweden, September 1998. IOS Press, 135-149.
http://www.UseCaseMaps.org/pub/fiw98.pdf.

[79] Buhr, R.J.A., Elammari, M., Gray, T., and Mankovski, S. (1998) “Applying Use Case Maps to M
agent Systems: A Feature Interaction Example”, Hawaii International Conference on System Scienc
(HICSS’98), Hawaii, January 1998. http://www.useCaseMaps.org/pub/hiccs98.pdf

[80] Buhr, R.J.A. (1999), “Understanding Macroscopic Behaviour Patterns in Object-Oriented F
works, with Use Case Maps”. In: Fayad, M.E., Schmidt, D.C., and Johnson, R.E. (eds) Building Appli-
cation Frameworks: Object-Oriented Foundations of Framework Design. John Wiley & Sons.
http://www.UseCaseMaps.org/pub/uoof.pdf

[81] Buschmann, F. Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. (1996) Pattern-Oriented Soft-
ware Architecture — A System of Patterns. John Wiley & Sons.

[82] Cameron, D. et al. (2001) Draft Recommendation Z.150 — User Requirements Notation (URN). Cana-
dian Contribution to ITU-T Study Group 10, September 2001. http://www.UseCaseMaps.org/urn

[83] Cameron, D. et al. (2001) Draft Recommendation Z.151 — URN-NFR: Goal-oriented Requirem
Language (GRL). Canadian Contribution to ITU-T Study Group 10, September 2001.
http://www.UseCaseMaps.org/urn

[84] Cameron, D. et al. (2001) Draft Recommendation Z.152 — URN-FR: Use Case Maps Nota
(UCM). Canadian Contribution to ITU-T Study Group 10, September 2001.
http://www.UseCaseMaps.org/urn

[85] Cameron, E.J., Griffeth, N., Linand, Y.-J., Nilson, Y.-J., Schnure, W.K. and Velthuijsen, H. (199
Feature Interaction Benchmark for IN and Beyond”. In: L. G. Bouma and H. Velthuijsen (eds),Fea-
ture Interactions in Telecommunications Systems, Amsterdam, The Netherlands, May 1994. IOS Pre
1-23. http://www-db.research.bell-labs.com/user/nancyg/benchmark.ps

[86] Carver, R.H. and Tai, K.C. (1995) “Test Sequence Generation from Formal Specifications of D
uted Programs”. In: 15th International Conference on Distributed Computing Systems, May, 360-367.

[87] Carver, R.H. and Chen, J. (1996) “Incremental Conformance Testing using LOTOS Specifications”. In:
Proc. 5th International Conference on Computer Communications and Networks (IC3N’96), October.

[88] Carver, R.H. and Tai, K.C. (1998) “Use of Sequencing Constraints for Specification-Based Tes
Concurrent Programs”. In: IEEE Transactions on Software Engineering, Vol. 24, No. 6, June, 471-490

[89] Cavalli, A., Kim, S., and Maigron, P. (1993) “Improving Conformance Testing for LOTOS”. In: R.L.
Tenney, P.D. Amer and M.Ü. Uyar (Eds), FORTE VI, 6th International Conference on Formal Descri
tion Techniques, North-Holland, 367-381, October 1993.

[90] Chandrasekarn, P. (1997) “How Use Case Modeling Policies Have Affected the Success of V
Projects (Or How to Improve Use Case Modeling)”. In: Addendum to the 1997 ACM SIGPLAN confe
ence on Object-oriented programming, systems, languages, and applications (OOPSLA’97). 6-9.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 337

 References

ifica-

-

n for
uary

ol for
k-
,

e

In:

our la
,

 orientés

ormal
ts at the
-

l,
),
[91] Charfi, L. (2001) Formal Modeling and Test Generation Automation with Use Case Maps and LOTOS.
M.Sc. thesis, SITE, University of Ottawa, Canada, 2001.

[92] Charles, Olivier. (1997) Application des hypothèses de test à une définition de la couverture. Ph.D. the-
sis, Université Henri Poincaré — Nancy 1, Nancy, France, October 1997.

[93] Chehaibar, G., Garavel, H., Mounier, L., Tawbi, N., and Zulian, F. (1996) “Specifictaion and Ver
tion of the PowerScale™ Bus Arbitration Protocol: An industrial Experiment with LOTOS”. In: R.
Gotzhein and J. Bredereke (Eds), Proceedings of FORTE/PSTV’96, Kaiserslautern, Germany, 435
450, October 1996.

[94] Cheung, T. Y. and Ren, S. (1992) Operational Coverage and Selective Test Sequence Generatio
LOTOS Specification. TR-92-07, Dept. of Computer Science, University of Ottawa, Canada, Jan
1992.

[95] Christensen, S, Jørgensen, J.B., and Kristensen, L.M. (1997) “Design/CPN — A Computer To
Coloured Petri Nets”. In: E. Brinksma (ed.), TACAS’97, Proceedings of the Third International Wor
shop on Tools and Algorithms for the Construction and Analysis of Systems, Twente, The Netherlands
volume 1217 of Lecture Notes in Computer Science, Springer-Verlag, 209-223.

[96] Chung, L., Nixon, B.A., Yu, E. and Mylopoulos, J. (2000) Non-Functional Requirements in Softwar
Engineering. Kluwer Academic Publishers.

[97] Clarke, E.M., Wing, J.M. et al. (1996) “Formal Methods: State of the Art and Future Directions”.
ACM Computing Surveys, Vol. 28, No. 4, December 1996.

[98] Cockburn, A. (1997) “Structuring Use cases with goals”. In: Journal of Object-Oriented Programming
(JOOP/ROAD), 10(5), September 1997, 56-62.
http://members.aol.com/acockburn/papers/usecases.htm

[99] Coelho da Costa, R.J. and Courtiat, J.-P. (1993) “A true concurrency semantics for LOTOS”. In: M.
Diaz and R. Groz (Eds), Formal Description Techniques, V, North-Holland.

[100] Coelho da Costa, R.J. (1993) Systèmes de transitions étiquetés causaux: une nouvelle approche p
description du comportement événementiel de systèmes concurrents. Ph.D. thesis, report 93179
LAAS. Université Paul Sabatier, Toulouse, France.

[101] Coplien, J.O. (1997) A Pattern Definition. http://hillside.net/patterns/definition.html

[102] Corriveau, J.-P. (1996) “Retraçage et processus de développement pour des projets industriels
objet”. In: APIIQ, L’Expertise informatique, Vol. 3, n° 1, 18-22, summer 1996.
http://www.apiiq.qc.ca/expertise/

[103] Courtiat, J.-P., Dembinski, P., Holzmann, G.J., Logrippo, L., Rudin, H. and Zave, P. (1996) “F
methods after 15 years: Status and trends — A paper based on contributions of the panelis
FORmal TEchnique ’95 Conference, Montreal, October 1995”. In: Conputer Networks and ISDN Sys
tems, 28, Elsevier Science B.V., 1845-1855.

[104] Craigen, D., Gerhart, S., and Ralston, T. (1994) Industrial applications of formal methods to mode
design, and analyze computer systems: an international survey. Noyes Data Corporation (Publisher
USA.
338 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

iments

tems

ition”.

 prac-

s”. In:

ation

yse de
-

e con-

SC
L

n”. In:

.tar.gz
[105] Craigen, D., Gerhart, S., and Ralston, T. (1995) “Formal Methods Technology Transfer: Imped
and Innovation”. In M. G. Hinchey and J. P. Bowen (eds): Applications of Formal Methods. Prentice-
Hall International Series in Computer Science, September 1995, 399-419.

[106] Damm, W. and Harel, D. (1999) “LCSs: Breathing Life into Message Sequence Charts”. In: 3rd IFIP
International Conference on Formal Methods for Open Object-based Distributed Sys
(FMOODS’99), Kluwer Academic Publishers, 293-312.

[107] Dardenne, A., van Lamsweerde, A. and Fickas, S. (1993) “Goal-Directed Requirements Acquis
In: Science of Computer Programming, 20, 3-50.

[108] Darondeau, P. and Deganeau, P. (1989) “Causal Trees”. In: ICALP’89, LNCS vol. 372, Springer-Ver-
lag, 234-248.

[109] Davis, A.M. (1982) “Rapid Prototyping Using Executable Requirements Specifications”. In: ACM
SIGSOFT Software Engineering Notes, vol. 7, no. 5, December 1982, 39-44.

[110] Davis, M.D. and Weyuker, E.J (1983) Computability, Complexity, and Languages. Academic Press,
New York, USA.

[111] DeLano, D., and Rising, L. (1996) “System Test Pattern Language”. In: Pattern Languages of Pro-
grams (PLoP’96), Allerton Park, Illinois, USA. http://www.agcs.com/patterns/papers/systestp.htm

[112] DeMillo, R.A., Lipton, R.J., and Sayward, F.G. (1978) “Hints on test data selection: Help for the
ticing programmer”. In: IEEE Computer, 11(4), April, 34-41.

[113] De Nicola, R. and Hennessy, M.C.B. (1984) “Testing equivalences for processes”. In: Theoretical
Computer Science, 34:83-133.

[114] Desharnais, J., Frappier, M., Khédri, R., and Mili, A. (1997). “Integration of Sequential Scenario
ESEC’97, Sixth European Engineering Conference, LNCS 1301, Springer-Verlag, 310-326.

[115] Diaz, M., Juanole, G., and Courtiat, J.-P. (1994) “Observer — A Concept for Formal on-line Valid
of Distributed Systems”. In: IEEE Transactions on Software Engineering, Vol. 20, No. 12, December
1994, 900-913.

[116] Drira, K. and Azéma, P. (1995) “Les graphes de refus pour la vérification de conformité et l’anal
testabilité des protocoles de communication”. In: Electronic Journal on Networks and Distributed Pro
cessing, No. 1, April 1995, 27-47.

[117] Du Bousquet, L., Ramangalahy, S., Simon, S. and Viho, C. (2000) “Formal Test Automation: Th
ference Protocol with TGV/TORX”. In: H. Ural, R.L. Probert and G.v. Bochmann (eds) Testing of Com-
municating Systems: Tools and Techniques (TestCom 2000). Kluwer Academic Publishers, 220-228.

[118] Dulz, W., Gruhl, S., Lambert, L., and Söllner, M. (1999) “Early performance prediction of SDL/M
specified systems by automated synthetic code generation”. In: SDL’99, Proceedings of the Ninth SD
Forum, Montréal, Canada. Elsevier.

[119] Easterbrook, S. and Nuseibeh, B. (1995) “Managing Inconsistencies in an Evolving Specificatio
Proceedings of the Second International Symposium on Requirements Engineering, York, UK, March.

[120] Eberlein, A. (1997) Requirements Acquisition and Specification for Telecommunication Services. PhD
thesis, University of Wales, Swansea, UK. http://kona.swan.ac.uk/~eeeberle/Publications/thesis
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 339

 References

ial
 Ber-

ca-

edi-
'99)

enar-

e

”. In:

lligent
[121] Ehrig, H. and Mahr, B. (1985) Fundamentals of Algebraic Specification 1 (Equations and Init
Semantics). Volume 6 of EATCS Monographs on Theoretical Computer Science, Springer-Verlag,
lin, Germany.

[122] EIA (1999) Systems Engineering Capability Model (SECM). Interim Standard EIA/IS 731-1.

[123] Ek, A., Ellsberger, J. and Wiles, A. (1993) Computer Supported Test Generation from SDL Specifi
tions. Technical Report, Telia Research, Sweden.

[124] Elammari, M. and Lalonde, W. (1999) “An Agent-Oriented Methodology: High-Level and Interm
ate Models”. In: Proc. of the 1st Int. Workshop on Agent-Oriented Information Systems (AOIS,
Heidelberg, Germany, June 1999. http://www.UseCaseMaps.org/pub/aom-aois99.pdf

[125] Elkoutbi, M.., Khriss, I., and Keller, R.K. (1999) “Generating User Interface Prototypes from Sc
ios”. In: RE'99, Fourth IEEE International Symposium on Requirements Engineering, Limerick, Ire-
land, June 1999, 150-158. ftp://ftp.iro.umontreal.ca/pub/gelo/Publications/Papers/isre99.pdf

[126] ESPRIT (1996) Cooperative Requirements Engineering With Scenarios (CREWS). Project 21.903.
http://sunsite.informatik.rwth-aachen.de/CREWS/

[127] ETSI (1992) Digital Cellular Telecommunication System (Phase 2). Mobility Application Part (GSM
09.02), Version 4.0.0 (June 1992).

[128] ETSI (1996) Digital Cellular Telecommunications system (Phase 2+); General Packet Radio Service
(GPRS); Service Description Stage 1 (GEM 02.60), Version 2.0.0 (November 1996).

[129] Faci, M., Logrippo, L. and Stépien, B. (1989) “Formal Specification of telephone systems in LOTOS”,
Protocol Specification, Verification and Testing, IX, North-Holland.

[130] Faci, M., Logrippo, L., and Stépien, B. (1991) “Formal Specification of Telephone Systems in LOTOS:
The Constraint-Oriented Approach”. Computer Networks and ISDN Systems, 21 (1991) 53-67.
http://lotos.site.uottawa.ca/ftp/pub/Lotos/Papers/telephone.CNIS9007.ps.Z

[131] Faci, M. and Logrippo, L. (1994) “Specifying Features and Analysing their Interactions in a LOTOS

Environment”. In: L. G. Bouma and H. Velthuijsen (eds), Second International Workshop on Featur
Interactions in Telecommunications Software Systems, IOS Press, 136-151.
http://lotos.site.uottawa.ca/ftp/pub/Lotos/Papers/Fits94.CameraReady.ps.gz

[132] Faci, M. (1995) Detecting Feature Interaction in Telecommunications Systems Designs. Ph.D. thesis,
Department of Computer Science, University of Ottawa, November 1995.
http://lotos.site.uottawa.ca/ftp/pub/Lotos/Theses/mf_phd.ps.gz

[133] Faci, M., Logrippo, L., and Stépien, B (1997) “Structural Models for Telephone Specifications
Computer Network & ISDN Systems, 29, 501-528.
http://lotos.site.uottawa.ca/ftp/pub/Lotos/Papers/isdn95.ps.gz

[134] Faynberg, I., Gabuzda, L.R., and Jacobson, T. (1997) “The Development of the Wireless Inte
Network (WIN) and its Relation to the International Intelligent Network Standards”. In: Bell Labs
Technical Journal, Vol. 2, No. 3, summer 1997, 76-86.
340 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

1996)
n

tions

(1996).

-

 Fea-

ection

le

-

ion,
go-

”. In:

t-

 of
[135] Fernandez, J.-C., Garavel, H., Kerbrat, A., Mateescu, R., Mounier, L., and Sighireanu, M. (
“CADP: A Protocol Validation and Verification Toolbox”. In: Proceedings of the 8th Conference o
Computer-Aided Verification, New Brunswick, NJ, USA, 437-440.

[136] Finkelstein, A. (ed.) (2000) The Future of Software Engineering. Special track of the 22th Interna-
tional Conference on Software Engineering, ACM Press.

[137] Fraser, M.D., Kumar, K. and Vaishnavi, V.K. (1994) “Strategies for incorporating formal specifica
in software development”. In: Communications of the ACM, Vol. 37, No. 10, October 1994, 74-86

[138] Fraser, M.D. and Vaishnavi, V.K. (1997) “A Formal Specifications Maturity Model”. In: Communica-
tions of the ACM, Vol. 40, No. 12, December 1997, 95-103.

[139] Fraser, S., Booch, G., Buschmann, F., Coplien, J., Kerth, N., Jacobson, I., and Rosson M.B.
“Patterns: Cult to Culture?”. In: OOPS Messenger, 6(4):85-88, March 1996.

[140] de Frutos-Eserig, D. (1993) “A Characterization of LOTOS Representable Networks of Parallel Pro
cesses”. In: G. Scollo (Ed), Proceedings of AMAST’93.

[141] Fu, Q. (2000) Feature Interaction Detection in a Telephony Network Integrated with Switch-based
tures and IN Features. M.Sc. thesis, SITE, University of Ottawa, Canada.
http://lotos.site.uottawa.ca/ftp/pub/Lotos/Theses/qf_msc.pdf

[142] Fu, Q., Harnois, L. Logrippo, L., and Sincennes, J. (2000) “Feature Interaction Detection: a LOTOS-
Based Approach”. In: Computer Networks, 32(4), 433-448.

[143] Fujiwara, S., v. Bochmann, G., Khendek, F., Amalou, M., and Ghedamsi, A. (1991) “Test Sel
Based on Finite State Models”. In: IEEE Transactions on Software Engineering, 17 (6), June, 591-603.

[144] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1997) Design Patterns - Elements of Reusab
Object-Oriented Software. Addison-Wesley.

[145] Garavel, H. (1996) “An overview of the Eucalyptus Toolbox”. In: Proceedings of the COST 247 Inter
national Workshop on Applied Formal Methods in System Design, Maribor, Slovenia, 76-88.

[146] Garavel, H (1998) “OPEN/CAESAR: An Open Software Architecture for Verification, Simulat
and Testing”. In: B. Steffen (ed) Proceedings of the First International Conference on Tools and Al
rithms for the Construction and Analysis of Systems (TACAS'98).

[147] Garlan, D., Monroe, R. T., and Wile, D. (1997) “ACME: an Architectural Interchange Language
Proceedings of ICSE’97, 19th IEEE International Conference on Software Engineering.

[148] Garlan, D. (2000) “Software Architecture: a Roadmap”. In: 22nd International Conference on Sof
ware Engineering (ICSE2000): Future of Software Engineering, Limerick, Ireland, 93-101

[149] Ghribi, B. (1992) A Model Checker for LOTOS. M.Sc. thesis, Dept. of Computer Science, University
Ottawa, Canada. http://lotos.site.uottawa.ca/ftp/pub/Lotos/Theses/

[150] Ghribi, B. and Logrippo, L. (1993) “A Validation Environment for LOTOS”. In: A. Danthine, G. Leduc,
and P. Wolper (Eds), Protocol Specification, Testing and Verification, XIII, North-Holland.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 341

 References

: A
le

ent

tion
p-

 Filter-

ecifica-

nisms,
s-

ature

ction
[151] Ghribi, B. and Logrippo, L. (1999) “Prototyping and Formal Requirement Validation of GPRS
Mobile Data Packet Radio Service for GSM” . In: Seventh International Conference on Dependab
Computing for Critical Applications (IFIP/IEEE), San Jose, CA, 99- 118.

[152] Gischer, J. (1989) “The equational theory of pomsets”. In: Theoretical Computer Science, 61, 199-224.

[153] van Glabbeek, R. and Goltz, U. (1998) Refinement of Actions and Equivalence Notions for Concurr
Systems. Hildesheimer Informatik Bericht 6/98, Germany.
http://theory.stanford.edu/~rvg/abstracts.html#41

[154] Glinz, M. (1995) “An Integrated Formal Model of Scenarios Based on Statecharts”. In: Proceedings of
the 5th European Software Engineering Conference (ESEC 1995), Sitges, Spain.

[155] Gomma, H. (2000) Designing Concurrent, Distributed, and Real-Time Applications with UML. UML
Series, Addison Wesley.

[156] Gorse, N. (2000) The Feature Interaction Problem: Automatic Filtering of Incoherences & Genera
of Validation Test Suites at the Design Stage. M.Sc. thesis, SITE, University of Ottawa, Canada, Se
tember 2000. http://www.UseCaseMaps.org/pub/ng-thesis.zip

[157] Gorse, N., Logrippo, L. and Sincennes, J. (2001) “The Feature Interaction Problem: Automatic
ing of Incoherences & Generation of Validation Test Suites at the Design Stage”. In: Proceedings of
the 6th Mitel Conference (MICON 2001), Ottawa, Canada, August 2001.
http://micmac.mitel.com/micon/Proceedings/Luigi_Logrippo_MICON_Proceedings.pdf

[158] Grabowski, J., Hogrefe, D. and Nahm, R. (1993) “Test Case Generation with Test Purpose Sp
tion by MSCs”. In: O. Faergemand and A. Sarma (eds), SDL'93 - Using Objects, North-Holland, Octo-
ber 1993. http://www.itm.mu-luebeck.de/english/publications/Abstract_SDL93-SAMSTAG.html

[159] Grégoire, J-C. and Ferguson, M.J. (1997) “Neglected Topics of Feature Interactions: Mecha
Architectures, Requirements”. In: P. Dini et al., Feature Interactions in Telecommunications and Di
tributed Systems IV, IOS Press, 3-12.

[160] Griffeth, N.D. and Velthuijsen, N.D. (1994) “The Negotiating Agents Approach to Runtime Fe
Interaction Resolution”. In: L. G. Bouma and H. Velthuijsen (eds), Second International Workshop on
Feature Interactions in Telecommunications Software Systems, IOS press, 217-235.
http://www-db.research.bell-labs.com/user/nancyg/fiw94.ps

[161] Griffeth, N.D., Tadashi, O., Grégoire, J.-C. and Blumenthal, R. (1998) “First Feature Intera
Detection Contest”. In: K. Kimbler and W. Bouma (eds.), Fifth International Workshop on Feature
Interactions in Telecommunications Software Systems, IOS Press, 327-359.
http://www.tts.lth.se:80/FIW98/contest.html

[162] Guillemot, R., and Logrippo, L. (1989) “Derivation of Useful Execution Trees from LOTOS Specifica-
tions by Using an Interpreter.” In: K.J. Turner (Ed.) Formal Description Techniques. North-Holland
(Proc. of the 1st FORmal TEchniques International Conference, Stirling, UK.,1988) 311-325.
http://lotos.site.uottawa.ca/ftp/pub/Lotos/Papers/forte88.am.ps.Z

[163] Guttag, J.V. and Horning, J.J. (1993) Larch: Languages and Tools for Formal Specification. Springer-
Verlag.

[164] Hackathorn, R. (1997) “Data Delivery When You Want It”. In: BYTE, vol. 22, no. 6, June 1997.
342 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

tions”.
00)

he

n:

-

nd the

 and
er

ormal

l meth-
ms
[165] Haj-Hussein, M., Logrippo, L. and Sincennes, J. (1993) “Goal Oriented Execution for LOTOS”. In: M.
Diaz and R. Groz (Eds), Formal Description Techniques, V, North-Holland, 311-327.

[166] Hall, A. (1990) “Seven Myths of Formal Methods”. In: IEEE Software, 7(5), September, 11-19.

[167] Harel, D. (2000) “From Play-In Scenarios To Code: An Achievable Dream”. In: Fundamental
Approaches to Software Engineering (FASE2000), LNCS 1783, Springer-Verlag, 22-34.
http://www.wisdom.weizmann.ac.il:81/Dienst/UI/2.0/Describe/ncstrl.weizmann_il/MCS00-06

[168] Harel, D. and Gery, E. (1996) “Executable Object Modeling with Statecharts”. In: Proceedings of the
18th International Conference on Software Engineering, Berlin, IEEE Press, March 1996, 246-257.

[169] Harel, D. and Kugler, H. (2000) “Synthesizing State-Based Object Systems from LSC Specifica
In: Fifth International Conference on Implementation and Application of Automata (CIAA 20,
LNCS, Springer-Verlag.

[170] Hassine, J. (2001) Feature Interaction Filtering and Detection with Use Case Maps and LOTOS, M.Sc.
thesis, University of Ottawa, Canada, February 2001.
http://lotos.site.uottawa.ca/ftp/pub/Lotos/Theses/jh_msc.pdf

[171] Heerink, L. (1998) Ins and Outs in Refusal Testing. Ph.D. thesis, University of Twente, Enschede, T
Netherlands.

[172] Hekmatpour, S. and Ince, D. (1988) Software Prototyping, Formal Methods and VDM. Addison Wes-
ley.

[173] Hélouët, L. and Jard, C. “Conditions for synthesis of communicating automata from HMSCs”. I5th
International Workshop on Formal Methods for Industrial Critical Systems, Berlin, April 2000.
http://www.fokus.gmd.de/research/cc/tip/fmics/abstracts/helouet.html

[174] Hennessy, M. (1988) Algebraic Theory of Processes. Foundations of Computing, MIT Press, Cam
bridge, USA.

[175] Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W., and Paulk, M. (1997) “Software Quality a
Capability Maturity Model”. In: Communications of the ACM, Vol. 40, No. 6, June 1997, 31-40.

[176] Hinchey, M.G. and Bowen, J.P. (1995) “Applications of Formal Methods FAQ”. In M. G. Hinchey
J. P. Bowen (eds): Applications of Formal Methods. Prentice-Hall International Series in Comput
Science, September 1995, 1-15.

[177] Hoare, C. A. R. (1985) Communicating Sequential Processes. Prentice-Hall International, U.K.

[178] Hodges, J. and Visser, J. (1999) “Accelerating Wireless Intelligent Network Standards Through F
Techniques”. In: IEEE 1999 Vehicular Technology Conference (VTC’99), Houston (TX), USA.
http://www.UseCaseMaps.org/pub/vtc99.pdf

[179] Hogrefe, D., Heymer, S., and Tretmans, J. (1996) “Report on the standardization project ‘Forma
ods in conformance testing’”. In: 9th International Workshop on Testing of Communicating Syste
(IWTCS'96), Darmstadt, Germany. Chapman & Hall, 289-298.

[180] Holzmann, G.J. (1991) Design and Validation of Computer Protocols, Prentice Hall.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 343

 References

g”. In:

to Sce-

and

,

nce

n

[181] Holzmann, G.J. (1994) “The theory and practice of a formal method: NEWCORE”. In: Proceedings of
the 13th IFIP World Computer Congress, Hamburg, Germany.

[182] Holzmann, G.J., Peled, D., and Redberg, M. (1997) “Design tools for requirements engineerin
Bell Labs Technical Journal, 2(1):86-95.
http://www.lucent.com/minds/techjournal/winter_97/pdf/paper07.pdf

[183] Hsia, P., Samuel, J., Gao, J., Kung, D., Toyoshima, Y. and Chen, C. (1994) “Formal Approach
nario Analysis”. IEEE Software, 1994, 33-40.

[184] Hurlbut, R. (1997) A Survey of Approaches for Describing and Formalizing Use Cases. Technical
Report 97-03, Department of Computer Science, Illinois Institute of Technology, USA.
http://www.iit.edu/~rhurlbut/xpt-tr-97-03.html

[185] Hurlbut, R. R. (1998) Managing Domain Architecture Evolution Through Adaptive Use Case
Business Rule Models. Ph.D. thesis, Illinois Institute of Technology, Chigago, USA.
http:// www.iit.edu/~rhurlbut/hurl98.pdf

[186] IBM, Unisys et al. (1998) XMI (XML Metadata Interchange) Proposal. OMG document ad/98-10-05
October 1998. http://www.software.ibm.com/ad/features/xmi.html

[187] IEEE (1990) Standard Glossary of Software Engineering Terminology. IEEE Std 610.12-1990, New
York, USA.

[188] IEEE (1993) Recommended Practice for Software Requirements Specifications. IEEE Std 830-1993,
New York, USA.

[189] IEEE (1995) Guide for Developing System Requirements Specifications. IEEE Std P1233/D3, New
York, USA.

[190] IFAD (1999) VDMTools. http://www.ifad.dk/Products/VDMTools

[191] ISO (1989), Information Processing Systems, Open Systems Interconnection, LOTOS — A Formal
Description Technique Based on the Temporal Ordering of Observational Behaviour, IS 8807, Geneva.

[192] ISO (1989), Information Processing Systems, Open Systems Interconnection, Estelle — A Formal
Description Technique Based on an Extended State Transition Model, IS 9074, Geneva.

[193] ISO/EIC (1991) Information Technology, Open Systems Interconnection, Conformance Testing Meth-
odology and Framework (CTMF), IS 9646, Geneva. Also: CCITT X.290-X.294.

[194] ISO/IEC (1994) Information Technology, Open Systems Interconnection, Basic Reference Model. The
Basic Model. IS 7498-1: 1994, Geneva

[195] ISO/ITU-T (1995) Open Distributed Processing, Reference Model, ISO 10746, ITU Recommendation
X.901-904, Geneva.

[196] ISO/EIC (1996) Proposed ITU-T Z.500 and Committee Draft on “Formal Methods in Conforma
Testing” (FMCT). ISO/EIC JTC1/SC21/WG7, ITU-T SG 10/Q.8, CD-13245-1, Geneva.

[197] ISO/EIC (1997) OSI CTMF Part 3: The Tree and Tabular Combined Notation — Second Editio, IS
9646-3: 1997, Geneva.

[198] ISO/IEC (1998) Enhancements to LOTOS (E-LOTOS). FCD 1998-10-03, DIS 15437, Geneva.
344 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

vices

nts

on of

N-3):

 and

-based

 G.v.

 Vol-

s and
[199] ISO/IEC (1999) High Level Petri Net Standard, DIS 15909, JTC 1/SC 7, Geneva.

[200] ITU (1988) Recommendation I.130, Method for the characterization of telecommunication ser
supported by an ISDN and network capabilities of ISDN. CCITT, Geneva.

[201] ITU (1994) Recommendation X.680-683, Abstract Syntax Notation One (ASN.1). Geneva.

[202] ITU (1995) Q.1200 General Series, Intelligent Networks Recommendation Structure. Geneva.

[203] ITU-T, Study Group 10 (1999) Proposal for a new question to define a notation for user requireme.
Canadian contribution, COM10-D56, November 1999.
http://www.UseCaseMaps.org/pub/Q12_URN.pdf

[204] ITU (2000) Recommendation Q.65, The unified functional methodology for the characterizati
services and network capabilities including alternative object-oriented techniques. Geneva.

[205] ITU (2000) Recommendation Z.100, Specification and Description Language (SDL). Geneva.

[206] ITU (2000) Recommendation Z.105, SDL Combined with ASN.1 (SDL/ASN.1). Geneva.

[207] ITU (2000) Recommendation Z.109, SDL combined with UML. Geneva.

[208] ITU (2000) Recommendation Z. 120: Message Sequence Chart (MSC). ITU, Geneva.

[209] ITU (2001) Recommendation Z. 140: The Tree and Tabular Combined Notation version 3 (TTC
Core language. ITU, Geneva.

[210] Jackson, M. (1995) Software Requirements & Specifications — a lexicon of practice, principles
prejudices. Addison-Wesley, ACM Press.

[211] Jackson, M. (1998) “Formal Methods and Traditional Engineering”. In: J. Systems Software, 40, 191-
194

[212] Jacobson, I., Christerson, M., Jonsson, P., and Övergaard, G. (1993) Object-Oriented Software Engi-
neering, A Use Case Driven Approach. Addison-Wesley, ACM Press.

[213] Jagadeesan, L.J., Votta, L.G., Porter, A., Puchol, C., and Ramming, J.C. (1998) “Specification
Testing of Reactive Software: A Case Study in Technology Transfer”. In: Journal of Systems Software,
40, 249-262

[214] Jard, C., Jéron, T. and Morel, P. (2000) “Verification of Test Suites”. In: H. Ural, R.L. Probert and
Bochmann (eds) Testing of Communicating Systems: Tools and Techniques (TestCom 2000). Kluwer
Academic Publishers, 3-18.

[215] Jarke, M. and Kurki-Suonio, R., editors. (1998) IEEE Transactions on Software Engineering, Special
Issue on Scenario Management. Vol. 24, No. 12, December 1998.

[216] Jensen, K. (1992) Coloured Petri Nets — Basic Concepts, analysis Methods and Practical Use —
ume 1: Basic Concepts. Monographs in Theoretical Computer Science, Springler-Verlag, Berlin.

[217] Jéron, T. and Morel, P. (1999) “Test Generation Derived from Model-Checking”. In: N. Halbwach
D. Peled (eds) CAV’99. LNCS 1633, Springer, 108-122.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 345

 References

ering:

rk

ligent

.

ware

ler
ons

unica-

ouma

e-

-
ml

 Dia-
[218] Johnson, P. M. (1998) “Reengineering inspection”. In: Communications of the ACM, Vol. 41, No. 2,
February 1998, 49-52.

[219] Jones, C.B. (1986) Systematic Software Development Using VDM. Prentice-Hall, London, U.K.

[220] Jones, S., Till, D., and Wrightson, A.M. (1998) “Formal Methods and Requirements Engine
Challenges and Synergies”. In: J. Systems Software, 40, 263-273.

[221] Joyce, D. (1997) “Code Coverage Analysis Works In Hardware Design”. In: Integrated System Design,
January. http://www.isdmag.com/editorial/1997/edafeature9701.html.

[222] Kamoun, J. (1996) Formal Specification and Feature Interaction Detection in the Intelligent Netwo.
M.Sc. thesis, SITE, University of Ottawa, Canada.
http://lotos.site.uottawa.ca/ftp/pub/Lotos/Theses/jk_msc.ps.gz

[223] Kamoun, J., and Logrippo, L. (1998) “Goal-Oriented Feature Interaction Detection in the Intel
Network Model”. In K. Kimbler and L. G. Bouma (Eds), Fifth International Workshop on Feature
Interactions in Telecommunications and Software Systems (FIW'98), Lund, Sweden, September 1998
IOS Press, 172-186.

[224] Karlsson, J., Wohlin, C., and Regnell, B. (1998) “An evaluation of methods for prioritizing soft
requirements”. In: Information and Software Technology, 39, 939–947.
http://www.tts.lth.se/Personal/bjornr/Papers/IST98.pdf

[225] Katoen, J.-P. and Lambert, L. (1998) “Pomsets for Message Sequence Charts”. In: First Workshop of
the SDL Forum Society on SDL and MSC, Berlin, Germany, June, 291-300.

[226] Keck, D.O. (1998) “A Tool for the Identification of Interaction-Prone Call Scenarios”. In: K. Kimb
and L. G. Bouma (Eds), Fifth International Workshop on Feature Interactions in Telecommunicati
and Software Systems (FIW'98), Lund, Sweden, September 1998. IOS Press, 276-290.

[227] Keck, D.O. and Kuehn, P.J. (1998) “The Feature and Service Interaction Problem in Telecomm
tions Systems: A Survey”. In: IEEE Transactions on Software Engineering, Vol. 24, No. 10, October
1998, pp. 779–795.

[228] Khendek, F. and Vincent, D. (2000) “Enriching SDL Specifications with MSCs”. In: 2nd Workshop of
the SDL Forum Society on SDL and MSC (SAM2000), Grenoble, France, June 2000.

[229] Kimbler, K. and Søbirk, D. (1994) “Use case driven analysis of feature interactions”. In: L. G. B
and H. Velthuijsen (eds), Feature Interactions in Telecommunications Systems, Amsterdam, The Neth-
erlands, May 1994. IOS Press, 167-177.

[230] Kimbler, K. and Bouma, L. G. (1998) Fifth International Workshop on Feature Interactions in Tel
communications and Software Systems (FIW'98), Lund, Sweden, September 1998. IOS Press.

[231] Koo, I. (1996) Mutation Testing and Three Variations. Technical Report, University of British Colum
bia, Canada. http://www.ee.ubc.ca/home/comlab1/irenek/etc/www/techpaps/mutate/mutation.ht

[232] Koskimies, K. and Mäkinen, E. (1994) “Automatic Synthesis of State Machines from Trace
grams”. In: Software Practice and Experience, 24(7), July 1994, 643-658.
346 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

f

ff-the-

hs”. In:
FIP

trially

 from
ario

r

yths

ster in
-

n: S.T.

uence
ering,
-

ctural
[233] Koskimies, K., Männistö, T., Systä, T., and Tuomi, J. (1996) SCED: A tool for dynamic modelling o
object systems. University of Tampere, Department of Computer Science, Report A-1996-4, July.
ftp://cs.uta.fi/pub/reports/A-1996-4.ps.Z

[234] Kropp, N.P., Koopman, P.J., and Siewiorek D.P. (1998) “Automated Robustness Testing of O
Shelf Software Components”. In: Proceedings of FTCS’98, Munich, Germany.
http://www.cs.cmu.edu/~koopman/ballista/ftcs98/ftcs98.pdf

[235] Krüger, I., Grosu, R., Scholz, P. and Broy, M. (1999) “From MSCs to Statecharts”. In: Distributed and
Parallel Embedded Systems, Kluwer Academic Publishers.
http://www4.informatik.tu-muenchen.de/papers/KGSB99.html

[236] Ladkin, P.B., and Leue, S. (1995) “Four issues concerning the semantics of Message Flow Grap
D. Hogrefe and S. Leue (Eds), Formal Description Techniques, VII, Proceedings of the Seventh I
International Conference on Formal Description Techniques FORTE'94, Chapman & Hall.
http://sven.uwaterloo.ca:80/~sleue/publications.files/forte94.ps.Z

[237] Lai, R. (1996) “How could research on testing of communicating systems become more indus
relevant?”. In: 9th International Workshop on Testing of Communicating Systems (IWTCS'96), Darms-
tadt, Germany, 3-13.

[238] van Lamsweerde, A. and Willemet, L. (1998) “Inferring Declarative Requirements Specifications
Operational Scenarios”. In: IEEE Transactions on Software Engineering, Special Issue on Scen
Management. Vol. 24, No. 12, December 1998, 1089-1114.

[239] Langerak, R. (1992) Transformations and Semantics for LOTOS. Ph.D. thesis, Department of Compute
Science, University of Twente, The Netherlands.

[240] Lea, D. (1994) “Christopher Alexander: An Introduction for Object-Oriented Designers”. In: Software
Engineering Notes, January 1994. http://gee.cs.oswego.edu/dl/ca/ca/ca.html.

[241] Le Charnier, B. and Flener, P. (1998) “Specifications Are Necessarily Informal or: Some More M
of Formal Methods”. In: Journal of Systems Software, 40, 275-296

[242] Leduc, G. (1991) “Conformance relation, associated equivalence, and minimum canonical te
LOTOS”. In: B. Jonsson, J. Parrow, and B. Pehrson (Eds.), Protocol Specification, Testing and Verifica
tion XI, Elsevier Science Publishers B.V., 249-264.

[243] Leduc, G. (1994) “Failure-based Congruences, Unfair Divergences and New Testing Theory”. I
Vuong and S.T. Chanson (Eds), Protocol Specification, Testing, and Verification, XIV, Vancouver, Can-
ada. Chapman & Hall, 252-267.

[244] Leue, S., Mehrmann, L. and Rezai, M. (1998) “Synthesizing ROOM Models from Message Seq
Chart Specifications”. Technical Report 98-06, Department of Electrical and Computer Engine
University of Waterloo, Canada, April 1998. Short paper version in: 13th IEEE Conference on Auto
mated Software Engineering, Honolulu, Hawaii, October 1998.
http://sven.uwaterloo.ca:80/~sleue/publications.files/tr98-06.ps.gz

[245] Leyton, M. (1999) Symmetry, Causality, Mind. MIT Press.

[246] Li, J.J. and Horgan, J.R. (2000) “Applying formal description techniques to software archite
design”. In: Computer Communications, 23(12), 1169-1178.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 347

 References

rios”.

bject
tion,

eling

logy”.

sage

A.

ality
il

DL”.
[247] Liu, L. and Yu, E. (2001) “From Requirements to Architectural Design - Using Goals and Scena
In: From Software Requirements to Architectures Workshop (STRAW 2001), Toronto, Canada, May
2001. http://www.UseCaseMaps.org/pub/straw01.pdf

[248] Liu, M.T. (1989) “Protocol Engineering”. In: Advances in Computers, Vol. 29, 79-195.

[249] Lucent Technologies (1999) uBET — Lucent Behavior Engineering Toolset.
http://cm.bell-labs.com/cm/cs/what/ubet/

[250] Luqi and Goguen, J.A. (1997) “Formal Methods: Promises and Problems”. In: IEEE Software, January
1997, 73-85.

[251] Lyngsø, R.B. and Mailund, T. (1998) “Textual Interchange Format for High-level Petri Nets”. In:Pro-
ceedings of the 1998 Workshop on Practical Use of Coloured Petri Nets and Design/CPN, June 8-12,
Aarhus, Denmark. See also http://www.daimi.aau.dk/designCPN/man/Misc/textformat.pdf

[252] Maiden, N.A.M. (1998) “SAVRE: Scenarios for Acquiring and Validating Requirements”. In: Journal
of Automated Software Engineering, 5, 419-446.

[253] Maier, C. and Maximilians, L. (1997) “Object Coloured Petri Nets — a Formal Technique for O
Oriented Modelling”. In: Workshop PNSE'97 Petri Nets in System Engineering Modelling, Verifica
and Validation, Hamburg, Germany, September 25-26.

[254] Mäkinen, E. and Systä, T. (2001) “MAS – An Interactive Synthesizer to Support Behavioral Mod
in UML”. In: 23rd International Conference on Software Engineering (ICSE'01), Toronto, Canada,
May 2001.

[255] Mansurov, N. and Zhukov, D. (1999) “Automatic synthesis of SDL models in use case methodo
In: SDL’99, Proceedings of the Ninth SDL Forum, Montréal, Canada. Elsevier.

[256] Meszaros, G. and Doble, J. (1998) “A Pattern Language for Pattern Writing”. In: Pattern Languages of
Program Design 3, Addison-Wesley, 529-574. http://hillside.net/patterns/Writing/patterns.html

[257] Miga, A. (1998) Application of Use Case Maps to System Design with Tool Support. M.Eng. thesis,
Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada.
http://www.UseCaseMaps.org/pub/am_thesis.pdf

[258] Miga, A., Amyot, D., Bordeleau, F., Cameron, C. and Woodside, M. (2001) “Deriving Mes
Sequence Charts from Use Case Maps Scenario Specifications”. In: Tenth SDL Forum (SDL'01),
Copenhagen, Denmark, June 2001. http://www.UseCaseMaps.org/pub/sdl01-miga.pdf

[259] Mills, H.D., Dyer, M., and Linger, R.C., (1987) “Cleanroom Software Engineering”. In: IEEE Soft-
ware, September 1987, 19-24.

[260] Milner, R. (1989) Communication and Concurrency. Addison-Wesley, Reading, Massachusetts, US

[261] Monkewich, O. (2001) ITU-T Draft Recommendation A.3 Supplement 1: Guidelines on the qu
aspects of Protocol related Recommendations. Canadian Contribution to ITU-T Study Group 10, Apr
2001.

[262] Monkewich, O., Sales, I. and Probert, R. (2001) “OSPF Efficient LSA Refreshment Function in S
In: Tenth SDL Forum (SDL'01), Copenhagen, Denmark, June 2001.
http://www.UseCaseMaps.org/pub/sdl01-sales.pdf
348 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

”. In:

 with
in

art I”.

ents”.

ion”.

igen,
nd

 Pro-
6.

-

,

[263] Moreira, A. M. D., and Clark, R. G. (1996) “Adding rigour to object-oriented analysis”. In: Software
Engineering Journal, IEE, 11(5), September 1996, 270-280.

[264] Mouly, M. and Pautet, M.-B (1992) The GSM System for Mobile Communications. Cell & Sys.

[265] Musa, J.D., and Ackerman, A.F. (1989) “Quantifying Software Validation: When to Stop Testing?
IEEE Software, May 1989.

[266] Mussbacher, G. and Amyot, D. (2001) “A Collection of Patterns for Use Case Maps”. In: First Latin
American Conference on Pattern Languages of Programming (SugarLoafPLoP 2001), Rio de Janeiro,
Brazil, October 2001.

[267] Myers, G. J. (1979) The Art of Software Testing. Wiley-Interscience, New-York.

[268] Nakamura, M., Kikuno, T., Hassine, J., and Logrippo, L. (2000). “Feature Interaction Filtering
Use Case Maps at Requirements Stage”. In: Sixth International Workshop on Feature Interactions
Telecommunications and Software Systems (FIW'00), Glasgow, Scotland, UK, May 2000.
http://www.UseCaseMaps.org/pub/fiw00filter.pdf

[269] Nielsen, M., Plotkin, G.D., and Winskel, G. (1981) “Petri nets, event structures and domains, p
In: Theoretical Computer Science, 13(1), 85-108.

[270] Nursimulu, K. and Probert, R. (1995) “Cause-Effect Graphing Analysis and Validation Requirem
Department of Computer Science, University of Ottawa, Canada, TR-95-14 (June).

[271] Offutt, A.J. (1992) “Investigations of the Software Testing Coupling Effect”. In: ACM Transactions on
Software Engineering and Methodology, Vol. 1, No. 1, January, 5-20.

[272] Offutt, A.J., Rothermel, G., and Zapf, C. (1993) “An Experimental Evaluation of Selective Mutat
In: 15th International Conference on Software Engineering (ICSE’93), 100-107.

[273] OMG (1995) The Common Object Request Broker: Architecture and Specification, Version 2.0.
http://www.omg.org

[274] OMG (1999) Unified Modeling Language Specification, Version 1.3. June 1999. http://www.omg.org

[275] Parnas, D.L. (1994) “Using Mathematical Models in the Inspection of Critical Software”. In: Cra
D., Gerhart, S., and Ralston, T. (eds) Industrial applications of formal methods to model, design, a
analyze computer systems: an international survey. Noyes Data Corporation, USA, 17-31.

[276] Parnas, D. L., Madey, J., and Iglewski, M. (1994) “Precise Documentation of Well-Structured
grams”. In: IEEE Transactions on Software Engineering, Volume 20 Number 12 (December), 948-97

[277] Parnas, D.L. (1998) “Formal Methods Technology Transfer Will Fail”. In: Journal of Systems Soft
ware, 40, 195-198.

[278] Paulk, M., Curtis, B., Chrissis, M.B., and Weber, C. (1993) Software Capacity Maturity Model, Version
1.1. Software Engineering Institute, CMU/SEI-93-TR-25 (February).

[279] Pavón, S. and Llamas, M. (1991) “The testing Functionalities of LOLA”. In: J. Quemada, J.A. Mañas
and E. Vázquez (Eds), Formal Description Techniques, III, IFIP/North-Holland, 559-562.

[280] Pavón, S., Larrabeiti, D., and Rabay, G. (1995) LOLA—User Manual, version 3.6. DIT, Universidad
Politécnica de Madrid, Spain, LOLA/N5/V10 (February).
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 349

 References

cifica-
.

ées et

CTIT

,

peri-

sment”.

ts of

 about
[281] Peterson J. (1977) “Petri Nets”. In: ACM Computing Surveys, 9(3), September, 223-252.

[282] Petrenko, A. (1998) “Modeling Faults in Object State Machines”. In: ObjecTime Workshop on
Research in OO Real-Time Modeling, Ottawa, Canada, January 1998.

[283] Petriu, D.B. (2001) Layered Software Performance Models Constructed from Use Case Map Spe
tions. M.Eng. thesis, Dept. of Systems and Computer Eng., Carleton University, Ottawa, Canada

[284] Phalippou, M. (1994) Relations d’implantation et hypothèses de test sur des automates à entr
sorties. Ph.D. thesis, Université de Bordeaux I, France.

[285] Piatkowski, T.F. (1980) “An engineering discipline for distributed protocol systems”. In: Proceedings
of the NATO Advanced Study Institute: New Concepts in Multi-User Communication, Norwitch, UK,
August 1980.

[286] Pires, L.F. (1994) Architectural Notes: a Framework for Distributed Systems Development.
Ph.D. thesis 94-01, Twente University, The Netherlands.
http://wwwhome.cs.utwente.nl/~pires/thesis/index.html

[287] Poston, R.M. (1996) Automating specification-based software testing. IEEE Computer Society Press
Los Alamitos, CA, USA.

[288] Potts, C., Takahashi, K., and Antòn, A.I. (1994) “Inquiry-Based Requirements Analysis”. In: IEEE
Software, March 1994, 21-32.

[289] Pratt, V. (1986) “Modeling concurrency with partial orders”. In: International Journal of Parallel Pro-
gramming, 15, 33-71.

[290] Pressman, R. S. (1997) Software Engineering — A Practitioner’s Approach. Fourth edition. McGraw-
Hill, USA.

[291] Probert, R.L. (1982) “Optimal Insertion of Software Probes in Well-Delimited Programs”, IEEE
Transactions on Software Engineering, Vol 8, No 1, January 1982, 34-42.

[292] Probert, R.L. and Guo, F. (1991) “Mutation Testing of Protocols: Principles and Preliminary Ex
mental Results”. In I. Davidson and D.W. Litwack (eds), Protocol Test Systems III (IWPTS’91), North-
Holland, 57-76.

[293] Probert, R.L. and Saleh, J. (1991) “Synthesis of communications protocols: survey and asses
In: IEEE Transactions on Computers, Vol. 40, No. 4, April 1991, 468-476.

[294] Probert, R.L. and Monkewich, O. (1992) “TTCN: the international notation for specifying tes
communications systems”. In: Computer Networks and ISDN Systems, 23 (05), 417-438.

[295] Probert, R.L. and Wei, L. (1995) “Towards a ‘Practical Formal Method’ for Test Derivation”. In: Proto-
col Test Systems VIII (IWPTS’95), Evry, France. 433-448.

[296] Probert, R.L. and Lew, N. (1996) “Protocol quality engineering: addressing industry concerns
formal methods”. Computer Communications 19, 1258-1267.
350 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

l”. In:
ystems

SCs,

ine-

-

h to
ire-

ication

uality

ment

g and

ps —

”. In:
[297] Probert, R.L. and Williams, A.W. (1999) “Fast Functional Test Generation using an SDL mode
Proceedings of the 12th annual International Workshop on the Testing of Communicating S
(IWTCS’99), Budapest, Hungary, September 1999, 299-315.
http://www.site.uottawa.ca/~awilliam/papers/iwtcs.ps

[298] Probert, R.L, Ural, H., and Williams, A.W. (2001) “Rapid generation of functional tests using M
SDL and TTCN”. In: Computer Communications, Vol. 24, No. 3-4, February 15, 2001, 374-393.

[299] Rising, L. (1999) “Patterns: A Way to Reuse Expertise”. In: IEEE Communications Magazine, Vol. 37,
No. 4, April 1999.

[300] Quartel, D.A.C. (1998) Action relations. Basic design concepts for behaviour modelling and ref
ment. CTIT Ph.D thesis series, no. 98-18, University of Twente, Enschede, The Netherlands.
http://wwwhome.cs.utwente.nl/~quartel/publications/PhD/index.html

[301] Quemada, J., Pavón, S. and Fernández, A. (1988) “Transforming LOTOS Specifications with LOLA:
The Parametrized Expansion”. In: K. J. Turner (Ed), Formal Description Techniques, I, IFIP/North-
Holland, 45-54.

[302] Quemada, J., Azcorra, A., and Pavón, S. (1995) “The LOTOSphere design methodology”. In [57], 29
58.

[303] Rational Software (1998) Rational Unified Process 5.0, Cupertino, CA, USA.

[304] Regnell, B., Kimbler, K., and Wesslén, A. (1995) “Improving the Use Case Driven Approac
Requirements Engineering”. In: Proceedings of Second IEEE International Symposium on Requ
ments Engineering, York, U.K., March 1995, 40-47.
http://www.tts.lth.se/Personal/bjornr/Papers/tts-94-24.ps

[305] Regnell, B., and Runeson, P. (1998) “Combining Scenario-based Requirements with Static Verif
and Dynamic Testing”. In: E. Dubois, A. L. Opdahl, and K. Pohl (Eds.), Proceedings of the Fourth
International Workshop on Requirements Engineering — Foundations for Software Q
(REFSQ’98), Pisa, Italy, June 1998. http://www.tts.lth.se/Personal/bjornr/Papers/REFSQ98.pdf

[306] Regnell, B. (1999) Requirements Engineering with Use Cases — a Basis for Software Develop.
Ph.D. Thesis, Department of Communication Systems, Lund Institute of Technology, Sweden.
http://www.tts.lth.se/Personal/bjornr/thesis/

[307] Regnell, B., Runeson, P., and Wohlin, C. (1999) “Towards Integration of Use Case Modellin
Usage-Based Testing”. Journal of Systems and Software, Elsevier.
http://www.tts.lth.se/Personal/bjornr/thesis/JSS99.pdf

[308] RENOIR (1996) Requirements Engineering Network Of International cooperating Research grou
a network of excellence. ESPRIT project 20.800, http://www.cs.ucl.ac.uk/research/renoir/

[309] Richardson, D.J., O’Malley, O, and Tottle, C. (1989) “Approaches to Specification-Based Testing
R.A. kemmerer (Ed), Software Engineering Notes, Vol. 14, No. 8, 86-96, December 1989.

[310] Rising, L. (ed.) (2001) Design patterns in communications software. Cambridge University Press.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 351

 References

, M.,
cation

”. In:

rts”. In:

aps to
om-

ork

d Sys-

n in

cifica-
ion of
[311] Rolland, C., Ben Achour, C., Cauvet, C., Ralyte, J., Sutcliffe, A.G., Maiden, N.A.M., Jarke
Haumer, P., Pohl, K., Dubois, E., and Heymas, P. (1998) “A proposal for a Scenario Classifi
Framework”. In: Requirements Engineering Journal, 3(1), 23-47.

[312] Rolland, C., Souveyet, C. and Ben Achour, C. (1998) “Guiding Goal Modelling using Scenarios
IEEE Transactions on Software Engineering, Special Issue on Scenario Management. Vol. 24, No. 12,
December 1998.

[313] Rudolph, E., Graubmann, P., and Grabowski, J. (1996) “Tutorial on Message Sequence Cha
Computer Networks and ISDN Systems, 28, 1629-1641.

[314] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorenson, W. (1991) Object-Oriented Model-
ling and Design. Prentice-Hall.

[315] Saleh, K. (1996) “Synthesis of communications protocols: an annotated bibliography”. In: ACM SIG-
COMM Computer Communications Review, Vol.26 , No.5, October, 40-59.

[316] Saleh, K. (1998) “Synthesis of protocol converters: an annotated bibliography”. In: Computer Stan-
dards & Interfaces, 19, 105-117.

[317] Sales, I. and Probert, R.(2000) “From High-Level Behaviour to High-Level Design: Use Case M
Specification and Description Language”. In: SBRC'2000, 18º Simpósio Brasileiro de Redes de C
putadores, Belo Horizonte, Brazil, May 2000. http://www.UseCaseMaps.org/pub/sbrc00.pdf

[318] Sales, I. (2001) A Bridging Methodology for Internet Protocols Standards Development. M.Sc. thesis,
SITE, University of Ottawa, Canada, 2001. http://www.UseCaseMaps.org/pub/is-thesis.zip

[319] Saïdouni, D.-E. (1996) Sémantique de maximalité : Application au raffinement d’actions dans LOTOS.
Ph.D. thesis, LAAS, report 96098. Université Paul Sabatier, Toulouse, France.

[320] Schmidt, D.C. (1994) “The ADAPTIVE Communication Environment: An Object-Oriented Netw
Programming Toolkit for Developing Communication Software”. In: Sun User Group conference,
1994.

[321] Schmidt, D.C. (1996) “Object-Oriented Design Patterns for Concurrent, Parallel, and Distribute
tems”. Invited talk, University of Carleton, march 1996.

[322] Schönberger, S., Keller, R.K., and Khriss, I. (1999) “Algorithmic Support for Model Transformatio
Object-Oriented Software Development”. In: Theory and Practice of Object Systems (TAPOS). John
Wiley and Sons. To appear. ftp://ftp.iro.umontreal.ca/pub/gelo/Publications/Papers/tapos99.pdf

[323] van der Schoot, H. and Ural, H. (1997) “Data Flow Analysis of System Specifications in LOTOS”. In:
International Journal of Software Engineering and Knowledge Engineering, Vol.7, No. 1, 43-68.

[324] Scratchley, W.C. and Woodside, C.M. (1999) “Evaluating Concurrency Options in Software Spe
tions”. In: MASCOTS’99, Seventh International Symposium on Modelling, Analysis and Simulat
Computer and Telecommunication Systems, College Park, MD, USA, October 1999, 330-338.
http://www.UseCaseMaps.org/pub/mascots99.pdf

[325] Scratchley, W.C. (2000) Evaluation and Diagnosis of Concurrency Architectures. Ph.D. thesis, Dept.
of Systems and Computer Engineering, Carleton University, Ottawa, Canada, June 2000.
http://www.UseCaseMaps.org/pub/scratchley-thesis.pdf
352 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

ent”.

Editor
-

ec des

eering

-

g with

tures

ased
ce-

PSLA
[326] Selic, B., Gullekson, G., and Ward, P.T. (1994) Real-Time Object-Oriented Modeling, Wiley & Sons.

[327] Shankland, C., Thomas, M., and Brinksma, E. (1997) “Symbolic Bisimulation for Full LOTOS”. In:
Lecture Notes in Computer Science, 1349, Springer-Verlag, 479-493.
http://www.cs.stir.ac.uk/~ces/Papers/AMAST97.ps

[328] Sherer, S.A. (1991) “A Cost-Effective Approach to Testing”. In: IEEE Software, March 1991.

[329] Siegel, S. (1996) Object-oriented software testing: a hierarchical approach. John Wiley & Sons.

[330] Smith, C.U. and Woodside, C.M. (1999) “Performance Validation at Early Stages of Developm
In: Performance 99, Istanbul, Turkey, October.

[331] Smith, M.H., Holzmann, G.J., and Etessami, K. (2001) “Events and Constraints: A Graphical
for Capturing Logic Requirements of Programs”. In RE’01, Fifth IEEE Int. Symposium on Require
ments Engineering, Toronto, Canada, August 2001, 14-22.

[332] Somé, S., Dssouli, R., and Vaucher, J. (1996) “Un cadre pour l’ingénierie des exigences av
scénarios”. In: Bennani, A., Dssouli, R., Benkiran, A., and Rafiq, O. (Eds), CFIP 96, Ingénierie des
protocoles, ENSIAS, Rabat, Maroc.

[333] Somé, S., Dssouli, R., and Vaucher J. (1996) “Toward an Automation of Requirements Engin
using Scenarios”. In: Journal of Computing and Information, 2(1), 1110-1132.

[334] Somé, S. (1997) Dérivation de Spécifications à partir de Scénarios d’interaction. Ph.D. thesis, Dépar-
tement d’IRO, Université de Montréal, Canada.

[335] Sommerville, I. (1992) Software Engineering, Fourth Edition. Addison-Wesley

[336] Spivey, J.M. (1992) The Z Notation: A Reference Manual. Prentice-Hall, Englewood Cliffs, New Jer
sey, USA, second edition, 1992.

[337] Steedman, D (1990). Abstract Syntax Notation One ASN.1: The Tutorial & Reference. Technology
Appraisals, Twickenham, UK.

[338] Stépien, B. and Logrippo, L. (1995) “Feature Interaction Detection using Backward Reasonin
LOTOS”. In: S. Vuong (ed.), Protocol Specification, Testing and Verification XIV, Vancouver, 71-86.
http://lotos.site.uottawa.ca/ftp/pub/Lotos/Papers/pstv.94.book.ps.Z

[339] Stépien, B. and Logrippo, L. (1995) “Representing and Verifying Intentions in Telephony Fea
using Absract Data Types”. In: K. E. Cheng and T. Ohta (eds.), Third International Workshop on Fea-
ture Interactions in Telecommunications Software Systems, IOS Press, 141-155.
http://lotos.site.uottawa.ca/~bernard/intention.ps.Z

[340] Sutcliffe, A.G., Maiden, N.A.M., Minocha, S., and Manuel, D. (1998) “Supporting Scenario-B
Requirements Engineering”. In: IEEE Transactions on Software Engineering, Special Issue on S
nario Management. Vol. 24, No. 12, December 1998, 1072-1088.

[341] Systä, T. Keller, R. and Koskimies, K. (2001) “Scenario-based Round-trip Engineering, OO
2000 Workshop summary”. In: SIGSOFT Software Engineering Notes, March 2001, vol 26, no 2.

[342] Telelogic (1999) Tau Tool. http://www.telelogic.com/solution/tools/tau.asp
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 353

 References

Dini,
ed

ase

-

 Tele-

nd P.

oft-

ons”.

tis)

 Ryan
[343] Thomas, M. (1997) “Modelling and Analysing User Views of Telecommunications Services”. In:
P., Boutaba, R., and Logrippo, L. (Eds.) Feature Interactions in Telecommunications and Distribut
Systems IV, IOS Press.

[344] TIA/EIA (1998) Wireless Intelligent Networks (WIN). Additions and modifications to ANSI-41 (Ph
1). TR-45.2.2.4, PN-3661 Ballot Version, May 1998.

[345] Tretmans, J. (1989) “Test Case Derivation from LOTOS Specifications”. In S. T. Vuong (Ed), Formal
Description Techniques II. North-Holland, 345-360, December 1989.

[346] Tretmans, J. (1993) “A formal approach to conformance testing”. In: Proceedings of the 6th Interna
tional Workshop on Protocol Test Systems, Pau, France, September 1993.

[347] Tretmans, J. (1999) “Testing Concurrent Systems: A Formal Approach”. In: 10th Int. Conference on
Concurrency Theory (CONCUR’99). LNCS 1664, Springer-Verlag, 46-65.

[348] Tuok, R. (1996) Modeling and Derivation of Scenarios for a Mobile Telephony System in LOTOS.
M.Sc. thesis, Dept. of Computer Science, University of Ottawa, Ottawa, Canada.
http://lotos.site.uottawa.ca/ftp/pub/Lotos/Theses/rt_msc.ps.gz

[349] Tuok, R. and Logrippo, L. (1998) “Formal Specification and Use Case Generation for a Mobile
phony System”. In: Computer Networks and ISDN Systems, (30) 11, 1045-1063.

[350] Turner, K.J. (1992) Using Formal Description Techniques; An Introduction to ESTELLE, LOTOS and
SDL, Wiley Publishers, U.K.

[351] Turner, K.J. (1993) “An Engineering Approach to Formal Methods”. In: A. Danthine, G. Leduc, a
Wolper (Eds), Protocol Specification, Testing and Verification, XIII, North-Holland, 357-380.
ftp://ftp.cs.stir.ac.uk/pub/staff/kjt/research/pubs/engg-form.pdf

[352] Turner, K.J. (1998) “Validating Architectural Feature Descriptions using LOTOS”. In: K. Kimbler and
W. Bouma (eds.), Fifth International Workshop on Feature Interactions in Telecommunications S
ware Systems, IOS Press. ftp://ftp.cs.stir.ac.uk/pub/staff/kjt/research/pubs/val-feat.pdf

[353] Turner, K.J. (1998) “An architectural description of intelligent network features and their interacti
In: Computer Networks and ISDN Systems, vol. 30, no. 15, September, 1389-1419.
ftp://ftp.cs.stir.ac.uk/pub/staff/kjt/research/pubs/arch-feat.pdf

[354] Turner, K.J. (2000) “Formalising the Chisel Feature Notation”'. In: Sixth International Workshop on
Feature Interactions in Telecommunications and Software Systems (FIW'00), Glasgow, Scotland, UK,
May 2000. IOS Press, Amsterdam, 241-256.
ftp://ftp.cs.stir.ac.uk/pub/staff/kjt/research/pubs/form-chis.pdf

[355] Turner, K.J. (2000). “Realising Architectural Feature Descriptions using LOTOS”. In: Parallel Comput-
ers, Networks and Distributed Systems (Calculateurs Parallèles, Réseaux et Systèmes Répar, Edi-
tions Hermès, Paris, August 2000. ftp://ftp.cs.stir.ac.uk/pub/staff/kjt/research/pubs/feat-lot.pdf

[356] Turner, K.J. (2000). “Structuring Telecommunication Features”. To appear in: S. Gilmore and M.
(Eds), Language Constructs for Designing Features. Springer-Verlag. 1-10.
354 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

e

Eds),
stems

a com-
ting

uted

ithin

bject-
dge

t: Cur-

uted

ealing

:
[357] Turner, K. (2001) “Modular Feature Specification”. In: Proceedings of the 6th Mitel Conferenc
(MICON 2001), Ottawa, Canada, August 2001.
http://micmac.mitel.com/micon/Proceedings/Ken_Turner_MICON_Proceedings.pdf

[358] UML Revision Task Force (1999) OMG Unified Modeling Language Specification, version 1.3, June
1999. http://uml.shl.com/artifacts.htm

[359] Use Case Maps Web Page and UCM User Group (1999). http://www.UseCaseMaps.org

[360] Ural, H. (1992) “Formal methods for test sequence generation”. In: Computer Communications, 15,
311-325.

[361] Utas, G. (1998) “A Pattern Language of Feature Interaction”. In: K. Kimbler and L. G. Bouma (
Fifth International Workshop on Feature Interactions in Telecommunications and Software Sy
(FIW'98), Lund, Sweden, September 1998. IOS Press, 98-114

[362] Vigder, M. (1992) Integrating Formal Techniques into the Design of Concurrent Systems. Ph.D. thesis,
Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada.

[363] Vissers, C. and Logrippo, L. (1986) “The importance of the service concept in the design of dat
munications protocols”. In: Proceedings of the 6th IFIP Workshop on Protocol Specification, Tes
and Verification, June 1986, 3-17.

[364] Vissers, C.A., Scollo, G., van Sinderen, M., Brinksma, E. (1991) “Specification Styles in Distrib
Systems Design and Verification”, Theoretical Computer Science ’89, 179-206.

[365] Wang, E.Y. and Cheng, B.H.C. (1997) “Formalizing and Integrating the Dynamic Model w
OMT”. In: IEEE Proc. of International Conference on Software Engineering (ICSE’97), Boston, USA,
May 1997. ftp://ftp.cse.msu.edu/pub/serg/requirements/icse97.ps.gz

[366] Wang, E.Y. and Cheng, B.H.C. (1998) “A Rigorous Object-Oriented Design Process”. In: Proc. of
International Conference on Software Process, Naperville, USA, June 1998.
ftp://ftp.cse.msu.edu/pub/serg/requirements/icsp5.ps.gz

[367] Wang, E.Y. and Cheng, B.H.C. (1998) “Formalizing and Integrating the Functional Model into O
Oriented Design”. In: Proc. of the 10th International Conf. on Software Engineering and Knowle
Engineering, San Francisco, USA, June 1998.
ftp://ftp.cse.msu.edu/pub/serg/requirements/seke98.ps.gz

[368] Weidenhaupt, K., Pohl, K., Jarke, M., and Haumer, P. (1998) “Scenarios in System Developmen
rent Practice”. In: IEEE Software, March/April 1998, 34-45.

[369] Weiss, M., Gray, T., and Diaz, A. (1997) “Experiences with a Service Environment for Distrib
Multimedia Applications”. In: Dini, P., Boutaba, R., and Logrippo, L. (Eds.) Feature Interactions in
Telecommunications and Distributed Systems IV, IOS Press.

[370] Weyuker, E.J. and Ostrand, T.J. (1980) “Theories of Program Tesing and the Application of Rev
Subdomains”. In: IEEE Transactions on Software Engineering, Vol. 6.

[371] Weyuker, E.J. (1988) “The evaluation of program-based software test data adequacy criteria”. InCom-
mununications of the ACM, 31(6), June, 668-675.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 355

 References

olean

. In:
ch-

al

sting

y

sing

df

ication

s.gz

[372] Weyuker, E.J. (1988) “An empirical study of the complexity of data flow testing”. In: Proc. Second
Workshop on Testing, Verification and Analysis, Banff, Canada, July 1988.

[373] Weyuker, E.J., Goradia, T., and Singh, A. (1994) “Automatically Generating Test Data from a Bo
Specification”. In: IEEE Transaction on Software Engineering, Vol. 20, No. 5, 353-363. Also in [287].

[374] Whittle, J. and Shumann, J. (2000) “Generating Statechart Designs From Scenarios”. In: 22th Interna-
tional Conference on Software Engineering (ICSE 2000), Limerick, Ireland, ACM Press, 314-323.

[375] Williams, A.W. (2000) “Determination of Test Configurations for Pair-Wise Interaction Coverage”
H. Ural, R.L. Probert and G.v. Bochmann (eds) Testing of Communicating Systems: Tools and Te
niques (TestCom 2000). Kluwer Academic Publishers, 59-74.

[376] Winskel, G. (1987) “Event structures”. In: W. Brauer, W. Reisig, and G. Rosenberg (eds) APN’86,
Advances in Petri Nets. LNCS, vol. 255, Spinger-Verlag, 325-392.

[377] Woodside, C.M., Menascé, D. and Gomaa, H., eds. (2000) Proceedings of the Second Internation
Workshop on Software and Performance, Ottawa, Canada, September 2000.
http://www.sce.carleton.ca/wosp2000/

[378] Woodward, M.R. (1993) “Errors in Algebraic Specifications and an Experimental Mutation te
Tool”. In: Software Engineering Journal, July 1993, 211-224.

[379] W3 Consortium (1998) Extensible Markup Language (XML) 1.0. W3C Recommendation, 10 Februar
1998. http://www.w3.org/TR/REC-xml

[380] Yee, G.M. and Woodside, C.M.. (1990) “A Transformational Approach to Process Partitioning U
Timed Petri Nets”. In: Proc. Int. Computer Symposium 90 (ICS90), Taiwan, December, 395-401.

[381] Yi, Z. (2000) CNAP Specification and Validation: A Design Methodology Using LOTOS and UCM.
M.Sc. thesis, SITE, University of Ottawa, Canada. http://www.UseCaseMaps.org/pub/yi-thesis.p

[382] Zave, P. and Jackson, M. (1996) “Where do operations come from? A multiparadigm specif
technique”. In: IEEE Transactions on Software Engineering, XXII(7), July, 508-528.

[383] Zave, P. and Jackson, M. (1997) “Four dark corners of requirements engineering”. In: ACM Transac-
tions on Software Engineering and Methodology VI(1), January 1997, 1-30.
http://www.research.att.com/~pamela/4dc.ps

[384] Zave, P. (1997) “Classification of research efforts in requirements engineering”. In: ACM Computing
Surveys 29(4), December, 315-321. http://www.research.att.com:80/orgs/ssr/people/pamela/re.p

[385] Zave, P. (2001) “Requirements for Evolving Systems: A Telecommunications Perspective”. In: RE’01,
Fifth IEEE Int. Symposium on Requirements Engineering, Toronto, Canada, August 2001, 2-9.

[386] Zhu, H., Hall, P.A.V., and May, J.H.R. (1997) “Software unit test coverage and adequacy”. In:ACM
Computing Surveys, 29(4), December, 366-427
356 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

sal
ture
Appendix A: UCM Quick Reference Guide
Imagine tracing a path through a system of objects to explain a cau
sequence, leaving behind a visual signature. Use Case Maps cap
such sequences. They are composed of:

• start points (filled circles representing preconditions and/
or triggering causes)

• causal chains of responsibilities (crosses, representing
actions, tasks, or functions to be performed)

• and end points (bars representing postconditions and/or
resulting effects).

The responsibilities can be bound to components, which are the
entities or objects composing the system.

Start
Point End

Point

Components

Responsibilities

A1. Basic notation and interpretation

A2. Shared routes and OR-forks/joins.

(a) OR-join

(c) Permissible routes
assumed identified

Indicate routes that share
common causal segments.
Alternatives may be identified
by labels or by conditions
([guards])

(b) OR-fork

A3. Path interactions.

A4. Concurrent routes with AND-forks/joins .

A5. Variations on AND-forks/joins.

[yes]

[no]

A6. Stubs and plug-ins.

(a) Static stubs have only one plug-in (sub-UCM)

(b) Dynamic stubs may have multiple plug-ins

A7. Timers, aborts, failures, and shared responsibilities.

Interacting paths.

Effect is of one longer path

R1 R2

R1 R2

with the constituent segments
joined end to end.

(a) Synchronous interaction

Interacting paths.

Effect is similar to one path

R1 R3

R1 R2

splitting into two concurrent
segments.

(b) Asynchronous interaction

R3

R2

(c) Ground symbols indicate possible path failure points

timeout path

waiting path

clearing path

continuation

(a) Timers may be set, reset, and timed-out

R1

R2

(b) Top path aborts bottom path after R1

R R

(d) R is a shared responsibility

N:1

(b) AND-join

1:N

(a) AND-fork

N:M

(c) Generic version

...

Fork-join

1:N N:1

1:N

Fork along a

1:N N:1

Rendezvous Synchronize

N:1 1:N N:N

single path
Fork-join along a

single path

N:1

Join along a
single path

... ..
.

..
.

... ...
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 357

Appendix A: UCM Quick Reference Guide
(a) Team: generic container

A8. Component types.

(b) Object: passive component

(d) ISR: Interrupt Service Request

(e) Agent: for agent systems

(f) Pool: container for dynamic components
as data

(c) Process: active component

A9. Component attributes.

(a) Stack: multiple instances

(b) Protected: for mutual exclusion

(c) Slot: placeholder for dynamic components
as operational units

(d) Anchored: in a plug-in, refers to a compo-
nent defined in another map

+

_

+

_

+

_

move

move-stay

create

destroy

copy

+

–

+

create DC in path

delete DC out of path

move DC out of slot

move DC into slot

get DC from pool

put DC in pool

create DC in pool

delete DC from pool

create DC in slot

delete DC from slot

A10. Movement notation for dynamic components (DCs).

(a) Movement of DCs as data b) Directly into or out of paths

(c) Into or out of slots (d) Into or out of pools

A11. Notation extensions

(a) Goal tags are start and end points

GT

for goals in agent systems

(b) Timestamps are start and end points

TS

for response time requirements

(c) Direction arrows can be used when

Stub

path direction is ambiguous
358 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Appendix B: LOTOS Specification of TTS

ndard

to 647
Appendix B: L OTOS Specification of TTS

Here is the fully commented LOTOS specification derived from the Use Case Maps for the Tiny Tele-

phone System (TTS) given in Figure 20. It contains the following elements:

• Identification and modification history: lines 1 to 11.

• Definition of observable gates and events: lines 12 to 18.

• Basic data structures and operations (simplified version of the International Sta

ADTs): lines 19 to 169.

• Data structures and operations specific to TTS: lines 170 to 408.

• Component structure, with process definitions for components and stubs: lines 409

• Process definitions for the plug-ins: lines 648 to 777.

• Validation test processes for the basic call: lines 778 to 834.

• Validation test processes for individual features: lines 835 to 926.

• Validation test processes for pairs of features: lines 927 to 947.

• Robustness test cases: lines 948 to 1044.

• 26 probe comments (*_PROBE_*).

1 (**)
2 (* Tiny Telephone System (TTS) *)
3 (* Goal : Ongoing example for Ph.D. thesis proposal *)
4 (* Version: 1.0 *)
5 (* Date : February 15, 2000 *)
6 (* Authors: Daniel Amyot (damyot@site.uottawa.ca) *)
7 (* SITE, University of Ottawa, Canada *)
8 (* History: February 15, 2000 : Added 26 probe comments. *)
9 (* December 10, 1999 : First version (~12h work) & 14 test cases. *)
10 (**)
11
12 specification TTS [req, (* Request start point, from User to Agent *)
13 ring, (* Ring end point, from Agent to User *)
14 sig, (* Signal end point, from Agent to User *)
15 disp, (* Display end point, from Agent to User *)
16 init (* Extra gate for initializing configurations. *)
17]: noexit
18
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 359

Appendix B: LOTOS Specification of TTS
19 (*==*)
20 (* Modified IS8807 ADT definitions *)
21 (*==*)
22
23 (* Types FBoolean, Element, and Set contain corrections *)
24 (* to the library from the International Standard 8870. *)
25 (* Type Boolean remains the same, but NaturalNumber was *)
26 (* simplified by removing unnecessary arithmetic and *)
27 (* comparison operators. *)
28 (* Further operators in Set have been commented out as *)
29 (* they are not used in this specification. *)
30
31 type Boolean is
32 sorts
33 Bool
34 opns
35 true, false: -> Bool
36 not: Bool -> Bool
37 _ and _, _ or _, _ eq _, _ ne _: Bool, Bool -> Bool
38 _ xor _, _ implies _, _ iff _: Bool, Bool -> Bool
39 eqns
40 forall x, y: Bool
41 ofsort Bool
42 not (true) = false ;
43 not (false) = true ;
44 x and true = x ;
45 x and false = false ;
46 x or true = true ;
47 x or fals e = x ;
48 x xor y = x and not (y) or (y and not (x)) ;
49 x implie s y = y or not (x) ;
50 x iff y = x implies y and (y implies x) ;
51 x eq y = x iff y ;
52 x ne y = x xor y ;
53 endtype (* Boolean *)
54
55 (***)
56
57 type NaturalNumber is Boolean
58 sorts
59 Nat
60 opns
61 0: -> Nat
62 Succ: Nat -> Nat
63 _ + _: Nat, Nat -> Nat
64 _ eq _, _ ne _: Nat, Nat -> Bool
65 eqns
66 forall m, n: Nat
67 ofsort Nat
68 m + 0 = m ;
69 m + Succ (n) = Succ (m) + n ;
70 ofsort Bool
71 0 eq 0 = true ;
72 0 eq Succ (m) = false ;
73 Succ (m) eq 0 = false ;
74 Succ (m) eq Succ (n) = m eq n ;
75 m ne n = not (m eq n) ;
76 endtype (* NaturalNumber *)
77
78 (***)
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 360

Appendix B: LOTOS Specification of TTS
79
80 type FBoolean is
81 formalsorts FBool
82 formalopns true : -> FBool
83 not : FBool -> FBool
84 formaleqns
85 forall x : FBool
86 ofsort FBool
87 not(not(x)) = x;
88 endtype (* FBoolean *)
89
90 (***)
91
92 type Element is FBoolean
93 formalsorts Element
94 formalopns _ eq _, _ ne _ : Element, Element -> FBool
95 formaleqns
96 forall x, y, z : Element
97 ofsort Element
98 x eq y = true =>
99 x = y ;
100
101 ofsort FBool
102 x = y =>
103 x eq y = true ;
104 x eq y =tru e , y eq z = true =>
105 x eq z = true ;
106
107 x ne y = not(x eq y) ;
108 endtype (* Element *)
109
110 (***)
111
112 type Set is Element, Boolean, NaturalNumber
113 sorts Set
114 opns {} : -> Set
115 Insert, Remove : Element, Set -> Set
116 _IsIn_, _NotIn_ : Element, Set -> Bool
117 _Includes_, _eq_, _ne_ : Set, Set -> Bool
118 (*_Union_, _Ints_, _Minus_ : Set, Set -> Set
119 _IsSubsetOf_ : Set, Set -> Bool
120 Card : Set -> Nat *)
121
122 eqns forall x, y : Element,
123 s, t : Set
124 ofsort Set
125
126 x IsIn Insert(y,s) =>
127 Insert(x, Insert(y,s)) = Insert(y,s) ;
128 Remove(x, {}) = {} ;
129 Remove(x, Insert(x,s)) = s ;
130 x ne y = true of FBool =>
131 Remove(x, Insert(y,s)) = Insert(y, Remove(x,s));
132
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 361

Appendix B: LOTOS Specification of TTS
133 (*{} Union s = s ;
134 Insert(x,s) Union t = Insert(x,s Union t) ;
135
136 {} Ints s = {} ;
137 x IsIn t =>
138 Insert(x,s) Ints t = Insert(x,s Ints t) ;
139 x NotIn t =>
140 Insert(x,s) Ints t = s Ints t ;
141
142 s Minus {} = s ;
143 s Minus Insert(x, t) = Remove(x,s) Minus t ; *)
144
145 ofsort Bool
146
147 x IsIn {} = false ;
148 x eq y = true of FBool =>
149 x IsIn Insert(y,s) = true ;
150 x ne y = true of FBool =>
151 x IsIn Insert(y,s) = x IsIn s ;
152 x NotIn s = not(x IsIn s) ;
153
154 s Includes {} = true ;
155 s Includes Insert(x,t) = (x IsIn s) and (s Includes t) ;
156
157 s eq t = (s Includes t) and (t Includes s);
158
159 s ne t = not(s eq t) ;
160
161 (* s IsSubsetOf t = t Includes s ;
162
163 ofsort Nat
164
165 Card({}) = 0 ;
166 x NotIn s =>
167 Card(Insert(x,s)) = Succ(Card(s)) ; *)
168 endtype (* Set *)
169
170 (*===*)
171 (* TTS ADT definitions *)
172 (*===*)
173
174 (* The UserState is either busy or idle. *)
175 type UserState is Boolean
176 sorts UserState
177 opns
178 busy, idle : -> UserState
179 _ eq _, _ ne _ : UserState, UserState -> Bool
180 eqns
181 forall us1, us2 : UserState
182 ofsort Bool
183 busy eq busy = true;
184 busy eq idle = false;
185 idle eq busy = false;
186 idle eq idle = true;
187 us1 ne us2 = not(us1 eq us2);
188 endtype (* UserState *)
189
190 (***)
191
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 362

Appendix B: LOTOS Specification of TTS
192 (* The Announcement type is used to refine/split gate sig *)
193 (* From UCMs: OCS plug-in, Terminating plug-in. *)
194 type Announcement is NaturalNumber
195 sorts Announcement
196 opns
197 (* Announcements included in the UCMs *)
198 callDenied, busySig, ringBack,
199 (* Additional messages between agents *)
200 request,
201 (* No announcement specified *)
202 noAnnouncement: -> Announcement
203 map : Announcement -> Nat
204 _ eq _, _ ne _ : Announcement, Announcement -> Bool
205 eqns
206 forall a1, a2 : Announcement
207 ofsort Nat
208 map(callDenied) = 0;
209 map(busySig) = succ(0);
210 map(ringBack) = succ(succ(0));
211 (* Add new announcements/messages here when necessary *)
212 map(noAnnouncement) = succ(succ(succ(0)));
213 map(request) = succ(succ(succ(succ(0))));
214 ofsort Bool
215 a1 eq a2 = map(a1) eq map(a2);
216 a1 ne a2 = not(a1 eq a2);
217 endtype (* Announcement *)
218
219 (***)
220
221 (* The User type contains the User sort, *)
222 (* which is an enumeration of user identifiers *)
223 (* that can initiate or receive call requests. *)
224 type User is NaturalNumber
225 sorts User
226 opns
227 userA, userB, userC : -> User
228 map : User -> Nat
229 _ eq _, _ ne _ : User, User -> Bool
230 eqns
231 forall user1, user2 : User
232 ofsort Nat
233 map(userA) = 0;
234 map(userB) = succ(0);
235 map(userC) = succ(succ(0));
236 (* Add users here as necessary *)
237 ofsort Bool
238 user1 eq user2 = map(user1) eq map(user2);
239 user1 ne user2 = not(user1 eq user2);
240 endtype (* User *)
241
242 (* List of users, implemented as a set (useful for the OCS list). *)
243 (* We avoid the problem with ISLA’s renaming in actualization. *)
244 type UserList0 is Set
245 actualizedby User using
246 sortnames
247 User for Element
248 Bool for FBool
249 endtype (* UserList0 *)
250
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 363

Appendix B: LOTOS Specification of TTS
251 type UserList is UserList0 renamedby
252 sortnames
253 UserList for Set
254 opnnames
255 EmptyUserList for {} (* Empty list of users *)
256 endtype (* UserList *)
257
258 (***)
259
260 (* The OCS check is either allowed or denied *)
261 (* This type extends UserList. *)
262 (* From UCMs: OCS plug-in *)
263 type OCScheck is UserList
264 opns
265 allowed, denied : User, UserList -> Bool
266 eqns
267 forall u : User,
268 ul : UserList
269 ofsort Bool
270 allowed (u, ul) = u NotIn ul;
271 denied (u, ul) = u IsIn ul;
272 endtype (* OCScheck *)
273
274 (***)
275
276 (* The Feature sort is an enumeration of the *)
277 (* features to which users can subscribe, *)
278 (* including the basic call BC. *)
279 type Feature is NaturalNumber
280 sorts Feature
281 opns
282 BC, (* Basic Call *)
283 CND, (* Call Name Delivery *)
284 OCS (* Originating Call Screening *) : -> Feature
285 map : Feature -> Nat
286 _ eq _, _ ne _ : Feature, Feature -> Bool
287 eqns
288 forall f1, f2 : Feature
289 ofsort Nat
290 map(BC) = 0;
291 map(CND) = succ(0);
292 map(OCS) = succ(succ(0));
293 (* Add new features here when necessary *)
294 ofsort Bool
295 f1 eq f2 = map(f1) eq map(f2);
296 f1 ne f2 = not(f1 eq f2);
297 endtype (* Feature *)
298
299 (* List of features, implemented as a set. *)
300 (* We avoid the problem with ISLA’s renaming in actualization *)
301 type Flist0 is Set
302 actualizedby Feature using
303 sortnames
304 Feature for Element
305 Bool for FBool
306 endtype (* Logs0 *)
307
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 364

Appendix B: LOTOS Specification of TTS
308 type Flist is Flist0 renamedby
309 sortnames
310 Flist for Set
311 opnnames
312 EmptyFList for {} (* Empty list of features *)
313 endtype (* Flist *)
314
315 (***)
316
317 (* A record for the user information, to be handled by its agent. *)
318 (* Format: info(userID, Features, OCSList) *)
319 type UInfo is UserList, FList
320 sorts UInfo
321 opns
322 info: User, (* User identifier *)
323 FList, (* List of subscribed features *)
324 UserList (* Screened list, for OCS *) -> UInfo
325 uid : UInfo (* Extract the user identifier *) -> User
326 fl : UInfo (* Extract the list of features*) -> FList
327 ocsl: UInfo (* Extract the OCS list *) -> UserList
328
329 _ eq _, _ ne _ : UInfo, UInfo -> Bool
330 eqns
331 forall u1, u2 : User,
332 fl1, fl2: Flist,
333 ul1, ul2: UserList,
334 uinf : UInfo
335 ofsort Bool
336 (u1 eq u2) and (fl1 eq fl2) and (ul1 eq ul2) =>
337 info(u1, fl1, ul1) eq info(u2, fl2, ul2) = true;
338 not((u1 eq u2) and (fl1 eq fl2) and (ul1 eq ul2)) =>
339 info(u1, fl1, ul1) eq info(u2, fl2, ul2) = false;
340 info(u1, fl1, ul1) ne info(u2, fl2, ul2) =
341 not(info(u1, fl1, ul1) eq info(u2, fl2, ul2));
342 ofsort User
343 uid(info(u1, fl1, ul1)) = u1;
344 ofsort FList
345 fl(info(u1, fl1, ul1)) = fl1;
346 ofsort UserList
347 ocsl(info(u1, fl1, ul1)) = ul1;
348 endtype (* UInfo *)
349
350 (***)
351
352 (* The Direction is either fromMedium or toMedium. *)
353 (* This type is isomorphic to UserState, so the *)
354 (* latter can be reused by renaming. *)
355 type Direction is UserState renamedby
356 sortnames Direction for UserState
357 opnnames
358 fromMedium for idle
359 toMedium for busy
360 endtype (* Direction *)
361
362 (*===*)
363 (* Stub Path ADT definitions *)
364 (*===*)
365
366 (* Entry and exit points of each stub in the maps *)
367 (* Also used to describe start/end points in plug-ins. *)
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 365

Appendix B: LOTOS Specification of TTS
368 type StubPath is NaturalNumber
369 sorts StubPath
370 opns
371 in1, out1, out2, (* SO stub in Root map *)
372 in2, out3, out4, (* ST stub in Root map *)
373 in3, out5 (* SD stub in Terminating plug-in *) : -> StubPath
374 map : StubPath -> Nat
375 _ eq _, _ ne _ : StubPath, StubPath -> Bool
376 eqns
377 forall sp1, sp2 : StubPath
378 ofsort Nat
379 map(in1) (* From req *) = 0;
380 map(out1) (* To stub ST *) = succ(map(in1));
381 map(out2) (* To sig *) = succ(map(out1));
382 map(in2) (* From stub SO *) = succ(map(out2));
383 map(out3) (* To ring *) = succ(map(in2));
384 map(out4) (* To sig *) = succ(map(out3));
385 map(in3) (* From in2 *) = succ(map(out4));
386 map(out5) (* To out3 *) = succ(map(in3));
387 (* Add new identifiers here when necessary. *)
388 ofsort Bool
389 sp1 eq sp2 = map(sp1) eq map(sp2);
390 sp1 ne sp2 = not(sp1 eq sp2);
391 endtype (* StubPath *)
392
393 (* List of stub path identifiers, implemented as a set. *)
394 (* We avoid the problem with ISLA’s renaming in actualization *)
395 type SPList0 is Set
396 actualizedby StubPath using
397 sortnames
398 StubPath for Element
399 Bool for FBool
400 endtype (* SPList0 *)
401
402 type SPList is SPList0 renamedby
403 sortnames
404 SPList for Set
405 opnnames
406 EmptySPList for {} (* Empty list of stub path identifiers. *)
407 endtype (* SPList *)
408
409 (*===*)
410 (* Behaviour Description *)
411 (* (structure, components, and stubs) *)
412 (*===*)
413
414 behaviour
415
416 (* Gates not visible to the users are set to be internal. *)
417 hide
418 agent2agent (* Inter-agent communication channel *)
419 in
420 (
421 (* We create as many user/agent pairs as necessary. *)
422 UserAgentFactory [req, ring, sig, disp, init, agent2agent]
423 |[agent2agent]|
424 (* Agents communicate through some medium. *)
425 Medium[agent2agent]
426)
427
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 366

Appendix B: LOTOS Specification of TTS
428 where
429
430 (**)
431 (* Process UserAgentFactory: To create and initialize users and agents. *)
432 (**)
433
434 process UserAgentFactory [req, ring, sig, disp, init, agent2agent]: noexit :=
435 init ?userId:User ?userFeatures:FList ?OCSlist:UserList ?state:UserState;
436 (
437 (* Create the user and its associated agent *)
438 (
439 User [req, ring, sig, disp] (userId)
440 |[req, ring, sig, disp]|
441 Agent [req, ring, sig, disp, agent2agent]
442 (info(userId, userFeatures, OCSlist), state)
443)
444 |||
445 (* Prepare to accept new creation requests *)
446 UserAgentFactory [req, ring, sig, disp, init, agent2agent]
447)
448 endproc (* UserAgentFactory *)
449
450
451 (**)
452 (* Process Medium: For inter-agent communication. *)
453 (**)
454
455 process Medium[agent2agent]: noexit :=
456 (* Simulates a reliable FIFO channel of length 2. *)
457 (* Allows for 2 requests to be sent simultaneously, *)
458 (* as required by several tests. *)
459 agent2agent !toMedium ?from:User ?to:User ?msg:Announcement;
460 (
461 agent2agent !fromMedium !from !to !msg;
462 (*_PROBE_*) Medium[agent2agent]
463 []
464 agent2agent !toMedium ?from2:User ?to2:User ?msg2:Announcement;
465 agent2agent !fromMedium !from !to !msg;
466 agent2agent !fromMedium !from2 !to2 !msg2;
467 (*_PROBE_*) Medium[agent2agent]
468)
469 (* Other media could be considered through the use of *)
470 (* process parameter (buffer length), full synchronization *)
471 (* (to ensure mutual exclusion), internal actions (unreliable *)
472 (* channels), etc. *)
473 endproc (* Medium *)
474
475
476 (**)
477 (* Process User: Simplistic user, who does not do or know much... *)
478 (**)
479
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 367

Appendix B: LOTOS Specification of TTS
480 process User [req, ring, sig, disp] (userId: User): noexit :=
481 (* Initiate a call request and get an announcement/signal *)
482 req !userId ?callee:User;
483 sig !userId ?msg:Announcement;
484 (*_PROBE_*) User [req, ring, sig, disp] (userId)
485 []
486 (* Receive a ring *)
487 ring !userId;
488 (*_PROBE_*) User [req, ring, sig, disp] (userId)
489 []
490 (* Observe a displayed phone number *)
491 disp !userId ?caller:User;
492 (*_PROBE_*) User [req, ring, sig, disp] (userId)
493 endproc (* User *)
494
495
496 (***)
497 (* Process Agent: where most of the intelligent and knowledge resides. *)
498 (***)
499 process Agent [req, ring, sig, disp, agent2agent]
500 (ui:UInfo, state:UserState): noexit :=
501 (* ui is a record containing userId, userFeatures, OCSlist *)
502 hide
503 chk, (* Checks the OCS list *)
504 pds, (* Prepares a denied signal *)
505 vrfy, (* Verifies whether the callee is busy *)
506 pbs, (* Prepares a busy signal *)
507 prbs, (* Prepares a ringBack signal *)
508 upd (* Updates the busy state of the callee *)
509 in
510 (* Originating role, Agent:O, call request *)
511 (
512 req !uid(ui) ?userT:User;
513 (* Problem : state not set to busy *)
514 SO[chk, pds](Insert(in1, EmptySPList), ui, state, userT)
515 >>
516 accept ui:UInfo, state:UserState, msg:Announcement, userT:User,
517 outPaths:SPList
518 in
519 [out1 IsIn outPaths] ->
520 (* Forward the request to Agent:T *)
521 (
522 agent2agent !toMedium !uid(ui) !userT !request;
523 (*_PROBE_*) Agent[req, ring, sig, disp, agent2agent](ui, state)
524)
525 (* [] is used as a composition because end points are all *)
526 (* mutually exclusive in the plug-ins *)
527 []
528 [out2 IsIn outPaths] ->
529 (* Signal an announcement to User:O *)
530 (
531 sig !uid(ui) !msg;
532 (*_PROBE_*) Agent [req, ring, sig, disp, agent2agent](ui,state)
533)
534)
535 []
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 368

Appendix B: LOTOS Specification of TTS
536 (* Originating role, Agent:O, acknowledgement from Agent:T *)
537 (
538 agent2agent !fromMedium ?userT:User !uid(ui) ?msg:Announcement
539 [msg ne request];
540 sig !uid(ui) !msg;
541 (*_PROBE_*) Agent [req, ring, sig, disp, agent2agent] (ui, state)
542)
543 []
544 (* Terminating role, Agent:T, handles a call request *)
545 (
546 agent2agent !fromMedium ?userO:User !uid(ui) !request;
547 (* Stub ST will call the Terminating plug-in directly *)
548 ST[vrfy, pbs, prbs, upd, disp] (Insert(in2, EmptySPList), ui,
549 state, userO)
550 >>
551 accept ui:UInfo, state:UserState, msg:Announcement, userO:User,
552 outPaths:SPList
553 in
554 (
555 [out4 IsIn outPaths] ->
556 (* Send the acknowledgement signal/announcement to Agent:O *)
557 (
558 agent2agent !toMedium !uid(ui) !userO !msg;
559 (*_PROBE_*) exit
560)
561 (* ||| is used as a composition because end points are *)
562 (* in parallel and can both occur. *)
563 |||
564 (
565 [out3 IsIn outPaths] ->
566 (* Ring the callee User:T *)
567 (
568 ring !uid(ui);
569 (*_PROBE_*) exit
570)
571 []
572 [out3 NotIn outPaths] ->
573 (* No ring *)
574 (*_PROBE_*) exit
575)
576)
577 >> (*_PROBE_*) Agent [req, ring, sig, disp, agent2agent] (ui, state)
578)
579
580 where
581
582 (**)
583 (* Stub Process SO: From Root Map *)
584 (**)
585 process SO[chk, pds](inPaths:SPList,
586 ui:UInfo,
587 state: UserState,
588 userT: User)
589 : exit (UInfo, UserState, Announcement, User, SPList) :=
590
591 (* Selection policy: OCS overrides BC *)
592 [OCS IsIn fl(ui)] ->
593 (
594 (* First in1 parameter is the plug-in start point *)
595 OCS[chk, pds](in1, ui, state, userT)
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 369

Appendix B: LOTOS Specification of TTS
596 >>
597 (* Connect the resulting end points to the stub exit paths *)
598 accept ui:UInfo, state:UserState, msg:Announcement, userT:User,
599 piep:SPList
600 (* piep is the resulting list of plug-in end points *)
601 in
602 [out1 IsIn piep] ->
603 (*_PROBE_*) exit (ui,state,msg,userT,Insert(out1,EmptySPList))
604 []
605 [out2 IsIn piep] ->
606 (*_PROBE_*) exit (ui,state,msg,userT,Insert(out2,EmptySPList))
607)
608 []
609 [OCS NotIn fl(ui)] ->
610 (
611 Default[pds](in1, ui, state, userT)
612 >>
613 (* Connect the resulting end points to the stub exit paths *)
614 accept ui:UInfo, state:UserState, userT:User, piep:SPList in
615 [piep eq Insert(out1, EmptySPList)] ->
616 (*_PROBE_*) exit (ui, state, noAnnouncement, userT,
617 Insert(out1, EmptySPList))
618)
619
620 endproc (* SO *)
621
622 (**)
623 (* Stub Process ST: From Root Map *)
624 (**)
625 process ST[vrfy, pbs, prbs, upd, disp] (inPaths:SPList,
626 ui: UInfo,
627 state: UserState,
628 userO: User)
629 : exit (UInfo, UserState, Announcement, User, SPList) :=
630
631 Terminating[vrfy, pbs, prbs, upd, disp] (in2, ui, state, userO)
632 >>
633 (* Connect the resulting end points to the stub exit paths *)
634 accept ui:UInfo, state:UserState, msg:Announcement, userT:User,
635 piep:SPList
636 in
637 [out3 NotIn piep] ->
638 (*_PROBE_*) exit (ui, state, msg, userT, Insert(out4, EmptySPList))
639 []
640 [out3 IsIn piep] ->
641 (*_PROBE_*) exit (ui, state, msg, userT,
642 Insert(out3, Insert(out4, EmptySPList)))
643
644 endproc (* ST *)
645
646 endproc (* Agent *)
647
648 (*===*)
649 (* Plug-in processes *)
650 (*===*)
651
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 370

Appendix B: LOTOS Specification of TTS
652 (***)
653 (* Process Default: does nothing but check the start point. *)
654 (***)
655 process Default[dummy] (pisp:StubPath, (* Plug-in start point *)
656 ui: UInfo,
657 state: UserState,
658 userOT: User)
659 : exit (UInfo, UserState, User, SPList) :=
660 [pisp eq in1] ->
661 (*_PROBE_*) exit (ui, state, userOT, Insert(out1, EmptySPList))
662 endproc (* Default *)
663
664
665 (***)
666 (* Process Terminating: checks whether the callee is busy, & features *)
667 (***)
668 process Terminating[vrfy, pbs, prbs, upd, disp] (pisp:StubPath,
669 ui: UInfo,
670 state: UserState,
671 userO: User)
672 : exit (UInfo, UserState, Announcement, User, SPList) :=
673 [pisp eq in2] ->
674 (
675 vrfy; (* Verifies the busy status *)
676 (
677 [state eq idle] ->
678 (
679 (
680 SD[disp](Insert(in3, EmptySPList), ui, state, userO)
681 >>
682 accept ui:UInfo, state:UserState, userO:User, piep:SPList
683 in
684 [out5 IsIn piep] ->
685 upd; (* Updates the busy status *)
686 (*_PROBE_*) exit (ui, busy, any Announcement, userO,
687 Insert(out3, Insert(out4, EmptySPList)))
688)
689 |||
690 prbs; (* Prepares the ringBack signal *)
691 (*_PROBE_*) exit (ui, any UserState, ringBack, userO,
692 Insert(out3, Insert(out4, EmptySPList)))
693)
694 []
695 [state eq busy] ->
696 (
697 pbs; (* Prepares the busy signal *)
698 (*_PROBE_*) exit (ui,state,busySig,userO,Insert(out4,EmptySPList))
699)
700)
701)
702
703 where
704
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 371

Appendix B: LOTOS Specification of TTS
705 (**)
706 (* Stub Process SD: From Terminating plug-in UCM *)
707 (**)
708 process SD[disp](inPaths:SPList,
709 ui:UInfo,
710 state: UserState,
711 userO: User)
712 : exit (UInfo, UserState, User, SPList) :=
713
714 (* Selection policy: CND overrides BC *)
715 [CND IsIn fl(ui)] ->
716 (
717 CND[disp](in3, ui, state, userO)
718 >>
719 accept ui:UInfo, state:UserState, userO:User, piep:SPList in
720 [out5 IsIn piep] ->
721 (*_PROBE_*) exit (ui, state, userO, Insert(out5, EmptySPList))
722)
723 []
724 [CND NotIn fl(ui)] ->
725 (
726 Default[disp](in1, ui, state, userO)
727 >>
728 (* Connect the resulting end points to the stub exit paths *)
729 accept ui:UInfo, state:UserState, userO:User, piep:SPList in
730 [piep eq Insert(out1, EmptySPList)] ->
731 (*_PROBE_*) exit (ui, state, userO, Insert(out5, EmptySPList))
732)
733
734 endproc (* SD *)
735 endproc (* Terminating *)
736
737
738 (***)
739 (* Process OCS: checks whether the callee is on the OCS list *)
740 (***)
741 process OCS[chk, pds] (pisp:StubPath, (* Plug-in start point *)
742 ui: UInfo,
743 state: UserState,
744 userT: User)
745 : exit (UInfo, UserState, Announcement, User, SPList) :=
746 [pisp eq in1] ->
747 (
748 chk; (* Checks the OCS list, implemented as a field in ui. *)
749 (
750 [allowed(userT, ocsl(ui))] ->
751 (*_PROBE_*) exit (ui,state,noAnnouncement,userT,Insert(out1,EmptySPList))
752 []
753 [denied(userT, ocsl(ui))] ->
754 (
755 pds; (* Prepares the Denied announcement *)
756 (*_PROBE_*) exit (ui,state,callDenied,userT,Insert(out2,EmptySPList))
757)
758)
759)
760 endproc (* OCS *)
761
762
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 372

Appendix B: LOTOS Specification of TTS
763 (***)
764 (* Process CND: checks whether the callee is on the OCS list *)
765 (***)
766 process CND[disp] (pisp:StubPath, (* Plug-in start point *)
767 ui: UInfo,
768 state: UserState,
769 userO: User)
770 : exit (UInfo, UserState, User, SPList) :=
771 [pisp eq in3] ->
772 (
773 disp !uid(ui) !userO;
774 (*_PROBE_*) exit (ui, state, userO, Insert(out5, EmptySPList))
775)
776 endproc (* CND *)
777
778 (*==*)
779 (* *)
780 (* TEST PROCESSES *)
781 (* *)
782 (*==*)
783
784 (* BASIC CALL (BC): 3 TESTS *)
785
786 (* Info: A calls B idle (ringBack first). Reject on ring. *)
787 (* Plug-ins: SO=Default, ST=Terminating, SD=Default *)
788 (* Abstract sequence: <req, vrfy*, prbs*, upd*, sig, ring> *)
789 (* Constraints: [busy(A)], [idle(B)] *)
790 process t1 [req, ring, sig, disp, init, reject, success]: noexit :=
791 init !userA !Insert(BC, EmptyFList) ?dummy:UserList !busy;
792 init !userB !Insert(BC, EmptyFList) ?dummy:UserList !idle;
793 req !userA !userB;
794 sig !userA !ringBack;
795 (
796 ring !userB; success; stop
797 []
798 ring ?dummy:User [dummy ne userB]; reject; stop
799)
800 endproc (* t1 *)
801
802 (* Info: A calls B idle (ring first). Reject on sig. *)
803 (* Plug-ins: SO=Default, ST=Terminating, SD=Default *)
804 (* Abstract sequence: <req, vrfy*, prbs*, upd*, ring, sig> *)
805 (* Constraints: [busy(A)], [idle(B)] *)
806 process t2 [req, ring, sig, disp, init, reject, success]: noexit :=
807 init !userA !Insert(BC, EmptyFList) ?dummy:UserList !busy;
808 init !userB !Insert(BC, EmptyFList) ?dummy:UserList !idle;
809 req !userA !userB;
810 ring !userB;
811 (
812 sig !userA !ringBack; success; stop
813 []
814 sig ?dummy1:User ?dummy2:Announcement
815 [(dummy1 ne userA) or (dummy2 ne ringBack)]; reject; stop
816)
817 endproc (* t2 *)
818
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 373

Appendix B: LOTOS Specification of TTS
819 (* Info: A calls B busy. Reject on sig. *)
820 (* Plug-ins: SO=Default, ST=Terminating, SD=- *)
821 (* Abstract sequence: <req, vrfy*, pbs*, sig> *)
822 (* Constraints: [busy(A)], [busy(B)] *)
823 process t3 [req, ring, sig, disp, init, reject, success]: noexit :=
824 init !userA !Insert(BC, EmptyFList) ?dummy:UserList !busy;
825 init !userB !Insert(BC, EmptyFList) ?dummy:UserList !busy;
826 req !userA !userB;
827 (
828 sig !userA !busySig; success; stop
829 []
830 sig ?dummy1:User ?dummy2:Announcement
831 [(dummy1 ne userA) or (dummy2 ne busySig)]; reject; stop
832)
833 endproc (* t3 *)
834
835 (* CALL NAME DELIVERY (CND): 2 TESTS *)
836
837 (* Info: A calls B idle, displays, ring first. Reject on disp. *)
838 (* Plug-ins: SO=Default, ST=Terminating, SD=CND *)
839 (* Abstract sequence: <req, vrfy*, prbs*, disp, upd*, ring, sig> *)
840 (* Constraints: [busy(A)], [idle(B)], B has CND *)
841 process t4 [req, ring, sig, disp, init, reject, success]: noexit :=
842 init !userA !Insert(BC, EmptyFList) ?dummy:UserList !busy;
843 init !userB !Insert(CND, Insert(BC, EmptyFList)) ?dummy:UserList !idle;
844 req !userA !userB;
845 (
846 disp !userB !userA;
847 ring !userB;
848 sig !userA !ringBack;
849 success; stop
850 []
851 disp ?dummy1:User ?dummy2:Announcement
852 [(dummy1 ne userA) or (dummy2 ne ringBack)]; reject; stop
853)
854 endproc (* t4 *)
855
856 (* Info: A calls B idle, displays, ringBack first. Reject on disp. *)
857 (* Plug-ins: SO=Default, ST=Terminating, SD=CND *)
858 (* Abstract sequence: <req, vrfy*, prbs*, disp, upd*, sig, ring> *)
859 (* Constraints: [busy(A)], [idle(B)], B has CND *)
860 process t5 [req, ring, sig, disp, init, reject, success]: noexit :=
861 init !userA !Insert(BC, EmptyFList) ?dummy:UserList !busy;
862 init !userB !Insert(CND, Insert(BC, EmptyFList)) ?dummy:UserList !idle;
863 req !userA !userB;
864 (
865 disp !userB !userA;
866 sig !userA !ringBack;
867 ring !userB;
868 success; stop
869 []
870 disp ?dummy1:User ?dummy2:Announcement
871 [(dummy1 ne userA) or (dummy2 ne ringBack)]; reject; stop
872)
873 endproc (* t5 *)
874
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 374

Appendix B: LOTOS Specification of TTS
875 (* ORIGINATING CALL SCREENING (OCS): 3 TESTS *)
876
877 (* Info: A calls B, allowed. Reject on sig. *)
878 (* Plug-ins: SO=OCS, ST=Terminating, SD=Default *)
879 (* Abstract sequence: <req, chk*, vrfy*, prbs*, upd*, ring, sig> *)
880 (* Constraints: [busy(A)], [allowed(B)], [idle(B)] *)
881 process t6 [req, ring, sig, disp, init, reject, success]: noexit :=
882 init !userA !Insert(OCS, Insert(BC, EmptyFList))
883 !Insert(userC, EmptyUserList) !busy;
884 init !userB !Insert(BC, EmptyFList) ?dummy:UserList !idle;
885 req !userA !userB;
886 ring !userB;
887 (
888 sig !userA !ringBack; success; stop
889 []
890 sig ?dummy1:User ?dummy2:Announcement
891 [(dummy1 ne userA) or (dummy2 ne ringBack)]; reject; stop
892)
893 endproc (* t6 *)
894
895 (* Info: A calls B, allowed but busy. Reject on sig. *)
896 (* Plug-ins: SO=OCS, ST=Terminating , SD=- *)
897 (* Abstract sequence: <req, chk*, vrfy*, pbs*, sig> *)
898 (* Constraints: [busy(A)], [busy(B)], [allowed(B)] *)
899 process t7 [req, ring, sig, disp, init, reject, success]: noexit :=
900 init !userA !Insert(OCS, Insert(BC, EmptyFList)) !EmptyUserList !busy;
901 init !userB !Insert(BC, EmptyFList) ?dummy:UserList !busy;
902 req !userA !userB;
903 (
904 sig !userA !busySig; success; stop
905 []
906 sig ?dummy1:User ?dummy2:Announcement
907 [(dummy1 ne userA) or (dummy2 ne busySig)]; reject; stop
908)
909 endproc (* t7 *)
910
911 (* Info: A calls B, denied. Reject on sig. *)
912 (* Plug-ins: SO=OCS, ST=- , SD=- *)
913 (* Abstract sequence: <req, chk*, pds*, sig> *)
914 (* Constraints: [busy(A)], [denied(B)] *)
915 process t8 [req, ring, sig, disp, init, reject, success]: noexit :=
916 init !userA !Insert(OCS, Insert(BC, EmptyFList))
917 !Insert(userB, EmptyUserList) !busy;
918 req !userA !userB;
919 (
920 sig !userA !callDenied; success; stop
921 []
922 sig ?dummy1:User ?dummy2:Announcement
923 [(dummy1 ne userA) or (dummy2 ne callDenied)]; reject; stop
924)
925 endproc (* t8 *)
926
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 375

Appendix B: LOTOS Specification of TTS
927 (* OCS and CND: 1 TEST *)
928
929 (* Info: A calls B, allowed, displays. Reject on sig. *)
930 (* Plug-ins: SO=OCS, ST=Terminating, SD=CND *)
931 (* Abstract sequence: <req, chk*,vrfy*,prbs*, disp, upd*,ring, sig> *)
932 (* Constraints: [busy(A)], [allowed(B)], [idle(B)] *)
933 process t9 [req, ring, sig, disp, init, reject, success]: noexit :=
934 init !userA !Insert(OCS, Insert(BC, EmptyFList))
935 !Insert(userC, EmptyUserList) !busy;
936 init !userB !Insert(CND, Insert(BC, EmptyFList)) ?dummy:UserList !idle;
937 req !userA !userB;
938 disp !userB !userA;
939 ring !userB;
940 (
941 sig !userA !ringBack; success; stop
942 []
943 sig ?dummy1:User ?dummy2:Announcement
944 [(dummy1 ne userA) or (dummy2 ne ringBack)]; reject; stop
945)
946 endproc (* t9 *)
947
948 (* ROBUSTNESS : 5 TESTS *)
949
950 (* Info: A calls A, busy. Reject on sig. *)
951 (* Plug-ins: SO=Default, ST=Terminating, SD=- *)
952 (* Abstract sequence: <req, vrfy*, pbs*, sig> *)
953 (* Constraints: [busy(A)] *)
954 process t10 [req, ring, sig, disp, init, reject, success]: noexit :=
955 init !userA !Insert(BC, EmptyFList) ?dummy:UserList !busy;
956 req !userA !userA;
957 (
958 sig !userA !busySig; success; stop
959 []
960 sig ?dummy1:User ?dummy2:Announcement
961 [(dummy1 ne userA) or (dummy2 ne busySig)]; reject; stop
962)
963 endproc (* t10 *)
964
965 (* Info: A calls B idle, then C calls B busy. Reject on sig. *)
966 (* Plug-ins: SO=Default, ST=Terminating, SD=Default *)
967 (* Abstract sequence: <req, vrfy*,upd*, ring, sig, req, vrfy*,pbs*, sig> *)
968 (* Constraints: [busy(A)], [idle(B)], [busy(C)] *)
969 process t11 [req, ring, sig, disp, init, reject, success]: noexit :=
970 init !userA !Insert(BC, EmptyFList) ?dummy:UserList !busy;
971 init !userB !Insert(BC, EmptyFList) ?dummy:UserList !idle;
972 init !userC !Insert(BC, EmptyFList) ?dummy:UserList !busy;
973 req !userA !userB;
974 ring !userB;
975 sig !userA !ringBack;
976 req !userC !userB;
977 (
978 sig !userC !busySig; success; stop
979 []
980 sig ?dummy1:User ?dummy2:Announcement
981 [(dummy1 ne userC) or (dummy2 ne busySig)]; reject; stop
982)
983 endproc (* t11 *)
984
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 376

Appendix B: LOTOS Specification of TTS
985 (* Info: A calls B busy while B calls A busy. Reject on sig. *)
986 (* Plug-ins: SO=Default, ST=Terminating, SD=- *)
987 (* Abstract sequence: <req, req, vrfy*, vrfy*, pbs*, pbs*, sig, sig>*)
988 (* Constraints: [busy(A)], [busy(B)] *)
989 process t12 [req, ring, sig, disp, init, reject, success]: noexit :=
990 init !userA !Insert(BC, EmptyFList) ?dummy:UserList !busy;
991 init !userB !Insert(BC, EmptyFList) ?dummy:UserList !busy;
992 (
993 req !userA !userB;
994 (
995 sig !userA !busySig; exit
996 []
997 sig !userA ?dummy:Announcement [(dummy ne busySig)]; reject; stop
998)
999 |||
1000 req !userB !userA;
1001 (
1002 sig !userB !busySig; exit
1003 []
1004 sig !userB ?dummy:Announcement [(dummy ne busySig)]; reject; stop
1005)
1006)
1007 >> success; stop
1008 endproc (* t12 *)
1009
1010 (* Info: A calls A, denied. Reject on sig. *)
1011 (* Plug-ins: SO=OCS, ST=-, SD=- *)
1012 (* Abstract sequence: <req, chk*, pds*, sig> *)
1013 (* Constraints: [busy(A)], [denied(A)] *)
1014 process t13 [req, ring, sig, disp, init, reject, success]: noexit :=
1015 init !userA !Insert(OCS, Insert(BC, EmptyFList))
1016 !Insert(userA, EmptyUserList) !busy;
1017 req !userA !userA;
1018 (
1019 sig !userA !callDenied; success; stop
1020 []
1021 sig ?dummy1:User ?dummy2:Announcement
1022 [(dummy1 ne userA) or (dummy2 ne callDenied)]; reject; stop
1023)
1024 endproc (* t13 *)
1025
1026 (* Info: A calls B, denied, then A calls C, denied. Reject on sig. *)
1027 (* Plug-ins: SO=OCS, ST=-, SD=- *)
1028 (* Abstract sequence: <req, chk*, pds*, sig, req, chk*, pds*, sig> *)
1029 (* Constraints: [busy(A)], [denied(B)], [denied(C)] *)
1030 process t14 [req, ring, sig, disp, init, reject, success]: noexit :=
1031 init !userA !Insert(OCS, Insert(BC, EmptyFList))
1032 !Insert(userB, Insert(userC, EmptyUserList)) !busy;
1033 req !userA !userB;
1034 sig !userA !callDenied;
1035 req !userA !userC;
1036 (
1037 sig !userA !callDenied; success; stop
1038 []
1039 sig ?dummy1:User ?dummy2:Announcement
1040 [(dummy1 ne userA) or (dummy2 ne callDenied)]; reject; stop
1041)
1042 endproc (* t14 *)
1043
1044 endspec (* TTS *)
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 377

Appendix B: LOTOS Specification of TTS
378 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

 on

 (repre-

uch

d one is

e four

Ts and

-

l

Appendix C: Comparing Val And Conf

This appendix develops and illustrates the comparison between our validity relation (val) and the

LOTOS conformance relation (conf) discussed in Section 6.2.4 and summarized by Figure 39

page 183.

In a “perfect world”, requirements are already formalized (by Req) and a test suite with the

same discriminatory power as the canonical tester of the requirements can be generated

sented by TS ≅ CT(Req)). In the “real world” however, requirements are usually informal and s

canonical tester cannot be defined. This represents the first comparison criteria. The secon

concerned with the presence or absence of a non-empty set of rejection test cases (REJECT(TS)).

Figure 60 classifies test suites according to these two criteria. As a result, there ar

possible combinations of criteria, which lead to various propositions to be explained:

FIGURE 60. val vs. conf: Classification of Criteria and Associated Propositions

In order to illustrate the different comparisons, the requirements, canonical tester, SU

validation test suites shown in Figure 61 will be used. MyReq represents the requirements of a sim

ple telephone connection in the form of an LTS, and CT(MyReq) is the corresponding canonica

tester. In this figure, the test type (Accept or Reject, see Table 15) of each test case is specified.

Validation Test Suite TS
Real world:

¬(ACCEPT(TS) ≅ CT(Req))
Perfect world:

ACCEPT(TS) ≅ CT(Req)

REJECT(TS) = ∅ Proposition 5, Proposition 6 Proposition 8

REJECT(TS) ≠ ∅ Proposition 7 Proposition 9, Proposition 10
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 379

Appendix C: Comparing Val And Conf

es, one

:

he

er than

on
FIGURE 61. Example Requirements, Canonical Tester, SUTs, and Test Suites

This simple connection example contains three possible SUTs as well as four test suit

for each of the four categories presented in Figure 60. Five facts need to be noted at this point

• All the acceptance test cases are reductions of CT(MyReq).

• The acceptance test cases in TS3 and TS4 have the same discriminatory power as t

canonical tester (i.e. TS3 ≅ CT(MyReq) and TS4≅ CT(MyReq)).

• ¬(SUT1 conf MyReq) because SUT1 fails the test <Dial, Busy>.

• ¬(SUT2 conf MyReq) because SUT2 fails the test <Dial, Ring>.

• SUT3 conf MyReq, although SUT3 supports the trace <Dial, DialTone>. In fact, this SUT is

an extension of the requirements (SUT3 ext MyReq).

Real World, No Rejection Test Cases

In the real world, the set of acceptance test cases is likely to have a lower discriminatory pow

CT(Req) because the latter (just like Req) is usually too complex or even infinite. When no rejecti

test cases are used, conf and val are related according to Proposition 5:

If ¬(ACCEPT(TS) ≅ CT(Req)) ∧ REJECT(TS) = ∅, then SUT conf Req ⇒ SUT val TS (PROP. 5)

Ring Busy

Dial
i i

Ring Busy

Dial

Ring DialTone

Dial

Busy

(a) MyReq (b) CT(MyReq) (e) SUT3

Dial

(c) SUT1

Ring

(f) TS1 = { (Accept) <Dial, Ring>}

(g) TS2 = { (Accept) <Dial, Ring>, (Reject) <Dial, DialTone>}

(h) TS3 = { (Accept) <Dial, Ring>, (Accept) <Dial, Busy>}

(i) TS4 = { (Accept) <Dial, Ring>, (Accept) <Dial, Busy>, (Reject) <Dial, DialTone>}

Dial

(d) SUT2

Busy
380 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

sting

e. This

 under

 fails

.

nd

haustive

t

) is still

ible
In this case, if the conformance of SUT to Req is established, then SUT is also valid with

respect to TS. Unfortunately, establishing the conformance first is not particularly useful to the te

framework of SPEC-VALU E. Manipulating the implication leads to a more useful form:

If ¬(ACCEPT(TS) ≅ CT(Req)) ∧ REJECT(TS) = ∅, then ¬(SUT val TS) ⇒ ¬(SUT conf Req) (PROP. 6)

Proposition 6 states that if validity cannot be established, then neither can conformanc

can also be linked to Proposition 2, which describes how testing can invalidate a specification

test. By transitivity, a well-know conclusion of the conformance theory is found again: if a SUT

to pass a sound test suite derived from a model, then the SUT does not conform to that model

As an example, TS1 (Figure 61(f)) satisfies the precondition of Proposition 6:

• ¬(SUT2 val TS1), and indeed ¬(SUT2 conf MyReq).

• SUT1 val TS1, yet ¬(SUT1 conf MyReq). This shows that, when non-exhaustive, a sou

test suite cannot be used to guarantee conformance.

Real World, With Rejection Test Cases

This is the most realistic situation where rejection test cases are added to a sound but non-ex

collection of acceptance test cases. A rejection test such as <Dial, DialTone> can be used to ensure tha

a requirement that cannot be captured by the LTS (e.g. a dial should not result in a dial tone

taken into consideration during the validation. In this situation, Proposition 7 holds:

 If ¬(ACCEPT(TS) ≅ CT(Req)) ∧ REJECT(TS) ≠ ∅, then conf and val are incomparable (PROP. 7)

For example, using TS2 from Figure 61, counter-examples can be forged for all poss

hypotheses (Req is itself used as a possible SUT):

• Does val ⇒ conf ? No because: SUT1 val TS2, yet ¬(SUT1 conf MyReq)

• Does val ⇒ ¬conf ? No because: MyReq val TS2, yet MyReq conf MyReq

• Does ¬val ⇒ conf ? No because: ¬(SUT2 val TS2), yet ¬(SUT2 conf MyReq)

• Does ¬val ⇒ ¬conf ? No because:¬(SUT3 val TS2), yet SUT3 conf MyReq
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 381

Appendix C: Comparing Val And Conf

c-

ents

g-
It is the last case that is of interest to SPEC-VALU E: even with an incomplete test suite, reje

tion test cases can show that a conforming SUT (e.g. SUT3) can still be invalid. This particularity is

seldom used in LOTOS-based testing [196].

Perfect World, No Rejection Test Cases

In a perfect world where CT(Req) (or an equivalent test suite) can be computed from requirem

and in the absence of rejection test cases, the val and conf relations become indistinguishable, as su

gested by Proposition 8:

If ACCEPT(TS) ≅ CT(Req) ∧ REJECT(TS) = ∅, then SUT val TS ⇔ SUT conf Req (PROP. 8)

This proposition is trivial to prove: when REJECT(TS) = ∅, Definition 6.2 reduces to the

expression SUT val TS ⇔ SUT passes ACCEPT(TS). When ACCEPT(TS) ≅ CT(Req), this expression

becomes equivalent to Proposition 3.

Using TS3 from Figure 61, where TS3 ≅ CT(MyReq), several examples can be illustrated:

• ¬(SUT1 val TS3), and indeed ¬(SUT1 conf MyReq).

• ¬(SUT2 val TS3), and indeed ¬(SUT2 conf MyReq).

• SUT3 val TS3, and indeed SUT3 conf MyReq.

• MyReq val TS3, and indeed MyReq conf MyReq.

Perfect World, With Rejection Test Cases

In this situation, val offers several benefits as it can detect all invalid SUTs that conf can, and it can

also detect conforming but invalid SUTs (Proposition 9):

If ACCEPT(TS) ≅ CT(Req) ∧ REJECT(TS) ≠ ∅, then SUT val TS ⇒ SUT conf Req (PROP. 9)

For example, this time using TS4:

• ¬(SUT1 conf MyReq), and indeed ¬(SUT1 val TS4).

• ¬(SUT2 conf MyReq), and indeed ¬(SUT2 val TS4).
382 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

e

inatory

est

n Propo-

 illus-
• SUT3 conf MyReq, yet ¬(SUT3 val TS4).

• MyReq val TS4, and indeed MyReq conf MyReq.

Using the LOTOS conformance testing theory only, SUT3 would never have been found to b

invalid according to the requirements, even with a complete test suite with the same discrim

power as the canonical tester.

What is missing from the current LOTOS conformance testing theory is the use of rejection t

cases. When they are added, then the new relation becomes equivalent to validity, as shown i

sition 10.

If ACCEPT(TS) ≅ CT(Req) ∧ REJECT(TS) ≠ ∅,
then SUT val TS ⇔ (SUT conf Req ∧ SUT failsall REJECT(TS)) (PROP. 10)

The classification of Figure 60, together with Propositions 5 to 9, leads to the summary

trated using relation sets in Figure 39.
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 383

Appendix C: Comparing Val And Conf
384 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

Index
k
A
A posteriori 101, 238
A priori 101, 102, 238
Abstract Data Type (ADT) 31, 154
Abstract sequence 171, 176, 231
ACCEPT 177, 180
Anchored component 122
Appropriate mutant 300
Architecture 20

B
Basic Behaviour Expression (BBE) 242
Behaviour expression 30, 242
Behaviour tree 35
Black box testing 175

C
Call Number Display (CND) 117
Canonical tester 38, 97, 182, 379
Capability Maturity Model (CMM) 5
Causal relationship 3
Causality 45, 50
Chisel 70, 84, 271, 284, 323

COMET 325
Common behaviour 277
Communication Entity Block (CEB) 286
Compositional coverage 253
Conformance testing 93, 173
Conformance Testing Methodology and Framewor

(CTMF) 94, 173, 218
Construction approach 74, 259, 264, 275, 288, 307

Analytic 75
Partial automation 155
SPEC-VALU E 125
Synthetic 75

Construction guidelines 129, 308, 316
Coupling effect 295
Coverage 101, 187

Structural, see Structural coverage

D
Design 19
Design errors

Semantic 88
Syntactical 88

Design pattern 104, 106, 188
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 385

Detectability 92
Device Entity Block (DEB) 286
Discriminatory power 182
Dynamic Causal Tree (DCT) 50

E
Effectiveness 300, 303
Equivalence checking 41
Equivalent mutants 298
Event coverage 243

F
FDT 5
Feature 2, 19, 271

Interaction problem (FI) 2
Feature interaction 213, 269, 274, 279
Force (pattern) 104, 186
Formal Description Technique, see FDT

Formal methods 19, 51
Formal Specifications Maturity model (FSM) 5, 6,

111, 155, 318, 327
Functional coverage 238

G
General Packet Radio Service (GPRS) 262
Global UCM 273
Grey box testing 175
Group Communication Server (GCS) 257

I
Implementation test suite 179
Incremental feature addition 281
Inspection 173
Interleaving 47
Interoperability 94

L
Labelled Transition Systems, see LTS

Language of Temporal Ordering Specification, see
LOTOS

Logical Entity Block (LEB) 286
LOLA 43, 248, 252, 260, 268
LOT2PROBE 249, 250, 311
LOTOS 127

Abstract Data Type 31
Action 30
Behaviour expression (BE) 30
Environment 30
Gate 30, 132
Gate splitting 144
Operators 30
Process 30
Testing 95
Tools 42

LOTOSphere 320
LTS 9, 33, 100, 219

Behaviour tree 35

M
May pass verdict 98
May test 99
Message Sequence Chart, see MSC

Mobile Application Part (MAP) 292
Model 20
Model checking 41
MSC 2, 56, 68, 150, 321
Must pass verdict 98
Must test 99
Mutant 102, 295
Mutation analysis 295, 302, 304, 311
Mutation operator 296
Mutation score (MS) 300
Mutation testing 102, 295

O
Object Constraint Language (OCL) 58, 82
Originating Call Screening (OCS) 117
386 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

P
Pattern 103

Design, see Design pattern
Testing, see Testing pattern

Pattern catalog 105
Pattern language 105, 189
Pattern template 104, 187
Petri net 57
Point-To-Multipoint-Group Call (PTM-G) 262
Pomset 49
Preamble 94
Probe 103, 239
Probe insertion 239, 241, 245
Process 18

Maturity 18
Models 112

Property 87
Liveness 88
Responsiveness 88
Safety 88

Protocol 17
Protocol engineering 17, 75
Prototype 20, 112, 259, 264, 275, 288, 292, 307
Public Land Mobile Network (PLMN) 262

R
REJECT 177, 180, 379
Reject test 99
Reject verdict 98
Rejection test 89, 224, 260

Relation 95
Bisimulation 36, 48
Conformance (conf) 38, 41, 89, 182, 379
Congruence 36
Equality 36
Equivalence 35, 48, 87
Extension (ext) 38
I/O conformance (ioco) 100
Reduction (red) 38, 89
Testing equivalence (te) 36
Trace equivalence (tr) 36
Validity (val) 180, 182, 379

Requirement 16, 93, 226, 379
Capture with UCMs 114, 258, 262, 271, 286
Functional 16
Non-functional 16

Requirements engineering 1, 16
Research hypothesis 6, 313
Ripple set 216, 219
Robustness 204, 231
ROOM 78, 82

S
Scenario 63
Scenario integration 120, 273
SDL 55, 83, 84, 321
Selective mutation 296
Self-coverage 292
Sequence 242, 312
Sequence coverage 245
Service 2, 18, 19
Simplified Basic Call (SBC) 285
Single BBE 242, 246, 312
Software engineering 18
Specification 19, 93
Specification and Description Language, see SDL

Specification Under Test 176
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 387

SPEC-VALU E 7, 111, 125, 314, 318, 324
Construction guidelines 129
Contributions 10, 313
Experiments 257, 306, 316
Mutant generation 296
Structural coverage 238
Testing approach 170

Stakeholder 3, 16
Standard 19, 325
Statement probe 240
Step-by-step execution 41
Strategy

Alternative 191
Causally linked stubs 210
Concurrent Paths 194
Loop 197
Multiple start points 200
Single stub 207

Strong mutation 296
Structural coverage 237, 260, 266, 281, 290, 293,

311, 316
Structure adequacy 282
Style and content guidelines 115
Systems engineering 17
Systems Engineering Capability Model (SECM) 17

T
Test 21
Test body 176
Test case 94, 96
Test case generation 221
Test case management 254
Test goal 91, 176, 184, 218
Test preamble 176
Test purpose 94, 176, 218
Test selection 90, 265, 276, 289, 309
Test suite 90, 94
Test suite validation 294
Test type 176, 188
Test verification 176

Testability 92
Limit 92, 182

Testing 42, 90
Testing equivalence (te) 36
Testing framework 169, 316
Testing pattern 103, 105, 184, 217, 303, 310
Tests group 177
Timethread Map Description Language (TMDL) 128
Timethreads 320
Traceability 21
TTCN 55, 70, 95, 174, 177, 179, 219, 327, 329
TTS

Basic Call UCM 118
CND UCM 119
Construction guidelines application 157
Integrated view 120
Mutants 298
Mutation analysis 301
OCS UCM 119
Structural coverage 249
Test goal 226
Testing 226
388 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

U
UCM 22, 72, 357

Abort 27, 140
Anchored component 122
AND-fork 25, 134, 194
AND-join 25, 194
Binding 26
Bound 24
Cardinalities 25
Causal relationship 22
Component 22, 143, 146
Component notation 25
Dynamic component 26
Dynamic responsibility 26, 141
End point 24
Failure point 27, 140
Interaction 27, 135
Interaction point 132
Navigator (UCMNAV) 28
OR-fork 24, 134, 192
OR-join 24, 134, 192
Path 22, 146
Plug-in 26, 136, 207
Pool 26
Responsibility 5, 22, 132
Role 143
Route 24
Scenario definition 28, 220, 329
Selection policy 26, 120, 137
Shared responsibility 27, 151
Start point 24
Stub 26, 136, 207, 210
Style and content guidelines 115
Timer 27, 139
Unbound 23
Unconstrained style 122

UCMNAV 273
UML 58, 321, 324

Activity diagram 58, 72
Unified Modeling Language, see UML

Use case 63, 69, 217
Use Case Maps, see UCM

V
V&V, see Validation and Verification

Validation 20, 87, 172
Validation and verification 41, 53, 60, 87, 101, 170
Validation test suite 176, 309, 379
Validation testing 172, 173
Validity relation (val), See Relation Validity 180
Value selection 222
Verdict 98
Verification 20, 87

W
White box testing 175
Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS 389

390 Specification and Validation of Telecommunications Systems with Use Case Maps and LOTOS

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	CHAPTER 1 Introduction
	1.1 Motivation
	1.2 Research Hypothesis
	1.3 New Approach: Spec-VALUe
	1.4 Thesis Contributions
	1.4.1 Contribution 1: Spec-VALUe Methodology
	1.4.2 Contribution 2: Theories and Techniques Supp...
	1.4.3 Contribution 3: Illustrative Experiments Val...
	1.4.4 Issues Not Addressed in this Thesis

	1.5 Thesis Outline

	CHAPTER 2 Basic Definitions and Notations
	2.1 Basic Definitions
	2.1.1 Four Engineering Disciplines
	2.1.2 Processes, Formal Methods, Specifications an...
	2.1.3 Validation and Verification

	2.2 Introduction to Use Case Maps
	2.2.1 Philosophy of UCMs
	2.2.2 Information Needed to Construct UCMs
	2.2.3 Basic UCM Path Notation
	2.2.4 UCM Component Notation
	2.2.5 Advanced UCM Path Notation
	2.2.6 UCM Tools

	2.3 Introduction to Lotos
	2.3.1 Philosophy of Lotos
	2.3.2 Information Needed to Construct Lotos Specif...
	2.3.3 Lotos Operators
	2.3.4 Lotos Abstract Data Types
	2.3.5 Labelled Transitions Systems and Underlying ...
	2.3.6 Equivalences and Other Relations
	2.3.7 Validation and Verification in Lotos
	2.3.8 Lotos Tools
	2.3.9 Enhancements to Lotos

	2.4 Chapter Summary

	CHAPTER 3 Literature Survey
	3.1 Causality
	3.1.1 Why causality?
	3.1.2 Concurrency Models and Equivalence Relations...
	3.1.3 Causality and Use Case Maps
	3.1.4 Causality and Lotos
	3.1.5 Summary and Discussion

	3.2 Specification Techniques
	3.2.1 Evaluation Criteria for Specification Techni...
	3.2.2 Overview of Selected Techniques
	3.2.3 Comparison Between Specification Techniques

	3.3 Scenarios
	3.3.1 Why Scenarios?
	3.3.2 Evaluation Criteria for Scenario Definitions...
	3.3.3 Overview of Selected Scenario Notations
	3.3.4 Construction Approaches

	3.4 Validation and Verification
	3.4.1 Properties
	3.4.2 General Testing Concepts
	3.4.3 Lotos Testing
	3.4.4 Coverage
	3.4.5 Testing Patterns
	3.4.6 Summary and Discussion

	3.5 Chapter Summary

	CHAPTER 4 From Requirements to UCMs in Spec-VALUe
	4.1 Return on the Spec-VALUe Methodology
	4.1.1 Spec-VALUe and Software Development Process ...

	4.2 First Steps of the Spec-VALUe Methodology
	4.2.1 From Requirements to UCMs
	4.2.2 Style and Content Guidelines for UCMs
	4.2.3 Integration of Scenarios

	4.3 Ongoing Example: Tiny Telephone System (TTS)
	4.3.1 Informal Requirements for TTS
	4.3.2 Individual Use Case Maps for TTS
	4.3.3 Integrated UCM View

	4.4 Chapter Summary

	CHAPTER 5 From Use Case Maps to Lotos in Spec-VALU...
	5.1 Construction Approach
	5.1.1 Appropriateness of Lotos
	5.1.2 Unfitness of TMDL

	5.2 Construction Guidelines
	5.2.1 Overview
	5.2.2 Construction Guidelines for Paths
	5.2.3 Construction Guidelines for Structures
	5.2.4 Construction Guidelines for Data
	5.2.5 Towards Partial Automation

	5.3 Applying the Construction Guidelines to TTS
	5.3.1 Structure of the TTS Specification
	5.3.2 TTS Data Types and Operations
	5.3.3 TTS Process Definitions

	5.4 Chapter Summary

	CHAPTER 6 UCM-Lotos Testing Framework
	6.1 Testing Approach in Spec-VALUe
	6.1.1 Justification for a Testing Approach
	6.1.2 Testing in Spec-VALUe
	6.1.3 Validation Testing and Conformance Testing

	6.2 UCM-Lotos Testing Concepts
	6.2.1 Combination of Approaches
	6.2.2 Structure of UCM-Based Validation Test Suite...
	6.2.3 Validity Relation
	6.2.4 Comparing Validity and Conformance in the Tw...

	6.3 UCM-Oriented Testing Patterns for Test Goal Se...
	6.3.1 Introduction to UCM-Oriented Testing Pattern...
	6.3.2 Template for UCM-Oriented Testing Patterns
	6.3.3 UCM-Oriented Testing Pattern Language
	6.3.4 Testing Pattern and Strategies for Alternati...
	6.3.5 Testing Pattern and Strategies for Concurren...
	6.3.6 Testing Pattern and Strategies for Loops
	6.3.7 Testing Pattern and Strategies for Multiple ...
	6.3.8 Testing Pattern and Strategies for a Single ...
	6.3.9 Testing Pattern and Strategies for Causally ...
	6.3.10 Discussion
	6.3.11 Section Summary

	6.4 Complementary Strategies and Test Case Generat...
	6.4.1 From Test Goals to Test Cases
	6.4.2 Strategies for Value Selection
	6.4.3 Completeness and Determinism Issues
	6.4.4 Strategies for Rejection Test Cases

	6.5 Testing the TTS System
	6.5.1 Test Goals for TTS
	6.5.2 Further Test Goals for Robustness Testing
	6.5.3 Test Cases Generation
	6.5.4 Results from Test Execution

	6.6 Chapter Summary

	CHAPTER 7 Structural Coverage
	7.1 Structural Coverage in Spec-VALUe
	7.2 Issues in the Use of Probes
	7.3 Probes in Sequential Programs
	7.4 Probe Insertion in Lotos
	7.4.1 A Simple Insertion Strategy
	7.4.2 Improving the Probe Insertion Strategy
	7.4.3 Interpreting Structural Coverage Results
	7.4.4 Tool Support

	7.5 TTS Structural Coverage Results
	7.5.1 Summary of Coverage Results
	7.5.2 Comments on Lola and Missing Probes

	7.6 Discussion
	7.6.1 Compositional Coverage of the Structure
	7.6.2 Specification Styles
	7.6.3 Test Case Management Based on Structural Cov...

	7.7 Chapter Summary

	CHAPTER 8 Experiments with Spec-VALUe
	8.1 Group Communication Server (GCS)
	8.1.1 System Overview and UCM Descriptions
	8.1.2 Construction of the Lotos Prototype
	8.1.3 Test Selection and Execution
	8.1.4 Structural Coverage
	8.1.5 Discussion

	8.2 GPRS Group Call (PTM-G)
	8.2.1 System Overview and UCM Descriptions
	8.2.2 Construction of the Lotos Prototype
	8.2.3 Test Selection and Execution
	8.2.4 Structural Coverage
	8.2.5 Discussion

	8.3 Feature Interactions (FI)
	8.3.1 System Overview and UCM Descriptions
	8.3.2 Construction of the Lotos Prototype
	8.3.3 Test Selection and Execution
	8.3.4 Structural Coverage
	8.3.5 Discussion

	8.4 Agent-Based Simplified Basic Call (SBC)
	8.4.1 System Overview and UCM Descriptions
	8.4.2 Construction of the Lotos Prototype
	8.4.3 Test Selection and Execution
	8.4.4 Structural Coverage
	8.4.5 Discussion

	8.5 Self-Coverage of GSM Mobile Application Part (...
	8.5.1 Construction of the Lotos Prototype
	8.5.2 Test Generation
	8.5.3 Structural Coverage
	8.5.4 Discussion

	8.6 Test Suite Validation Using Mutation Analysis
	8.6.1 Mutation Analysis and Validation
	8.6.2 Mutant Generation and Spec-VALUe
	8.6.3 Application to Case Studies
	8.6.4 Discussion

	8.7 Chapter Summary

	CHAPTER 9 Conclusions and Future Work
	9.1 Hypothesis and Contributions
	9.1.1 Validation of the Research Hypothesis
	9.1.2 Contributions of the Thesis
	9.1.3 Spec-VALUe and the Formal Specifications Mat...

	9.2 Spec-VALUe and Related Methodologies
	9.2.1 Comparing Spec-VALUe to Related Methodologie...
	9.2.2 Integrating Spec-VALUe to Related Methodolog...

	9.3 Research Issues
	9.3.1 Medium-Term Research Issues
	9.3.2 Long-Term Research Issues

	References
	Appendix A: UCM Quick Reference Guide
	Appendix B: Lotos Specification of TTS
	Appendix C: Comparing Val And Conf
	Index

