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Abstract

The functional modeling of telecommunications systems requires an early emphasis on behavioral
aspects. In the first stages of common development processes, telecommunications features, service:s
and functionalities are defined in terms of informal requirements and visual descriptions. As these
descriptions grow and evolve, they quickly become error-prone and difficult to understand. Conse-

guently, designs can hardly be checked or validated against such descriptions.

This thesis proposes an innovative methodology naBpstification-Validation Approach

with Lotosand UCMs(SPEGVALU E), which tackles these problems using two notations. The first
notation, calledJse Case Map@8JCMSs), is used to capture and integrate functional requirements in
terms ofcausalscenarios. Scenarios describing system views, uses, and services are becoming a com-
mon method of capturing functional requirements of reactive and distributed systems. They are par-
ticularly appropriate to represent behavioral aspects so that various stakeholders can understand themn
In addition to these general properties of scenarios, UCMs can help reasoning about system-wide
functionalities at a high level of abstraction. Integrating UCMs together also helps avoiding many
undesirable interactions, usually resulting from the composition of different scenarios, before the gen-

eration of prototypes.
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Abstract

The second notation is the formal specification languageok It will be shown that UCM
scenarios bound to architectural components can be translated into highadesslspecifications.
In turn, these specifications can be used as prototypes to animate UCMs and to validate high-level
designs against requirements systematically through numerous techniques, including functional test-
ing based on UCMs. &tos possesses powerful testing concepts and tools that excel at detecting
errors and undesirable interactioneTbs represents a judicious formalism here because it supports
many UCM constructs directly, and it complements most of UCM’s weak areas related to the analysis

of systems.

SPEGVALU E introduces theories and techniques for constructiompk specifications from
UCMs, for deriving validation test cases from UCMs, and for measuring the structural coverage of
LoTos specifications achieved during validation. An ongoing example is used to illustrate these con-
cepts: theTiny Telephony Systenihe thesis validates theei&>-VALU E methodology through its
application to various telecommunications systems (Group Communication Server, Group-Call ser-
vice of GPRS, feature interactions, agent-based simplified basic call, and GSM’s MAP protocol), and

concludes with an assessment of these experimental results.
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CHAPTER 1

Introduction

Research is to see what everybody else has
and to think what nobody else has thought.

Albert von Szent-Gyorg
1937 Nobel Laureate in Medici

1.1 Motivation

The last few decades have resulted in an evolution of software design methodologies towards require-
ments engineering and high-level design, where the errors are the most costly for software producers.
This trend was illustrated (see Figure 1) by Piotr Dembinski at FORTE 95 [103].

FIGURE 1.  Evolution Towards Requirements Engineering and System Design
1. Requirements Specification

1990 2. System Specification and Design
1975 3. Programming Languages
1960 4. Assembly Language

5. Machine Code

Requirements engineerimgs traditionally been concerned with investigating the goals, func-
tions, and constraints of (software) systems. It can be broken down into four tasks: elicitation of infor-
mation related to the problem domain; modeling of the problem; analysis of costs, completeness, and

consistency; and validation with the customer. These tasks pave the way to the generation of com-

Specification and Validation of Telecommunications Systems with Use Case Magsaad L 1



CHAPTER 1 Introduction

plete, consistent, and unambiguous specifications of system behaviour that are well suited for design
and implementation activities [120]. When applied to reactive systems, requirements engineering
tasks need to focus on behaviour rather than on input/output functions, the latter being more relevant

to sequential systems.

Although several approaches have been suggested to tackle these requirements engineering
tasks, many design processes still skip these tasks by jumping from informal requirements directly to
component-based specifications and descriptions of systems. For instance, we observed this harmful
situation in the telecommunications area, where complex distributed and reactive systems are
designed and continuously enhanced with sewiceqoften calledeatureswhen packaged as mar-
ketable units). New telecommunications software products, involving increasingly complex architec-
tures and protocols, are constantly being designed in industry and in standardization bodies (ANSI,
ETSI, ISO, ITU, TIA, IETF, etc.). This is particularly true of new services for mobile, Internet-based,
and agent-based communication. In the early stages of many conventional design processes used in
industry and in standardization bodies, many features are described using (informal) component-
based operational descriptions, tables, and visual notations sMessesge Sequence ChaitdSCs)

[208]. Whereas the focus should be on system and functional views, it is found to be on details
belonging to a lower level of abstraction, or to later stages of the design process [20][21]. Hence,
many requirements and high-level design decisions are buried in the details, and the understandability
of the system goals and functionalities is affected in a way that makes the adaptability of services to
particular legacy architectures very difficult [77]. Also, as these descriptions evolve, they quickly
become error-prone and difficult to manage. One well-known error that can be detected at the require-
ments and design stages is the one of undesirable interactions between services (thefeatgeadled
interaction problen{65][85][230]). It is well known that the cost of errors is much lower when found

at the requirements and design stages and much higher when found during the implementation
[290][335]. In the very competitive area of telecommunications, conventional approaches that focus
too soon on details without proper description and understanding of requirements and high-level
designs delay the introduction of new customer services and they increase the cost of their implemen-
tation [178].
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There is an urgent need for high-quality documents that are concise, descriptive, maintainable,
consistent, and understandable by readers with many different needs and perspectives, also known a
the stakeholdergarchitects, engineers, testers, managers, marketing people, etc.). This need for pre-
cisely documenting all stages of the design process, which is significant in the industrial environment,
becomes critical in the standardization process (e.g. 1.130 [200] or Q.65 [204]), where there is inter-

national scrutiny for which stages are formalized and must undergo formal review and approval [20].

In this context, the following issues should be addressed:

« While designing systems and services in the initial stages, the discussion must focus on a
level of detail that reflects the level of knowledge (about data, messages, components, etc.)
available at the time. Irrelevant details tend to obscure the main idea behind a feature/ser-

vice/functionality, especially when the latter needs further modifications or refinements.

« Several levels of abstraction similar to viewpoint©ien Distributed ProcessingoDP)

[195] and planes itntelligent NetworkgIN) [202] are often mixed in a single description.

« A simple visual notation, which abstracts from messages while focusing on the tasks to
perform and their cause-to-effect @@usa) relations, can help concentrating on the gen-
eral control flow while providing for more maintainable and reusable scenario descrip-
tions. The Message Sequence Charts notation is very commonly used, but it focuses on
components and message exchanges, which come into consideration later at the detailed
design stages. Such a focus can be inappropriate while defining the functionalities in the
initial stages of the design, when details related to messages and components might be

unknown [21].

« There are possibly ambiguities, inconsistencies or undesirable interactions inside or
between service descriptions, or between levels of abstraction of a given service. These
remain difficult to detect with conventional inspection methods, and often remain hidden
until errors are discovered after implementation, at which point corrections can be very
costly and system interoperability can be jeopardized. Telecommunication networks are

heterogeneous in nature (in age, capabilities, and implementation) and, unfortunately, con-
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temporary open standards do not guarantee interoperability between systems developed by
different vendors [19][120].

Over the years, several approaches have been used to provide such documents. On one hand,
proponents of formal methods have claimed to solve the problem by providing unambiguous and
mathematical notations and verification techniques, but the penetration of these methods in industry
and in standardization bodies remains, unfortunately, low [20][103]. On the other hand, scenario-
driven approaches, although often less formal, have raised a higher level of interest and acceptance,
mostly because of their intuitive representation of services [215][368]. Their application to early
stages of the design and standardization processes raises new hopes for the availability of concise,
descriptive, maintainable, and consistent documents and design specifications that need to be under-
stood by a variety of readers. A more rigorous approach, driven by scenarios and supported by a for-
mal description technique, would allow the design process to focus on the main functional aspects of
the system to be specified, and hence better to cope with some of the complex problems related to the
design, documentation, validation, and maintenance of systems and standards. However, integrating
individual scenarios in different ways may result in different kinds of unexpected or undesirable inter-

actions. Appropriate integration techniques will hopefully lead to fewer such interactions.

The goal of this thesis is to provide techniques to describe and design distributed and telecom-
munication systems in a better way, through formal prototyping and validation. It also intends to fill
the gap between the stage where services are described informally and the first formal specification of
the system, which can be validated and then used to generate the kind of message sequence informa-
tion currently found in component-based descriptions. The thesis presents a methodology where the
level of scenario abstraction is different from the one used by most popular techniques. The approach
focuses on the very first stage of design and standardization processes, where many information and
design decisions are often lost or hidden behind implementation details. Such details should be omit-
ted at this stage, whereas the geneaalkal flow of responsibilitieshould be emphasized. Causality
often expresses intentions at the requirements level. A prime goal of this thesis is hence to enable the

description, formalization, and validation of telecommunications systems using causal scenarios.
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1.2 Research Hypothesis

The process of going from informal functional requirements to a high-level formal specification is a
research subject where much work has been done [20][62][39][103]. However, many challenges, such
as the issues presented in the previous section, still reRasimal Description Techniqug$DTs),

such as btos[191], Estelle [192] and SDL [205], were created in order to formally express func-
tional requirements, and hence to answer some of these challenges [350]. In particular, FDTs are well
suited for the precise definition of telecommunication systems. Although they help avoid ambiguities
and inconsistencies, FDTs often require an inappropriate level of detail and completeness in the pre-
liminary stages of standards definitions. Furthermore, as Ed Brinksma mentioned in his invited talk at
FORTE’96, if we were to fit the current FDTs int@Capability Maturity Mode(CMM) [175][278]

adapted for formal methods, we would still be at the first level (referredndiasand sometimes as
anarchy). In fact, a concretBormal Specifications Maturity modétalled theFSM model) was sug-

gested by Fraser and Vaishnavi [138] a year later. This FSM model describes five levels of maturity,
identical to those of CMM: 1) initial, 2) repeatable, 3) defined, 4) managed, and 5) optimized. In this
model, reviewed in more details in Section 9.1.3, the sole use of an FDT by experts corresponds to the

initial (first) level of maturity.

In this thesis, we present an innovative approach where we combine an FDT to a semiformal
visual notation for causal scenarios callésk Case MapgUCMs) [74][76]. UCMs use paths that
causally link activities (calledresponsibilitie}, which can be bound to underlying organizational
structures. Leyton observes that the mind assigns to any shape (including functionary) a causal history
explaining how the shape was formed [245], and UCMs capture such shapes visually and help argu-
ing about causality at an abstract level. Based on the literature and on previous experiences with the
notation, we assume that UCMs can be used to represent and integrate important aspects of functiona
requirements for telecommunications services [21][22][24][25][77][78]. Integrating UCMs together
can also help avoiding many undesirable interactions between services before any prototype is gener-
ated. The selected FDT is the formal specification language+4[191], theLanguage of Temporal
Ordering SpecificationLOTOS possesses powerful testing concepts and tools that we use for the

detection of logical and design errorTos is an appropriate formalism here because it supports
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many UCM concepts directly, and it complements most of UCM’s weak areas related to the analysis

of systems.

Table 1 summarizes how UCMs and1os can be seen as complementary notations. At the
same time, they share common characteristics which make them a good match. This claim will be

supported in the literature review (Chapter 3).

TABLE 1. UCMs and LoTtos: Two Related and Complementary Notations
Use Case Maps LoTos
» Causal scenario notation (semi-formal) ¢ Mature formal language
* Readable, graphical * Unambiguous
* Abstract * Good theories and tools for:
e Scalable - Consistency and completeness checking
* Loose - Testing and simulation
* Relatively effortless to learn - Validation and verification

Both Notations

* Focus on ordering of actions

* Have similar constructs, which simplifies the mapping of UCMs owrtools
* Can handle behaviour descriptions with or without components

* Have been used to describe telecommunications systems in the past
* Have been used to detect feature interactions in the past

The research hypothesis is denoted as follows:

In the process of designing complex telecommunications systems, requirements
described using the Use Case Map causal scenario notation can guide the generation
of LoTosspecifications useful for validating high-level designs systematically through

numerous techniques, including functional testing based on UCMs.

By supporting the engineering of requirements with tools and techniques developed for the
engineering of systems (UCMSs) and of protocolsT@9), this approach aims to help producing bet-
ter-quality designs and to improve human understanding with reduced time, costs, and efforts. We

also believe that this solution can help to reach higher levels on the Formal Specifications Maturity
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(FSM) model scale, and this assessment will be concentrated in the conclusion (Section 9.1.3) rather

than being spread throughout the core chapters.

1.3 New Approach: S PEC-VALUE

We believe that using UCMs in a scenario-oriented approach represents a judicious choice for the
description of communicating and reactive systems. They fit well in the design approach proposed in
this thesis, th&pecification-Validation Approach wittolrosand UCMs (or SPECG-VALUE) methodol-

ogy. EGVALUE aims to improve the maturity of design processes based on formal specifications
by introducing a semiformal description (UCM) between informal requirements and design-oriented
formal specifications (@T0S). Such an improvement strategy is called “Transitional-Unassisted” in

the FSM model (see Table 33 on page 319). We intend to validate the research hypothesis by develop-

ing SPEGVALU E and by successfully applying it to a wide range of telecommunications applications.

Requirements are usually dynamic; they change and are adapted over time. This is why we
promote an iterative and incremental approach (in spiral form) that allows rapid prototyping of
abstract behaviour and test case generation directly from scenarios. Figure 2 presents such ar
approach and introduces the main concepts behad-BALU E. Its main cycle is first concerned
with the description of system structurfgsand scenario&l, which can be done independently. A
structure, also called component substrate, contains the abstract system components of interes
(mostly software, but also hardware), as well as some of their relationships (containment, communi-
cation links, etc.). Services and functionalities are captured as Use Case Maps (scenario elicitation).
These UCMs represent scenarios emphasizing the causal relationships among the responsibilities tha
compose services and large-grain functionalities. The responsibilities defined in the UCMs are then
allocated to the components in the selected underlying structilEach component will have to per-
form the responsibilities allocated to it. Next, the scenarios are combined (manually, in this thesis) to
synthesize a @Tosspecification’], which becomes the executable prototype enabling formal valida-

tion of the system'’s abstract behaviaur
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Concurrently with these steps, validation test cases can be generated from the individual sce-
nariosl] to ensure that the specification conforms to each intended functionality. The test cases are
described in the same language as the specificationar@d._These tests check the integration of
the functionalities, which is currently done manually in our approach. They also check that the inte-
grated behaviour emerging from the collaboration among the components in the system structure cor-
responds to the intended behaviour expressed by the UCMs. Although both the tests and the prototype
are generated from the same UCMSs, discrepancy often result. This is largely due the complexity of
scenario integration in a component-based prototype and to the numerous design decisions that are
required at that level. Tests are much simpler to derive and are more likely to be correct. Also, because
UCMs are close to the functional requirements, verifying that tmeo& specification conforms to

the UCMs is a way of validating the high-level design against the requirements.

FIGURE 2.  Specification-Validation Approach with Lotos and UCMs (SPec-VALUE)
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obtained automatically from the execution traces (describedladled Transition Systens, LTSS).

The test results indicate whether logical and design errors (including undesirable interactions) are
present, while the coverage results determine whether some part of the specification is unreachable,
or whether the test suite is incomplételf no problem is detected, then the specification conforms,
according to the test selection strategy, to the UCMs and hence to the functional requirements. Such
coherence increases substantially the level of confidence in the UCMs, iotbe $pecification,

and in the validation test suite. Following the verdict, modifications may be required to the UCMs, to
the test cas€s, to the specification, or even to the requiremént#n fact, $EGVALUE is an itera-

tive and incremental approach as new functionalities may be integrated at a later time.

Table 2 summarizes, in the context ®fE6&VALUE, the roles of these two complementary

languages. These items will be explained and illustrated throughout the thesis.

TABLE 2. Roles of UCMs and LoTos in SPEC-VALUE

Use Case Maps LoTos
* Requirements capture and scenario elicitation in ternmes Executability and increased formality enabling system
of related causal flows analysis
* Architectural reasoning * Validation of requirements through (functional) testing
* Bridge to design * Detection of inconsistencies and other logical errors
* Feature interaction avoidance * Detection of incompleteness in the
» Design documentation requirements through coverage measurements
* Generation of abstract test cases * Feature interaction detection
* Basis for the generation of abstract prototypes * Production of validated test suites

Further, some of the products generated k5C/ALU E can be used in later steps the devel-
opment cycle, towards implementation (dashed arrows in Figure 2). In particu@rpa frototype
can be refined into a form suitable for code generation using conventrE@VSLU E tools, or else
be used for conformance testing. Similarly, abstraxtds test cases can be transformed into con-
crete functional test cases for the validation of detailed designs and implementations. These applica-
tions are related issues however belong to development processes with a scope widegcdhan S

VALU E's and are therefore not discussed in this thesis.
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1.4 Thesis Contributions

This thesis offers three main contributions: tke GVALU E methodology, a set of techniques to sup-

port the $EGVALUE cycles, and application ofP6§GVALU E to specify and validate several com-

plex telecommunications applications.

1.4.1 Contribution 1: S PEC-VALUE Methodology
We claim that 8EGVALU E has several benefits, difficult to find all at once in other design and stan-

dardization processes:

Separation of the functionalities from the underlying structure since scenarios are
formalized at a level of abstraction higher than message exchanges, different underlying
structures or architectures can be evaluated with more flexibility, even before the genera-
tion of a prototype. The scenarios then become highly reusable entities; for example they
can be used on different equipment and for different products. Senior managers and senior
designers can keep control over the general logic of the design without having to know the
characteristics of the latest equipment. This separation helps to cope also with the incre-

mental addition of new functionalities that require modifications to the structure.

Fast prototyping: once the structure and the scenarios are selected and documented, and
once the responsibilities have been allocated to their respective components, a prototype
(the first formal specification of the system abstract behaviour) can be generated rapidly.
This is mainly due to the ease with whicbTos constructs can formalize UCM con-
structs. Formal prototyping adds rigor to scenario-based requirements and engineering

with UCMs because UCMs are semiformal and non-executable.

Test case generationscenarios guide the generation of test cases, hence allowing the ver-
ification of the prototype against the UCMs and its validation against the informal func-
tional requirements. The test suite can itself be validated using structural coverage criteria
on the model. It can be reused as a basis for functional or regression test suite in the subse-

guent steps of the development process.
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« Design documentation the documentation of requirements and designs is done as we go
along the development cycle. It is also adapted to the expressive needs of the different peo-
ple involved in the design process. The part related to scenarios should be understandable
by marketing people and service operators. These people do not have to know every tech-
nical detail described in the subsequent formal specifications (such as message
exchanges), since such details may be important only for engineers, implementors, or
testers. UCMs allow different specialists to become involved in discussions at different

levels while sharing a common language and, hopefully, understanding.

More details on the E&GVALU E methodology, as well as UCMs for the ongoing example

(theTiny Telephone Systewr TTS, are provided in Chapter 4.

1.4.2 Contribution 2: Theories and Techniques Supporting S PEC-VALUE
Different theories and techniques are involved in the support offbe\&\LU E cycles. Some of

them, such as theories and tools for the testingoabks specifications [279] (steld in Figure 2) and
for the visual editing of UCMs [257] (steps [1, andl in Figure 2), already exist. Others are devel-

oped in this thesis:

« Guidelines for the construction of LOTOs specifications from UCMs in his masters
thesis, Amyot provided a mapping between UCM paths (called Timethreads at the time)
and LoTos[12]. This mapping is extended in this thesis to cover component-based speci-
fications, which better reflect the design, and to cover the new UCM constructs developed
over the last six years. Among others, new construction guidelines are provided for UCMs
that have responsibilities bound to components and for UCMs with stubs and plug-ins
(sub-UCMs). These construction guidelines, which relate tol$tepFigure 2, are devel-

oped in Chapter 5.

« UCM-L oTos testing framework: test cases can be derived from UCMs and applied to
specifications and implementations in order to check their conformance to the UCMs and

their validity with respect to the requirements. The thesis presents a new validation rela-
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tion (val) accompanied by a set of testing patterns, which contain test selection strategies
for UCMs. These patterns serve as a basis for the evaluation of functional coverage in

terms of UCMSs. This framework, related to stefn Figure 2, is developed in Chapter 6.

« Structural coverage for LOTOS: the thesis presents a new technique for automatically
measuring the structural coverage afTios specifications by a test suite. This technique
includes a tool-supported theory for the insertion of probesoirok specifications and
for coverage measurement. The structural coverage theory, which relates fo istep

Figure 2, is developed in Chapter 7.

1.4.3 Contribution 3: lllustrative Experiments Validating S PEC-VALUE
The $SEGVALU E approach and its supporting techniques have been validated against a wide range of

telecommunications applications. Chapter 8 includes results and lessons learned from six experi-

ments:

« Group Communication Server (GCS) first application of the 8=GVALU E approach
and techniques in their entirety [15][17]. The GCS is an academic example of a distributed

client/server application.

« GPRS Group-Call (PTM-G): application of 8EG¢VALU E a mobile communication ser-
vice of theGeneral Packet Radio Servi(@PRS) standard [16][24]. This work was done
during the first standardization stage of GPRS [128].

« First Feature Interaction Contest (FI): application of BEGVALU E targeted towards the
avoidance and the detection of undesirable interactions between a collection of telephony
features described in the 1998 Feature Interaction Contest [18][22][161].

« Agent-Based Simplified Basic Call (SBC)application of 8EG¢VALU E during a feasi-
bility study for the application of a functional testing process to industrial telephony appli-

cations based on agents and IP [25][369].

« GSM’s MAP Protocol (MAP): application of the probe insertion technique to measure

the self-coverage of a conformance test suite generated automatically faorossbpeci-
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fication. TheMobile Application Part(MAP) protocol of theGlobal System for Mobile

Communicatio{GSM) standard is used as the example.

« Test Suite Validatiort application of mutation analysis to the above specifications in
order to validate the various test suites generated using the UCM-oriented testing patterns.

This experiment discusses the effectiveness of these test suites.

Most of these experiments were done in collaboration with industrial partners, professors, and
other students. Thee&GVALU E approach is currently being used by other graduate students in other
projects and theses [25][32][381].

1.4.4 Issues Not Addressed in this Thesis
The reader should be warned that Use Case Maps ane#bd&/8_U E methodology are still quite

young and maturing. A consequence is that many interesting and important issues are not addresse

in this thesis:

« The use of UCMs for capturing requirements and eliciting system scenarios is not dis-
cussed as such, although many illustrations and guidelines are given in the various experi-

ments.

« The automated synthesis of theTos specification from UCMs, although much desired
by many people, is not a goal of this thesis. Often, automated mappings require the
restricted use of the two notations involved. We take the point of view that flexibility
should be allowed in both notations, at the cost of a manual transformation, with consis-

tency ensured through validation and conformance testing.
« The automated generation of test cases from UCMs is not covered by this thesis either.

e The testing used here is functional (black-box). It is targeted towards the user-system

level. Component or unit testing are not addressed in the thesis.

1.5 Thesis Outline

The rest of the thesis is divided into nine chapters:
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« Chapter 2 presents general definitions of concepts used throughout the thesis as well as

introductions to Use Case Maps amirbs

« Chapter 3 is the literature review that covers the necessary background information on

causality, on scenarios, on formal techniques, and on validation and verification.

« Chapter 4 details the first steps &fe6&VALU E methodology and introduces the UCMs
for theTiny Telephone Systg(fiTS), an ongoing example used throughout the thesis.

« Chapter 5 presents the construction guidelines for the generati@To§kpecifications

from UCMs, illustrated with the TTS example.

« Chapter 6 describes the UCM-based testing framework used to valoeabs imodels,
illustrated with the TTS example.

« Chapter 7 defines the probe insertion technique used to measure the structural coverage of

LoTosspecifications, illustrated with the TTS example.

« Chapter 8 presents six experiments used to validatertbe\@LU E methodology and
techniques. It contains the lessons learned during the specification and the validation of

telecommunications systems of various complexity and natures.

« Chapter 9 recalls the contributions of the thesis, compare®#weVBLU E methodology
to similar approaches, and attempts to provide new insights in how to integette S
VALU E to design processes with a wider scope. This chapter concludes with some direc-

tions for future research.

These chapters are meant to be read linearly, although the definitions (Chapter 2) and some
sections in the literature review (Chapter 3) can be skipped at first and referred to at a later time when
necessary. Due to the incredibly large number of acronyms and technical terms found in this thesis
(which is typical of telecommunications systems and standards), we included a glossary of acronyms

on page xv, together with an index on page 385.

14 Specification and Validation of Telecommunications Systems with Use Case Mapsasd L



CHAPTER 2

Basic Definitions and Notations

Description is important because it is the cla
which software developers fashion their wc
Methods are, above all, about what to desci
about tools and materials and techniques
descriptions; and about imposing a cohe
structure on a large description task.

Michael Jackson, 19¢

This chapter provides general definitions of concepts used throughout the thesis as well as introduc-

tions to Use Case Maps anditos

2.1 Basic Definitions

The $EGVALU E methodology combines ideas from many disciplines with different cultures and,
often, different semantics associated to the same terminology. Computer scientists, systems engi-
neers, telecommunications engineers, formalists, and defense organizations often have their own con:-
ventions and standards involving different definitions for the same terms. Throughout the thesis,
several definitions will be given when specific terminology problems will be encountered. This sec-
tion however focuses on more basic definitions and concepts, some of which have been used in an
intuitive way in the introductory chapter. In particular, four disciplines related to this thesis will be
outlined, and definitions will be provided for various terms including requirements, specification,

design, process, prototype, validation, and verification.
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2.1.1 Four Engineering Disciplines
The $EGVALU E methodology involves notations from systems engineering (Use Case Maps) and

protocol engineering (@ros), which are used for the engineering of requirements, systems, and soft-

ware in general. The main characteristics of these disciplines are stated in this section.

Requirements Engineering

Requirements Engineering the development and use of cost-effective technology for the elicitation,
specification, and analysis of the stakeholder requirements, which are to be met by software intensive

systems [308]. Zave provides an interesting classification of the research effort in this area [384].

A requirementis something that states that a product will have a given characteristic or
achieve a given purpose, including what, how well, and under what conditions [122]. Requirements
can address software and non-software (e.g. hardware) issues. Requirements are usually classified as
functional(defining functions of the system under development) ooasfunctional(to characterize
expected performance, robustness, usability, maintainability, etc.). For instance, performance require-
ments describe how well system products must perform certain functions along with the conditions
under which the functions are performed. Functional requirements are sometimes seen as operational-
izations of non-functional requirements. After decades of focus on functional requirements, non-func-
tional requirements are nowadays the topic of much interest [96]. It is important to note that

requirements define the problem to be solved by software, not the software that solves it.

A stakeholders an individual or organization interested in the success of a product or system.
Stakeholders include customers, users, developers, engineers, managers, manufacturers, testers, and

SO on.

The functionalities of telecommunications applications and of reactive systems in general are
expressed more often in terms of system and component behaviour than in terms of algorithms or
input/output functions. Use Case Maps have proven to be useful for the engineering of telecommuni-
cations systems requirements [22]. They help capturing and illustrating behavioural requirements at

the system level. To a lesser extent, non-functional issues related to architecture, robustness and per-
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formance can also be addressed, quantified and reasoned about [76][324][330]. Representing require:

ments as visual scenarios, UCMs can also be understood by various stakeholders.

Systems Engineering

Systems Engineering an interdisciplinary approach enabling the realization of successful systems
[122]. The termsystemusually refers to the aggregation of end products/technologies and enabling

products/technologies that achieves a given purpose.

Systems Engineering focuses on defining customer needs and required functionality early in
the development cycle, on documenting requirements, and then on designing and validating systems.
At the same time, system issues like operations, performance, test, manufacturing, cost, schedule,
training, support, and disposal are considered. Systems Engineering integrates all the disciplines and
speciality groups into a team effort forming a structured development process that proceeds from con-
cept to production to operation. This engineering field considers both the business and the technical
needs of all customers with the goal of providing a quality product that meets the user needs. Systems
Engineering is still a maturing domain where several standards such asS{fesns Engineering
Capability Model([SECM) [122] are emerging.

Use Case Maps were created as a notation for systems engineering, with a focus on the repre-

sentation of high-level design decisions [74].

Protocol Engineering

Protocol Engineerings the efficient use of trusted components, (formal) methods and tools to con-
struct an integrated architecture of devices and processes which collaborate to provide desired com-
munications services while satisfying constraints such as cost, time, reliability and safety [296].
Communicatiorprotocolsare the rules that govern the communication between the different compo-

nents within a distributed computer system [53][180].
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The first attempt at defining this discipline was done by Piatkowski in 1980 [285], and Liu
provided an early survey in [248]. While the construction of valid, safe, and efficient protocols repre-
sents the main goal of protocol engineering, the importance of service concept was recognized and
emphasized by Vissers and Logrippo [363]. According to Saleh [316], this engineering field includes
many specific areas such as formal specification of protocols and services, protocol validation, proto-
col synthesis (from service specifications), protocol implementation, protocol conformance testing,

protocol conversion, protocol performance analysis, quality assurance, and so on.

Nowadays, the engineering of communication protocols often involves the use of formal
description techniques such asTios which was specifically created for the formalization and vali-

dation of protocols in th®pen System Interconnecti(@SI) reference model [194].

Software Engineering

Software Engineering the study and application of systematic, disciplined, quantifiable approaches
to the development, operation, and maintenance of software [187][335]. Software Engineering is not
independent from the three other engineering disciplines. All four share many goals related to the
guality and the cost of products (usually software) and to the satisfaction of the users. Most aspects of

Software Engineering and their research directions are being discussed in [136].

SPEGVALUE intends to bring these areas closer together by combining notations and tech-
niques (UCMs and &Ttos from two of these areas and by using them as a bridge between the engi-

neering of requirements, systems, protocols, and software.

2.1.2 Processes, Formal Methods, Specifications and Designs
The thesis makes extensive use of terms like process, formal method, specification, and design. Sev-

eral definitions, which may vary depending on the context, are provided below.

In a general (system engineering) contexpr@cessis a set of interrelated activities that,
together, transform inputs into outputs [1]22Hheprocess maturityepresents the extent to which a

process is explicitly documented, managed, measured, controlled, and continually improved. Models
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like CMM [278], SECM [122], and FSM [138] can help measuring this maturity. One of the goals of

SPEGVALU E is to improve the maturity of processes to which it is integrated.

Many protocol engineering and software engineering development processes suggest the use
of formal methodgo improve their maturity. Formal methods are techniques for expressing require-
ments in a manner that enables the requirements to be studied mathematically. They allow sets of
requirements/descriptions to be examined for completeness, consistency, and equivalency to other

sets of requirements/descriptions.

Formal methods are used to produce formal specificatiospegificationis a document that
clearly and accurately describes requirements and other characteristics for a product and the proce-
dures to be used to determine that the product satisfies these requirements [122]. A specification is
qualified as formal when it is written using a formal language [241]. Specifications are usually split
into two categoriestequirements specificationsvhich focus on the problem domain (the “what”),
and software specificationswvhich focus on the description of the design in conformance with the
requirements specification (the “how”). Specifications describe user functionalities, alsosealled
vices When services are packaged into marketable units, the telecommunication industry calls these

servicedeatures

Some specifications becorstandards as they are documents that establish engineering and
technical requirements for processes, procedures, practices and methods that have been decreed
authority or adopted by consensus. Guidelines for the creation of software and system specifications
are provided by the IEEE in [188][189].

Specifications are used to construct more detailed descriptions dekeghs Typically, a
design includes an operational concept (how users are expected or intended to use the product), com
ponents and their relationships, and sometimes decisions about the processes that will produce,

deploy, and support it. We often distinguish betwieigh-level designsvhich focus on system func-

1. However, in terms ofkTOS a process is a behavioural abstraction that can be instantiated.
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tionalities and end-to-end scenarios, &owklevel designswhere detailed issues related to protocols
and algorithms are handled. Designs have to be valid with respect to their specification and require-
ments. Scenarios can be used to describe system functionalities, often from the user’s point of view,

and to capture several aspects of requirements and designs.

Designs make reference to thgstem architecturgepresenting the logical or physical struc-
ture that specifies interfaces and services provided bgytem componentised to accomplish sys-
tem functionality. System components may be personnel, hardware, software, facilities, data,
materiel, services, or techniques which satisfy one or more requirements in the lowest levels of the
architecture [122].

2.1.3 Validation and Verification
A product needs to be checked against its design, which needs to be checked against the specification,

which needs to be checked against the requirements. These activities are divided into two main cate-

gories, namely validation and verification (V&V).

Validationis an activity that ensures that the stakeholders’ true needs and expectations are met
by the end product. In other words, validation is the determination of the correctness of the final prod-
uct with respect to the user’'s needs (hopefully captured correctly by the requirements), or “Are we
building the right product?”. This concept can be extended to the validation of the design and of the

specification.

Verificationis an activity that ensures that the selected design solution satisfies the specifica-
tion, and that the end product satisfies the design. Ultimately, verification is about determining

whether the product fulfills the requirements established, or “Are we building the system right?”.

V&YV is usually applied to a product or tonaode] the latter being a simplified representation
of some aspect of the real world. Specifications and designs are models, and so are protptgpes. A
totypeis a model of a product built or constructed for the purpose of: assessing the feasibility of a new

or unfamiliar technology; assessing or mitigating technical risk; validating requirements; demonstrat-
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ing critical features; qualifying a product; qualifying a process; characterizing performance or prod-
uct features; or elucidating physical principles [122]. A prototype normally will not be identical to the
final product in all its characteristics. Rather, it will correspond to it only for the characteristics that
motivated its construction. Executable specifications, designs and other mathematical models can be
used to prototype software [275]. This idea was pioneered nearly two decades ago by people like
Davis [109] and Balzeet al [41]. In this thesis, &TOs specifications will be used to prototype tele-

communications systems.

Testing is one of the most pragmatic and most popular V&YV technigtesti& an activity in
which a system, product, prototype, or a component is used under specified conditions, the results are
observed or recorded, and an evaluation is made as to whether it adequately meets some or all of it:
requirements. Tests are used for different purposes, such as validation testing (the focus of this thesis)
unit or component testing, and regression testing, which is used to determine that a change to a sys:

tem component has not adversely affected functionality, reliability or performance.

One way of reducing the required V&V efforts is to construct a model or a product from a
more abstract model. Theynthesidgs the translation of input requirements (including performance,
function, and interface) into possible solutions (resources and techniques) satisfying those inputs.

Synthesis does not have to be automatic. Interactive and incremental synthesis is also possible.

Transitioning from one model to the other and performing V&V on them demand some way
of tracing related elements among the models. This particularity, ¢edlshbility, is the ability to
trace the heritage and lineage of a requirement. Traceability shows upward compliance of derived
requirements/specifications/designs/products with higher level parent requirements and downward
completeness of derived requirements/specifications/designs/products from higher level parent

requirements.

The following sections, together with the other chapters, will make use of all the general defi-

nitions discussed so far. Others will be provided when required.
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2.2 Introduction to Use Case Maps

This introduction is intended to provide an overview of Use Case Maps to people who want to famil-
iarize themselves with this notation. This section presents the philosophy behind the notation and the
information necessary to use it. Then, the basic path notation is introduced, followed by part of the
component notation used in this thesis. Advanced notational concepts are then outlined, and finally
supporting tools are discussed. A summary of the UCM notation is provided as a quick reference

guide in Appendix A:

2.2.1 Philosophy of UCMs
The Use Case Map notation aims to link behaviour and structure in an explicit and visuaCWhay.

pathsare first-class architectural entities that desccidngsalrelationships betweemsponsibilities

which can be bound to underlyiogganizational structuresf abstractomponent$76]. These paths
represent scenarios that intend to bridge the gap between system requirements and detailed
design [30]. The relationships are said to be causal because they involve concurrency and partial
ordering of activities and because they link causes (e.g., preconditions and triggering events) to

effects (e.g. postconditions and resulting events).

With UCMs, scenarios are represented in terms of abstract responsibilities expressed above
the level of messages exchanged between components. Hence, these scenarios are not necessarily
bound to a specific organizational structure. This feature promotes the evaluation of architectural
alternatives early in the design process. UCMs provide a bird's-eye view of system functionalities,
they allow for dynamic behaviour and structures to be represented and evaluated, and they improve

the level of reusability of scenarios [24].

Use Case Maps are primarily visual, but a formal textual representation also exists. Based on
the eXtensible Markup LanguagXML) 1.0 standard [379], this representation allows for tools to

generate UCMs or use them for further processing and analysis [23].

The UCM notation was developed at Carleton University by Professor Buhr and his team, and

it has been used for the description and the understanding of a wide range of complex applications
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(including telecommunication systems) since 1992. UCMs have raised a lot of interest in the software
community, which led to the creation of a user group in March 1999, with over 200 members from all

continents [359]. UCMs are also being considered as a notation for describing functional require-
ments in ITU-T’s upcoming standard, tdser Requirements Notatig@RN) [28][82][84][203].

2.2.2 Information Needed to Construct UCMs
UCMs can be derived from informal requirements, or from use cases [212] when they are available.

Responsibilitiesneed to be stated or be inferred from these requirements. For illustration purpose,
separate UCMs can be created for individual features, or even for individual scenarios. However, the

strength of this notation mainly resides in the integration of scenarios.

It is important to clearly define thaterfacebetween the environment and the system under
description. This interface will lead to the start points and end points of the UCM paths, and it also
corresponds to the messages exchanged between the system and its environment. These messages

further refined in models for detailed design (e.g. with Message Sequence Charts).

UCM can be composed of paths where responsibilities are not bound to any component.
These scenarios, calleshbound UCMsare useful as they describe system functionalities indepen-
dently of the architecture. However, because designers are often the people who create and use
UCMs, some design information such as internal components may be relevant. In this case, the
description of these components, their nature, and some relationships (e.g. components that include
sub-components) are required. Communication links between components are usually not required,

but they can be added.

2.2.3 Basic UCM Path Notation
The UCM notation is mainly composed éth elementsand also otomponentsThe basic path

notation addresses simple operators for causally linking responsibilities in sequences, as alternatives,
and in parallel. More advanced operators can be used for structuring UCMs hierarchically and for
representing exceptional scenarios and dynamic behaviour (Section 2.2.5). Components can be of dif-

ferent natures, allowing for richer description of some entities in a system (Section 2.2.4).
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Figure 3 illustrates four basic notation elements of UC8fsit points responsibilitiesend

points andcomponentsin this section, simple boxes are used as components.

FIGURE 3.  Basic Notation and Interpretation

Start —> Imagine tracing a path through a system of objects to explain a
Point i — causal sequence, leaving behind a visual signature. Use Case

| | End )
Y — 1 point Maps capture such sequences. They are composed of:

e3¢ v « start points (filled circles representing preconditions
= and/or triggering causes)

 causal chains a€sponsibilities(crosses, representing
Responsibilities actions, tasks, or functions to be performed)
D ‘/ » andend points(bars representing postconditions and/
\

or resulting effects).
—. The responsibilities can be boundctamponents which are
the entities or objects composing the system.

Components

The wiggly lines arg@athsthat connect start points, responsibilities, and end points. A respon-
sibility is said to bdooundto a component when the cross is inside the component. In this case, the
component is responsible to perform the action, task, or function represented by the responsibility.
Start points may have preconditions attached, while responsibilities and end points can have postcon-
ditions. We calroute a scenario that traverses paths and associated responsibilities from a start point

to an end point.

Alternatives and shared segments of routes are represented as overlapping paths (Figure 4).
An OR-joinmerges two (or more) overlapping paths whil@dtforksplits a path into two (or more)
alternatives. Alternatives may be guarded by conditions represented as labels between square brack-

ets.

FIGURE 4. Shared Routes and OR-Forks/Joins

[yes Indicate routes that share common causal
bormissib] [no]t segments. alternatives may be identified b
() OR-join (b) OR-fork (c) Permissible foutes labels or by conditiongduards])
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Concurrent and synchronized segments of routes are represented through the use of a vertical
bar (Figure 5). APAND-join synchronizes two (or more) paths together whiléABD-fork splits a
path into two (or more) concurrent segments. CardinaliNiel) are not required to be written as

they usually result from the number of incoming/outgoing path segments.

FIGURE 5. Concurrent Routes with AND-Forks/Joins, and Some Variations

LN : N:1 N:1 LN N:N
1:N N:1 N:M Fork-join Rendezvous Synchronize
- :I_’ :|<: 1:N N:1 1I:N N:1
(a) AND-fork (b) AND-join (c) Generic version I l I I
Forkalonga Joinalonga Fork-join along a
single path single path single path

2.2.4 UCM Component Notation
Components can be of differegpesand can possess differattributes Although many component

notations could be used underneath UCM paths, Buhr suggests several types and attributes relevan
for complex systems (real-time, object-oriented, dynamic, agent-based, etc.) [74][76]. The UCM
Quick Reference Guide (Appendix A: — A8 and A9) illustrates all the component types and

attributes in Buhr's notation. Some of the most interesting ones are illustrated in Figure 6.

FIGURE 6. Dynamic Components and Dynamic Responsibilities

Team Process

create / move N N

?+ put get/ I\\__#__//)/ I

Pool

Rectangles are callegamsand are allowed to contain components of any type. This is a
default/generic component used in most UCMs. Parallelograms are active compproaasses

which usually imply a control thread, whereas rounded rectangles are passive comudjertts (
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which are usually controlled. Dashed components are cgltiésiand may be populated with differ-

ent component instances at different times. Slots are containeggfonic componen{®C) in exe-
cution, while pools are containers for DCs that are not executing (they act as data). Dynamic
components can be created, moved, stored, and deletedywémic responsibilitiegsee Appendix

A: — A10) such asreate, put, get, andmove in Figure 6.

2.2.5 Advanced UCM Path Notation
When maps become too complex to be represented as one single UCM, a mechanism for defining and

structuring sub-maps becomes necessary. Top-level UCMs, cadtethaps can include containers

(calledstubg for sub-maps (calledlug-ing. Stubs are of two kinds (Figure 7):

FIGURE 7.  Stubs and Plug-ins

e g TS

—

(a) Static stubs have only one plug-in (sub-UCM) (b) Dynamic stubs may have multiple plug-ins

« Static stubs represented as plain diamonds, they contain only one plug-in, hence enabling

hierarchical decomposition of complex maps.

« Dynamic stubs represented as dashed diamonds, they may contain several plug-ins,
whose selection can be determined at run-time accordingstdeation policy(often
described with preconditions). It is also possible to select multiple plug-ins at once,

sequentially or in parallel.

Path segments coming in and going out of stubs can be identified on the root map. Although
they are not required to be shown visually, their presence helps to achieve unamibigdiogs of
plug-ins to stubs. A binding is a set of pa#stub_incoming_segment, plug-in_start_poirdnd

<stub_outgoing_segment, plug-in_end_point>dynamic stub has one such binding per plug-in.
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Different paths may interact with each other synchronously or asynchronously (see Figure 8).
Synchronous interactiorese shown by having the end point of one path touching the start point (or a
waiting place) of another path. A path touching the start point (or a waiting place) represeyts-an

chronous interaction

FIGURE 8. Path Interactions

R1 rRit R

w Interacting paths. R3 Interacting paths.
R1 R2 . R2
o _— 3  Effectis of one longer path R1 Effect is similar to one path
with the constituent segments ./)(\/'::E splitting into two concurrent
joined end to end. segments.
(@) Synchronous interaction (b) Asynchronous interaction

Other notational elements include (Figure 9):

« Timer: special waiting place triggered by the timely arrival of a specific event. It can also
enable a time-out path when this event does not arrive in time.

« Abort: a path can terminate the progression of another causal chain of responsibilities.

 Failure point: indicates potential failure points on a path.

« Shared responsibility. represents a complex activity that involves negotiation between

two or more components.

FIGURE 9.  Timers, Aborts, Failures, and Shared Responsibilities

. . R1
continuation
waiting path
timeouit path clearing path R2
(a) Timers may be set, reset, and timed-out (b) Top path aborts bottom path after R1
R R
T ——y T +—x
(c) Ground symbols indicate possible path failure points (d) R is a shared responsibility
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Finally, the notation supports extensions specific to agent systems and to performance model-
ling [283][324][325]. These extensions are not addressed in this thesis, but their respective path anno-

tations are included in the quick reference guide (Appendix A: — Al1l).

2.2.6 UCM Tools
There currently exists only one tool that supports the UCM notation and the XML formaiCie

Navigator(UCMNAV) [257]. Although still a prototype under development, this tool is already robust
enough for the creation, navigation, and maintenance of UCMs. Both the path and component nota-
tions are fully supported. UCMIN ensures the syntactical correctness of the UCMs manipulated,
generates XML descriptions, exports UCMs in different formats (e.g. Encapsulated Postcript, Com-
puter Graphics Metafile, Scalable Vector Graphics, and Maker Interchange Format), and generates
reports. More recently, support for simple data model and scenario definitions was included. This
enables the highlight of specific scenario paths in a collection of UCMs and the automated generation
of MSCs [258].

Alternatively, any drawing package or word processors could be used to draw UCMs. How-

ever, syntactic errors may be introduced in the UCMs, and no XML code is generated.

2.3 Introductionto L oOTOS

This introduction is intended to provide an overview affbsto the reader not familiar with this
specification language. This section presents the philosophy behind the language and the information
necessary to create specificationsTs operators and abstract data types are shortly reviewed, fol-
lowed by an overview of @Tos underlying model, which will be used to define various relations
between specifications. Main validation and verification techniques are then presented, followed by

an enumeration of several supporting tools.

2.3.1 Philosophy of L oTOS
LoTos theLanguage of Temporal Ordering Specificatiaman algebraic specification language stan-

dardized by ISO [56][191]. It was especially developed for the formal description OpéneSystems

Interconnection(OSI) architecture (interfaces, services, and protocols) [194], although nowadays the
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language is used to describe distributed and concurrent systems in genecalognthe specifier
describes a system by defining the temporal relations among the actions that constitute the system’s
externally observable behaviour. The main influences for the behaviour pato$ivere Milner’s
Calculus of Communicating Syste(@CS) [260] and HoareSommunicating Sequential Processes
(CSP) [177]. loTosbehaviour expressiorare built from elementary actions by using operators such

as action prefix, choice, parallel composition, multiway synchronization, hiding, process instantia-
tion, and a few others. Data abstractions are specified Abtract Data Typeg$ADT), based on

Ehrig and Mahr's &T ONE language [121]. @TOS is suitable for the integration of behaviour and
structure in a unique executable modeTbsallows the use of many tool-supported validation and
verification techniques such as simulation, testing, expansion, equivalence checking, model checking,

and goal-oriented execution [57].

2.3.2 Information Needed to Construct L  OTOS Specifications
LoTos can specify the temporal ordering of system actions from very little information. Assuming

that actions and the necessary data types can be determined, a nushdeswére defined accord-

ing to the additional information available to the specifier [364]. The constraint-oriented style is use-
ful when local and global behavioural constraints are representable. The resource-oriented style uses
the architectural structure as a starting point. The state-oriented style focuses on system and compo
nent states, and the monolithic style is used when no information about constraints, architecture, or

states is available, resulting in abstract specifications.

Use Case Maps can represent a good starting point for the generationtdsaspecifica-
tion, because they capture actions and their causal ordeamgskcan specify abstract sequences of
actions without having to say which entities can generate them. Hence it can be used to express
unbound UCMs. However if it is desired to represent bound UCMs faithfully mTat.specifica-
tion, then information about architectural elements, interfaces, and message parameters is needed
The LoTOoSsresource-oriented style can support the description of bound UCMs, but inter-component
causal flows in the UCMs need to be refined as messages or inter-process synchronizations, and ther

are usually many ways to do so. This novel aspect will be discussed further in Chapter 5.
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2.3.3 LoTtos Operators
In LOoTOSs systems and components are described in terpooéssesA LOTOS process is viewed

as a black box interacting with gsvironmenvia its observablgates(Figure 10). Its internal actions
are unobservable by the environmenbehaviour expressiois built by combining bTtosactions by

means of operators and possibly other behaviour expressions.

The basic element of a behaviour expression isattien which represents synchronization
between processes, between a process and its environment, or both. An action consists of a gate name,
a list (possibly empty) of valuexperiment offer¢value offers or interaction parameters), and possi-
bly a predicatethat imposes conditions on the event to be accepted. Actions are atomic in the sense

that they occur instantaneously, without consuming time.

FIGURE 10. Representation of a System Specified in LOTOS

specification System [G1, G2, G3, G4] : noexit
behaviour
hide G5 in
G2 G3 Process1[G1, G2, G5]

Environment [[Gs]|
Process2[G3, G4, G5]

where
G5 process Processl[G1, G2, G5]: noexit
Gl Processl Process2 G4 (* ... Behaviour of Process1 *)
endproc
System process Process2[G3, G4, G5] : noexit
(* ... Behaviour of Process2 *)
endproc
endspec

In Figure 10, the system is composed of two processes that interact with each other on the hid-
den gateG5 (interaction point). In DTOS terms, we say thaProcessl is synchronizedwith

Process2 0nG5. LoTossynchronization is based on a multi-way rendezvous concept.

There are three basic behaviour expressions, and more complex expressions can be formed as

shown in Table 3, where is an actionB; are behaviour expressions, are gatesy; are values, and

P is a predicate.
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S

TABLE 3. Summary of LoTos Syntax and Semantics
Name Behaviour Expression | Definition
_5 o Inaction stop Cannot engage in any interaction (deadlock).
<£>t$ -g Successful exit(vy,...,Vp) Terminates successfully (and produces action). Return valug
2 g Termination may optionally be specified.
2 L% Proces_s _ ProcName [gy,...,0,] Creates an instance of a procBsscName.
&~ |Instantiation

oer

5. The
suc-

Action Prefix |a; B Prefixes a behaviour expressi®nwvith an actiora.
g Choice B, 1B, Offers a choice between two behaviour expressions.
O = - . . R
R Enabling B;>>B, Sequences two behaviour expressi®jshas toexit for B, to be
o 3 executed. Values may be passed through the construct:
o B, >> accept parameters in B,
Disabling B [>B, B, can be disrupted B, during normal functioning.
< Parallel N By 1[91.--.9n]1 B> B, andB, behave indepel_"ndently, except for the gajes. g}, where
= Composition B, andB, must synchronize.
(%2}
é_ Interleaving |B; |11 B> B, andB, behave independently (the synchronization set is enjpty).
8 Full Synchro- |B; | | By B, andB, are synchronized on all their gates.
nization
Hiding hide g4,...,.9, iN B Hides actiongyy,...,g,, Which become internal and can no lon
synchronize with the environment.
" Guarded [P1->B B can be executed K is true.
S Behaviour
G
© Local letxs=EinB Substitutes a value expressidt) py a value identifierx) of sorts
&  |Definition in B.
E Process process ProcName Creates a process definition with formal gates and parameter
o Definition [91,.--.9,] (parameters) | functionality funct indicates whether the process can terminats
:funct:=B cessfully éxit, optionally with values) or notnpexit). Can beg
endproc instantiated as a basic behaviour expression.
Comment (* This is a comment *) Comment skipped by the parsers.

More operators exist (e.g. generalizgaice (different from []) andpar ) but they can often be
avoided and they are not used in this thesis.

2.3.4 LoTtos Abstract Data Types
LoTtosmodels data by an abstract equational notation. There are no predefined data types, but there is

a standardized library of commonly required data typesoffol every data type is a set of data val-

ues and operations that require to be defined.
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LoTossortsare distinct sets of data values. The concept of sordTo&corresponds to the
concept of type in many programming languages.dsoperationscorrespond to functions and pro-
cedures to manipulate objects. By means of operations it is possible to combine values of the same or
different sorts into aggregate values (e.g. a record), or establish relations betweertttsegua-
tions state properties that must be satisfied by (any implementation of) the objects of the type. They
are often interpreted as rewrite rules by toolsTdstypespackage sorts, operations, and equations
together. Types can be aggregated, inherited, renamed, defined formally and instantiated (actualized).

As an illustrative example, the tyBeolean can be defined as:

type Boolean is

sorts Bool
opns
true, false : --> Bool (* Constructors *)
not : Bool --> Bool
egns
ofsort Bool

not (true) = false;
not (false) = true;
endtype (* Boolean *)

In LOTOS data can be associated with actions in two wagkie , which meansalue offey

and?variable:type , meaningvalue queryThese can be combined in actions. For example,
G5 I3 ?answer:Bool

denotes an action where on géte the values is offered, and a value fanswer (of typeBool ) is
gueried simultaneously. Offers and queries are bgplerimentsSelection predicates can be option-

ally added to value queries, as in:
G5 ?n:Integer [n > 3]

meaning that the acceptable values for the integae greater than 3. These examples demonstrate
the abstract nature of the language, since it allows to express in a single action system events that

could be quite complex to implement.
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2.3.5 Labelled Transitions Systems and Underlying Semantics
The underlying model of &Tos is based on the conceptlabelled transition system&TSs). An

LTS is a generalization of a finite state machine that provides a convenient way for expressing the
step-by-step operational semantics of behaviour expressions. The latter evolve by executing one
action at a time, selected from their alphabet set. The following notations and definitions for LTSs are

excerpted from [69], [150], and [242].

Definition 2.1: A labelled transition systemis a 4-tupleLTS = <S, g, L, T>,
where:

« Sis a (finite) non-empty set of states;

« 5 USis the initial state;

« L is a (finite) set of observable actions; and

« T={Oa- USxSa0L, whereL’ =L [ {i}}, is the set oftransi-
tions which are binary relations & If s; 0 a- s, such thas;,s, 0 S
then <5;, s> 0 O a—. i represents a hiddemternal action

Note that] a— can be interpreted both as a set (&) and as a relationship between two
states. The notation and definitions in Table 4 are widely used for interpreting LTSs and for defining
different conformance and equivalence relations, some of which will be introduced in the next section
and then used in Chapter 6:
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TABLE 4. LTS Notation and Definitions

EN

-~

able

LTS Notation Definitions
L={aa,a a) The alphabet of observable actions. We ddfioebe the internal action (oft
PO B2 e namedr in the literature [153]), andto be the successful termination actjon.
, After executing the observable actianthe behaviour expressid@his trans
BOa—- B . .
formed into another behaviour expressiin
-k : After executing a sequencelohidden actions, the behaviour exprestas
BOI"- B . .
transformed into another behaviour expression
BO aja,— B’ O0B” suchthaB a, - B” O0B” 0 a,— B'.
B is transformed into another behaviour expres8bby executing zero :rr
B=all B’ more internal actions, followed by the observable aajahen zero or moie
internal actions. Formallykg, k; LIN |B O i ikt B
B =al B may accept the actiam Formally,(B’ | B=all B'.
B #all - (B =all ), that is,B must refuse the actian
B is transformed into another behaviour expresdBnby executing
B=cl] B’ sequence of observable actlop Formall%:h‘al, &, ... 3, then
Dkokl,..kEIN|BD| i - B
B =ol 0B’ | B=cll B
B aftero The set 8’ | B=cll] B}, i.e. the set of all behaviour expressions reach
from B after executing the sequenze
Tr(B) The trace set d8, defined as§ | B=al] }. Note thatTr(B) LI L".

The operational semantics obtos is expressed in terms afference rulesacting on an

underlying LTS. For instance, the simplified inference rules for the choice operator are:

Notation:

if ...

then ...

Bl O a; — Bl’ Bz U - Bz’

B.[l B, a— By B[l B, a;— B

The first inference rule means that if the behaviour expregsioan perforng; and then behave like

B,’, thenB, [] B, can add a transitioa, to the LTS and then behave liBg' (the B, alternative is

dropped). The rule on the right is symmetrical. Tlogads standard provides inference rules for all

the operators in the language [191].
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LTSs can also be represented visually as graphs. Oftergd.behaviour expressions are
shown aehaviour treeswhich represent unfolded LTSs (i.e. where loops are expanded). For exam-
ple, a behaviour expression for a simple telephone system is given on the left side of Figure 11, with

the corresponding behaviour tree (LTS) on the right side.

FIGURE 11. A Behaviour Expression and its LTS as a Behaviour Tree

OffHook;
Dial; OffHook
(
( Dial
Talk; stop
I
Busy; stop
) OnHook
[>

OnHook;  exit 3

)

Labelled transition systems will help illustrating behaviour expressions and reasoning about
them throughout the thesis, particularly when the construction and validatia@To$ Epecifications

from Use Case Maps will be discussed.

2.3.6 Equivalences and Other Relations
Multiple equivalence, ordering, and other relations have been definedfarsLThey are usually

defined in terms of the underlying semantic model (LTS) rather than withadheslsyntax itself.

These relations are of the outmost importance because they are at the heart of many validation, verifi-
cation, simplification, and implementation techniques foras In this section, we will distinguish
betweenequivalencerelations (which are symmetric, reflective, and transitive) and other relations

(which are not symmetric and may or may not be transitive).

Equivalence Relations

The LoTos theory distinguishes between several types of equivalence relations, many of which are

inspired from CCS [260]. Depending on the level of details considered (observable or hidden actions,
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branching structure, non-determinism, etc.), two specifications (i.e. two LTSs) may or may not be
equivalent. Table 5 contains some of the most interesting equivalence relations, from the strongest,
which distinguishes the most, to the weakest, which distinguishes the least. Assume that two behav-

iour expressionSlandS2are compared:

TABLE 5. LoTos Equivalence Relations

Relations Definitions

Equality: SlandS2are equal$1 = S2 iff their respective LTSs are isomorphic (].e.
S1=S2 the LTSs are the same).

Each immediate successor (next action, visible or noflahust be equivg
lent to some immediate successoB@fand conversely. Formally:
If S10S2then, for alla L O {i, &}

Strong bisimulation

S10s2 (i) wheneverST] a— S1'then(]S2' | SZ] a— S2’andS1’ 1S2’
(i) wheneverS21 a— S2’then1S1’ | ST1 a— S1'andS1’'[1S2’
A contextC[+] is a behaviour expression with a formal process paraméfer [
called a hole. If Gf] is a context an® is a behaviour expression, therBLis
Congruence: the behaviour expression that is the result of replacing dmeurrenqes pE&.
S1=, S'Z SlandS2are congruenty1l=. S3 iff, for all context C¢], S1=. S2implies

C[S] =, C[S3. Congruent behaviour expressions can be interchanged (like
substitutable components) in any context and lead to global specificatigns that
are observationally equivalent.

Whereas strong bisimulation considerdike an observable action, wegak
bisimulation abstracts from internal actions, except when they causg¢ non-
determinism in alternatives. We say tl&it and S2 are weak bisimulatign
equivalent §1= S iff for all sequences [ L*, eacho-descendant dblis
equivalent to some-descendant db2 and conversely. Formally:
If S1= S2then, for alla 0 L [0 {&}

(i) wheneverSI=all S1'then]S2' | SZzall S2’andS1'= S2'

(i) wheneverS2=al] S2'thenJS1’ | S¥all S1'andS1’'= S2'
This relation is also calleobservationakquivalence.

Weak bisimulation:
S1=S2

SlandS2are testing equivalen$({te S? iff they cannot be distinguished py

Testing equivalencefany test case. A test case is a behaviour expression which, when cojmposed
Slte S2 with a specification, leads to one of three possible verdicts (must pass, may

pass, reject). A more formal definition ofidl be given later.

Trace equivalence: |S1andS2are trace equivalenS{tr S? iff they can produce the same trakes
Sitr S2 of observable actions. Formallgltr S2iff Tr (S1) = Tr (S2)
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Suppose thaspPecs is the set of all possible behaviour expressions (or specifications). The
relations in Table 5 are all defined o&#ECcs x Specs, and hence can be compared. A strict ordering

exist among these relatiors U0 =, 0 = 0 te O tr. For example, iS1=. S2holds, then we can con-

clude thatS1= S2 Site S2 andS1tr S2 butS1S2may not hold (we do not know with certainty).

The strong bisimulation is the strongest meaningful equivalence relation that does not require
isomorphism at the LTS level. Many algebraic laws have been defined for strong equivalence [191],
and they remain valid for all the weaker equivalences. However, this equivalence relation is somewhat
deficient as it treats the internal actioon the same basis as all other actions. Weak bisimulation
solves this problem by abstracting from internal actions, while preserving meaningful branching
structures in the LTS. Testing equivalence comes from a more pragmatic point of view where equiva-
lence can only be assessed by means of testing. The congruence relation has useful implications fol
design as it is the largest relation that allows the substitution of a behaviour expression by a congruent
one in any lotoscontext. Such behaviour expressions act like pluggable components. Trace equiva-
lence, although it is easy to understand, is not very useful as all the branching structure of the LTS

(which includes non-determinism, what can be accepted, and what can be refused) is lost.

Other Relations

Equivalence relations are not the only way to compare behaviour expressions. Sometimes, relations
that are not symmetric may be more appropriate to evaluate validity when different levels of abstrac-
tions are involved. For instance, a preorder, which is a reflexive and transitive relation, may be used to

check the conformance of a protocol specification against a service specificatias. dffReorder,

then Rn R becomes symmetric and hence also becomes an equivalence.

Over the years, many non-symmetric relations have been defined by Brinksma [69], Leduc
[242][243], and others. Table 6 recalls three basic relations (define&rses x Specs), which will

be linked later to the concepts of canonical tester and testing equivalence.
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TABLE 6. Other Relations for LoTOS

Relations Definitions

Si1conforms ta52(S1conf S2 expresses th&2deadlocks less often th&il
itself when tested against the traceSafS2may however contain behaviqur
Conformance: not present irs1 Formally:

SlconfS2 SlconfS2iff Do OTr(S2) DA TL,
if 0S1'| DadA, S1=cl] S1'0S1%#all
then3S2’| OalA, S2=cl] S2'00S2%all

The reduction relation states tl&itredS2if S1can only execute actions that
S2can execute, an81can only refuse actions that can be refuse@yn

Reduction: other words, redakes away unnecessary optichshas fewer traces th&?
SlredS2 yetSldeadlocks less often in an environment limited to the tracg$ &for-
mally:

SlredS2iff S1confS200Tr(S1)0 Tr(S2).

We say thaBlextendsS2(Slext S whenSlhas more traces th&®2 but in

Extension: an environment whose traces are limited to thos8211 deadlocks leqds
SlextS2 often. Formally:

S1extS2iff S1confS20Tr(S2)0 Tr(S1).

Brinksma demonstrated that radd_extare both preorders, whereas canhot because this
relation is not transitive (i.651confS2[ S2conf S3does not implyS1conf S3 [69]. Leduc sug-
gested another conformance relation (confwelich is a preorder [242], but its treatment is outside

the scope of the thesis.

Testing Equivalence and Canonical Testers

According to the bTostesting theory presented by Brinksma [69], test cases are behaviour expres-
sions that are composed with the specification. Two specifications are testing equivhte8% if

they cannot be distinguished by any test case. An interesting propertig tfide it can be expressed
formally in terms of redr ext S1te S2 = SlredS2[S2redS1 - SlextS2[1S2extS1 This is
illustrated in the left half of Figure 12. The testing equivalence is both a reduction and an extension
and, according to their definitions, reduction and extension are both conformance relations (see the

right part of Figure 12).
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FIGURE 12. Connecting Several LoTos Relations
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Still, equivalences are not always the best way to establish the validity of implementations.
For instance, the conformance relation is often used as a criterion to test an implementation (System
Under Test —SUT) against its specificatiors|. WhenSUTconfS SUTis allowed to be more deter-

ministic and to contain more alternative behaviour than

Every specificatiors has acanonical teste(CT(S), which is a behaviour expression (with the
same traces & that testsS completely according to cof9]. Many such testers exist for a given
specification, and they are all testing equivalent with each difi€s)represents the only test case

necessary to check thaS&Tconforms tdS. An interesting property is th@T(CT(S)te S

For most realistic specifications, a canonical tester cannot be directly generated as it may be
infinite, especially when data values or recursive processes are involved. If such a tester can be gener
ated, then it can be applied to test another (e.g. refinetdd specification. However, since these
testers are usually non-deterministic, the use of canonical testers on real implementations does not
guarantee that an error will be highlighted (by an unexpected deadlock). Conse@ig&)ghould
not be used for testing conformance of real implementations directly, but only used to guide the gen-
eration of an adequate test suite (with deterministic test cases) from it [69]. Tretmans suggests an
algorithm, based on this idea, to generate test cases fravmas kpecification [345]. Leduc pre-

sented simplified canonical testers for the confrelgtion [242] and others that handle divergent

behaviour (LTS with loops of internal actions) [243], but these developments will not be discussed

any further in the thesis.
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Behaviour expressions that are reduction€©{S)are sound test cases for any implementa-
tion of S We say tha62is irreducible if S1redS2[] Slte S2.Suppose two test casel @ndTy)

whereT, red CT(S)andT, redCT(S) These two test cases have the same detectability power if they
are testing equivalent, i.e. wh@pte T If T, is irreducible with the same detectability poweflgs
thenT, is a better test case thapbecausd is simpler and yet as powerful &g Irreducible test

cases usually make excellent tests.

Example

Figure 13 illustrates some of the relations covered so far. Assume an alphabet of observable actions
L = {Busy, Dial, OnHook, Ring}.

FIGURE 13. lllustration of Several Relations

Dial Dial
OnHook Busy .
Ring
OnHook OnHook
(a) Specificatiors (b) CT(S) (c) S1 SiconfSs (d) S2 = (S2conf9

Ring Dial
Dial
Ring
OnHook
OnHook OnHook OnHook OnHook Busy
(e)S3 S3reds (f) S4 S4extS (g) S5 S5te S (h) S6 S6confs

« (a) The specificatio® OnHook is considered mandatory whereas Ring is optional.
« (b) The canonical tester &f It happens here th&tis a self-testerGT(S)=9).
« (c) Slconforms tdS even if Ring is absent and Busy is added.

« (d) S2does not conform t8 because OnHook is not available after Dial.
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« (e)S3reduces. Note also tha®3redCT(S)and thaS3cannot be reduced further. There-

fore S3is an irreducible test case far
« (f) S4extendsSby adding an observable action that was not p&st of

« (g) Shis testing equivalent t&.

Note that testingl, S3 S4 S5 andS6againstCT(S)does not result in any premature dead-
lock. This is the case for all specifications conforming.tbestingS2againsiCT(S)results in a dead-
lock when the <Diali, OffHook> branch is chosen in the canonical tester, hB8dees not conform
toS

One weakness of the comdlation is that it is always possible to build a trivial implementation
that conforms to the specification. For instar@@in Figure 13(h) accepts every action of the alpha-
betL and hence can never deadlock. This is where rejection test cases (to be seen in Section 3.4.3) ca

help establishing the validity of such implementations.

2.3.7 Validation and Verificationin L 0OTOS
The algebraic nature ofdTosenables a multitude of techniques to become applicable for the valida-

tion and verification of specifications [57]. Some of the most popular techniques are:

« Step-by-step executiorfor interactive simulation), in which the specifier takes the role of
the environment by providing events to the specification and by observing the results (i.e.
the next possible events) [135][162]. Although useful for debugging, step-by-step execu-

tion is probably the simplest and weakest validation technique availablefosL

« Equivalence checking used to check the conformity or the equivalence of one specifica-
tion against another (usually after some refinement or modifications) [153][242]. In
LoTos equivalence checking is usually done using the underlying LTS model, but it can

sometimes be done algebraically through the use of equivalence rules.

« Model checkingaims to check a specification against safety, liveness, or responsiveness

properties (often derived from the requirements) [149][150]. These properties can be
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expressed, among other languages, in terms of temporal logicalculus formulas. In

the LoTosworld, this technique usually requires that the specification be expanded into a
corresponding model, which is some graph representation (labeled transition system, finite
state machine, or Kripke structure) of the specification’s semantics. On-the-fly model
checking techniques, where the whole model does not have to be genqueted exist

as well [135].

Testingis concerned with the existence (or the absence) of traces, trees, use cases, or more
generally scenarios in the specification. These scenarios reflect system functionalities and
are transformed into black-box test cases that can be composed with the specification
[69][70][243][279][345]. Test cases are usually less powerful and expressive than proper-
ties expressed in logic. However, test cases are often more manageable and understandable
than properties and they relate more closely to (informal) operational requirements and

semantics.

Other validation and verification techniques such as random walks [135], goal-oriented execu-

tion [165], symbolic execution [40], symbolic equivalence and model checking [327], and observers

[115][142] can also be applied tolos specifications, but they are not as commonly used. This the-

sis focuses mostly on testing as a validation technique. Note that all these techniques are supported (to

various degrees) by tools, some of which are presented in the next section.

2.3.8 LoTtos Tools
LoTosbeing a well-established standard, a number of solid tools have been developed for it around

the world. We shall mention three of the most popular ones:

Capp (CESARALDEBARAN Distribution Platform): developed at INRIA in Grenoble,
France [135]. It was built for extensive state explorationadfds specifications. This tool
provides a variety of searching strategies to detect conditions of interest in the execution of
a protocol or a feature, including step-by-step execution, random walks, equivalence

checking, and (on-the-fly) model checking.
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ELubo (Environnement bTosde I'Université D'Ottawa): developed at the University of
Ottawa, Canada. It is mostly useful at the initial stages of the development afthe L
specification, since it has an effective step-by-step execution option, graphically attractive
and user-friendly. It also supports symbolic expansion, model checking, and goal-oriented
execution. [EUDO, together with @bp and other tools, is now part of the/@&LYPTUS
Toolbox [145].

LoLA (LOtos LAboratory): developed at the Universidad Politécnica de Madrid, Spain
[279][280][301]. It is a state exploration tool for the simulation and testingpobk spec-
ifications. Test cases are specified aghsprocesses, and they can be composed with the
specification to detect possible erroreLk analyses the test terminations for all possible
evolutions. If the number of test runs is too large or even infindeAlcan use equiva-

lence relations and coverage heuristics to check a representative subset of the possible evo-
lutions. Verdicts such as Must pass, May pass and Reject are provided by the tool for each

test case.

In this thesis, we mainly useoLA because of its ability to tesblros specifications.

2.3.9 Enhancementsto L OTOS
The International Organization for Standardization has recently thed.language to produce

Enhanced btos (or E-LOTO9 [198]. This new language is backward compatible wititds E-
LoTos includes new operators and semantics for handling time and modules, and a new functional

language (a la ML) replaces ADTs for representing data types.

E-LoTosis not being used in this thesis because execution and validation tools are not cur-

rently available.

2.4 Chapter Summary

This chapter reviews general definitions that will be used throughout the thesis. Section 2.1.1 shows

how SEGVALUE is related to the engineering of requirements, systems, protocols, and software,
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while the rest of Section 2.1 establishes basic terminology for processes, formal methods, specifica-

tions, designs, validation, verification, prototypes, and many other related concepts.

Sections 2.2 and 2.3 provide tutorial material for readers who want to familiarize themselves
with UCMs and loTos They both cover the philosophy behind each notation, the information needed
to use them, elements of the notation (paths and components for UCMs; operators, ADTs, LTSs and

relations for lOTOS), and tool support.

Contributions

The following items are original contributions of this chapter:

e Quick tutorial on the Use Case Maps notation.

¢ Quick tutorial on the formal description techniquetbs
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Literature Survey

“Post hoc, ergo propter hoc”

Unknown sourc

“After this, therefore because of this”. This log
fallacy is committed whenever someone implies
an event that occurred before another event
have caused this event.

This chapter surveys existing work and building blocks in four major areas closely relatgtto S
VALU E. We first recall several models that supmaisality(the focus of our scenarios), as opposed

to a plain temporal ordering (Section 3.1). Then, Section 3.2 compares Use Case Mapscand L

with several other notations asgecification techniqueBecause SEGVALU E usesscenariosas

building blocks for the specification and validation of telecommunications systems, we devote Sec-
tion 3.3 to the introduction of several scenario notations and related approaches, including some tech-
niques for theonstructionof communicating and distributed entities from scenarios. We also include

a fourth section on theerification and validatiorof distributed systems, with a special emphasis on

the techniques relevant to the notations and concepts used in the thesis (Section 3.4). A summary fol-

lows in Section 3.5.

3.1 Causality

Causality is a relation that connects causes to their effects. In concurrency theory, establishing causal-
ity is useful as this helps distinguish events that are caused by other events from events that are simply
observed one after another without one affecting the other. This is in fact the main concern of the

incorrect inference cited abov@ost hoc, ergo propter hdafter this, therefore because of this). Cau-
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sality is also one important criterion used for evaluating scenario notations in Section 3.3.2 (where it
is calledordering). Since the representation of causality is a feature that distinguishes UCMs from
many other scenario notations, this section discusses different semantics and representations for cau-
sality. In particular, Section 3.1.1 introduces important benefits of causality while Section 3.1.2 sum-
marizes some of the major causal models available. Causality is also briefly discussed in the context

of UCMs and loTosin Section 3.1.3 and Section 3.1.4 respectively.

3.1.1 Why causality?
We see four main reasons why it can be beneficial to capture causality in models:

To Capture Intentions

Causality helps expressing intentions at an abstract level as well as focusing on them. Leyton
observes that the mind assigns to any shape a causal history explaining how the shape was formed
[245]. Such causal history can become a valuable and long-lived artefact in a development process.
UCMs capture existing or desired functionalities (shapes) visually and help arguing about causality at

a level close to requirements and high-level designs.

To Distinguish the Type of Ordering

Causal ordering and temporal ordering are almost indistinguishable for sequential processes. How-
ever, when concurrency is involved (e.g. in communicating and distributed systems), interpreting a
temporal ordering as a causal relationship can be misleading. For instance, in a simplified telephone
system, the following scenario could be observedffHook, Dial, Ring, RingBack> . We

might conclude thaRingBack is caused by its prefix, i.&OffHook, Dial, Ring> . However,

this interpretation might be wron@ing and RingBack may both be caused independently by
<OffHook, Dial >, and there might not necessarily be any causal dependency between them. An
early focus on causal relations between actions helps to avoid several misunderstandings related to
temporal ordering. The causal dependence between events should be documented in the early stages
of the design process, before this information gets lost among the details of linear sequences or in the

behaviour of individual components. UCMs are very helpful in this context.
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To Generate Smaller Models

Many specification languages, includingtos have underlying semantics based on models that do
not support causality. For instance, labelled transition systems describe temporal ordering exclusively.
LTSs interpret concurrency through timeerleavingof parallel actions, which often leads to very
large models. Using causality at the description level (e.g. with UCM scenarios) leads to smaller
descriptions and enable the preservation of causality in the underlying model (when causality is sup-

ported). This could in turn help cope with combinatorial explosions of system states.

To Allow the Refinement of Actions

Refinement of actions is an important research topic in concurrency theory. The general problem is
defined as follows: actions at a given level of abstraction are replaced by more complicated processes
on a lower level of abstraction. The behaviour of the refined system is intended to be inferred compo-
sitionaly from the behaviour of the original system and from the behaviour of the processes substi-
tuted for actions. Action refinement promotes the design of systems in a modular and hierarchical
way. Many authors, including van Glabbeek and Goltz [153], have shown that interleaving models of
concurrent systems (e.g. LTSs) are not suited for defining action refinement in its general form, and
that causal models are more appropriate.ABCS/ALU E, such refinement should hence be done at

the UCM level, not at the underlying LTS level.

3.1.2 Concurrency Models and Equivalence Relations
Specification techniques such as Petri Nets, Sirdsand UCMs can all describe concurrency in

various forms. However, the semantic models associated to these languages may or may not suppor
causality very well. The models of concurrency found in the literature usually fall into one of these

two categories:

« Interleaving semanticsthe independent progression of two processes is modelled by

specifying the possible interleaving of their (atomic) actions.

« Causal semanticsthe causal relations between the actions of a system are represented

explicitly. This is often referred to @sie concurrencyr partial order semantics.
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Equivalence relations, which establish whether a model is equivalent to another model accord-
ing to some criteria, can be defined over both types of semantics. Such relations are often used to
establish the correctness of refinements and implementations with respect to specifications of concur-

rent systems.

In a recent survey on action refinement [153], van Glabbeek and Goltz indicate that the pre-
served level of detail in system runs (interleaving versus causal) is not the only aspect to be consid-

ered when describing concurrency models and relations. Two other important aspects include:

« Preserved level of detail of the choice structure between system runs: this gogadeom
semanticqlinear time), where the choice structure is completely neglectetbctrated
trace semantigswhere part of the choice structure is taken into account, and finally to
bisimulation semanticforanching time), which preserves the information where two dif-

ferent runs diverge.

« Treatment of internal or invisible actions: this goes from relations where internal actions
are treated likevisible actions (strong bisimulation) to relations where internal actions are

invisibleand can be, to a certain extent, abstracted (weak bisimulation).

Families of Concurrency Models

Several important families of concurrency models are classified in Figure 14. The leaves of this tree
(white boxes) are fine-grained families for which references to existing work are provided. Grey
boxes indicate related sets of families. Dotted arrows indicate which family (tail) influenced the cre-

ation of another, more general and more expressive family (head).

Several people argue that Petri Nets can be used as a causal semantic model. However, Petri
Nets usually rely on translations to interleaving models, e.g. LTSs, for the verification of properties

such as bisimulations [319].
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FIGURE 14. Families of Concurrency Models
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3.1.3 Causality and Use Case Maps
Using the four factors discussed in Section 3.1.1, we observe that UCMs deausakelationships

between responsibilities, which may be allocated to components. In order to do so, UCMs offer a
variety of constructs such as sequence, AND-fork, AND-join, and (a)synchronous interactions
between UCM paths.

UCMs support alternatives (OR-fork), which are closer tdthaching structuren LTSs and
trees than to linear-time models suchpassetqpartial order multisets). However, UCMs do not

support conflict/exclusion relations (e.g. the non-occurrence of aatisrcondition for the occur-
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rence of actio) as most event-oriented models would. Hence, UCMs have more affinities with trees

and LTSs than with event structures.

Action refinement could also be useful to UCMs. A stub is essentially a corse-grained action
refined by a plug-in, and some properties might be interesting to preserve under such refinement.
Causal models support action refinement much better than plain interleaving models would. However,

formal action refinement will not be pursued in the thesis and will therefore remain a research topic.

3.1.4 Causality and L oTOS
Many semantic models can be used underneath a given specification language, which often focuses

on the syntactic level. For instance, standacdds is based on an interleaving semantic model
(LTSs), which takes into consideration internal actions and offers a wide range of equivalence rela-
tions, including bisimulation. However, LTSs are weak at representing causality, even if the syntax of

LoToscan express this concurrency concept (e.g. with the interleaving operator).

Various substitute semantics footos have been suggested in the literature: bundle event
structures by Langerak [239] and Brinksetaal. [71], event-oriented models expressed in terms of a
causal algebra by Pires [286] and Quartel [300], causal LTSs by Coelho da Costa [99][100], and max-
imal trees and dynamic causal trees by Saidouni [319] (DCTs). Among all these semantics, DCTs are
probably the most interesting as they are more general than causal trees (see Figure 14), and they are
closer to the currentdros semantic model than those based on event-oriented models. DCTs also
correspond to unfolded causal LTSs. DCTs cannot represent infinite behaviour as easily as causal
LTSs, nor do they solve the state explosion problem. However, in a verification context, DCTs do not

suffer from undecidability problems whereas causal LTSs do.

When choosing a causality model, a trade-off is usually required between expressiveness and
ease of verification, which are two opposite forces. Causality leads to equivalence relations that are
more complex and harder to define than relations based on an interleaving semantics, especially in a
context where internal actions are considered [153]. Correct and efficient verification algorithms are

hard to define for expressive causal semantics, and currently tool support is very weak.
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3.1.5 Summary and Discussion
This section discusses several results from the concurrency theory in general, with a special emphasi

on causality. It explains why causality is an interesting property of semantic models. Causality allows
for a better understanding of intentions and ordering, may result in smaller models, and enables the
refinement of actions. Important families of concurrency models based on interleaving and causal

semantics were briefly discussed and classified (Figure 14).

Both Use Case Maps an@toscan express causality at a syntactic level, which is beneficial
to SPEGVALUE. However, causality is missing from the standaadds semantic model (LTSs).
Although many alternative semantics exislESVALU E, with its emphasis on validation, is still
using LTSs. Causal semantic models are difficult to validate and verify formally, equivalence relations
are complex, and tool support for causal V&V is still sparse and experimental. LTSs are the standard
semantics for bTos which is well supported by many validation and verification tools. Hence, LTSs
still represent the most pragmatic avenue for validatiorPBEGSALU E., even at the cost of loosing

causal relationships and generating larger models.

3.2 Specification Techniques

Nowadays, specification techniques are widely applied to many software-related engineering fields.
Formal methods have particularly raised much hopes over the last two decades for the specification of
requirements and designs, and for their validation and verification [104][176][220]. Formal methods
are mathematical specification languages with formal syntax and semantics, which offer rigorous sup-
port of system development [351]. Despite several successful applications to real systems, formal
methods have been the target of myriads of criticisms over the years because they have not really me
the initial optimistic expectations of their users [20][250]. In order to answer these critics and to
explain the real strengths and weaknesses of formal methods, several myths have been described an
explained to the software community by Hall [166] and Bowen [67]. Le Charlier and Flener have
replied with additional myths on the usefulness of formal methods, the main one being that specifica-
tions are necessarily informal [241]. Against all odds, formal methods have shown notable resiliency.

They are still in use nowadays and are the subject of research and development. New tools have beel
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developed for them and applied in areas at times quite remote from the ones envisaged by their initial

designers [20].

It is recognized that formal methods and specification techniques in general are not universal.
For instance, some methods handle concurrency better than others, whereas the latter might be more
appropriate for the description of sequential algorithms. Jackson even claims that universal methods
cannot be effective because they cannot take advantage of any particular features of the problem at
hand, and they must abstract from any feature whose universal treatment is simply too hard [211].
Most formal methods therefore focus on particular problem domains (they were damait-spe-
cific formal methoddn [250]), one of which being telecommunications. But even for one such
domain, multiple techniques are often used together to specify various facets of the problem. Several
advocates of multi-method solutions include Holzmann [181], Zave and Jackson [382], as well as
standardization bodies such as the ITU-T (with SDL/MSC/ASN.1/TTCN) and the OMG (with UML).
SPEGVALUE is not different in that respect as it is based on two specification techniques. However,
in order to justify that these techniques represent a potentially useful combination, we need to evalu-

ate them against a number of criteria and compare them to other techniques.

This section presents and comments on six formal and semi-formal specification techniques
used for telecommunications systems. Already, two of them have been introduced in Section 2.2 (Use
Case Maps) and Section 2.30(tos). Section 3.2.2 gives an overview of all these techniques, and

then a comparison is provided (Section 3.2.3) according to criteria presented in Section 3.2.1.

3.2.1 Evaluation Criteria for Specification Techniques
In a recent survey [20], we have selected a wide range of evaluation criteria on the basis of our own

experiences with specification techniques and requirements engineering, and of existing surveys from
Ardis et al.[39], Craigeret al.[104], and Weidenhauggt al.[368]. In order to evaluate and compare
specification techniques for telecommunications systems, we selected a total of thirteen criteria
grouped in four categories, namely usability, validation and verification, tool support, and training.

We see them as being all fundamental, and therefore we do not try to prioritize them at this point.
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Usability

« Readability specifications need to be readable by domain experts (and not only by experts
in the specification technique). There is a strong emphasis here in human understanding,

and in common understanding amongst different stakeholders, including the client.

« Modularity: composition operators are needed to allow large specifications to be easily

written and understood by decomposing them into smaller parts.

« Abstraction this criterion is concerned with the level of detail that needs to be addressed,
and with separation of concerns. An abstraction mechanism that supports two-way trace-
ability allows to go from complex and high-level viewpoints to simple and low-level view-

points and vice versa.

« Scalability. we say that a technique is scalable if it allows the specification of complex and

simple systems in a similar way.

« Maintenance and Evolutionwe are interested in techniques that allow for the reuse of
old parts of a specification in the creation of new parts, for the addition of new details, and
for the modification of existing parts. Frequent changes in a distributed, iterative, and
evolving drafting process need to be supported with minimal effort. Ripple effects on the
document consistency, caused by the impact of a modification on other parts of the docu-

ments, need to be minimized.

« Loosenessin the early stages of the specification/design process, few details are avail-
able, and a specification technique should permit some level of incompleteness and non-

determinism in a specification.

« Maturity: a technique has a high level of maturity mainly if it has undergone some certifi-
cation process and if it has a history of use in various applications.
Validation and Verification (V&V)

« Completeness and Consistendgchniques should offer ways of checking completeness

and consistency between partial functionalities, scenarios, and levels of abstraction.
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« Testing and Simulation V&V is greatly improved when specifications can be executed,
animated, simulated, and tested. Also one should be able to obtain test cases from specifi-

cations.

« \Verifiability and Correctnessverification of a model against requirement properties. Ver-
ification approaches are usually stronger than testing and simulation as they intend to

prove that a property holds in general, but they are also harder and more costly to perform.

Tool Support

We are interested in techniques that are supported by tools for the capture, the editing, the mainte-
nance, the animation, the testing, and the verification of specifications. We are especially looking for

multi-platform, industrial-strength and quality tools, where support and training is available.

Training

« Learning Curve we are interested in how quickly a new user can learn the concepts, theo-
ries, techniques, and tools to make useful application of the specification technique, and in

how different is this technique from the current practice.

« Tutorials and Documentationgood tutorials and documentation are necessary for a good
training. Courses, case studies, and other technology transfer activities are important as

well.

These criteria will be used to compare the specification techniques introduced in the next sec-

tion.

3.2.2 Overview of Selected Techniques
In this section, we give a short overview of six specification techniques (UGM4-SDL, MSC,

Petri Nets, and UML) particularly relevant to the scenario-based description of high-level specifica-
tions and designs of distributed systems and for the documentation of telecommunication standards.

The selected techniques have all been used to describe real world problems and solutions.
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Other specification and description notations, such as the Abstract Syntax Notation One
(ASN.1) [201][337], Estelle [192], plain/extended/communicating Finite State Machines (FSM,
EFSM, CFSM) [143], the Interface Description Language (IDL) [273], Larch [163], the Real-Time
Object-Oriented Modeling (ROOM) [326], the Tree and Tabular Combined Notation (TTCN)
[197][209], the Vienna Development Method (VDM) [219], and Z [336], are not discussed in this the-
sis. Although most of them have reached good levels of recognition in different areas (including tele-
communications and distributed systems), and have been standardized in some cases, we believe the
are less appropriate for the scenario-based specification and validation of telecommunications sys-
tems than the six techniques we selected. A minimum number of techniques is surveyed in order for

this chapter to remain concise.

A few other formalisms are covered in a recent survey of specifications techniques for wire-
less standards [20], which served as a basis for this section. We also invite the interested reader tc
look at other studies from Ardet al.[39] on specification methods for reactive systems, from Clarke
et al.[97] on the state of in art in formal methods, and from Craggeh [104] on industrial applica-

tion of these methods.

Because UCMs anddToswere already presented in Chapter 2, only the four remaining nota-
tions (SDL, MSC, Petri Nets and UML) are introduced in this section.

Specification and Description Language (SDL)

SDL [205] is an FDT designed for reactive, concurrent, real-time, distributed, and heterogeneous sys-
tems. The basic SDL model consists of extended finite state machines communicating by means of
message queues. Notions of types and inheritance make SDL an object-based language. SDL is a lan
guage used to support human understanding of system descriptions, formal analysis and comparisor
of behaviours, in an implementation independent way. SDL is suitable for international standards in
the telecommunication area, for systems in development, and for verification and validation of the

system behaviour. SDL has two concrete syntaxes: the graphic representation called SDL/GR and the
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textual representation called SDL/PR. The graphic form is more intuitive and displays relationships

more clearly than the textual form. The language has two major features:

« An SDL system describes the application in the sense that many aspects (structure, inter-

faces, and behaviour) of the application are described.

« SDL is a high-level language. The extended finite state machine paradigm gives the
designer a possibility to concentrate on the application problem and not to deal with low-

level programming issues.

SDL is also being integrated, to some extent, to UML throyglofde [207].

Message Sequence Charts (MSC)

The MSC notation, standardized by ITU-T [208][313], is a graphical and textual language for the
description and specification of the interactions between system components. The main area of appli-
cation for Message Sequence Charts is as an overview specification of the communication behaviour
of real-time systems, in particular telecommunication switching systems. MSCs may be used for
requirement specification, simulation and validation, test case specification and documentation of dis-

tributed systems.

MSCs focus on the communication behaviour of system components and their environment by
means of message exchanges. A set of MSCs usually covers a partial system behaviour only since
each MSC represents one scenario or several closely related scenarios. The main focus of MSCs is not
on complete system descriptions but rather on the specification of special system properties or func-
tions (i.e. scenarios). MSCs can also represent test purposes for the automatic generation of test cases.
MSCs can be used as complement to SDL. Similarly to SDL, the MSC language has graphical (MSC/
GR) and textual (MSC/PR) syntax forms. A recent enhanced@gtt;level MSCgHMSC), includes
control structures that can combine several MSCs. Under an apparent simplicity, MSCs can neverthe-

less lead to many subtleties and misinterpretations [236].
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Petri Nets

Petri Nets (PNs) [281] are abstract machines used to describe system behaviour visually with a
directed graph containing two types of nodes: places and transRiaees represented by circles,
containtokenswhereadransitions represented by lines, allow tokens to move between places. An
event usually corresponds to trng of a transition, which is allowed when all arrows entering the
transition originate from places with tokens. PNs can be represented graphically, and they are usually
formalized with simple mathematical arrays and functions. They can specify the logic of distributed
systems at different levels of abstraction, and multiple techniques and tools can be used to verify

them.

A problem with plain Petri Nets is the explosion of the number of elements of their graphical
form when they are used to describe complex systems, hence they are seldom used nowadays in thi
form. However, numerous extensions have been suggested over the years to cope with this problem
many of which are supported by tools. For instabasign/CPNs a widely used tool within the Petri
Net community and has been developed for more than 10 years [95]. Design/CPN <Tqpared
Petri Nets(CPNSs) [216], an extension with complex data types (colour sets for tokens) and complex
data manipulations (arc expressions and guards), both specified in the functional programming lan-
guage ML. This tool also suppoitBerarchical CPNsi.e. net diagrams that consist of a set of sepa-
rate modules (subnets) with well-defined interfaces. Other extensions to Petri nets include time,
probabilities, communication, and even object orientation. Among t&dject CPNssupport class
nets, inheritance, (a)synchronous communication, and dynamic creation and destruction of nets
[253].

Petri Nets and their variants offer both graphical and textual representations. CPNs are now
being standardized in a superset caliggh-Level Petri Net$199], which also include a textual for-
mat described in SGML [251].
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Unified Modeling Language (UML)

The Unified Modeling Language (UML) is a general-purpose modelling language for specifying,
visualizing, constructing and documenting the artifacts of software systems (in particular object-ori-
ented and component-based systems), as well as for business modelling and other non-software sys-
tems. It includes many concepts and notations useful for the description and documentation of
multiple models, and it enjoys a strong support from academic and industrial communities. UML 1.3

is the latest version of this OMG standard [274][358].

UML has a semi-formal semantic meta-model which defines basic modelling concepts such as
objects and classes. This meta-model includes well-formedness rules expressed as formal constraints
in theObject Constraint Languag®CL). UML is graphical notation that supports nine different dia-
gram types, whose static semantics are defined in terms of the meta-model. These diagrams can be
categorized into two sets. The first set, calletlavioural diagramdpcuses mainly of functional and

dynamic aspects of systems. It is comprised of five types of UML diagrams:

« Use case diagramsShow actors and use cases together with their relationships. They

describe system functionalities from the user’s point of view.

« Sequence diagramsDescribe patterns of interaction among objects, arranged in a chro-

nological order. They originate from Message Sequence Charts.

« Collaboration diagrams. Show the generic structure and interaction behaviour of sys-

tems.

- Statechart diagrams Show the system in terms of a hierarchical state machine, with the
events that cause the transitions of one state to another and the actions that result. They are

based on Harel's notation [168].

« Activity diagrams: Capture the dynamic behaviour of a system in terms of operations.
They focus on flows driven by internal processing. Activity diagrams share many charac-

teristics with UCMs: focus on sequences of actions, guarded alternatives, and concur-
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rency; start and end points have similar purpose; complex activities can be refined; and

simple mapping to components can be achieved threxghlanes

The second set, calledructural diagramsdescribe components and static characteristics of

systems. It includes these four types of UML diagrams:

« Class diagrams Capture the vocabulary of a system. They show the entities in a system

and their general relationships.

« Object diagrams. Snapshots of a running system. They show object instances (with data

values) and their relationships at some point in time.
« Component diagrams Show the dependencies among software components.

« Deployment diagrams Show the configuration of run-time processing elements and the

software components, processes, and objects that live on them.

A textual representation of UML models and meta-modelsXtie Metadata Interchange

(XMI), has been included in the latest version of the standard [186].

3.2.3 Comparison Between Specification Techniques
Comparing such complex techniques represents a major challenge, and this section does not pretent

to cover everything there is to say about them. However, the criteria presented in Section 3.2.1 will
help to emphasize some of the main points of interest related to this thesis. The major strengths and

weaknesses of each technique will be enumerated for each category of evaluation criteria.

Usability

UCMs, MSCs, and most UML diagrams can be read and understood by a wide variety of stakehold-
ers, which is not always the case for the three other techniques, espexialwhich lacks a usable
graphical representation. In terms of modularity, SDL has already reached a good level of maturity,
while the others are still catching up: UCMs with libraries of plug-ins and patteomeslwith E-

LoTtos MSCs with HMSCs, PNs with High-Level PNs, and UML with improved packages and pro-

files.
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Abstraction is certainly a strength of UCMsptos and UML (e.g. activity diagrams),
whereas MSCs and SDL require a commitment to fine-grained details (messages, entities, parame-
ters, etc.). This is also true of scalability, where different mechanisms proved their usefulness in the
past (plug-ins and stubs for UCMSs, processes @mds and many other such strategies for UML and
SDL).

Maintenance and evolution appear to be an issue for all of these techniques, but it is worse for
MSCs and PNs due to the nature of these notations (arrows and lines/nodes) and to the use of disjoint
scenario descriptions in plain MSCs. Improving the maintenance and evolution capabilities of such
languages would contribute in a positive way to the handling of requirements changes. Looseness is
best supported by UCMs, because useful descriptions can be achieved in early design stages when
details are not always available. The other techniques need more details, and thediD$aid
SDL) are especially demanding in terms of precision. Overall, most technique are fairly mature and
standardized (PNs are undergoing standardization), but the UCM notation is still under development
and will hopefully be standardized within the next few years (work in this direction has already
started in ITU-T Study Group 10 and in the OMG).

Validation and Verification

LoTos SDL and Petri Nets are well-suited for V&V and, by using them, many types of design errors
and inconsistency and incompleteness problems have to be resolved at the time the specification is
written. This is not the case for the other techniques, because many disjoint and loose descriptions can

be created, which are prone to being inconsistent and incomplete.

Testing and simulation are well supported within the two FDTs and PNs, since they are exe-
cutable languages. This is far from being the case for many UML diagrams (the main exception being
Statechart diagrams, whose dynamic semantics in UML is still ambiguous). The new generation of
tools based on the UML/SDL standard Z.109 however improves this situation by combining SDL
simulation/testing capabilities to UML design [207]. UCMs are not executable as is, but the thesis

intends to provide an alternative by mapping UCMs to an executable formalism.
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Many techniques exist for verification and correctness checkingob4,. SDL, and PN spec-
ifications, and there is considerable experience in using them in specifications of real-life systems.

However, UCMs and UML lack established verification frameworks.

Tool Support

Several industrial-strength tools are available for SDL and MSCs (e.g. Telelogic’s Tau) and for UML

(e.g. Rational Rose), and they have been used in telecommunications companies for a number of
years. The three other techniques are also supported, to a lesser extent, by (university) tools. Thes
tools are routinely used in research environments, so they are fairly robust, although they are not

industrially supported.

Training

Because of the intuitive nature of UCMs, MSCs, and PNs, the learning curve is excellent and the tech-
niques are easily accepted by many practitioners. It is possible to use these techniques at different lev-
els of competence, and books and tutorials are availabiedand its related methodology are well
documented in books, tutorials, and papers. However, experience shows that the language is not eas
to learn, although its order of difficulty does not exceed the one of many “unconventional” program-
ming languageslo learn and use SDL and UML effectively, books, papers, technical reports, and a

number of courses as well as commercial toolsets are available.
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Summary and Discussion

According to our evaluation criteria, Table 7 summarizes the strengths and weaknesses of the selected

specification techniques.

TABLE 7. Evaluation of the Selected Specification Techniques
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UCM + 0 0 + - - - - 0 + 0
LoTos - 0 - + + + + 0 - +
MSC + 0 - - - 0 + - 0 0 + + +
SDL 0 + - + 0 - + + + + + 0 +
Petri Nets 0 0 0 0 - 0 0 + + + 0 + +
UML + 0 + + 0 0 + - - - + 0 +

Legend + = Strength; 0 = Adequate; - = Weakness.

Note that UCMs have several properties suitable for the representation of requirements and
high-level designs (readability, abstraction, scalability, looseness and ease of learning)pwbde L
complements most of UCMs weak areas related to the analysis of requirements (maturity, complete-
ness & consistency, testing & simulation, verifiability & correctness). Hence, we have reasons to
believe these two complementary notations to be a particularly good match. Moreover, UCMs and
LoTos offer similar constructs (such as sequence, alternative, parallelism, hiding, and structure, i.e.
stubs in UCMs and processes iaTos), which result in simpler mapping and traceability relations.

In particular, both UCMs anddTos aim to represent the ordering of abstract events in a system.

These are two of the main reasons whg®&VALU E uses those notations.

The complementarity of@Tosand system behaviour paths has also been observed by Vigder

[362]. In his thesis, Vigder used a very preliminary path notation calieels which guided the
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design of component-based concurrent systems. These designs were translated (manoathg to L
models, which provided formal semantics and enabled analysis. No validation strategy was proposed,
and the practicality of the work was somewhat limited. Nevertheless, Vigder's work provided some

inspiration for the creation of Use Case Maps and f@c¥ALUE.

UCMs and loTos being mutually complementary does not mean that UCMs could not be
combined to other techniques, on the contrary. We believe most design methodologies could benefit
from the combined use of different specification techniques, which often bring different viewpoints
and complementary strengths. For instance, SDL and UCMs also complement each other, and this
research direction is being studied by Sales and Probert [317][318]. However, the Qji@gleom-

bination is the only avenue pursued here, other combinations being beyond the scope of this thesis.

3.3 Scenarios

Over the last few years, there has been a strong interest, in both academia and industry, in the use o
scenariosfor requirements engineering and system design, testing, and evolution [107][185][368].
Scenarios are known to help describing functional requirements, uncovering hidden requirements and
trade-offs, as well as validating and verifying requirements. The introductioseotasesn the

object-oriented world confirmed this trend almost a decade ago [212].

The exact definition of a scenario may vary depending on used semantics and notations, but
most definitions include the notion ofpartial description of system usage as seen by its users or by
related systems [305]. There is no clear separation between the meanings of use case and scenario. |
UML, use cases are defined as sequences of actions a system performs that yield observable results
value to a particular user (actor) [274]. In the object-oriented community, use cases are interpreted as
classes of related scenarios, where scenarios are sequential and where use case parameters are inst
tiated with concrete values. Hence, a scenario is a specific realization of a use case [274][304]. How-
ever, the requirements engineering community sometimes sees multiple use cases as being containe
in a scenario. In this thesis, the terms “use cases” and “scenarios” are used interchangeably, althougt

sequential scenariogill refer to instantiated sequences of events or actions.
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Many scenario-driven methodologies are now available and they often have a high degree of
acceptance because of the intuitive and linear nature of scenarios [215][368]. Scenarios can be related
to traces (of internal actions and external events), to message exchanges between components, to
interaction sequences between a system and its user, to a more or less generic collection of such
traces, etc. Numerous notations are also used to describe scenarios: semi-formal pictures [212], natu-
ral language or structured text [126][274][304], grammars or automata [183], boolean or logic expres-
sions [340], tables [98], and message exchange diagrams similar to MSCs [212][274][304][333], to
mention but a few. The approaches available differ on many aspects, depending on the definition and
the notation used. Scenarios are used not only to elicit requirements and produce specifications, but
also to drive the design, the testing, the overall validation, and the evolution of the system. This sec-
tion introduces several scenario notations and gives a short comparison based on eight criteria. It also
discusses several design processes that make use of scenarios, as well as techniques for the analytic

and synthetic construction of component behaviour from scenarios.

3.3.1 Why Scenarios?
One frequent problem requirements engineers are faced with is that stakeholders may have difficulties

expressing goals and requirements in an abstract way [238]. Typical usage scenarios for an hypotheti-
cal system may be easier to obtain than goals or properties when the system understanding is in its
infancy. This fact has been recognized in cognitive studies on human problem solving [47] and in

research on inquiry-based requirements engineering [288].

The use of scenarios for requirement engineering and system design bears benefits and draw-

backs. A non-exhaustive list of the most relevant ones follows in Table 8.
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TABLE 8. Benefits and Drawbacks of Scenarios
Benefits Drawbacks

* Scenarios are intuitive and relate closely to the * Since scenarios are partial representations, completeness
requirements. Different stakeholders, such as and consistency of a set of scenarios are difficult to agsess,
designers and users, can understand them. Theyf areespecially when the scenarios are not described at a
particularly well suited for operational descriptions of uniform abstraction level.
reactive systems. * Scenarios are not able to express most non-functional

* They can be introduced in iterative and incremental requirements.
design processes. » Scenarios often leave required properties about the

* They can abstract from the underlying system intended system implicit.
structure, if necessary. * The synthesis of components behaviour, from a colle¢tion

¢ They are most useful for documentation and of scenarios, remains a complex problem.
communication. * The use of scenarios leads to the usual problems related to

* They can guide the generation of requirements-basedraceability with other models used in the design progess.
tests used for validation at different levels * Getting and maintaining the right granularity for the
(specification, design and implementation). scenarios can be a real challenge.

* They can guide the construction of more detailed « Design approaches based on scenarios are rather regent
models and implementations. and seldom possess a high level of maturity. Scalabiljty

and maintainability represent notably important issueg.

The increasing popularity of scenarios makes us believe that their benefits outweigh their
drawbacks. Further, these drawbacks can often be cured by using scenarios in conjunction with other
techniques. In spite of the fact that this thesis intends to emphasize the benefits of scenarios, many
issues related to scalability, maintainability, completeness, consistency, synthesis, and traceability

will be addressed as well.

3.3.2 Evaluation Criteria for Scenario Definitions
Many definitions of the term “scenario” exist, and it would be impossible to enumerate them all.

However, the following collection of eight important criteria will help to categorize and compare

many scenario notations [29]:

« Component-centeredScenarios can be described in terms of communication events
between system components only (i.e. component-centered), or else independently from
components, in a pure functional style (end-to-end). This is a very important criterion as

many notations focus solely on interactions between components, while in our view these
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interactions are secondary and result from the need to implement the causality relation-
ships linking responsibilities (processing activities) in different components. An early
focus on messages may lead to system overspecification and may prune out other appro-

priate options.

Hiding: Scenarios could describe system behaviour with respect to their environment only
(black-box), or it could include internal (hidden) information as well (grey-box). Accord-

ing to Chandrasekaran [90], the most important reason that impeded the progress of vari-
ous large projects he studied is the lack of internal details in scenarios. Essentially, treating
the system like a black box in a scenario model means that there shall be no consideration
of implementation constraints while describing scenarios. It does not mean that a scenario
shall not delve into details of requirements on internal system functionality. Zave and
Jackson present a different viewpoint and claim that when it comes to requirements, the
environment is not the most important thing — it is the only thing [383] (this view is
shared by Probert and Wei in [295]). They suggest to avoid any implementation bias on the
basis that requirements are supposed to describe what is observable at the interface
between the environment and the system, and nothing else about the system. Our opinion
is more in line with Chandrasekaran’s: shared events, whether they are controlled by the
system or by the environment, are insufficient. Many implementation constraints are not
necessarily premature design decisions, but in fact non-functional requirements. Addition-
ally, there comes a point where the gap between requirements and high-level designs or
implementations needs to be filled (an important topic of this thesis), and descriptions of

activities performed internally by the system can then be of tremendous help.

Representation Scenarios can be described in various ways, for instance with semi-for-

mal pictures, natural language, structured text, grammars, trees, state machines, tables,
and sequence diagrams. Graphical representations are often better understood by a wide
range of stakeholders, whereas structured textual languages are often less constrained in

terms of expressiveness. The level of formality has also an impact on the usefulness of a
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notation: less formality is better for requirements, but more formality is desirable for

detailed design and automated model transformations or code generation.

« Ordering: Scenarios represent a collection of events ordered accordimngetonly or to
causality Causal ordering is very important when concurrency is involved, otherwise con-
current actions expressed with a time ordering might result in logical fallacies in the
requirements (see the explanationRofst hoc, ergo propter hooelow the title of this

chapter). Causality is further discussed in Section 3.1.

« Multiplicity : We can either have omsengletrace only (i.e. a sequential scenario) or possi-
bly multiple related traces per scenario. Having multiple scenarios linked together leads to
more concise descriptions and to a better understanding of the integration of scenarios,
whereas the availability of individual scenarios eases the construction of traceable links
across design models. But obviously, a notation that can support multiple scenarios can

support single scenarios as well.

« Abstraction An abstractscenario is generic, with formal parameters, whereamearete
scenario focuses on one specific instance, with concrete values. Abstraction is beneficial
in the early stages of design (e.g. requirements capture) and for capturing families of sce-
narios that differ only by their concrete values. Notations that focus on concrete scenarios
however ease the transition towards detailed models (e.g. state machines), test cases, anc

implementations.

« ldentity: Scenarios can focus @me actoror targetmanyactors at once. The later is seen

as a major benefit in terms of expressiveness.

« Dynamicity. A scenario notation idynamicwhen it enables the description of behaviour
that modifies itself at run-time, otherwise it is said testaic Emerging telecommunica-
tion services enabled by IP networks, agent systems, and negotiation mechanisms can ben-

efit from notations that can express dynamicity.

Obviously, other sets of criteria could be defined. For instance, Cockburn uses four dimen-

sions to use case descriptions, nanpelspose content plurality, andstructure[98]. Purpose can be
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either for stories (explanations) or for requirements. Content can be either contradicting, consistent
prose, or formal content. Plurality is either 1 or multiple, similar to our multiplicity. Structure can be
unstructured, semi-formal, or formal. This dimension shares some common characteristics with our
representation criterion. According to this classification, Use Case Maps’ purpose could be both sto-
ries and requirements, whereas the other criteria would be evaluated respectively to consistent prose,
multiple, and semi-formal. Rollaret al.suggest yet another set of criteria in [311], but without a real

emphasis on specific needs of telecommunication systems.

The next section does not attempt to provide a single scenario definition. Instead, it presents

and compares different notations according to the selected criteria.

3.3.3 Overview of Selected Scenario Notations
There are dozens of scenario notations used for the description of system usage, goals, and business

logic. For example, Hurlbut’s thesis surveyed and compared nearly sixty different scenario, use case,
and policy formalisms and models [184][185], and others are likely to emerge in the upcoming years.
This section focuses on selected scenario notations particularly relevant to the telecommunications

domain, and it provides a concise comparison in terms of the criteria seen in Section 3.3.2.

Message Sequence Charts

The scenario notation the most commonly used by telecommunications companies and standards bod-
ies is undoubtedly Message Sequence Charts. MSCs are essentially graphical (although a textual
machine-processable format exists), composed of concrete events (messages), and centered towards
components. MSCs can represent internal actions and multiple actors. While conventional MSCs
mostly use time ordering and single traces (MSC'2000 now enables multiple traces), High-Level

MSCs focus more on multiple structured scenarios and also on causality.

MSCs have been used by many people to formalize scenarios. Kehbleuse them to cre-
ate Service Usage Models, which describe the dynamic behaviour of the system services from the
user's perspective [229][304]. Andersson and Bergstrand also present a method to formalize use cases

that introduces an unambiguous syntax through MSCs [31].
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Use Cases

Jacobson’s use cases are prose descriptions of behaviour from the user’s perspective [212]. They ar:
mostly black-box, i.e. they focus on the interactions between actors and systems. Use case diagram:
offer a graphical means by which use cases can be related to each other. They offer relations such a
usesandextendswhich allow for uses cases to reuse (part of) other scenarios. Use cases can be of
two kinds: basic courses, for normal scenarios, and alternative courses, which include fault-handling
scenarios. Use cases are mostly based on a time ordering, they represent multiple abstract scenario

and they may involve many actors.

CREWS-L’Ecritoire

CREWS, the European ESPRIT project @ooperative Requirements Engineering With Scenarios
[126], proposes structured narrative text for capturing requirements scenarios, together with a set of
style and content guidelines [46]. These are supported by a tool Ic8tzdoire [312] and, to some

extent, by the SAVRE tool [252].

In a way similar to Jacobson’s use cases, these scenarios are divided into two main categories: norma
scenarios and extension scenarios. The latter can be either normal (alternatives) or exceptional,
depending on whether they allow to reach the associated goal or not. This notation supports multiple
actors and abstract scenarios, focuses on external events, is centered towards components, and us

time ordering.

Scenario Trees

Hsia et al. suggest the use of scenario trees that represent all scenarios for a particular user [183].
Similarly to LTSs, scenario trees are composed of nodes, which capture system states, and of arcs rep
resenting events that allow the passage from one state to the next. They also focus on interactions

between actors and the system, they use time ordering, and they can be abstract.

This notation is best suited for a single thread of control and well defined state transition

sequences that have few alternative courses of action and no concurrency, which is seldom the case i
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real telecommunications systems. Regular expressions are used to formally express the user scenario

that results in a deterministic finite state machine.

Use Case Trees

Boni Bangari proposes Use Case Trees (UCTs) as a text-based notation for describing scenarios
related to one entity [59]. This notation, inspired from TTCN [197][294], captures sequential and
alternative scenarios in terms of messages. These messages are sent and received through points of
control and observations (PCOs) belonging to an actor under test. The grammar-like representation
allows for sub-trees, timer events and data parameters (assignments, operations and qualifiers) to be
defined and used. An interesting property of UCTs is that sequential scenarios can be automatically
derived (usually as Message Sequence Charts) and characterized as normal, low risk, or high-risk sce-
narios. This notation is potentially useful for defining compact validation test suites targeted towards
the system as a whole or towards single components. However, the lack of support for concurrency,

multiple entities and hiding limits its usefulness as a requirements notation.

Chisel Diagrams

Aho et al. have performed empirical studies with telecommunication engineers to create the Chisel
notation [4]. The graphical language Chisel is used for defining requirements of telecommunication
services. Chisel diagrams are trees whose branches represent sequences of (synchronous) events tak-
ing place on component interfaces. Nodes describe these events (multiple concurrent events can take
place in one node) and arcs, which can be guarded by conditions, link the events in causal sequences.
Multiple abstract scenarios and actors can be involved, but internal actions are not covered. The inter-
ested reader can find further information on the transition from Chisel to UCMs in [18], and from
Chisel to loTosin [354][357].

Statechart Diagrams

Glintz uses Harel's Statechart notation [168], now part of the Unified Modeling Language, as a way

of capturing scenarios [154]. This results in a formal notation for validating and simulating a behav-
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ioural model representing the external view of a system. Scenarios must be structured such that they
are all disjoint. Any overlapping scenarios must be either merged into a single scenario or partitioned

into several disjoint ones. Such structuring allows for each scenario to be modelled by a closed State-
chart, i.e. a single initial state and a single terminal state, with other states in between. Composition of
scenarios is performed though sequence, alternative, iteration, or concurrency declarations. These

scenarios support causal ordering, multiple actors, and multiple abstract scenario sequences.

Life Sequence Charts

Damm and Harel propose Life Sequence Charts (LSCs) [106], which enrich MSCs with a concept

calledliveness Liveness enables one to specify mandatory scenarios as well as forbidden scenarios
(e.g. to capture safety requirements) through the same representation. Although the liveness concep
is certainly useful and leads to more accurate component descriptions, LSCs satisfy essentially the

same criteria as HMSCs.

Somé’s Scenarios

Someéet al.represent timed scenarios with structured text, but also with a formal interpretation where

preconditions, triggers, sequence of actions, reactions and delays are specified [332][333][334]. Sce-
narios are interpreted as timed sequences of events, which make them appropriate for real-time sys:-
tems. External events represent interactions between components, including actors, whereas action:
can be internal. These textual scenarios can also be represented graphically. Somé extended the MS
notation to support additional scenario elements such as conditions and expiration delays (now cov-

ered to some extent by HMSCs).

Multiple abstract scenarios and actors can be considered by these component-based notations
They are ordered according to time, although non-linear causality appears when composing the sce-

narios together to form an automaton.
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RATS

In his RATS Requirements Acquisition and specification for Telecommunication S¢miedsdol-

ogy [120], Eberlein uses three different scenario representations: textual (natural language), struc-
tured (in text, but with pre/post/flow conditions) and formalized (structured text, more component-
centered). The aim of having these three notations is to allow a smooth and gradual transition from a
service description in natural language to a formal specification in SDL. Scenarios are divided into
normal, parallel/alternative, and exceptional behavior, in order to help the developer to first focus on
the most common behavior and then later on the less common system functionality. The use cases can
be structured hierarchically in overall use cases of higher abstraction. Most scenarios are abstract and
linear, althougloverall scenariosapture multiple scenarios, with a causal ordering. The methodol-

ogy has been implemented in a prototype of the RATS tool, a client-server-based expert system.

UML Activity Diagrams

All UML behavioural diagrams can be used to describe scenarios. Four of them have already be dis-
cussed in some form in this section: Jacobson’s use cases and use case diagrams, sequence diagrams
(similar to MSCs, although less expressive than Z.120), collaboration diagrams (same information as
MSCs, but with a two-dimensional view of the component architecture), and Statechart diagrams. The
last type, activity diagrams, stands out as an interesting way of capturing scenarios. Activity diagrams
capture the dynamic behavior of a system in terms of operations. They focus on end-to-end flows
driven by internal processing. Activity diagrams share many characteristics with UCMs: focus on
sequences of actions, guarded alternatives, and concurrency; complex activities can be refined; and
simple mapping of behavior to components can be achieved through vesticdanes However,

activity diagrams do not capture dynamicity well, and the binding of actions to "components” is

semantically weak in the current UML standard.

Use Case Maps

UCMs are discussed thoroughly in this document, but let us recall that they represent multiple

abstract scenarios through visual paths linking responsibilities. The latter can be allocated to compo-
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nents or users (actors), yet interactions between component, which implement the causal flow of

responsibilities, are left to a more detailed stage of the design process. UCMs can also capture run-

time self-modifying behaviour through dynamic stubs and dynamic responsibilities.

Summary and Discussion

The thirteen scenario notations compared in this paper are summarized in Table 9. Due to some major

differences, HMSCs are considered separately from basic MSCs in this table.

TABLE 9. Comparison of the Selected Scenario Notations
ﬁlgf:t?(;lr? %?tﬁite;_t:rﬁd Hiding Representation Ordering | Multiplicity | Abstraction | Identity |Dynamicity
MSC Comp.-centered Yes Sequence Diagram Time Single Concfete Many Static
HMSC Comp.-centered Yes Sequence Diagram Causal Multiple Concrete Many Static
Use Casg| Comp.-centered No Text Time Multiple Abstrac Many Statig
CREWS’ || Comp.-centered No Structured Text Time Multiple Abstract Many Static
Scen. Tree| Comp.-centered No Tree & Grammar Time| Multiple Abstract  One gctor Static
UCT Comp.-centered No Text & Grammar Time Multiple Concrete  One gctor Static
Chisel Comp.-centered No Tree Causdl Multiple Abstract Many Static
Statechart| Comp.-centered No State Machine Causgl Multiple Abstract Many Static
LSC Comp.-centered Yes Sequence Diagram Causal Multiple Concrete Many Static
Somé’s || Comp.-centered Yes Structured Text &  Time Multiple Abstract Many Static
Sequence Diagram
RATS Either type Yes Structured Text Causal Multiple Abstract Many Static
UML Act- End-to-end Yes Paths on Swimlangs Causgal Multiple Abstract Many Static
ivity Diag.
UCM End-to-end Ye& | Paths on Components Causal Multiple Abstragt Many Dynanmic

a.

In bound UCMs, what is inside components is usually assumed to be hidden.

MSCs are most useful for single scenarios, especially when expressing lengthy black-box

interactions between actors and a given system (something that UML activity diagrams and UCMs do

not do well). However, MSCs are not appealing for structuring related scenarios. HMSCs and LSCs

are more powerful and expressive, but they still require an early commitment to components. Use

cases and UCTs are generally not used to describe internal responsibilities and they do not support

causal ordering. CREWS’ scenarios improve on use cases by using structured text and guidelines, yei

Specification and Validation of Telecommunications Systems with Use Case Mapsaad L 73



CHAPTER 3 Literature Survey

they have essentially the same limitations. Scenario trees and UCTs focus on only one actor at a time,
which is often not desirable when describing telecommunications systems requirements. Chisel dia-
grams represent a good alternative to scenario trees, but they still focus on interactions between com-
ponents. Somé’s scenarios lack the causal ordering that only appears when scenarios are transformed

into component automata.

UCMs, RATS, and UML activity diagrams stand up as being the only surveyed scenario nota-
tions that are not component-centered but define end-to-end behavior. This is useful for early descrip-
tions of requirements and helps to avoid overspecification. Also, UCMs stress causality relationships
that can span many components. UML activity diagrams can, to some extent, present a similar view
with swimlanes, but swimlanes are semantically weak and they cannot represent the architecture in
two dimensions (swimlanes show components as columns). RATS scenarios can capture non-func-
tional information, unlike most other notations. They have many of UCMs' characteristics, but UCMs
have only one type of scenarios (not three as in RATS), and they are graphical, a property that makes
them appealing to a variety of stakeholders. UCMs can also capture dynamicity through dynamic
stubs (with multiple sub-maps selected at run-time) and dynamic responsibilities (which can move
sub-maps around and store them in pools of sub-maps). This useful feature, fairly unique to UCMs,
enables the description of emerging telecommunication services based on agents and dynamic selec-

tion of negotiation mechanisms.

Overall, we believe the UCM notation to have very good features for the capture of require-
ments and the description of high-level designs. MoreowErpkis one of the few formal technique
surveyed that can specify scenarios that are component-centered as well as those that are not (SDL
requires components), hence it can support a progression from system requirements descriptions to
component-centered high-level designBE@GVALUE can therefore take advantage of this added

value provided by the UCM<TOScombination.

3.3.4 Construction Approaches
In the scenario-driven development of telecommunication systems and services, it is important to

leverage the investment in scenarios in order to generate systems rapidly, at low cost, and with a high
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quality. To support the progression from scenarios capturing requirements and high-level functionali-
ties to detailed designs and implementations based on communicating entities, we can learn much by
examining different construction approaches used in the protocol engineering discipline, where the
construction of a model based on another model is a concept supported by many techniques. The con
struction of models from scenarios is nowadays getting a lot of attention from academia and industry

[341]. This section introduces and compares many construction approaches.

Protocol Engineering Approaches

In the field of protocol engineering, the construction of a model based on another model is a concept
supported by many approaches. In [293], Probert and Saleh present two categories of construction
approaches for communication protocols that can be generalized to most reactive and distributed sys-

tems:

« Analytic approach: this is a build-and-test approach where the designer iteratively pro-
duces versions of the model by defining messages and their effect on the entities. Due to
the manual nature of this construction approach, which often results in incomplete and
erroneous model, an extra step is required for the analysis, verification (testing), and cor-

rection of errors.

« Synthetic approach a partially specified model is constructed or completed such that the
interactions between its entities proceed without manifesting any error and (ideally) pro-
vide the set of specified services. For properties preserved by such approaches, no verifi-
cation is needed as the correctness is insured by construction.

In particular, Saleh surveyed multiple synthesis techniques applied to two protocol engineering

domains:

« Synthesis of protocol specifications from service specifications [293][315]. In a layered
reference model like OSI, this problem relates to the design of the protocol specification
of layer N from the service specifications of layers N and N-1. The usefulness of service

specifications is emphasized in [363].
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« Synthesis of protocol converters [316]. This problem is formulated as the design of a con-
verter for the interworking between two incompatible protocols, at layers N and M, given

the formal specification of these protocols and/or the services they provide.

TABLE 10. Benefits and Drawbacks of Protocol Engineering Construction Approaches

Construction Benefits Drawbacks
Approach
* No formal source model required. * Transformation mostly manual.
* Both the source and target models can * Errors may result from the construction.
exploit the richness of their respective mod-¢ Verification is required.
elling language to their full extent. * Many iterations may be required to fix the errprs
* The constructed model can more easily take detected during verification.
Analytic into consideration design or implementatipre Time-consuming.
constraints (e.g. to reflect the high-level
design), and be optimized accordingly.
* Non-functional requirements (e.g. perfor-
mance and robustness) can more easily be
taken into consideration.
* Improper synthetic constructions can be | * Not fully automated.
avoided by interacting with the designer. | ¢ Requires a formal source model.
* Correctness “ensured” by construction * May require a partially constructed model to|be
(under certain assumptions). Many faults fare available.
therefore avoided. « Both source and target modelling languages| are
Synthetic * Verification theoretically not required. usually restricted in style and content.
interactivé * Only one iteration required. * Requires more details in the source model than
* Quick construction. non-automated approaches.

* Difficult to take into consideration design/
implementation constraints, optimizations, and
non-functional requirements.

* Resulting model usually hard to understand,
maintain and extend.

* Fully automated. * Requires a formal source model.
* Correctness “ensured” by construction * Both source and target modelling languages are
(under certain assumptions). Many faults jare usually restricted in style and content.
therefore avoided. * May result in improper synthetic constructions
Synthetic, * Verification theoretically not required. in ambiguous cases (the algorithm makes the
automated ¢ Only one iteration required. decisions, not the designer).
* Very quick construction. * Requires more details in the source model than
non-automated approaches.

* Resulting model usually hard to understand,

maintain and extend.
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Synthetic approaches may or may not be fully automated. Sometimes, they requirerthe
active participation of the designer as some decisions need to be taken along the way. In both cases,
synthetic approaches require the source model to be described formally (usually with some automata
model or with FDTs), whereas analytic approaches may start with semi-formal or informal models.
Analytic and (automated) synthesis approaches have many other benefits and drawbacks, some o

which are summarized in Table 10.

We have no intention of surveying the myriad of approaches for the synthesis of protocols or
converters. However, we can build on the benefits and drawbacks presented here to evaluate construc

tion techniques based on scenarios that are applicable to telecommunications systems in general.

Comparison Criteria for Model Construction

The construction of models that integrate scenarios represents a problem similar to those faced by the
protocol engineering community. A collection of scenarios often needs to be checked for complete-
ness, consistency, and absence of undesirable interactions. To do so, most V&V techniques require
that a model which integrates these scenarios be available. Also, it is often desirable to map the sce-
narios onto a component architecture at design time in order to enable the generation of component
behavior in distributed applications (e.g. telecommunication systems). These two construction levels

are of particular interest for this thesis:
P1)Integration of a collection of requirements scenarios in an abstract model used for the
analysis of requirements. No components are required here.

P2) Integration of a collection of scenarios in a component-based model used not only for the
analysis of the requirements, but also as a high-level design which considers some imple-
mentation issues.

Different approaches targeting these two levels are already available, twenty of which are

reviewed next. Additional evaluation criteria include:

« Type of construction approach: analytic, synthetic non-automated, or synthetic automated.
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» Source scenario notation, such as the ones overviewed in Section 3.3.3.
« Target construction model (SDL, UML Statecharts, automata, LOTOS, etc.).

« Whether the scenario model requires explicit components and messages.

Non-Automated Analytic Approaches

The Usage Oriented Requirements Engineerifi¢ORE) approach proposed by Regnedl al.
[304][306] builds on the Objectory method [212] and adds a construction phase (unfortunately called
synthesis in their work) where use cases are integrated manually Sywotlzesized Usage Model
(SUM). This “synthesis”, which addresses leld| is composed of three activities: formalization of

use cases (using an extended MSC notation), integration of use cases (which produces usage views,
one for each actor/component), and verification (through inspection and testing). The resulting SUM

is a set of automata whose purpose is to serve as a reference model for design and V&V, including
Cleanroom’s statistical usage testing [259][307] and dynamic testing [305]. No automated support is

provided yet.

In RATS, Eberlein provides informal guidelines [120]. Non-functional requirements have to
be refined into either functional requirements or implementation constraints. The functional require-
ments have to be expressed in textual use cases. The user then has to define states in the system
behavior. Adding pre-, flow- and post-conditions results in structured use cases. The most formal use-
case notation uses atomic actions, which still contain textual descriptions. These formalized use cases
are then mapped to SDL flowchart constructs in order to addres$RvEthe approach does not go
deeply into the construction of the SDL model as RATS focuses more on the acquisition and the spec-

ification of requirements (including non-functional ones).

In his thesis, Bordeleau addresggsby defining theReal-Time TRaceable Object-Oriented
Process(RT-TROOP), which combines the use of scenario textual descriptions (use cases), UCMs,
MSCs, and ROOM (UML-RT) [62]. Included is an approach where UCM scenarios are first trans-
formed into HMSCs, and then into hierarchical CFSMsdRCharts) [61]. No construction algo-

rithm is proposed, but the use of transformation patterns is suggested instead. Several such patterns
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are provided for the UCM-HMSC mapping [63], and for the construction adMharts from
HMSCs. HMSCs are used to fill the gap between UCMs, which abstract from message exchanges,
and the state machines, which describe the behaviour of the actors/components involved. Traceability
relationships are also defined in this process. RT-TROOP focuses more on design than on require-
ments validation because verification of the ROOM model is limited (especially when compared to
FDTs). ObjecTime, ROOM’s tool, supports animation and a limited form of testing based on MSCs,

but at the same time it supports automatic code generation.

Krigeret al. present a related technique for the transformation of a set of MSCs to a State-
chart model [235], hence addressiP® The construction takes into consideration the type of seman-
tics associated to MSCs, e.g. whether there are fewer, more, or the same number of components in th
system than what is found in the MSCs, or whether additional messages (from another scenario) are
allowed or forbidden between two messages in a component, etc. This technique is however very

immature at this point and it is not supported by algorithms or tools.

According to Lamsweerde and Willemet, a drawback of scenarios is that system properties are
often left implicit. If these properties were explicit (e.g. in declarative terms), then consistency/com-
pleteness analysis would be much easier to carry out. Lamsweerde and Willemet Rildrgss
exploring the process of inferring (by induction) formal specifications of such properties (goals) from
scenario descriptions [238]. Their scenarios are sequential and synchronous interaction diagrams
whereas their goals are linear temporal logic properties expressed in the KAOS language. The scenar-
ios can either be positive (must be covered) or negative (must be excluded). Their technique repre-
sents a novel and promising contribution, but it remains analytic as it requires validation to be

performed because inductive inference is not sound. This approach is not yet supported by tools.

Yee and Woodside developed a transformational approach to process partitioning using timed
Petri Nets [380], which addresde2 An abstract scenario model combining both the system and its
environmentProcess Specification of RequirementdPSR) is partitioned, using a collection of cor-

rectness preserving transformations (abstraction, refinement, sequentialization, partitioning, and
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resource access control), into a collection of communicating processes that can represent system com-
ponents groto-design. Both the source and the target models are described using timed Petri Net,
and the transformations ensure their behavioural equivalence from the environment viewpoint. Being
executable, the target model can be used for analysis and for performance evaluation of alternative
architectures. The source model does not require any component, but the selection and application of

the transformations are manual.

Non-Automated Synthesis Approaches

Desharnai®t al. propose a synthesis approach for the integration of sequential scenarios represented
in state-based relational algebra [114]. The initial scenarios involve the system and a single actor
(concurrency is not involved), and the result is one large scenario represented again in relational alge-
bra. As a result, levé?1 is addressed. Although the authors claim that data and complex conditions
being incorporated in the formalism represent an advantage over other approaches, their technique

seems somewhat limited in terms of usability and scalability for realistic telecommunication systems.

In his thesis [333][334], Somé proposes a composition algorithm that transforms his scenarios
into Alur’'s timed automata [7], one for each component (hence addrés3inghis synthesis algo-
rithm is implemented in a prototype tool, where consistency and completeness issues in the scenarios
are resolved through the interactive assistance of the requirements engineer. The synthesis is based on
the common preconditions rather than on the sequences of actions. Super-states are used when the
preconditions of one scenario are included in that of a second scenario. The algorithm preserves the
temporal constraints associated to the scenarios, which is seldom the case of other (semi-)automated

synthesis techniques.

Harel and Kugler propose an algorithm for the synthesis of Statecharts from a subset of the
Life Sequence Charts (LSCs — [106]) notation, without data or conditions [169]. This algorithm
decides the satisfyability and consistency of a set of LSCs, something that is harder to do than for
MSCs due to the possibility of expressing forbidden scenarios. The algorithm then produces a global

system automaton. In order to addrE&s this global automaton can be distributed (as Statecharts)
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over the set of components involved in the LSCs. These components share all their information with
each other, which simplifies the synthesis algorithm. This work is promising but it is not yet sup-

ported by tools.

Alur et al. have an algorithm which transforms a set of stateless basic MSCs into communicat-
ing state machines of various types (leR8) [9]. This technique supports the detection of implied
scenarios resulting from the composition of multiple MSCs. Alur’s algorithm uses a language-theo-
retic framework with closure conditions. Its emphasis is on safety and on efficiency (it executes in
polynomial time), and it can generate counter-examples for non-realizable sets of MSCs. The detec-
tion is based on previous work done in collaboration with Holzmann and Peled [8], who extended this
work in another direction to support HMSCs during requirements analysis with theRB&dl
[182][249].

Makinen and Systa developed an approach and tool to synthesize UML Statechart diagrams
from a set of UML sequence diagrams [254], hence addreB&ingince fully automated synthesis
may overgeneralize the Statechart and may introduce more scenarios than described in the sequenc
diagrams, the MASMinimally Adequate Synthesizexpproach is interactive. MAS models the syn-
thesis process as a language inference problem and translates sequence diagrams first into traces, the
into finite state automata, and finally into Statechart diagrams. The interactive part of the tool asks
membership queries visualized as sequence diagrams (in a nutshell: “Is this sequence diagram accept
able?”), which allow the derivation of a consistent and deterministic Statechart diagram. Counter-

examples can be provided when appropriate.

Automated Synthesis Approaches

With their SCED methodology [232], Koskimiesal. propose a synthesis algorithm based on that of
Biermann and Lrishnaswamy [49], the latter being available since the mid-70’s. SCED’s synthesis
algorithm integratescenario diagramsan extension of the basic MSC’92 notation with iterations,
conditions, and sub-scenarios (thus more in line with MSC 2000), and outputs OMT state diagrams

[314], which are based on Harel's Statecharts. The synthesis is supported by the SCED tool [233],
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which also contains visual editors for scenario diagrams and state diagrams. The state machine gener-
ated by the tool is minimal with respect to the number of states necessary to support the scenarios.
The authors claim that their approach is not tied to the OMT methodology, and hence can be reused in

other contexts to address the |evél

Schonbergeet al. have developed another algorithm based on a similar idea [322], only this
time they start with another type of scenario notation: UML collaboration diagrams. Their synthesis
procedure address®2 by generating UML Statecharts, which make extensive use of concurrency
constructs to satisfy the inherent concurrency found in collaboration diagrams (but absent from Kosk-
imies’ scenario diagrams). Although their algorithm does not output a minimized state machine, the
authors provide several state diagram compression techniques. This procedure has a polynomial com-
plexity and is not incremental, whereas Koskimies’ approach is incremental but with an exponential
complexity. A prototype tool implements this algorithm, and it can be used to generate graphical user
interfaces automatically, provided that the initial collaboration diagrams include appropriate addi-

tional information [125].

Whittle and Shumann [374] propose an algorithm for the generation of UML Statecharts from
a collection of UML sequence diagrams (addre$s®s It allows for conflicts to be detected and
resolved through UML's Object Constraint Language (OCL) and global state variables. These State-
charts can be non-deterministic. The target Statechart model is intended to be highly structured (hier-
archical) and readable in order to be modified and refined by designers. This algorithm shares
similarities with the work of Schonberger [322] and Somé [333] as the hierarchical nature of the
states is inferred. However, the synthesis is also influenced by structure elements found in other types
of UML diagrams such as class diagrams. The approach is supported by a prototype tool written in

Java.

Leueet al. have developed two algorithms for the automated synthesis of Real-Time Object-
Oriented Modeling (ROOM) models [326] from standard HMSC scenarios [244]. Essentigiiy; R

Charts (hierarchical state machines similar to Harel’s) are generated for each actor in the HMSCs,
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hence addressing2. One major assumption is that the basic MSCs referenced by the HMSC are
mutually exclusive, i.e. unlike SCED, only one scenario is active at any time. This results in simpler
synthesis algorithms. The first algorithm, caltedximum traceabilifypreserves the HMSC structure

in the synthesized model. The second one, caledimum progressgenerates smaller state
machines but sacrifices traceability with respect to HMSCs. The properties preserved by these algo-
rithms are still under investigation. Both algorithms are implemented in Hsa Molset [45], and

their authors claim that their work can be adapted to support SDL and UML.

Mansurov and Zhukov addreB2 and target the automated generation of SDL models from
HMSCs [255]. The scenarios are first sliced by actor, then communicating finite state machines are
generated for each actor. These FSMs are made deterministic and minimal, and then transformed intc
SDL processes. The resulting SDL system usually allows more traces than those defined by the
HMSCs. Very little is said about the synthesis algorithm itself, and the levels of detail and consistency
required by the MSCs is relatively high. This technique is implementedsT,Mhe Moscow Syn-

thesizer Tool.

Li and Horgan target the architectural analysis of telecommunications systems with an algo-
rithm for the semi-automated synthesis of SDL models from architectures described using compo-
nent, links, andrchflows[246]. Archflows are sequential workflows where the steps are observable
events, internal events, or sending/reception of messages performed by the components (hence
addressingP2). The resulting SDL model is complete and assumed to be valid when it contains all the
archflow traces, in a way similar toMay Passverdict in the loTOS testing theory (Section 3.4.3).
Workflows are assumed not to conflict with each other, hence they should be consistent and have no
undesirable interaction, which is of limited use for early validation. Non-determinism is allowed, and
the model can be supplemented with performance information for performance prediction evalua-

tions. The method is supported by a toolset, th®K¥LOW-TO-SDL-DIRECT-SIMULATION .

Khendek and Vincent propose an approach for the construction of an SDL model given an

existing SDL model, whose properties need to be preserved (an extension relation is provided), and a

Specification and Validation of Telecommunications Systems with Use Case Mapsaad L 83



CHAPTER 3 Literature Survey

set of new MSC scenarios [228]. The synthesis algorithm considers only input/output signals, not the
actions in the transitions. The semi-automated construction is done in three steps: add new compo-
nents if necessary (manually), synthesize the new architecture behaviour from MSCs using the
MSC2SDL tool [1], and then merge the behaviour descriptions of the old SDL with the increment
SDL, on a per process basis. If non-determinism that violates the extension relation is added along the
way, then the tool reports the problem (error detection only). If an MSC description of the old SDL
specification is available, then the approach can be simplified to adding new MSCs to the old MSCs
and regenerate the new specification using the MSC2SDL tool. However, the extension relation may

also be violated by this approach.

Turner presents an approach calleRe€s (Chisel Representation Employing Systematic
Specification), which defines tightly defined rules for the syntax and static semantics of an enhanced
version of Chisel diagrams [354]. This improved notation has formal denotations indoatk and
SDL, hence enabling the synthesis of formal models in order to support the rapid creation, specifica-
tion, analysis and development of features. AlthougbBgSoften represents scenarios as trees (more
precisely as directed acyclic graphs), the tree nodes represent interactions between components.
Hence, this approach is roughly comparable to the ones starting from HMSCs (altresghrter-
actions are synchronous and directionless) and it also addR&IERESSIs supported by a set of
tools for parsing, checking and translating diagrams. However, the synthesis algorithm remains

undocumented and hence little in known about the design decisions taken by the translation tools.

Dulz et al. present an approach where performance prediction models (in SDL) are also auto-
matically synthesized from MSC scenarios, but this time supplemented with performance annotations
[118]. Their goal is to obtain performance estimates early in the design process (other techniques for
the construction of performance models from UML and SDL are reported in [377]). The synthetic
SDL model is intended to be a throw-away prototype (IBxtgl but it is nonetheless used to generate
the code for the target system whose performance is evaluated. The approach is supported by a proto-
type tool (LsA), however the algorithm remains obscure. It is not even clear whether two MSCs that

start with a similar transition should be composed as alternatives, as sequences, or in parallel.
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Scenarios

Several aspects of the reviewed construction approaches are summarized in Table 11:

TABLE 11. Comparison of the Selected Construction Approaches
Approach Level Type of Approach Scenario Models Construction Models | Comp?
Regnellet al. a .
(UORE) P1 Analytic Extended MSC Automata Y
Eberlein .
(RATS) P2 Analytic Structured text SDL N
Bordeleau )
(RT-TROOP) P2 Analytic UCMs, HMSCs ®omCharts N
Kruger et al. P2 Analytic MSCs Statecharts Y
Lamsweerde . Sequential and synchronops L
o) Wl e P1 Analytic MSCs LTL properties in KAOS Y
Yee and . ) ) i .
T P2 Analytic Timed Petri Net Timed Petri Net N
Desharnais P1 Synthetic, non-automated State-based relational State-based relational b
et al. algebra algebra
Somé P2 Synthetic, non-automated Structure’\jlist%xst, extended Timed automata Y
Harel and P2 Synthetic, non-automatetii LSCs Statecharts Y
Kugler
Alur et al P2 Synthetic, non-automate4i Basic MSCs CFSMs Y|
Makinen and . UML sequence
Systa (MAS) P2 Synthetic, non-automateJi diagrams UML Statecharts Y
Koskimies et . .
al.(SCED) P2 Synthetic, automated Extended MSCs OMT state diagrams
Schonberger P2 Synthetic, automated UML gollaboratlon UML Statecharts Y
et al. diagrams
Whittle and P2 Synthetic, automated UMIT sequence UML Statecharts Y
Schumann diagrams
Leueet al. P2 Synthetic, automated HMSCs ORMCharts Y
Mansurov .
ol 2l P2 Synthetic, automated HMSCs SDL Y
Li & Horgan P2 Synthetic, automated Archflows SDL Y
Khendek P2 Synthetic, automated MSCs, SDL SDL Y
and Vincent
Turner . Extended
(CRESS P2 Synthetic, automated Chisel diagrams SDL or LOTOS Y
Dulz et al. P1 Synthetic, automated Extended MSCs SDL Y

a. The model is component-based, but mostly used as a reference model for requirements validation.
b. Interactions between a user and the system in terms of a relational algebra.
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Most of the techniques surveyed here require the use of scenario notations based on messages
exchanged between communicating entities (see rightmost column). MSC-like notations such as
basic MSCs, extended MSCs, HMSCs, LSCs, and UML interaction diagrams are especially common
as source scenario models for construction approaches. Techniques based on HMSCs can further ben-
efit from recent theoretical results on necessary conditions for the synthesis of communicating autom-
ata from HMSCs [173]. For target construction models, communicating finite state machines,
whether they are hierarchical gMCHARTS, (UML) Statecharts, or OMT state diagrams) or not
(SDL'96 or plain CFSMs) are very common. It is difficult to evaluate approaches for component-
based scenarios as they use varying source and target models, they are still under heavy development,
and they are not supported by commercial tools. Synthesis approaches also have different sets of con-
straints and design decisions embedded in their algorithms. Only three of the techniques surveyed
(RATS, RT-TROOP, and Yee&Woodside) do not start from scenarios expressed in terms of compo-

nents and messages, and they are only used in analytic construction approaches.

In SPEGVALU E, UCMs abstract from the communication aspect between the components,
although interaction with the environment could be attributed to start points and end points along
UCM paths. UCMs could also be unbound, meaning that no component would be involved. Hence,
most of the synthesis algorithms surveyed are of little use for the construction of formal specifications
from UCMs. Furthermore, any attempt to automate the synthesis of such specification, even partially,
would require further formalization of UCMs, which are currently semi-formal. In general, one can'’t
go from the informal to the formal by formal means. An analytic approach to the construction of

LoTosspecifications from UCMs therefore seems to be, at this time, the most appropriate avenue.

An interesting characteristic of these two languages is that they can both addre# lendls
P2. Amyot’s master thesis partially addressed |&Eby providing several mapping rules between
unbound UCMs andd&Ttos[12]. In the current thesis, we extend this work to addressP&yeVhere
components are considered in order to produce high-level designs. Additionally, FREceéASU E
rests on an analytic transformation from UCMs aoras there will be much emphasis on the verifi-

cation aspects required to gain a high degree of confidence in the resulting specification.
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3.4 Validation and Verification

In generalyvalidation refers to activities that ensure that the right product has been designed while
verification refers to activities that ensure that the product is designed correctly. Validation often
involves user requirements and scenarios whereas verification usually makes uses of formal models
and coarse-grain properties (e.g., absence of deadlocks). The distinction between validation and veri-
fication is at times blurred by the same techniques being applicable to both activities, and this is espe-
cially true of formal methods. The distinction is more a state of mind than mutually exclusive sets of

techniques.

When constructing an initial formal specification from informal requirements, as it is the case
in SPEGVALUE, Brinksma points out that the resulting models cannot be demonstrated by formal
means, hence experimentation becomes necessary [73]. Experimental validation constitutes an esser
tial methodological ingredient for the analysis of telecommunications systeasVALU E intends

to introduce such a validation framework in Chapter 6.

Many concepts surrounding V&V have already been presented in Section 2.1.3, with an
emphasis on &Tos techniques in Section 2.3.6 and Section 2.3.7. Concepts related to construction
approaches have also been introduced in Section 3.3.4. These notions will not be repeated as suct
Instead, the current section will complement these concepts with additional background on proper-
ties, general testing conceptgylostesting, coverage, and testing patterns. These concepts will help
defining and understanding the validation framework based on UCMs andsLwhich is an

expected contribution of the thesis.

3.4.1 Properties
The verification of a system under design usually involves checking a formal model against another.

Equivalence relations verify that the two models, which are usually represented using the same lan-
guage, are equivalent under some criteria. This requires a similar level of completeness from both
models. However, sometimes designers want to verify their complete formal model against partial and

more manageable models that we patiperties Properties are often described in a language differ-
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ent from the model being verified. This section presents some of the main concepts and results sur-

rounding properties and their use in@rbs-based approach.

Classifying Properties

In reactive systems, and especially in telecommunications systems, properties can be classified in

three categories [316]:

Safety propertiessomething bad never happens. In the realm of protocol engineering,
these properties ensure the absence of deadlocks, unspecified reception errors, buffer or

channel overflow, and other errors in the system.

Liveness propertiessomething good will eventually happen, i.e. the system performs its

intended functions.

Responsiveness propertiethe system respects the response time requirements (timeli-
ness, performance) and it has the possibility of recovering in the case of transient failures

(robustness and fault-tolerance).

Using different techniques, these properties can be usually guaranteed by verifying the

absence of syntactic and semantic design errors [293]:

Syntactical or logical design errorsare related to the logical structure of the exchange of
messages among entities. These errors are usually independent of the service or function-
ality: deadlocks, unspecified receptions, instabilities, livelocks, overspecification, and

channel overflow. The absence of such design errors often guarantees safety properties.

Semantic design errorsare related to the functionalities to be provided by the system.
Such errors are manifested by the abnormal functioning of the system and its inability to
meet its intended purpose. These errors usually cause liveness and responsiveness proper-

ties to be unsatisfied.

To some extent, verification is more concerned with the detection of syntactical errors (in

safety properties) whereas validation focuses more on the detection of semantic errors (in liveness and
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responsiveness properties). Note however that validation can be performed by “verifying” liveness
and responsiveness properties! Again, both concepts overlap on many occasions, and there is no cleal

cut separation.

Properties and LOTOS

In the LoTos world, verification is usually achieved through techniques such as theorem proving,
reachability analysis, model checking, equivalence checking, and testing. Theorem proving handles
systems with an infinite number of states, but it usually cannot be completely automated and hence
requires human assistance. Reachability analysis and model checking, which are based on models o
state exploration, require a finite number of states, but they are fully automated. Recent research on
symbolic model checking [327] and on-the-fly model checking [135] provides some relief for large or
infinite state spaces, but available tools are still limited and they impose many constraints and simpli-
fying assumptions on the models. Equivalences can also be used to verify properties. Céiedlaibar

[93] express their properties as graphs (Finite State Machines) that are checked, through branch
equivalence and bisimulation equivalence, against the specification. However, even this approach
needs a finite representation of the specification, which can hardly be generated from the complex and

dynamic telecommunications systems on which the thesis focuses.

Properties expressed in temporal logic (for model checking) are usually large-grained whereas
test cases can be considered as small-grained properties, because the latter are more constrained a
they usually cover fewer states in the model. However, temporal logic properties are often more diffi-
cult to create and to use than test cases, which are more linear. Tools recently started to address thi
issue by providing graphical means of developing temporal logic properties [331]. In any case, mea-

suring the completeness and consistency of a set of properties remains a complex issue [135].

Conformance relations (cgnénd canonical tester€T(S), as introduced in Section 2.3.6,
mainly target the verification of liveness properties. Whe€EHS)verifies all liveness properties at
once, test cases verify small-grain properties. Test cases that are reductions of the canonical tester of .

specification Ty such thafl, red CT(S) are calledacceptanceests. Their counterpart, callegjec-
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tion tests in this document, are expected to be rejected by the implementation. Essentially, rejection
test cases are used to check small-grained safety properties. They can also help cope with a weakness
of the_confrelation mentioned at the end of Section 2.3.6. For instance, in Figure 13 on page 40, stat-
ing that an implementation should refuse the sequence <Dial, Dial> would shdéthatot valid

with respect to its specificatid® The LoTostheory does not address the derivation of rejection test
cases because many arbitrary decisions can be taken during their creation. Responsiveness properties
are also difficult to verify in bTtosbecause this language lacks quantitative notions of time and prob-
abilities. However, robustness and fault-tolerance can be checked to some extent through the use of

temporal logic properties and tests corresponding to exceptional scenarios.

We use testing as the main validation technique in this thesis. For complex and realistic tele-
communications systems, testing is simpler, more pragmatic, and better supported along the whole
design process than any other technique discussed so far. Moreover, even the most formal verifyier
admits that a formally verified system should still be tested (who verified the compiler? and the oper-
ating system? and who verified the verifyer? and so on) [347]. The next section focuses on general

testing concepts, followed by a more detailed presentatioobdtesting.

3.4.2 General Testing Concepts
The main goal of testing is to detect errors. Research and experience have shown that the cost of find-

ing an error gets much higher the closer we get to the implementation [267][290][287][335]. There-
fore, testing should be used as soon as possible, even at the specification level. A good test case is a
test that highlights a fault in the specification. A goest suitas a set of test cases that covers, under

some hypotheses and assumptions, critical aspects, if not all aspects, of a specification.

This section briefly covers general testing concepts such as test selection, test hypotheses,
testability, conformance testing, test suites and test architectures.
Test Selection and Hypotheses

When testing complex systems, one of the main problems faced by engineers is the selection of an

appropriate test suite. Tretmans suggests four approaches that facilitate this selection [346]:
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« Select goals for individual tests.

« Weaken the specification, which then allows more correct implementations and requires

fewer properties to check.

« Weaken the implementation relation. For instance,,dmgihg weaker than tevill allow
more correct implementation and will require fewer properties to check_tharhite
approach is seldom used because the implementation relation is often selected before the

specification is created (as it can influence the way the specification is built).

« Improve the test hypotheses.

Phalippou has discussed the last option extensively, especially in the context of synchronous
testing for a class of input/output finite state machines (IOFSMs) [284]. He defines several test

hypotheses and their impact:
« Regularity: the number of next states is limited for each state in the implementation. This
allows for infinite test cases to be reduced to finite test cases.

« Independence the actions or functions are projected to independent sets. This enables a

divide-and-conquer approach to testing.

« Uniformity : the value domain are partitioned (e.g. according to some congruence rule),

and then one test for each partition is used.

« Fairness the (non-deterministic) behaviour of the implementation can be covered in a

finite and computable number of attempts.

Also, many test selection strategies impleset hypothesjsvhich requires the implementa-

tion to possess a working reset feature to be used before each test case.

Rather than working on hypotheses or relations, the thesis focuses on Tretmans’ first option

and use UCMs to define appropriate goals which will lead to the generation of test cases.
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Testability

Validation test cases can be derived according to many strategies. What is most desirable however is a
test suite that will detect invalid SUTs with the most success and the least cost. Figure 15, inspired
from Drira and Azéma [116], illustrates one important test selection goal. In this diagram, the notion
of detectabilitymeans that a test suite detects the invalidity of a specification with respect to the
requirements. For example, Section 2.3.6 states thatdwodiest cases have the same detectability

if they are testing equivalentestabilityexposes some limits caused by constraints on the accessibil-

ity, observability, and controllability of the SUT, and of the automatability of the testing process.
Other limits also relate to the fact that the behaviour may be infinite. In a recent paper, Baumgarten
and Wiland discuss many definitions of testability and provide an interesting framework where quali-

tative notions of testability can be evaluated [43].

LoTos specifications are highly testable (in opposition to conventional software) and those con-

straints are much weaker footosthan for real implementations, but they are nonetheless present.

FIGURE 15. Limit of Testability

Testability Limit of testability

SUTSs found to be validfpy Valid SUTs

the test suite.

Invalid and non-detectable
SUTs

We try to reduce this set as
} much as possible with a

good test suite.

SUTs found to be invali
Invalid but detectable SUTs

by the test suite.

There is a limit of testability beyond which invalid SUTs are not detected by a finite (and
incomplete) test suite. This set of invalid SUTs has to be reduced as much as possible. The test case
derivation and selection strategy has a direct impact on the size of this set. Of course, a good strategy
leads to a good detectability and to a lower testability limit, but also to higher costs of derivation and/

or execution.
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Conformance Testing

Specification-based testing has been used with different specification languages over the last few
decades (for instance, see [10][88][213][309]). In the context of (fomnafprmance testing spec-
ification-based technique verifying that the implementation under test conforms to its specification by
attempting to detect conformance errors, most methods assume that both the specification and the
implementation can be modelled in the same (formal) language. AccordingRaritin Methods in

Conformance TestinFMCT) framework [196], a test suite can be:

« Exhaustive all passing implementations are compliant to the specification.
« Sound all implementations that do not pass are not compliant.

« Complete the test suite is both sound and exhaustive,

The validation context proposed in this thesis is different from traditional conformance test-
ing. In particular, the term specification can be misleading as owuod specifications really are
high-level design prototypes. Therefore, in the contextrelc¥ALU E, the term “specification” is
replaced by rfequirement§ and “implementation” becomespecificationunder tes{SUT)”. To val-
idate the SUT, we plan to use functional (black-box) test cases derived from user requirements cap-
tured as UCMs. Conformance test suites are usually abstract and they target artificial coverage criteria
in terms of another previously defined model. Nevertheless, many ideas and techniques developed for

conformance testing can be applied in our specific validation context.

If a test suite is neither sound nor exhaustive, then nothing concerning conformance or validity
can be concluded by means of testing. Pragmatically, it is almost never possible to construct a finite
exhaustive test suite for real-life systems. Consequently, test suites are usually sound, but still incom-
plete. Any error detected by a sound test suite proves that the SUT is incorrect, but not finding an
error does not mean that the SUT is without errors. Optimizations of such test suites target the mini-

mization of the number of test cases and their complexity/length/cost, and the maximization of the
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discriminatory power of the tests. A test sUi§ is said to discriminate more than another drfg)(

if TS finds faults in more specifications th&s,.

Note that in the current practice, conformance does not imfgsoperabilityand interopera-

bility does not imply conformance. Two systems are interoperable if they can communicate and work
together to achieve a common goal. Two different implementations may conform to the same require-
ments or standards and yet they might not be completely interoperable. Interoperability testing is
more costly than conformance testing. The cost of conformance testing increases linearly with the
number of products to test (each one is tested against the specification) whereas the cost of interoper-
ability testing increases with the number of possible combinations of these products, which leads to
many more configurations to check. However, if the specification (or standard) is formal enough, then
conformance could potentially imply some level of interoperability. This is another motivation for the

creation of formal specifications from requirements.

Test Suites and Test Architecture

The Conformance Testing Methodology and Framew@KMF) [193] details the definition of an
abstract test suitas being composed t#st groupsEach group consists of sevetedt casesccord-

ing to a logical ordering of execution. A test case contastsstepseach of which consists of several

test eventsi.e. the atomic interactions between the tester and the implementation or SUT. Test steps

can be shared by many test cases.

A test case is often composed of several parts:
« Test purpose describes the objective of the test case (expected behaviour, verification
goal, etc.).

- Test preamble contains the necessary steps to bring the SUT into the desired starting

state.
« Test body. defines the test steps needed to achieve the test purpose.

« Test postamble used to put the SUT into a stable state after a test body is executed.
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Conformance test cases for finite state machines usually have a test body that contains one
transition followed by dest verification step (checking sequence, unique input/output, distinguish-
ing sequence, etc.), which identifies the target state [248][360]. A preamble may also contain a verifi-
cation sequence that checks the initial state. However, in many test suites, the initial state resulting
from the preamble has already been checked as a target state in a previous test case. Often test cas
are designed to be mutually execution-independent. Test cases can also be described in TTCN-3

[209], the latest ITU-T standard notation for the specification of abstract and retargetable tests.

Note that CTMF also defines multiple test architectures (local, distributed, coordinated, and
remote methods) but they will not be used in the thesis. Pee\B\LU E approach focuses on high-
level functional testing at the specification level. Therefore, the only test architecture that is intended
to be used is based owtossynchronous testing between the tester and the specification, where the

points of control and observation (PCO) are represented as obsergablkegates.

3.4.3 LoTtos Testing
LoTos exhibits interesting static semantics features that are supported by many tools. The successful

compilation of a lbTos specification ensures that several data-flow anomalies, such as the use of an
undefined or unassigned value identifier (variable), cannot occur. Since many of these problems are
automatically avoided or can be detected using existing techniques [323], they will not receive much

attention in the thesis.

Dynamic behaviour, however, is a totally different story. This is where testing can help. Sec-
tion 2.3.6 already provided an overview of basic concepts ofaedtesting theory (testing equiva-
lence, conformance relation, canonical testers, and tests cases). This section provides additional

definitions for the concepts of test suites and verdicts.

Test Suites and Relations

The LoTostesting theory has a test assumption stating that the implementation (the SUT in our case),

modelled as a LTS, communicates in a symmetric and synchronous way with external observers, the
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test processes. There is no notion of initiative of actions, and no direction can be associated to a com-

munication.

A correct test case is a reduction of the specification’s canonical t€sted CT(S). To ver-
ify the successful execution of a test case, such a test piigcasd the specification under t&UT

are composed in parallel, synchronizing on all gates but ddec@esgvent, added at the end of each
test case). If the composed behaviour expression deadlock occurs prematurelguceesfss not
always reached at the end of each branch of the LTS resulting from this composition, 88T the

fails this test. If this is not the case, then it must have passed the test

Table 12 and Table 13 present formal definitions of notations and relations that will help char-
acterizing the (un)successful execution of test casesTod Many of these definitions are inspired
from previous work by Hennessy and De Nicola [113][174] and Brinksinad. [70], and from the
FMCT framework [196]. They are used mostly in Chapter 6 where a theory for the derivation of vali-

dation test cases from UCMSs is proposed.

In Table 13, the relations are not only defined for individual test cases, but also for entire test

suites. Although the same names are used, their signatures (domains) are different.

1. It has passed unless the SUT exhibits divergent behaviour, such as an infinite loop of internal events, a case that is
outside the scope of this thesis.
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TABLE 12. Notation for Test Definitions

5Ses):

Notations Definitions
SPECS Universe of all possible behaviour expressions.
S, S1, S2... |Specifications.S O Specs, S10 Specs, S2[ SPEcs, ...
SUT Specification Under TestSUTI Specs.
TESTS Universe of test cases. Iroos tests are also behaviour expressions (proce
TESTS = SPECS.
CT(S) Canonical tester of specificati® CT(S) TesTs.
TS Test suite (set of test cases) for testing specific&dn TS [0 TesTs.
TG, Test groum. The test suite contains all test groupS= Q TGy U TGy U TESTs.
Ty Test case, which belongs to a test groupT,, LTGy | T, U TGy UTGy U TS
ACCEPT(TS) |Set of acceptance test cases fountSiiMust testy. ACCEPTTS)O TS
REJECT(TS) |Set of rejection test cases foundli@(Rejecttesty. REJECTTS) TS

TABLE 13. Passes, Fails, and Failsall Relations

Relation Definitions
Pass relation for one test case: paBEBBecs x TESTS.
SUTpassed, SUTpassed, -~ UtOTr( SUT|[all gates buSucced$ T, ), t reachesSuccess
Pass relation for a test suite: padse®ecs x PowerSef(esTs).
SUTPassed S| g\ ypasseqs « 0T, 0TS SUTpassed,.
SUTfails T Failure relation for one test case: fdilSPecs x TESTS.
= X |SUTfails T, = -(SUTpasseq,)
SUTfails TS Failure relation for a test suite: failsSpecs x PowerSef(EsTs).
= SUTfails TS « -(SUTpasse§§ - [T, 0TS SUTfails T,.
SUTfailsall T Failure relation for one test case: fail§alsrecs x TesTs.
= X|SUTfailsall T, = OtOTr(SUT]|[all gates buBuccedg$ T,), t does not reacBuccesy
: Failure relation for a test suite: failsallSpecs x PowerSef(EsTs).
SUTHlIsal TS| o\ s tailsall TS = 00T, 0TS SUTHailsall T,
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The difference between faind failsallis that theSucces®vent is never reached in failsall

while it may be so for some test runs in faitslong as at least one test run leads to a premature dead-

lock (or to an infinite loop). Hence, faiis implied by failsall(see Figure 16(a)).

FIGURE 16. Relations and Verdicts for Tests

fails

(a) Relations for Tests (b) Three Mutually Exclusive Verdicts

Verdicts and Types of Tests

This testing theory is supported by the toolh [301], which expands the composition of a test and
a specification to determine whether the executions reacutteesgvent or not. Threeerdictscan

occur after the execution of one test case (Figure 16(b)):

e Must pass all the possible executions (callegst run$ were successful (they reached the

Succesgvent for every trace). FormallgUTpassed, U Must pass.

« May pass some executions were successful, some unsuccessful (or inconclusive accord-

ing to a depth limit). Formally» (SUTpasseq,) - (SUTfailsall T,) 0 May pass.

« Reject all executions failed (they deadlocked prematurely or were inconclusive). For-
mally: SUTfailsall T, I Reject.

With real implementations, test cases often must be executed more than once in the presence
of non-determinism in either the test or the implementation (under some fairness assumption). Deter-
ministic testing, as defined by Caldetral, addresses this issue to some extent for concrete distrib-
uted programs [86][87]. At the specification levefuUa avoids this problem altogether because it

determines the response of a specification to a test by a complete state exploration of their composi-
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tion [280]. For tests that do not contaixit, LOLA uses the composition on the left, whereas the com-

position on the right is for tests that do coneit:

SUTH{EventSUT}| ( SUT{EventSUT}]
I{EventsuT} [ {EventTx}]| [[{EventSUT} LI {EventTx}|
T [{EventTx} O { Success }] T J[{EventTx} O { Success }]

)>> Success ; stop

LoLA analyzes all the test terminations for all possible evolutions (the test runs). The success-
ful termination of a test run consists in reaching a state where the termination Saverdsgis

offered. A test run does not terminate if a deadlock or internal livklsakached.

The LoTostheory differentiates three types of intent for tests submitted to a SUT:

« Must test T, is a “must test” oBUTIf it is intended to terminate for every test run when
applied toSUT (SUT passed,). A “must test” corresponds to a mandatory scenario, and
the expected verdict is a Must pass.

« May test T, is a “may test” oSUTIf it is intended to terminate for at least one test run
when applied t&UT (Cirace inSUT |[all gates buSuccess T, that leads to &uccess A
“may test” corresponds to an optional scenario, and the expected verdict is either a May
pass or a Must pass.

* Rejecttest Ty is a “reject test” oBUTIf is intended not to terminate successfully for any
test run when applied 8UT (SUTfailsall T,). A “reject test” corresponds to a forbidden

scenario, and the expected verdict is a Reject.

These types relate to what we @adteptance/rejection testingn acceptance test is a “must
test” in the seAcCEPTwhich checks that a functionality is present or that an expected result is effec-

tively output. A failure in that case is seen as catastrophic, because the underlying liveness property is

1. There is no notion of fairness in this theory. Whenever there is a loop of internal &Jeots) (vhich is not under
the control of the test process, then the test run has to be truncated. We try to avoid these loops as much as possible it
our specifications. Although some theories and simplifications (through weak bisimulation) exist, they are not imple-
mented in lOLA.
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violated. A rejection test (a “reject test” REJECT) checks that the SUT rejects one or many events

after a given sequence of events. A success in that case is catastrophic because the underlying safety
property is violated. For a given test suli§ REJECTTS)andACCEPT(TS) represent partitions, i.e.

they are mutually exclusivdREJECTTS) n ACCEPT(TS)= [J) and together they constitute the whole

test suite REJECTTS) ] ACCEPT(TS)=TS. Rejection test cases can lower the testability limit of test
suites conventionally composed solely of acceptance test cases. In Section 6.2.2, we will see that the

test type (acceptance or rejection) is, together with the test goal, part of our definition of test purpose.

“May tests” will not be used in theP&GVALU E approach as the interpretation of the May
pass verdict, composed of successful and unsuccessful traces, usually requires human intervention.
Although canonical testers can be reduced to sets of deterministic test cases [69], if a SUT happens to
be non-deterministic (i.e. for a same input event the SUT may offer different resulting events on dif-
ferent occasions), then an acceptance test could also result in a May pass verdict. In this case, the test
case has to be augmented with the necessary alternatives (present in the canonical tester) so that it
results in a Must pass verdict. As a result, the test would no longer a sequence of events but a tree of

events.

Evolution Towards Input/Output LTSs

Brinksma and Tretmans surveyed many extensions to LTS with applications to test frameworks, for-
mal test generation (with tools), and asynchronous test contexts [72]. Several of these extensions have
been used as enhanced semantic modelsdfoo4 In particular, Tretmans partitions the actions on a

LTS into inputs and outputs [347]. This enables the application of the conformance relation ioco
which is more appropriate for testing real implementations than a directionless conformance relation
like conf The relation iocalso helps to alleviate the need for a category of rejection tests based on
non-deterministic outputs of data on a gate, which is otherwise required whes esed in a valida-

tion context. This concept is extended by Heerink to multiple channels in the ralaton [171].
Although such enhanced semantics is attractive from a conformance testing perspective, where it has
been used so far [117], it does not seem to apply directly to the validationoafoa $pecification,

which is the focus of BGVALU E. Moreover, current tool support targets the automated generation
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and execution of test cases fromTos specification, but nothing is available for the testing of the
specification itself. Again, a major assumption behind these techniques is that the formal specification
is correct and valid with respect to the requirements. Chapter 6 proposes scenario-based technique:

that help increasing the level of confidence in such a specification.

3.4.4 Coverage
“When to stop testing?” is and will remain an important problem for communications software vali-

dation and verification. Communications software is often tested until the probability of failure is
believed to be small, or until the deadline for the product release is reached (whichever comes first)
[328]. Statistical models can also be helpful [265]. Lai [237] mentions that knowing how much of the
application source code has been covered by a test suite can help estimate the risk of releasing th
software product to users, and discover new tests necessary to achieve a better coverage. Inexper
enced testers tend to execute down the same path of a program, which is not an efficient testing tech-

nique.

Coverage measures are considered to be a key element in deciding when to stop testing. Cov-
erage analysis of code is a common approach to measure the quality and the adequacy of a test suit
[371][386]. Coverage criteria can guide the selection of test caga®o(i, i.e. before the execution
of the tests) and be used as metrics for measuring the quality of an existing teatmsterfori i.e.
after the execution of the tests). Many methods are available, and several criteria are well established
[92]:

« Statement coveragechecks which statements or operations are executed. Also called

structural coverage.

« Branch coverage checks whether all possible outcomes of a branch are executed. This is

particularly relevant to structured programming languages.

- Data-flow coverage measure of executing paths between creations, modifications, and

uses of data values.

« Path coverage checks the execution of syntactically- or semantically-defined paths.
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« Mutation adequacy. checks whether the tests kill all non-equivalent mutants of a pro-
gram. Mutation testing is a white-box method for creating test cases which are sensitive to
small syntactic changes to the structure of a program or of a specification. If a test can dis-
tinguish a valid program from an invalid variationngatant which is the valid program/
specification plus one modification to one operator or construct done according to a fault
model), then this is a good test and should be part of the test suite [112][292]. If a test suite

cannot detect an invalid mutant, then it needs to be augmented with a suitable test case.

This thesis covers a different angle of the same question, relating to specification coverage.
Specifications, just like programs, can be covered for several reasons and according to several criteria
[10]. For example, we want to cover a specification in the generation of conformance test cases for an
implementation, or in order to check whether a specification satisfies abstract requirements. These
processes can also gain in quality from the use of coverage measurements. Many formal specification
languages already benefit from tool-supported coverage metrics, including SDL with Tel&lagic’s
[342], which measures the coverage of symbols like states and transitions, and VDM with IFAD’s
VDMTools[190]. Such tools have started to appear for design modelling languages as well, e.g. for
UML collaboration diagrams [2]. Even hardware description languages now benefit from coverage
analysis. For instance, Joyce uses probe-based instrumentation of Verilog descriptions for measuring
the coverage of a test suite at simulation time [221]. Unfortunately, no such tools are currently avail-

able for LoTos

Still, several coverage criteria have been defined @ords specifications. For instance, van
der Schoot and Ural developed a technique for static data-flow analysis [323], Carver and Tai defined
a sequencing constraint coverage criterion [86], and Cheung and Ren proposed an operational cover-
age criterion [94]. These three techniques are used mostly for gwadanigyi, the generation of test
cases from the specification. The first one is based on data usage, the second on the satisfaction and

non-satisfaction of constraints, and the third one is based on the semantg®sbhperators.
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Instrumentation

A posteriorimetrics of coverage often require the code to be instrumented in order for relevant data to
be collected and coverage results to be comp&edhe insertionis a well-known white-box tech-

nique for monitoring software in order to identify portions of code that has not been yet exercised, or
to collect information for performance analysis. A program is instrumented with probes (generally
counters) without any modification of its functionality. When executed, test cases trigger these
probes, and counters are incremented accordingly. Probes that have not been “visited” indicate that
part of the code is not reachable with the tests in consideration. Obvious reasons include that the test
suite is incomplete, that the implementation is not deterministic enough, or that this part of the code is

reachable under no circumstance.

For well-delimited programs, Probert suggests a technique for inserting the minimal number
of statement probes necessary to cover all branches [291]. Minimizing the number of probes is impor-
tant because instrumentation usually has an impact on the speed of test execution. This idea will be
adapted to bTosin Chapter 7 in order to measure the structural coverage of specifications by a test
suite. UCM path coverage will be used in Chapter 6 aa pnori test selection criteria, with the

assumption that this corresponds to the coverage of functional requirements.

3.4.5 Testing Patterns
This section provides a short overview of patterns in general, with an emphasis on design and testing

patterns. Section 6.3 intends to develop testing patterns for the selection of test cases from require-

ments and high-level designs based on the coverage of UCM paths.

Patterns

Nearly a decade ago, patterns have emerged from the object-oriented community as a new software
engineering problem-solving discipline. Although multiple definitions exist [10fpteernremains
essentially a proven and reusable solution to a recurring problem in a specific context. It also
describes the relevant forces, which may be present in varying degrees in a context, as well as rela-

tions among them. A pattern explains insights that have led to generally recognized good practices.
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Patterns have roots in many disciplines, most notably in Alexander's work on urban planning
and building architecture [5][6]. Alexander used patterns to describe what he called a “quality without
a name” in architectural solutions, where patterns focus on good design culture and on documentation

rather than on technology.

Software patterns truly became popular with the publication of a design pattern book written
by Gammeet al [144]. Software patterns can be defined at several levels, including (from the more
general to the more detailed):

« Process patternsexpress problems and solutions at a methodological level.

« Architectural patterns: express a fundamental structural organization for software sys-

tems.

« Design patterns provide a scheme for refining the subsystems or components of a soft-

ware system, or the relationships between them.

- Idioms: low-level patterns specific to a programming language.

Content of a Pattern

Software patterns can be described according to different formaesmnptates[6][51][81][144].

However, most patterns contain five core elements [240][256][361]:

« Name A short familiar, descriptive name or phrase, usually more indicative of the solu-

tion than of the problem or context.
« Problem: The challenge to be addressed.

« Context: The situations under which the pattern applies. Often includes background,

requirements, and discussions of why this pattern exists.

« Forces A description of the relevant factors, constraints and compromises that contribute
to the problem and/or its solution. The interactions between the forces may also be

included.
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« Solution: how to address the problem in order to balance forces and to construct solution

artifacts. Solutions often include several variants and/or ways to adjust to circumstances.

Additional elements can also be found, including rationales, resulting contexts, consequences,

examples, related patterns, and known uses.

Patterns can be regrouped ipittern catalog$81], which are collections of related patterns
divided into categories, or gmttern language$299], which are collections of patterns that work
together to solve problems in a specific domain. In a pattern language, a resulting context of one pat-

tern becomes the context of its successor patterns.

Design Patterns and Testing Patterns

Patterns can be used for designing systems, which is their traditional use, but also for testing them.
Testing patternsan provide established solutions for designing tests or for supporting the testing pro-
cess. This section gives a brief review of existing pattern-oriented work relevant to the areas of inter-

est to this thesis, i.e. telecommunications systems, scenarios, and testing.

In the telecommunications area, most patterns that currently exist target the design level. Ris-
ing collected many recent such patterns in her book [310]. Adaalsfocus on fault-tolerance sys-
tems [3], whereas Utas proposes a pattern language for handling and avoiding undesirable
interactions between telephony features [361]. Andeddsd. recently presented a pattern language
for mobility management adapted to second generation wireless communication systems [34][35]. In
the area of scenarios, Buhr used UCMs for describing and understanding macroscopic behaviour pat-
terns in object-oriented frameworks [80]. Jacobson suggested abstract use cases as a rigorous expre:
sion of the problem part of a pattern [139]. Bordeleau proposed scenario composition patterns for the
construction of hierarchical finite state machines from UCMs [62]. Mussbacher and Amyot defined
several UCM patterns for describing functionalities of complex reactive and distributed systems
according to various styles [266]. In the area of testing, DeLano and Rising created a pattern lan-

guage, mostly at the process level, for testing large software systems [111]. Binder provides a com-
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prehensive set of patterns for testing object-oriented systems in a very recent book [51]. Other
authors, notably Beizer [44] and Siegel [329], propose testing solutions in the general form of pat-

terns, although they are not called patterns explicitly in these publications.

The most interesting patterns however cover many of the areas of interest at the same time.
For instance, Andrade uses UCMs to describe requirentagiggnand analysis patterns for mobile
wireless communications systems [32][33][35]. These generic patterns express functions that are
common to many existing mobile systems and can be used in the early steps of design. Although the
design pattern community is not used to seeing patterns described with scenarios (in UCMs or any
other form), this work shows much promise. Mussbacher and Amyot also illustrated their patterns for
UCMs using various telecommunications systems [266]. In his collection of patterns, Binder suggests
the use oftest designpatterns for UML-based scenarios, in the context of OO systems testing

[50][51]. Some of them are related to the patterns developed in Section 6.3.

There is a real interest in patterns from the software community, and the need for testing pat-
terns adapted to telecommunications and reactive systems is still crying. We see in this an opportunity
to provide testing patterns adapted to telecommunications systems and integraeeMALY) E as
a means to develop suitable validation test suites from requirements and designs expressed with UCM
scenarios. Testing patterns can be seen as a semi-formal way of selecting test cases, and they repre-

sent a good match for a semi-formal notation like UCMs.

3.4.6 Summary and Discussion
This section complements many validation and verification concepts introduced in Chapter 2. It pro-

vides additional background on some relevant work about properties, general testing coatepts, L

testing, coverage, and testing patterns.

Among the conclusions, we observe that testing is one of the most pragmatic approaches for
validating and verifying complex telecommunications systems, even at the specification level. Accep-
tance test cases, which are reductions of canonical testecs@slcan describe fine-grained live-

ness properties and be used to assess conformance. The need for rejection test cases, which are
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discussed superficially in theolros theory, is emphasized. Rejection tests can describe fine-grained
safety properties, lead to improved validity relations when used jointly with acceptance tests, and
lower the limit of testability. In the context ofolros testing, this section also defines notations and

relations (inspired from the literature) formalizing verdicts and types of tests.

Test selection is and will remain a major V&V issue. In this thesis, test hypotheses are not
intended to guide the test selection process. Instead, coverage-based criteria based on UCM paths, i.¢
testing patterns, will be used to derive test goals. Additional coverage metrics, based on the structural
coverage of bTosspecifications, will be measura@dposteriori Such metrics are still lacking in the
literature, but there is an opportunity to define an approach based on probe insertion to tackle this

issue.

3.5 Chapter Summary

This chapter reviews existing work and concepts in four areas of interestd®ALU E. Section 3.1
addresses many issues related to the concept of causality. It explains how causality can be beneficia
when describing concurrent systems. A discussion on concurrency models for interleaving and causal
semantics follows, and different families are briefly introduced and classified. Although UCMs and
LoTos are able to capture causality at a syntactic level, dm& semantic model, based on LTSs,

does not capture causality as such. Nevertheless, LTSs are still usssviARU E because they

offer simple verification algorithms and good tool support for validating system specifications.

Section 3.2 focuses on specification techniques and emphasizes the similarities and differ-
ences between Use Case Mapeyrds and four other techniques (MSCs, SDL, Petri Nets, and
UML). These techniques are compared against thirteen criteria regrouped under four categories
(usability, V&V, tool support, and training). UCMs appear particularly suitable for the representation
of functional requirements and of high-level designsTas complements most of UCMs’ weak
areas related to the analysis of systems. Both languages also make use of similar constructs and suy
port system descriptions with and without components. These characteristics, introduced in Table 1

on page 6, facilitate the mapping of UCMs toT10S as suggested irP§GVALU E.
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Scenarios are the main topic of Section 3.3. Their benefits and drawbacks are presented in
general terms. Then, thirteen scenario notations relevant to telecommunications systems are com-
pared against eight evaluation criteria. Again, the UCM notation proves to be an interesting alterna-
tive because it is not component-centered, it supports causality, and it supports dynamicity, three

features that help describing telecommunication systems requirements and early designs.

Section 3.3.4 covers construction approaches, where individual scenarios (closer to the
requirements) are integrated to form a composite view of all scenarios (closer to the high-level
design). Benefits and drawbacks of analytic and synthetic (interactive and automated) approaches are
presented. Then, twenty construction approaches are introduced and briefly compared. Most of the
synthetic approaches require the presence of messages or interactions between components. Since
UCMs abstract from this kind of communication, the existing algorithms for the synthesis of models
from scenarios are of little use. In the context ®EGVALU E, an analytic approach (manual trans-
formation followed by a verification step) appears to be more appropriate. This will be one of the

main topic discussed in Chapters 4 and 5.

As for validation and verification, Section 3.4 presents several necessary concepts related to
properties, testing in generalptos testing, coverage, and testing patterns. The validation problem
addressed byreGVALU E is different from that of conventional conformance testing because the lat-
ter checks a (formal) implementation against a formal specification whereas/&LU E suggests
the validation of a first formal specification against informal requirements and semi-formal UCMs.
The LoTostesting theory can still be used, but several needs are identified in order to adapt it to the
context of SEGVALU E. These needs include the use of rejection test cases, the definition of a valida-
tion relation more discriminative than cotifie selection of tests using UCM-based testing patterns,
and the need to measure the coverage afols specifications by a test suite. These issues are

intended to be addressed in Chapter 6 and Chapter 7.
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This literature review shows that UCMs andTmiosrepresent a good match with much poten-
tial in an approach likeEGVALU E. The remaining chapters of this thesis will discuss and illustrate

how this potential can be exploited.

Contributions

The following items are original contributions of this chapter:

Evaluation of six specification techniques.

Evaluation of thirteen scenario notations.

Survey and brief comparison of twenty analytic and synthetic construction approaches.

« Argument showing that UCMs anltosare compatible and complementary techniques.
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CHAPTER 4
From Requirements to UCMs
In SPEC-VALUE

Right now it’s only a notion but | think | can
money to make it into a concept and then
change it into an idea.

Woody Allen (Annie Hall, 197

This chapter presents the first steps of tlre S/ALUE methodology, which was introduced in
Chapter 1, together with a recapitulation of the main motivations behind the existence of the
approach. These first steps are illustrated in Section 4.3 with an ongoing example that will be devel-
oped throughout the thesis. This example isTihg Telephone SysteffTS), for which the informal

requirements, the structure and the UCM scenarios are provided.

4.1 Return onthe S PEC-VALUE Methodology
The Specification-Validation Approach witlorosand UCMs(SPEGVALU E) aims to produce vali-

dated and executable specifications of system requirements and high-level designs, together with val-
idated functional test cases and documentation. One of the main assumptions beGMALY E is

that the system functionalities to be designed can be described in terms of Use Case Maps. This is
usually true of reactive, concurrent, and distributed systems, which focus on behaviour. For detailed

sequential systems that focus on input/output functions (e.g., a sorting algorithm), other notations and
approaches are more appropriate. The introduction of a semi-formal representation of system func-
tionalities is in line with the second level of the Formal Specifications Maturity model scale, and

hence improves upon the sole use of formal languages (Section 9.1.3).
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As explained in the literature review, Use Case Maps amb& complement each other in

many ways, the gap between the two notations is small, and a translation from UChsO® L
appears straightforward (Table 1 and Section 3.2). UCMs are close to the functional requirements,
which represent the starting point afe&-VALU E, they handle causality, dynamicity, and optional
component structures, and they help reasoning about requirements without having to commit to
details that belong to a lower level of abstractionTds specifications, which are executable proto-
types, can formalize requirements and high-level design in terms of abstract sequences of events and,
when appropriate, component-based behaviarols enables formal analysis and early validation of

the UCMs and the requirements, as well as the generation of functional test cases that are reusable

down the road towards the implementation (Section 3.4).

SPEGVALUE uses an analytic approach for the construction of prototypes from scenarios.
According to the analysis in Section 3.3.4, the differences in the levels of looseness, completeness and
details between UCMs andltos suggest that analytic approaches (which are manual and require a
verification step) are more appropriate than synthetic approaches (which are automatable but require

strict, formal, and often restrictive semantics), especially for complex systems.

4.1.1 SpPec-VALUE and Software Development Process Models
SPEGVALU E, whose steps are recalled in Figure 17, is more limited in scope than traditional soft-

ware development process models (waterfall, prototyping, spiral, object-oriented, etc.) [335]. This
methodology focuses on how to bridge the gap between requirements and the first high-level design,

and it is not concerned with detailed design, implementation, and maintenance of software.

Still, SPEGVALU E shares many similarities with prototyping approaches [172]. Prototypes
focus on the aspects of the system that are most important to the customer, and they provide means for
early validation. Prototypes are well suited in environments where requirements are yet to be fully
determined, a place where UCMs also proved to be useful. Allowing the stakeholders to play with a
prototype can give invaluable insight into the feasibility or correctness of solutions under investiga-
tion [120]. Often, prototypes demand much effort and investment, and yet they are thrown away

because they implement a subset of the requirements only. However, very abstract and high-level lan-
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guages such asorosrequire less effort for the generation of prototypes, and the latter exhibit a high

reusability when new system functionalities become needed.

SPEGVALUE also resembles Boehm’s spiral model [54]. Both approaches are iterative and
they enable the integration of new scenarios and functionalities, as well as the modification of existing
ones. Iterations also help to understand the problem and to cope with it in small chunks. Risk analysis
is at the basis of each iteration [55]. It is used to determine and evaluate the alternatives as to what tc

integrate and validate next.

The spiral model contains macro-iterations for requirements capture and analysis, design,
implementation, and so on. This model is general enough for other process models to be used within a
macro-iteration [290]. For instancepi:VALU E could finds its place nicely as the requirements

capture and analysis macro-iteration for processes targeting complex telecommunications systems.

FIGURE 17. From Requirements to UCMs with SPec-VALUE
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4.2 First Steps of the S PEC-VALUE Methodology

The three first steps ofPERBGVALUE, where UCMs are used to capture the informal operational

requirements, are highlighted in Figure 17. The elicitation and representation of causal scenarios will
be briefly introduced in this section, and then illustrated in Section 4.3. Several guidelines for the use
of the UCM notation and the integration of scenarios are given in Section 4.2.2 and Section 4.2.3

respectively.

4.2.1 From Requirements to UCMs
One interesting contribution ofP&GVALU E, which is inherited directly from UCMs, is the separa-

tion of concerns between system functionalities and underlying structure. A structure contains the
abstract system components of interest as well as some of their relationships (containment, communi-
cation links, etc.). Step is the description of the system structure, which are represented in this the-
sis using Buhr's component notation (Appendix A: — A8 and A9). The components represent coarse-
grained entities of relevance to the requirements engineers and designers. They can be extracted
directly from the requirements or environmental constraints, or discovered during an iteration in the
approach. They are different from classes in the OO world. A component could be represented by
aggregating many class instances (objects), or a class could represent many different components or

roles. Hence, there is not necessarily a one to one mapping between OO classes and components [74].

StepO is a scenario elicitation phase where system services and large-grained functionalities
are captured as UCM paths. These paths represent scenarios whose emphasis is on the causal relation-
ships among the responsibilities that compose the functionalities. The elicitation can be done from
informal requirements, business goals, interviews, existing documentation, designs, code, test cases,

and so on.

The responsibilities defined in the UCMs can be allocated to the components in the selected
underlying structure (stelp). Each component will have to perform the responsibilities allocated to
it. The double binding of responsibilities (to paths and to components) is what links behaviour and

structure.
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Since scenarios are formalized at a level of abstraction higher than message exchanges, differ-
ent underlying structures or architectures can be evaluated with more flexibility, even before the gen-

eration of a prototype.

4.2.2 Style and Content Guidelines for UCMs
The Use Case Map notation is flexible and can be used across a wide range of domains. However, the

notation does not come with a predefined set of style and content guidelines. UCMs have been used in
diverse ways, and with various levels of looseness (a classification is given in [266]). Constructing
UCMs with the goal of generatingoizos specifications [24], SDL specifications [317], ROOM mod-

els [62], agent systems [77][124] or Layered Queuing Networks (LQNSs) [283][324][325] affects the
style in which the paths are drawn and the supplemental information that needs to be attached to the

responsibilities and other path elements.

In this thesis, several guidelines will be applied in order to facilitate the generatioTas L

specifications from UCMs:

G1.Start points going towards the components representing the system under design and end
points coming out of them will represent interaction points with the environment, i.e. the
users.

G2.If data values or variables need to appear on the UCM on start and end points, they can be
added to the labels using the synteadue or ?variable

G3.Labels will be used for all responsibilities, start points, end points, timers and waiting
places. Labels should be validtosidentifiers.

G4.Responsibilities, start points, end points, timers and waiting places located inside a system
component will be hidden from their environment (may not be the case for actdgs)see
This is only an assumption in the UCM domain because UCMs do not support interfaces
yet, but this will be made concrete in theTiosdomain.

G5.Guards on path alternatives will be identified by italicized conditions between square
brackets. Responsibilities are not to be used as conditions.
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G6.A causal flow between two responsibilities in two different components implies the need
for message exchanges. However, this does not imply that these components can commu-
nicate directly; intermediate components may be involved.

G7.Users (and their roles) may be represented as components. Start/end points, waiting places
and responsibilities associated to the users are visible. Multiple concurrent users are repre-
sented as stacks of components.

G8.Users could have different roles (e.g. originator and terminator). These roles are best rep-
resented as two different components in a UCM (for better understandability), but they
will be reunited as one component in the formal specification. The labels used will be of
the formComponentName:Role .

This set of guidelines is provided as is, without any intention to validate or complete it in the

thesis.

4.2.3 Integration of Scenarios
Often, system functionalities will be described as individual UCMs, and they need to be integrated

together in the UCMs and/or th@tos prototype. Also, as requirements are dynamic, new function-

alities may become necessary, and new scenarios will have to be integrated in the old set.

Not selecting a good mix of system functionalities for the initial (and subsequent) increment
ranks in third place among the problems of use case modelling identified by Chandrasekeran [90],
therefore this is an important problem. Karlssbral. already evaluated six methods for prioritizing
software requirements [224]. Unfortunately, their results are not really useful here. None of the prior-
itizing methods described in this article provides means for handling interdependence, and the study
focuses on non-functional requirements. Use Case Maps emphasize functional requirements, and

often scenarios are interdependent.

When integrating UCMs or constructing a model (ioTbs or any other language), one
should try to sort scenarios. In order to reduce integration risks, priority should be given to the most
important scenarios, i.e. the ones with the most impact on the system, and to the ones that are the least

likely to change.
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If functionalities can be integrated in a hierarchical way (through stubs and plug-ins), then the
top-level maps should be worked out first. The presence or absence of stubs in these maps has a bi
impact on how easily new UCMs can be integrated, so the need for stubs should be anticipated.
Dynamic stubs also allow more flexibility than static stubs (although a static stub could be trans-

formed into a dynamic one when necessary).

Again, these few integration guidelines result from the author’s experience and the thesis does

not aim to validate them explicitly.

4.3 0Ongoing Example: Tiny Telephone System (TTS)

The goal of the Tiny Telephone System is to illustrate several steps that allow requirements engineers
and designers to bridge the gap between requirements and UCMs. First, individual requirements will
be provided, then individual UCMs will be constructed for each feature of TTS, and finally an inte-

grated view of the functionalities will be given as one global UCM.

4.3.1 Informal Requirements for TTS
TTS is used to establish a telephone connection between two parties. The originating paligr)or

is the user who initiates the call, and the terminating partyaltge is the one who receives the call.

The basic call service is as follows. The caller, who is initially busy but not involved in a call connec-
tion, initiates a call requestey) to the system. If the callee is idle, then the callee’s phone will ring
(ring) after some internal update (to reflect that the callee is now busy) while the caller's phone will
emit a ringback signal. If the callee is already busy in another phone session, then the caller's phone

shall emit a busy signal.

TTS users may also have subscribed to additional features. The first one is Originating Call
Screening (OCS), which will deny the call if the callee is in the caller’s screening list (and emit the
appropriate signal to the caller). The second is Call Number Display (CND), which displays the

caller's number on the callee’s phoniés)p) while the latter is ringing.
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Each user has an agent that takes care of the handling of internal databases and updates. To
simplify the design, TTS assumes that users cannot register to or unregister from a feature. Users are

initially subscribed to a list of features, which may be empty.

4.3.2 Individual Use Case Maps for TTS
Typical telephone system documentation will first describe the basic call, and then the basic call com-

bined to one feature. This section follows the same idea by presenting UCMs for TTS’ basic call,
OCS, and CND.

TTS Basic Call

Starting from the requirements, the designer can draw a UCM path like the one in Figure 18(a). This
corresponds to stép in SPEGVALU E. Thereq andring signals, which are start and end points, were
mentioned explicitly in the requirements. However, this UCM exhibits additional responsibilities that
were left implicit:vrfy verifies whether the called party is idle or busy (conditions are between square
brackets) andpd updates the callee’s status. Instead of having a multitude of call progression signals
on the caller’s side, a single end poisig) is used to propagate the appropriate signal or announce-
ment from the system to the user. Additional signals and announcements are expected to be carried in
the same way, so this simplifies the UCM and the overall design. A consequence is that appropriate
signals need to be prepared by the systammprepares a busy signal whergass prepares a ring-

back signal. As explained in guideli®@, input variables and output values could be associated to
start and end points when necessary (eg?Callee andsig!Signal). However, these will not be

shown for the UCMs to remain simple.

The underlying structure can be of various natures, and this is the focus Of BtefPECG
VALUE. For instance, Figure 18(b) shows the UCM path bound to a conventional switch-based struc-
ture. However, the requirements suggest a less centralized architecture where each user has an agent.
Figure 18(c) presents a possible agent-based structure. The agents are all alike, but they have different

roles: originating (O) or terminating (T). The same idea applies to the users as well.
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FIGURE 18. TTS Basic Call UCM
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(c) Path on Agent-Based Structure

(b) Path on Conventional Structure

Under an apparent simplicity, UCMs such as Figure 18(c) convey a lot of information in a
compact form, and they allow requirements engineers and designers to use two dimensions (structure
and behaviour) to evaluate architectural alternatives for their system. Once both views are satisfactory,
then they are combined to form a bound UCM, as indicated bylsie®ECGVALU E. The binding is
done by allocating the UCM responsibilities (and optionally start points, end points, and other path

elements) to the components in the structure. Figure 18(c) represents the result of the allocation.

OCS and CND Features

Individual UCMs for OCS and CND, based on the structure of agents, are given in Figure 19. OCS
requires a passive object (e.g. a database) which represents the list of screened numbers that the calls
is forbidden to contacOCSlist). This new component can be checkegt) to determine whether the

call should be allowed or denied at the originating side. Denied calls cause some update and the prep:

aration of an appropriate signah§) in the originating agent.

CND extends TTS’ basic call with a new result which displays the number of the dalr (

This display is concurrent with the ringing of the phone at the terminating end.
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FIGURE 19. Individual UCMs for TTS Features
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4.3.3 Integrated UCM View
Refinement of designs can be obtained in UCMs by the use of stubs and plug-ins. The root map in the

middle of Figure 20 shows an enhanced version of the UCM from Figure 18. Through the use of
stubs, this root map enables the integration of many scenarios coming from different features. The
OCS and CND features described in Figure 19 are integrated to the root map as plug-ins for the stubs.
The five different UCMs (the EFAULT plug-in is used twice) shown in Figure 20 represent only one
way to integrate the individual UCMs seen so far; other possibilities exist but they will not be
explored here. Generating integrated views is also part of siapSPEGVALU E. Although such a

view is not mandatory, it usually helps structuring the scenarios together, ensuring their consistency,

and avoiding undesirable behaviours or side effects.

The originating dynamic stubO has two plug-inserauLT andOCS). The start point of the
DerAuULT plug-in (start) is bound to the incoming path segmerit, and the end pointontinue is
bound to the outgoing segmenitl. TheOCS plug-in includes th@©CSlist component, which is then
considered to be inside thgent component. If the caller subscribes to the Originating Call Screen-
ing service, then the originating agent will select @&S plug-in instead of th®erauLT plug-in.

This is theselection policyof the dynamic stuBO.

The terminating static stubT contains one plug-in onlyf§rRMINATING), hence selection poli-
cies are not necessary here. Static stubs enable modular and stepwise decomposition of functionality.
Their plug-ins act as refinements and they also prevent the calling maps from being cluttered with too

many details.
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FIGURE 20. Integrated UCM View of TTS
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TERMINATING includes the dynamic stu#D, which handles the display of information to the
terminating userSD’s selection policy states that t&D plug-in is selected when the terminating

party is a Call Number Delivery subscriber. Otherwise DitreuLT plug-in is selected.

Note that theDerauLT plug-in is reused in two different stubs. However, the bindings are dif-
ferent. ForSD, the start point oberauLT (start) is bound to the incoming path segmiadt and the
end pointcontinue is bound to the outgoing segmentt5. The binding relationships of the other
plug-ins is defined in this example by start points being bound to incoming path segments of the same

name and by end points being bound to outgoing path segments of the same name.

The CND plug-in has some interesting characteristics. First, it leaves an end point dangling;

disp is not bound to any output segment of the stub, but it becomes a new observable event at the ter-
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minating end. Not all plug-in start points and end points need to be explicitly bound to stub segments.
However, this flexibility needs to be used with moderation otherwise parent maps (where such plug-
ins are called) will no longer represent the big picture clearly. Second, the CND plug-in includes a ref-
erence to an existing componehtsér:T), defined in the root map. Referenced components, also
known asanchoredcomponents, are shaded in the UCM notation. Such component is interpreted as
being declared outside the component that contains the calling stub. This meassrtiian CND

is not a sub-component Afient:T (obviously,User:T is defined at the top level).

A plug-in that uses anchored components is said to be uneonstrained stylg76]. This

style enables parent (root) maps to be simplified by showing only the main paths through a set of
components, treating meandering across components as details deferred to plug-ins. Another benefit
is that considerable flexibility in filling in details is provided. Also, sub-components can be declared

or referenced in the appropriate maps, when required by the causal scenarios that need to be sup-
ported. However, this style breaks the component containment intuition shown in UCM structures and

it leaves the big picture somewhat incomplete, requiring it to be mentally pieced together from differ-
ent maps. Therefore, the unconstrained style and anchored components should be used with special

care.

Once stubs are defined at key points on a path, it becomes easy to add new plug-ins, which
could represent new features in the TTS example. Existing maps and plug-ins can further be decom-
posed or extended (e.g. when a radically different service is added) with new paths and new stubs.
Experienced requirements engineers and designers may even prefer to skip the individual flat UCMs
(e.g. Figure 18(c) and Figure 19) and work directly with an integrated UCM view, where all the
UCMs are connected through stub/plug-in bindings (e.g. Figure 20).

By selecting plug-ins for the stubs in the integrated UCM view, one can obtain a flattened
map, which may still contain multiple end-to-end scenarios. For instance, by selectiverAber
plug-in in stubsSO and SD, the resulting map becomes the same as the original basic call in

Figure 18(c). The OCS and CND individual UCMs can also be derived in the same way. The inte-
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grated view contains however more scenarios, resulting from the combination of individual features.
For instance, a totally new UCM would result from the case where both OCS and CND are active.
This is what enables designers to reason about undesirable interactions between features at a high

level of abstraction (to be discussed further in Section 8.3.1).

4.4 Chapter Summary

This chapter recalls some of the main motivations behind the use of Use Case Mapsaaid the
SPEGVALU E methodology, many of which resulted from the literature review in Chapter 3. The
methodology is also briefly compared to common software design processes such as the prototyping

model and the spiral model.

Section 4.2 expands on the three first steps of pEe-BALU E methodology, which are con-
cerned with the capture of functional requirements in terms of UCMs. A particular attention is
devoted to style and content guidelines that increase the completeness of UCM descriptions as well as
the compatibility and traceability between UCMs and subsequent models (suwhosplototypes).

The integration of scenarios is also briefly discussed along with a few integration guidelines resulting

from the author’s experience.

These steps are illustrated in Section 4.3 with an example intended to be used throughout the
thesis: theTiny Telephone SysteffiTS). The basic call responsibilities and causal flows are derived
from informal requirements (stép), together with an appropriate structure of components [(step
Responsibilities are allocated to components, resulting in bound UCMgst&pe OCS and CND
features are also represented as individual UCMs. Then, the features and the basic call are merged t
form an integrated UCM view of TTS, where stubs and plug-ins are heavily used. This section also
discusses the appropriateness of selection policies, of the unconstrained style with anchored compo-

nents, and of the flattening of integrated UCMs

Contributions

The following items are original contributions of this chapter:
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« Partial illustration of Contribution 1 (Section 1.4.1) regarding the separation of the func-

tionalities from the underlying structure and the design documentaticE@\ALU E.
 lllustration of the first steps ofFEGVALUE, i.e. from requirements to UCMs.
- Style, content, and integration guidelines for Use Case Maps.

« Informal requirements and UCMs for the Tiny Telephone System.
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CHAPTER 5
From Use Case Maps to L OTOS
In SPEC-VALUE

Don’'t worry about that specification paperwc
We’'d better hurry up and start coding, bece
we’re going to have a whole lot of debuggin
do...

Barry Boehm, 19¢

This chapter presents an analytic approach for the constructioaTaislspecifications from Use
Case Maps. The core of this approach is found in Section 5.2, where construction guidelines (CG) are
introduced and several are illustrated individually. These guidelines are then applied to the Tiny Tele-

phone System example, and the resultingas specification is discussed in Section 5.3.

5.1 Construction Approach

The construction of adTos prototype from UCMs corresponds to stepn the $EGVALU E meth-

odology and is highlighted in Figure 21. The prerequisite is a collection of UCMs (which could be
integrated or not), similar to what was obtained for the Tiny Telephone System in Chapter 4. The out-
put is a specification that captures the functional requirements and the high-level design, where the

structure of components may or may not be considered.

Several methods for the integration of scenarios and the construction of models were reviewed
in Section 3.3.4. Most of the synthetic and analytic approaches surveyed are based on various interac:
tion diagram notations and they involve components and messages. UCMs are defined above the leve

of messages, and they may or may not include components. Algorithms for the automated and inter-
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active synthesis of integrated models from message-oriented scenarios hence are not well suited for

translating UCMs fully and automatically.

FIGURE 21. From UCMs to LoTos with SPEC-VALUE
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the most pragmatic way of capturing UCMs directly ioTbs As shown in Table 10, analytic

approaches have some advantages over synthetic ones:

« They do not require a formal representation of the scenarios (this is particularly relevant to

UCMSs, which are semi-formal).

« The source and target modelling languages do not need to be restricted, i.e. their richness

can be exploited to their fullest extent.

« The target model can additionally take into consideration further design constraints and

non-functional requirements, which are not necessarily captured by the scenario model.
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5.1.1 Appropriateness of L 0OTOS

The choice of bTosas a target modelling language is motivated by several factors, many of

which were mentioned in Section 3.2, Section 3.4, and Table 1 on page 6:

This language is capable of expressing behaviour at several stages of design or levels of
abstraction, including the initial ones where it is not yet known what the components of
the system are, what are their states, and what are the messages exchanged between thet

(this is normally the situation at the early stages of design).

LoTosis mature in the sense that it is an established international standard, around which

much useful theory and a number of useful tools have been developed.

UCMs and loTos both focus on the ordering of actions and they share many constructs
that have similar semantics (such as sequence, alternative, parallelism, hierarchical design

and structure), which result in simpler mapping and traceability relations.
LoTosis capable of specifying UCM with and without components.

LoTos specifications are executable prototypes that can be formally analyzed and vali-
dated against the intended functionalities of informal requirements and individual scenar-
ios. Other types of liveness and safety properties can be verified as well. These capabilities
complement most of UCMs’ weak areas related to the analysis of requirements (in terms
of maturity, completeness & consistency, testing & simulation, verifiability & correct-

ness).

LoTos enables the automated generation of diagrams such as Message Sequence Charts
Sequences produced by a1os prototype can be translated into MSCs, which are often
more suitable than UCMs for the visualization of detailed scenarios, for diagnostics, and

for providing scenario information to programmers, testers, and automated tools.

Use Case Maps andlrostherefore represent a good match with much potential for specify-

ing and validating telecommunications systems.
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5.1.2 Unfitness of TMDL
In his masters thesis [12], Amyot presented a methodology for the semi-automated generation of

LoTosspecifications from unbound UCMs. The maps were manually described ushgéteread

Map Description Languag€TMDL) 1 and then a compiletnfdi2lot ) would generate the specifi-
cation automatically [13]. Although this approach has been successfully used for a simple telephony
system [14], TMDL lacks three major features that are necessary for the modelling of realistic tele-

communications systems:

« Components TMDL does not consider any structural artifact. Use case paths are the only
type of object described (unbound maps). The resulting specification becomes conse-
guently purely functional in nature, like a service specification, without any message pass-
ing. However, there comes a point in the design cycle where components cannot be
avoided, especially when multiple instances of a particular component (e.g. telephones or
agents) need to be considered. The distribution of behaviour over a topology of compo-

nents is challenging and difficult to automate.

- Data types TMDL does not have data types, yet many complex telecommunications sys-

tems rely heavily on a data model for databases, conditions, and parameters.

« Composition: Since TMDL does not support hierarchical design with stubs and plug-ins,
the designer has to provide a single global UCM where all scenarios are correctly com-
posed. Unfortunately, as the system complexity increases, this approach becomes quickly
unpractical for most realistic systems. Generating such a global map would result in a very
large picture, difficult to understand, maintain, and analyze, hence defeating the purpose
of UCMs.

TMDL is essentially an example of the unfitness of an automated synthesis approach that
excessively constrains the source modelling language. In the thesis, TMDL is put aside in favor of an

analytic approach.

1. Use Case Maps were previously call@dethread Maps
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Analytic approaches suggest the usegutielinesfor generating target models from source
models. Over the last seven years, maoyds specifications have been produced out of systems
designed with UCMs: a Telepresence system [12], a simplified Plain Old Telephone System (POTS)
[14], a Group Communication Server [15][17], the Group-Call service of the GPRS mobile telephony
system [16][24], a feature-rich telephony system [18][22], an agent-based PBX [25], a Wireless
Mobile ATM Network [32], and the Call Name Presentation service of the Wireless Intelligent Net-
work [381]. The author has written or collaborated to the generation of most of these specifications.
The guidelines enumerated in the next section result from lessons learned during these experiments

(some of which will be further explored in Chapter 8).

5.2 Construction Guidelines

This section presents guidelines for the constructionadfols specifications from UCMSs. K&G

VALUE is limited to the provision of guidelines, which are informal mapping rules that have proven
to be useful but which may not necessarily be followed exactly by users at a given point. Rigorous
construction rules would essentially lead to the creation of synthesis algorithms, hence diminishing
the flexibility targeted by analytic approaches. In this context, the guidelines are more in line with
design patterns [101][144] than with formal transformation rules, although guidelines have a simpler

structure and are less detailed than conventional design patterns.

An overview of the main construction principles is given first, followed by an enumeration of
several guidelines illustrated with short examples inspired from the Tiny Telephone System. Addi-

tional comments on the partial automation of such guidelines conclude the section.

5.2.1 Overview
In a nutshell, the construction approach (stejm Figure 21) consists in translating each UCM com-

ponent into a bTos process that preserves the internal causality relationships between the responsi-
bilities and events that are part of path segments crossing this component. This idea is illustrated with
the TTS Basic Call UCM, originally found in Figure 18(b), where the Caller component is mapped

onto a loTosprocess (Figure 22(b)). The structure itself is converted to a set of processes composed
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through shared communication channeleTs gates), as in Figure 22(c). The causal relationships
between the components are also considered during the construction of the processes. Decisions

related to the nature of the message exchanges must then be made and documented.

FIGURE 22. Construction of a LoTos Specification from a UCM

Caller Switch Callee
The structure is Each component becomes
mapped onto a set of vify Jidle] upd Iring a process that implements
processes composed req @ i) | all the paths that cross it
through channels or sig I 4 )pbs D (possibly from multiple
shared events. | prbs scenarios).
Chanl Chan2
(a) TTS Basic Call, with Channels
specification TTS[req, sig, ring] :noexit process Caller[req, sig, Chanl] : noexit :=
(* Abstract Data Types here... *) req ?calleeNum:PhoneNumber;
behaviour Chanl !request !calleeNum;
hide Chanl, Chan2 in Caller[req, sig, Chanl]
(Caller[req, sig, Chanl] | | | Callee[ring, Chan2]) 0
|[ Chanl, Chan2]] Chanl ?ann:Announcement;
Switch[ Chanl, Chan2](idle, idle) sig lann;
where Caller[req, sig, Chan1]
(* Component processes here... *) endproc (* Caller *)
endspec (* TTS *)
(b) Structure of Components (c) Component Behaviour

The structure of the target model (@7os specification in our case) and the selected specifi-
cation style will also influence the ease with which new scenarios can be introduced. A style that
reflects both the UCM structure of components and the use of responsibilities, stubs and plug-ins is
likely to be flexible and easy to handle when the time comes to specify changes or additions in a
UCM. This style is inspired from the conventiomadource-oriented stylB63], where components
and media are specified as communicating processes. However, the processes developed using the
guidelines of the next sections are not limited to the use of sequences, alternatives, and process instan-

tiations as in the conventional resource-oriented style; concurrency will also be used internally.

Eight guidelines are developed in this chapter. Their main goal is to provide a traceable path
from UCMs to LoTos (and often in the other direction as well) where the intended behaviour of the

UCMs is formalized. Sub-guidelines are also defined for different aspects of the general guidelines
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and for special cases. The given guidelines should provide useful hints and guidance to beginners anc
intermediate users ofP&GVALU E. However, experienced users may deviate occasionally from these
guidelines for various reasons (examples will be given in Chapter 8), sometimes at the cost of reduced

traceability.

The construction guidelines are structured into three families. Although they intend to be as
orthogonal as possible, many of the more detailed guidelines refer to other families. These guidelines

are meant to be used iteratively and no pre-defined order is suggested.

« Paths focus on the construction ofoltos behaviour expressions from UCM paths and
their elements (Section 5.2.2).
+ Construction Guideline 1: Interpreting Interaction Points and Responsibilities
+ Construction Guideline 2: Representing Causal Paths
+ Construction Guideline 3: Interpreting Stubs and Plug-Ins
+ Construction Guideline 4: Other Path Elements

« Structure: focus on the construction ofitosbehaviour expressions from UCM compo-
nents, the paths they contain, and the inter-component paths that link them (Section 5.2.3).
This is where most challenges reside in terms of automation as many design decisions are

required.
+ Construction Guideline 5: Interpreting the Structure

+ Construction Guideline 6: Integrating Multiple Unrelated Path Segments in a

Component
+ Construction Guideline 7: Refining Inter-Component Causality

« Data: focus on the construction of atosdata model and supporting infrastructure ele-

ments such as databases (Section 5.2.4).

+ Construction Guideline 8: Representing Data
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5.2.2 Construction Guidelines for Paths

Construction Guideline 1: Interpreting Interaction Points and Responsibilities

Interaction points include start points, waiting places, and end points. Together with responsibilities,
they are captured asolLos gates. Guideline CG-1 captures the general case whereas Guideline CG-

1.a considers how responsibilities and end points may affect value identifiers.

CG-1) Interaction points (start points, waiting places, and end points) and responsi-
bilities are specified asdTosgates.

These elements capture interactions with the environment: start points and waiting places can
be controlled during the validation whereas end points and responsibilities can be observed. Precondi-
tions associated with start points and waiting places can additionally be translated to selection predi-
cates. Interaction pointsq, sig, andring in Figure 22(b) were transformed to gates according to this
guideline. Likewise for responsibilitiesfy, upd, prbs, andpbs. Similar names are given to improve
two-way traceability and understanding. If a name is not a valitbEname (e.g. bTtoskeyword or
forbidden character), then it will need to be changed at the UCM level or to be made valid through
some documented translation. The visibility of these elements and their relationship to component

interfaces are further discussed in Guideline CG-5.c and Guideline CG-5.b respectively.

CG-1.a) UCM responsibilities and end points may affect the content of value identifi-
ers.

The effects of a responsibility’s computation or of an end point’'s postcondition, if any, can be
represented as modifications of variables (calide identifieran LOTO9 in the behaviour expres-
sion that follows the corresponding action. For instancepdfupdates the callee’s statushisy ,

then this can be represented as:
upd; ( let calleeStatus:UserState = busy in B)

whereB is the behaviour expression that followps.
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An interesting case is whahis a process instantiation (as it is often the case when capturing
an end point or when the path exits the component, see Guideline CG-2): the values can be usec

directly as process parameters. For example:
upd; Switch[Chan1, Chan2](callerStatus, busy)

where the switch maintains the status of the caller (first parameter) and of the callee (second parame-

ter, here updated to the valogsy ).

Value identifiers can also be modified through a database, as suggested in Guideline CG-8.

Construction Guideline 2: Representing Causal Paths

Causal paths inside a component are represented through the use of appropoateohstructs.
Sequences (possibly with recursion) represent the simplest way of capturing causality (Guideline CG-
2). Various UCM constructs enable simple aggregations of sequential paths, and they are handled
directly by more specific guidelines: OR-forks with Guideline CG-2.a, AND-forks with Guideline
CG-2.b, OR-joins and AND-joins with Guideline CG-2.c. Path interactions represent another special

case and they are treated by Guideline CG-2.d. Most of these guidelines were introduced in [12].

CG-2) Linear causal paths are represented as sequences using the action prefix oper-
ator (possibly with recursion).

UCM path segments represent the linear progression of causality. This can obviously be cap-
tured using the @Tos action prefix operator. Ends of path segment in a component can also be sup-
plemented by a reinstantiation of the component process. Such recursive calls enable component
persistence, i.e. a component can “execute” the causal paths multiple times, a quality that is often

required of reactive systems components.
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For example, thealler process contains this partial behaviour:

req ?calleeNum:PhoneNumber; (* get a connection request *)
Chanl request !calleeNum; (* send it to the switch *)
Caller[req, sig, Chanl] (* get ready for the next request *)

CG-2.a) The choice operator is used to represent alternatives (OR-forks).

This requires little explanation as both operators denote similar concepts. Choices may be

guarded when conditions are attached to paths leaving the OR-fork.

For example, thewitch process could contain the partial behaviour:

vrfy;
([idle] -> ...

I
[busy] -> pbs; ...)

The multiple use of the choice operator can represent OR-forks with more than two branches.

CG-2.b) The interleave operator is used to represent concurrent paths (AND-forks).

Again, both concepts are very similar. T8vétch process hence could contain:

lidle] -> (upd:; ...

Il
prbs; ...)

The multiple use of the interleave operator can represent AND-forks with more than two

branches.

CG-2.c) AND-joins and OR-joins are specified with the enable operator or with hid-
den gates.

Concurrent paths and alternative paths entering an AND-join or OR-join negd to(on

compatible values, if any). The enable operate) (s then used to capture AND-joins and OR-joins.
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This leads to the enabled segment (behaviour expression) that follows the joined paths (Figure 23(a)).
Alternatively, theexit can be replaced with a hidden synchronization gate, and the enable by the
generalized synchronization operator. In this case, the segment following the joined path has to start

with the synchronization gate, which is also used in the synchronization operator (Figure 23(b)).

FIGURE 23. Interpreting AND-Joins and OR-Joins

\ (..;rl; exit | hide sync in
! 11 [ (... rl;sync
& : || ;2; et : I Il!z sync
.. | teey ’
g | oiged | 313 exit) | il
13 : >> : .., r3;sync)
I joined,; ... I | [sync]|
: : sync; joined; ...
e .
| |
: (..;rl; exit : hide sync in
" l I _ | (..;rl;sync
! ... r2; exit | 1]
r2 joined | I | ... F2; sync
r3 I ..; I3; exit) I 1]
: >> : .., I3;sync)
| joined:; ... | I isync]|
I I sync; joined; ...
(a) With exit and enable (b) With a hidden sync gate

OR-joins may also be represented with duplicated behaviour expressions (one for each joined
path), particularly when the next UCM path element is an end point. If an OR-join causes a path to
loop on itself, then a sub-process, which specifies the loop path, is instantiated. It reinstantiates itself
recursively for each iteration, and it exits to terminate the loop. The enable operator then captures this

exit and continues with the rest of the UCM path.

CG-2.d) Synchronous and asynchronous interactions between UCM paths are speci-
fied using the generalized synchronization operator.

Start points and waiting places may be triggered either synchronously by an end point coming

from another UCM path, or asynchronously by an empty path segment coming from another UCM
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(see Figure A3 in Appendix A:). The UCM paths involved in the interaction are specifiedashs
concurrent behaviour synchronized on the gate name of the start point or waiting place. The triggered
path awaits this event. The triggering path will also wait for this event in case of a synchronized inter-
action. However, in case of an asynchronous interaction, the triggering path will provide this event
concurrently ||| ) with the behaviour representing the rest of its path. Different types of extended
waiting places are defined in [12], but they are not considered here as they do not belong the standard
UCM notation.

Construction Guideline 3: Interpreting Stubs and Plug-Ins

Stubs and plug-ins are also represented with the versatiledprocess. These guidelines will be
explained in general terms only, and they will be illustrated more completely with the TTS example in
Section 5.3.3. The generic guideline is presented in Guideline CG-3, and further details are provided
for plug-ins (Guideline CG-3.a), stubs and selection policies (Guideline CG-3.b), and binding rela-
tionships (Guideline CG-3.c).

CG-3) Stubs and plug-ins are processes linked through instantiations.

A plug-in can be used in multiple stubs, hence it is best represented as an independent process
definition which can be instantiated at will. Stubs are also represented as processes so they can
describe selection policies and be instantiated from multiple input segments. Stubs instantiate the

plug-ins bound to them.

Since Figure 22 does not contain any stub, Figure 24 will be used to illustrate the essence of
this guideline. The static stub S1 contains one plug-in and no selection policy, whereas the dynamic
stub S2 contains two mutually exclusive plug-ins (whose selection could be guarded). All stubs and

plug-ins have their own process definitions.
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FIGURE 24. Interpreting Stubs and Plug-Ins

(* Parent map behaviour *) process S2[gates](parameters) :=

Parent map ... S1[gates](parameters) (* Specify the selection policy here *)
>> [guardl] -> P1[gates](parameters)
/Sl\ S2 accept values in >> accept values in exit(values)
s ( I

i i

| |

| |

| |

| |

| |

\/ R4 ! ... S2[gates](parameters) ! [guard2] -> P2[gates](parameters)

| >> | >> accept values in exit(values)
I accept values in 1 endproc (* S2 *)

| |

| |

| ) | process P1[gates](parameters) :=

. I . I I I ...; exit(values)

: ,  endproc (*P17)

| |

| |

| |

| |

Plug-in P1 Plug-in P2

process S1[gates](parameters) :=
P1[gates](parameters)
>> exit(values)

endproc (* S1 %)

process P2[gates](parameters) :=
...; exit(values)
endproc (* P2 *)

CG-3.a) Plug-ins have parameter lists for input points and values, and for output
points and values.

In addition to data parameters needed by the plug-in, the process definition requires a list of
input points that represents the list of plug-in start points triggered by the calling stub (there may be
more than one). In return, the process definition exits with resulting values and with another list of

points, which represents the resulting end points that were reached by the plug-in.

CG-3.b) The stub processes specify the selection policy, i.e. the type of compaosition
between the possible plug-ins.

Static stubs have no selection policy per se, hence their behaviour is reduced to instantiating
the plug-in process. Dynamic stubs however have to choose among potentially many plug-ins, hence
the selection policy is captured as a behaviour expression inside the process definition. Most of the
time, the selection policy will result in the deterministic instantiation of only one plug-in process.
Therefore, selection policies inolLos often make use of guarded process instantiations combined

with the choice operatof](). However, more complex selection policies may require the instantia-
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tion of multiple plug-in processes, e.g. in sequence (with the enable operptmd/or in parallel

(with the interleave operatif ).

CG-3.c) A stub process specifies the binding relation between a stub and its plug-
in(s).

Stub processes receive a list of entry points as input and then output a list of exit points upon
termination. These lists correspond to the path segments enabled before and after a stub. The entry
points are used to determine the list of start points (Guideline CG-3.a) that need to be triggered in a
plug-in, according to the binding relation between the stub and its plug-in(s). The list of exit points is
generated according to the end points resulting from the plug-in(s), again according to the binding

relation. See Figure 36 for an example.

Though they have only one plug-in, static stubs still need to implement the binding relation in

this way because the bound plug-in may be reused somewhere else.

Construction Guideline 4: Other Path Elements

The following elements are discussed in order to complete the coverage of the UCM path elements.
However, they are not illustrated with the TTS example. More complex case studies, found in Chapter

8, will make use of these guidelines.

There is no generic guideline here, only four independent cases: timers (Guideline CG-4.a),
aborts (Guideline CG-4.b), failure points (Guideline CG-4.c), and dynamic responsibilities (Guide-
line CG-4.d).

Other elements related to performance annotations (timestamp points, data stores, devices,
service requests, response time requirements, etc.) and goal annotations (goal tags, goals, etc.) are not
covered here. These are extensions to the UCM notation targeted towards specialized domains with
objectives different that those addressed in the thesis, such as performance analysis and generation of

goal-based implementations for agent systems.
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CG-4.a) Timers are specified using a reset event and a timeout event.

LoTos does not provide support for representing quantitative time. However, timers can still
be specified in an abstract way. They act like regular waiting places, except that they do not wait their
triggering event (reset) forever. A reset is caused (a)synchronously by a triggering path, in a way sim-
ilar to the interactions discussed in Guideline CG-2.d. A timeout is representeddapaadction,
which can be internal or not. If hidden, this action may occur at any point. It is suggested to use a hid-
den gate name instead of the interinalction in order to improve traceability. If observable, this
action becomes under the control of the environment, which improves the overall ease with which
validation can be performed. Once a timer is reached (i.e. set), there is a choice between the rese
event followed by the rest of the path behaviour and the timeout event followed by the behaviour of
the timeout path. This choice is non-deterministic unless the reset and the timeout events are both

made observable.

Figure 25 illustrates a timer which is reset synchronously by another path. In the correspond-
ing LoToscode, the eventssetAnswer andtimeoutAnswer are hidden, but each of them could also be

made observable.

FIGURE 25. Interpreting Timers

hide resetAnswer, timeoutAnswer in
UCMpathl[...] |[resetAnswer] | UCMpath?2]...]

UCMpath1 where
answer process UCMpathl]...] :=
answer; resetAnswer; stop
endproc
resetAnswer
process UCMpathl[...] :=
req @ Iconnected req;
UCMpath2 (* Set timer *)
(
noAnswer resetAnswer; connected; stop

I

timeoutAnswer; noAnswer; stop

)

endproc
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CG-4.b) Aborts (exceptions) are specified using the disable operator.

A path may abort the progression of causality in another path. As discussed in [12], this is
specified as one process disabling the other one through a shared gate (different from the channels
defined in the structure). The disabling process just performs the action and then carries on. The dis-

abled process performs the same action and then stops or reinstantiates itself.

Figure 26 illustrates a path which aborted by another pathstands used as a shared event.

FIGURE 26. Interpreting Aborts
hide abort in
UCMpathl[...] |[abort] ] UCMpath2]...]
where
UCMpath1
process UCMpathl[...] :=
cancel; abort; canceled; stop

cancel . I canceled
endproc
jabort

process UCMpathl]..] :=
(req; connected; stop)
[>
abort; stop

endproc

req @

Iconnected

UCMpath2

In Lotos , the disable operator exhibits a controversial behaviour: there is no way to enforce
the choice of a disabling action over other ones. This means that if a component behaviour always has
a choice between the disabling action and other actions, then the disabling action could potentially be
delayed forever. However, one good thing about this type of behaviour is that it helps to expose poten-

tial race conditions.

CG-4.c) Failure points are specified using failure events.

Failure points (Figure A7(c) in Appendix A:) are specified as a choice between the continua-
tion of the path behaviour and a failure event that leadsttgpabehaviour. Like timeout events, fail-

ure events can be hidden or visible, depending on the validation goals.
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CG-4.d) Dynamic responsibilities are represented as gates or as process instantiations.

Dynamic responsibilities used on a pool of components are specified as gates. These gates
have experiments that modify the content of a database that represents the pool of dynamic compo-
nents (DC). Modifications are done according to the nature of the dynamic responsibility involved

(create, delete, get, put).

Figure 27 presents an example of how such gates could be used. The assumption here is tha
there exist an abstract data type for describing pools as DC databases (DC_DB), with operations for
adding DCs (insertDC), removing DCs (removeDC), or getting the attributes of a particular DC
(getAtt). Dynamic components also have identifigts Of typenat in the example), as suggested in
Guideline CG-8.

FIGURE 27. Interpreting Dynamic Responsibilities Linked to Pools
createDC ?id:nat !att [id eq next_id];

/g/ create DC in pool (* DC attributes (att) are provided and DC identifier is returned *)
(
let pool:DC_DB = insertDC(DC(id, att), pool), (* Pool updated *)
next_id:nat = succ(id) in (* Increment ID generator *)
(* Rest of behaviour goes here *)
)
/_?\/ deleteDC !lid; (* DC identifier is provided *)
= defete DC from pool let pool:DC_DB = removeDC(id, pool) in

(* Rest of behaviour goes here *)

)

/}/ get DC from pool getDC lid ?att:DC_attributes [att eq getAtt(id, pool)];
E (* DC identifier is provided and DC attributes are extracted *)

(* Rest of behaviour goes here *)

putDC lid 'att;
put DC in pool (* DC identifier and attributes are known *)
(
let pool:DC_DB = insertDC(DC(id, att), pool) in
(* Rest of behaviour goes here *)

)
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As for operation on slots, the creation of a component or a move into a slot is specified as an
instantiation of the relevant process. The assumption is that there exists a process definition represent-
ing the component (Guideline CG-5). The deletion of a component or a move out of a slot is specified
as a gate, followed potentially by a message (to ensure the continuation of the causal path in another

component) and by the termination of the process representing the compgitendr(stop ).

Figure 28 present shortoros examples illustrating how dynamic responsibilities could be

specified when bound to slots.

FIGURE 28. Interpreting Dynamic Responsibilities Bound to Slots
’ _+“| ( SlotProcess[gates](id, att)
/HJ‘\IK create DC in slot (* Slot process instantiated with new DC attributes *)
' L

(* Rest of path behaviour goes here *) )

T ( SlotProcess[gates](id, att)
/N‘\Iﬁ move DC into slot (* Slot process instantiated with existing DC attributes, from pool *)
! i
(* Rest of path behaviour goes here *) )
roo deleteDC;

message; (* Used to ensure path continuity in next component *)

|
! delete DC from slot stop (* Slot process is terminated *)

roon moveDCout lid !att; (* Slot process provides DC id and attributes *)

| I R R R
/_Q/ move DC out of slot message; (* Used to ensure path continuity in next component *)
' stop (* Slot process is terminated *)

5.2.3 Construction Guidelines for Structures

Construction Guideline 5: Interpreting the Structure

The UCM structure of components is captured as a collection of synchronized processes, where some

actions may be hidden depending on the nature of the component. Guideline CG-5 represents the gen-
eral case. Guideline CG-5.a considers component roles as a special case. Component interfaces are
handled by Guideline CG-5.b, Guideline CG-5.c further considers hiding of path elements, and

Guideline CG-5.d discusses the preservation of the hierarchical component structure.
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CG-5) Components are specified as processes synchronized on their shared chan-
nels/gates.

LoToshas a powerful concept, the process, that is general enough to represent active objects,
passive objects, agents, groups of interacting objects, and so on. Therefore, any component can poten
tially be mapped directly to adTosprocess with the same name. This is the case of procasises

Callee, andswitch in Figure 22.

When they are not provided, communication channels need to be added between communicat-
ing entities, which will then synchronize on these channels through the synchronifafion ( )
operator. For instance, tissvitch synchronizes witltaller on Chan1 and withCallee on Chan2. The
Caller and thecallee do not communicate directly, hence they interlefiize Y. Although synchroniza-
tion is achieved in @Tos through a binary operator, its multiway rendezvous mechanism enables
complex topologies to be represented. A characterization of these topologies is provided in
[12][60][140]. In fact, the structure is often specified in a resource-oriented style [364] using general-

ized parallel composition and interleaving operators.

CG-5.a) Roles of a component are merged before being mapped to a process.

UCMs may include multiple components that illustrate different roles of a single entity. For
instance, a user can assume the role of a caller or of a callee at different times. This concept is used ir
Figure 20, where a user can be originatae(:0) or terminator User:T). In LOTOS there would be
only one process typ&sger ) that would integrate both roles. As a consequence, the paths allocated to

these roles also need to be integrated in this process (see Guideline CG-6.d)
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CG-5.b) If a component has a predetermined interface to the external world, then
interaction points and responsibilities are transformed into experiments (val-
ues) attached to a gate representing the interface.

The merging of several gates into one, to which experiments are added in order to distinguish
between the former gates, is caltgte splitting[58]. This technique is a well knowrolros correct-
ness preserving transformation that allows to satisfy both the spirit of Guideline CG-1 as well as con-
straints imposed by predetermined interfaces. Gate splitting also helps to cope with the addition or the

removal of start and end points because it simplifies the modifications to be done on the specification.

As an example, suppose that the Caller component from Figure 22(a) provides a unique inter-
face to the user (environment) calledi. Then, the interaction pointsg andsig can be represented
by Gullreq andGUIsig respectively, where the gate corresponds to the name of the interface or com-

munication channel, and where experiment values represent the names of the start and end points.

CG-5.c) LoTosgates representing UCM interaction points, responsibilities and chan-
nels that are not observable by the environment are made internal through the
hide operator.

Although the UCM notation does not specify explicitly what is observable and what is not, we
can establish conventions or provide supplemental information to make this distinction. One such
convention can be inferred from the style guidelines G4 and G7 presented in Section 4.2.2: system
start/end points, responsibilities, and waiting places are internal, and so are the channels between
communicating entities. Start/end points, responsibilities, and waiting places allocated to actor com-
ponents (such azaller and thecCallee) are observable. For exampiley, sig, andring belong to actor
components and are therefore observable, i.e. they are part of the specification’s gate listysyhereas
upd, prbs, andpbs are hidden locally inside trsvitch process (Figure 22). Channelsan1 andChan2

are hidden at the structure level (this still allows the processes to use them for communication).
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CG-5.d) Containment of components is maintained.

If a component, implemented by a process, contains sub-components, then their associated
processes are instantiated (and possibly defined) within the former process. If the Switch of
Figure 22(a) had sub-components, then their respective processes would be instantiated inside the
Switch process. They could also be defined locally insidesttieh process with the @Tos where
clause. This would improve separation of concerns and modularity. However, the scoping rules of
LoTtos would also lead to the non-availability of the sub-processes in processes representing other

components.

Containment can be specified indirectly through stubs and plug-ins. For instance, assuming
that theswitch contains a stuB with a plug-inP that contains a componebdtabase (Figure 29(a)),
then the correspondirgwitch process would instantiate procesahich in turn would instantiate
which in turn would instantiate timatabase process, hence satisfying containment. However, the sit-
uation is slightly different for plug-ins that containchoredcomponents, which are declared outside
the component that contains the parent stub. Anchored components are already contained elsewher
and would possibly require the use of some communication mechanism to be accessed. Figure 29(b)
shows an example whebatabase is contained imtherComponent, which communicates witlwitch.
In all cases, the component structure needs to be consistent, i.e. a component cannot be contained i

two disjoint parent components. This needs to be checked at the UCM level.
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FIGURE 29. Containment and Plug-Ins

%_\ Database Switch Database
s [y —
/\ @ i /N @ i
N/ N v
Plug-in P Plug-in P
Process Switch[...] Switch[...] |[...]] OtherComponent]...]
W SLa] > Process Switch[...]

W SLa] >

E’lrocess S[...]
.. PL.]>>...

.. PL.]>>...

Process P[...]
... Database][...] ...
Process Database]...]
(* Database contained in Switch *)

|

|

|

|

|

|
|
Process SJ...] |

|

|

| Process P[...]

(* Communication with Database *)

| Process OtherComponent]...]

| ... Databasel[...] ...

| Process Database][...]

| (* Database contained in OtherComponent *)

(a) Database in Switch (b) Database in OtherComponent, outside Switch

Construction Guideline 6: Integrating Multiple Unrelated Path Segments in a Component

Path segments arerelatedwhen they are not combined explicitly through UCM operators (OR/
AND fork/join, or (a)synchronous path interactions). When combining such segments in a component
process, several decisions need to be taken and they must be documented in order to improve trace-
ability and test case selection. The generic case is presented in Guideline CG-6, whereas Guidelines
6.a to 6.d illustrate specific treatments of four families of situations. Note that these situations a not

mutually exclusive and hence several may have to be considered simultaneously.

CG-6) If multiple unrelated path segments (possibly from different UCM scenarios,
maps or roles) cross one component, then they are integrated together in the
corresponding bTosprocess.

This guideline addresses multiple situations where unrelated path segments need to be com-
posed to form the behaviour of a component process. In general, the integration with the interleave

operator ||| ) is the most permissive option, but it might however lead to undesirable behaviour (e.g.
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global sequences that should be refused) or to issues with respect to non-functional requirements (e.g
resource consumption, or security) which could be addressed in the high-level design. The most
restrictive option would be a sequential integration through the action prefix operatémgéain,
problems could result due to undesirable behaviour (e.g. unexpected deadlock at validation time) or to
issues with non-functional requirements (e.g. performance). Often, the most appropriate level of inte-
gration lies in between, using choics ), generalized synchronizationg.(| ), or a combina-

tion of all the operators seen so far.

Each of the synthetic construction approaches surveyed in Section 3.3.4 commits to one par-
ticular integration solution. The analytic approach usedrPieG¥ALU E offers more flexibility for
dealing with various situations, at the cost of a manual integration. Four main families of situations

are identified in Figure 30, where multiple unrelated path segments crazsdibsse component:
« Unrelated path segments in one map, with component information: Figure 30(a)
« Unrelated path segments in one map, with contextual path information: Figure 30(b)
« Unrelated path segments from different maps: Figure 30(c)

e Unrelated path segments from different roles: Figure 30(d)

Each of these situations serves as a basis for a more specific construction guideline. In all
cases, appropriate documentation, including comments added to the component behaviour, should be
provided in order to trace the behaviour constituents to the path segments from which they originate
as well as the rationale behind that specific integration. This information can be used later during the

selection of validation test cases.
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FIGURE 30. Situations with Unrelated Path Segments

Database Database Database
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Plug-in P2
(c) From different maps (d) From different roles

CG-6.a) The nature of the component can constrain the potential types of integration.

In real-time systems, components that are passive or that enforce mutual exclusion often have
specific limitations, such as not allowing internal concurrency. This can be reflected in a UCM
description (see Appendix A: Figures A8 and A9). Components may be protected (enforcing mutual
exclusion), declared as passive objects, or declared as stacks to possibly limit the number of concur-

rent instances or threads.

For example, because they are bound to a protected component (shown with double lines), the
two unrelated path segments from Figure 30(a) should not be allowed to evolve concurrently. More-
over, multiple concurrent instances of these path segments should be disallowed as well. One possible
solution could be to use the choice operdio) o integrate these two segments. Da@base com-

ponent could be reinstantiated upon the termination of any segment, but not before.
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CG-6.b) Contextual path information can help to determine an appropriate integra-
tion, but it should not be seen as a guarantee.

Contextual path information includes UCM constructs used before (AND-fork, OR-fork, etc.)
or after (OR-join, AND-join, sequence, etc.) path segments that are unrelated from the perspective of
one particular component. That information can guide the designer in the choice of an appropriate
integration. However, in many cases, other concerns or non-functional requirements may dictate the

use of a different option.

Figure 30(b) shows two examples where the two path segments crossiDgiatiaee are
related outside the boundaries of that component. The first example uses an OR-fork, and hence one
might conclude that integrating the segments sequentjglig fiot judicious, and that an alternative
(1 ) is the best option. In the second example, the bottom path segment follows the top one after an
arbitrarily long causal sequence of intermediate responsibilities somewhere outsigtettiie. One

could conclude that a sequential integrationig sufficient in this case.

However, in both examples, if tibatabase is intended to handle multiple concurrent requests
(performance requirement), then the path segments should probably be integrated using the interleave
operator ||| ). This shows that although contextual information can be of some help, it is not suffi-

cient for deciding the best integration.

CG-6.c) The integration of unrelated path segments from different maps can be influ-
enced by the global context, including selection policies.

Different maps may include path segments crossing one same component. This situation is
illustrated in Figure 30(c), where two plug-ins include a reference to thersasnese. The path seg-
ments inside both anchored components need to be integrated. The way these two maps interrelate

may have an impact on the appropriateness of the integration.
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Relevant contextual information in this example includes the stub selection policy. For
instance, if both plug-ins are intended to evolve concurrently in the stub, then it might be sensible to
allow these two segments to evolve concurrenfly {. If the plug-ins are mutually exclusive, then

the segments could potentially be integrated using the choice op@rataar{d so on.

CG-6.d) The integration of unrelated path segments from different roles need be con-
sidered.

Roles represent yet another dimension that needs to be considered when integrating unrelated
path segments. Figure 30(d) shows an example wherediagase can assume various roles.
Whether the component can assume many roles simultaneously, exclusively, or sequentially will
again have an impact on the potentially appropriate integration§|(e.gs.[] Vvs; ). The decision is
not necessarily done at the level of the whole component; the integration could be more fine grained.
For instance, two roles may be mutually exclusive for one scenario, and they could be assumed simul-
taneously for another scenario. Another interesting situation is when roles A and B are mutually

exclusive whereas roles A and C can be assumed simultaneously.

Construction Guideline 7: Refining Inter-Component Causality

Causality between responsibilities or events located in different components is represented by means
of messages, i.e. events resulting from the synchronization ofdnodprocesses representing these
components. This guideline is at the core of the problem of MSC generation from UCMs. Due to the
complexity of the said problem, these guidelines do not discuss the additional information (e.g. anno-
tations to the responsibilities and inter-component path segments) that UCMs would require in order
to automatically derive message patterns from inter-component causality. They rather focus on

generic constraints that should be satisfied by any message-based refinement.

Guideline CG-7 captures the essence of the general case, whereas Guideline CG-7.a and
Guideline CG-7.b focus respectively on shared responsibilities and direction of messages. The satis-

faction of channel constraints are further illustrated in Guideline CG-7.c.

150 Specification and Validation of Telecommunications Systems with Use Case Mapsasd L



Construction Guidelines

CG-7) Causal paths that span two components may be refined through exchanges of
messages.

This guideline implies many design decisions that need to be taken during the construction of
the LOTOS prototype. To ensure the causality between the responsibilities and events performed by

two different components, message-like interactions are essentially required.

The simplest solution is for the first process to send a single notification message to the sec-
ond process. The nature of this message and of its value experiments (parameters) depends on th
information available to the designers. For instance, if the protocol to be used is already known, then

the message can be concrete, otherwise it will be abstract or synthetic.

More complex exchanges of messages could be used if the protocol requires it (e.g. three-way
handshake, remote procedure call, etc.). The specification could abstract from the details of the pro-

cessing implied by such complex protocols while retaining the message patterns.

Sent messages are represented as gate experiments, similarly to Guideline CG-5.b. In
Figure 22(c), thecaller sends a request message toshiech (Chanl !request !calleeNum ) in
order to refine the req, vrfy> inter-component causal sequence. It also receives an announcement

(Chan1 ?ann:Announcement ) that refines the pbs, sig> and <brs, sig> causal sequences.

Symmetry is enforced in synchronized actions. For instance, in Figure 22(c), all the actions
involving Chan1 in the Switch process must be reflected in thaler process, with value experiments

on which both parties can agree.

CG-7.a) Shared responsibilities are refined through negotiations (exchanges of mes-
sages).

Shared responsibilities (Figure A7(d) in Appendix A:) act like inter-component causal paths,

but they explicitly imply the existence of a complex communication mechanism (e.g. multiple
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exchanges of messages satisfying some constraints, protocols, or negotiation rules) that goes beyond
simple notification messages. This mechanism may be part of the documentation that accompanies
the UCM.

CG-7.b) Direction of messages is made explicit when necessary.

LoTossynchronization is directionless, hence interpreting events as being directional requires
contextual or additional information. This is essential for the generation of MSCs from UCMs. Some
gates may be interpreted as linking only two components in a specific direction, hence solving the
issue. Ambiguity in the direction of a message may also be solved by analyzing the message sent
through a bidirectional gate. For instance, tbguest message sent vi@hanl in Figure 22(c)

could imply that the sender is tballer and the receiver is trgavitch.

However, as the specification gets more complex, a more explicit definition of the direction of
a message becomes unavoidable. The source and the destination of a message are then added to the
message itself as new experiments. This solution also helps coping with issues related to multiple
instances of components. For example, if many callers and switches are involved in a system, then the
different types of message could be:

Channel ?source:Callerld ?dest:Switchld ?msg:Message
and

Channel ?source:Switchld ?dest:Callerld ?msg:Message

The assumption here is that channel names are unique, and that we know the types of compo-

nents they are linking.

CG-7.c) Communication constraints imposed by pre-determined channels need to be
satisfied.

Component architectures may contain pre-determined communication channels that act as

constraints on the valid message exchanges. Such constraints have three implications:
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« Inter-component causality between components A and B that are not linked by a channel

will require the participation of intermediate components (e.g. C, or C and D).

« The communication will be establish between the entities connected by channels (e.g. A

with C, and C with B).

« The forwarding of messages in these intermediate components need to be integrated to the

rest of their behaviour (in a way similar to Guideline CG-6).

Figure 31 illustrates such a situation. Td¢wler and thecCallee are not allowed to exchange

messages directly because they are not connected by a communication channel. Even if the path goe

directly from thecaller to thecCallee, the Switch needs to be involved in any communication between

these two entities. One potential message exchange that is valid is shown on the right in the form of an

MSC. The messagasl and m2 may be supplemented by information related to the sender, the

receiver, and other relevant parameters.

FIGURE 31. Channel Constraints and Valid Message Exchanges

Caller Callee Caller Switch Callee
send
ack unpack
send @ i & Ireceive | pack |
mi(..)

Tim2(.)

Chanl Chan2 >
Switch unpack|

receive
| | |

In this particular example, the behaviourazfiler needs to include the sendingrofl over
Chanl, and that afallee should acceptn2 from Chan2. Thewitch is required to receiveil from

Chanl and then to sen® over Chan2, even if no path segment crosses that component.

Again, this guideline is not self-contained and it can be coupled to the other guidelines seen in

this section (e.g. to handle more complex protocols or direction of messages).
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5.2.4 Construction Guidelines for Data

Construction Guideline 8: Representing Data

Although seldom defined explicitly in UCMs, data types and related operations need to be defined in

LoTos

CG-8) Abstract data types are used to describe identifiers, operations, conditions,
and databases.

UCMs often assume the existence of a data model that needs formalization in order to repre-

sent the following elements:

« ldentifiers: enumerated types (explicit or based onrnthriral numbedata type) are used
to describe simple message names, to specify the direction of messages, and to distinguish
between multiple instances of a component. Tbgds standard already provides basic
types (booleans, natural numbers, sets, etc.) and mechanisms to manipulate and extend

them.

« Operations: operations with parameters can be used to specify tuples (e.g. messages with
parameters, user profiles, etc.) and rewrite rules to manipulate them or to extract informa-

tion from them.

« Conditions: conditions, used in&Tos in guards and selection predicates, make use of

comparison operators (based onhbeleandata type) which evaluate to true or false.

- Databasespassive objects and pools are often represented as databases, which are speci-
fied using tuples, sets of tuples, sets of sets of tuples, and soTos tffers asetdata

type with many predefined, extensible and modifiable operations.

In the example of Figure 22, messages are identified by values orcgate®ndsig, and the
Switch process would require the use of conditions to select the appropriate branch of the OR-fork.

The required abstract data types would be defined befobellagiour clause.
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5.2.5 Towards Partial Automation
Automatically generating a completeotos model from UCMs is a very difficult task, as was

explained in the discussion on synthetic construction approaches (Section 3.3.4). This is why an ana-
lytic approach is used inP&GVALU E. However, even an analytic approach does not prevent the par-
tial automation of some of the guidelines explored here. Such partial automation would be a way to
improve the maturity of &EGVALUE to the third level (Defined, or Transitional-Assisted) on the

Formal Specifications Maturity model scale (Section 9.1.3)

Table 14 provides an overview of the potential for automation of the eight major guidelines
defined in this chapter. This brief evaluation is based on the experience of the author with a prototype
compiler (unbound UCMs todros[13]) and with the manual generation of various specifications
from UCMs, accompanied by numerous discussions on this topic. Given the current status of the
UCM notation and supporting tools, a degree of automation difficulty is provided for each guideline,
from simple (1) to difficult (5). Additional information elements that would be required to improve
the situation are enumerated, but the format in which this information could be provided remains out-

side the scope of this thesis.
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TABLE 14. On the Partial Automation of Construction Guidelines
Cons_trugtlon Automatable?
Guideline

1. Interaction
points and
responsibilities

Degree of difficulty: 2 (all guidelines).

More precise information on the visibility (what is observable) and on interfaces is required.
Pre/post conditions and value identifiers need to be expressed in a way that is mappable to

LoTosabstract data types and expressions.

2. Causal paths

Degree of difficulty: 2 (all guidelines).

The level of recursion and of concurrency of scenario paths needs to be described.
Loop detection can be a problem, but an explicit UCM loop construct would alleviatg
(such a construct is now being supported by the UCM Navigator tool).

it

ngs.
orre-

ired.

lities is

quired.
nrced.

ge

ided by

% Degree of difficulty: 3 (all guidelines).
a (| 3. Stubs and Skeletons can be generated for stub and plug-in processes, instantiations and bindi
plug-ins Selection policies however need to be described in a precise language from which @
sponding loTosbehaviour expressions can be generated.
Degree of difficulty: 2 (Guidelines 4.a, 4.b, and 4.c).
More precise information on the visibility of timeout, abort, and failure events is requ
4. Other path Degree of difficulty: 4 (Guideline 4.d).
elements The handling of dynamic responsibilities, slots, and pools is quite remote Goosbper
ators. Precise information on the exact nature and impact of the dynamic responsibi
required.
Degree of difficulty: 3 (all guidelines).
More precise information on channels (interfaces) is required.
5. Structure Consistent containment relationship needs to be ensured.
Arbitrary structures are sometimes impossible to capture directly withcthesbinary
synchronization operator, and additional transformations are then required.
() Degree of difficulty: 5 (all guidelines).
g 6. Unrelated Precise definitions of role attributes, map compositions and role compositions are re
g path segments Consistency with contextual path information and selection policies needs to be enf
) The integration can be influenced by requirements outside the scope of UCMs.
Degree of difficulty: 4 (all guidelines).
Precise definitions of channels, protocols and negotiation patterns (with their messal
7. Inter-compo- . .
nent causality names), and of their parameters are- required.
Data flows need to be defined (possibly attached to UCM paths).
Routing information is required when causality can be refined through several route
Degree of difficulty: 4 (all guidelines).
% 8. Data A precise data model, compatible witbitosabstract data types, is required.
all Most definitions for databases, pools, and message encoding would need to be pro
designers and requirements engineers.
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5.3 Applying the Construction Guidelinesto TTS

The construction process used here starts by analyzing the TTS UCM model and its components to
determine an appropriate specification structure. Then, data structures and operations for identifiers,
messages, and databases are defined using ADTs. Finally, the behaviour of each component is
described in a process. Sub-processes for stubs and plug-ins may be needed along the way. Thes
three steps are usually interleaved as the description of component processes may unveil the need fo

new or different ADTs.

While constructing the prototype, thetosdesigner makes choices concerning the mapping
of components, stubs, plug-ins, causal paths, path elements, messages, etc., according to the constru
tion guidelines. Traceability links between the UCM model and theok model are established
when these design decisions are taken. Since UCMs are used at a higher level of abstraction thar
LoTos this analysis gives an opportunity to inspect the UCM documentation and to detect missing

parts, contradictions, or other such problems.

The complete specification of TTS can be found in Appendix B. Several parts will be pre-

sented or referenced in the following sections.

5.3.1 Structure of the TTS Specification
The integrated TTS UCM (Figure 20) shows that there are three types of components resgtired:

Agent, andocsiist. Different instances afiser andAgent, for originating and terminating roles, are

also involved.

According to Guideline CG-5, process definitions are needadséorandAgent. Two process
definitions are sufficient because originating and terminating roles will be merged (Guideline CG-
5.a). Since thecsiist passive object is included Agent and since it essentially represents a database,
the ocsilist will be specified as a process parameter (an ADT) rather than as an independent process
(Guideline CG-8 Guideline CG-5.d does not apply because there is no longer any embedded compo-

nent.
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User andAgent do not have a predetermined interface to the external world, hence Guideline
CG-5.b is not used. The visible actions will include the start points and end points, ramély,
sig, anddisp. Gates are defined for these points (Guideline CG-1), whereas the other start points and
end points will be used internally for the binding of plug-ins to stubs. Responsibilities are assumed to

be internal in this model, so they will not be part of component interfaces (i.e. gate parameters).

Guideline CG-5 suggests the creation of communication channels between communicating
entities in the absence of explicit ones. A specific user will always communicate with the same agent,
So using the users interface gates as channels is appropriate (in this system, the modelling of agents is
more important than the modelling of users). However, an agent may communicate with any other
agent. A new communication channel is hence required. The corresponding gate, named
agent2agent , will be hidden (Guideline CG-5.c). In order to allow any agent to communicate to

any other agent, a communication medium (the pradedaim) is added.

To make the prototype more flexible, the specification will allow the dynamic instantiation of
user-agent pairs. These instances will possess their own identifiers and internal data, which will be
initialized at the beginning through an additional gatiée: . As a result, each test scenario will be
able to provide an initial configuration composed of users and agents, with appropriate values for
their parameters (e.g. subscribed features). This leads to a less rigid approach to validation than hav-
ing a fixed configuration, which often results in the creation of multiple specifications for the cover-

age of many variations and cases.

According to the decisions taken so far, the structure can be expressed by the following pro-

cess definitions and compositions (lines 414 to 448 in Appendix B):
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414 behaviour

415

416 (* Gates not visible to the users are set to be internal. *)
417 hide

418 agent2agent (* Inter-agent communication channel *)
419 in

420 (

421 (* We create as many user/agent pairs as necessary. *)
422 UserAgentFactory [req, ring, sig, disp, init, agent2agent]
423 |[agent2agent]|

424 (* Agents communicate through some medium. *)

425 Medium[agent2agent]

426 )

427

428 where

429

430 (FAAAAAARAARRIA LSS AAAAAAAS A AR ARRIA S AREAAAAAAARALAS AR )
431 (* Process UserAgentFactory: To create and initialize users and agents. *)
432 (FRAAAAARAARRIAL S AN AAAIA ISR ARRIAA Sk AREAALAAAARAL AL AR )
433

434 process UserAgentFactory [req, ring, sig, disp, init, agent2agent]: noexit =
435 init ?userld:User ?userFeatures:FList ?0CSlist:UserList ?state:UserState;
436 (

437 (* Create the user and its associated agent *)

438 (

439 User [req, ring, sig, disp] (userld)

440 |[req, ring, sig, disp]|

441 Agent [req, ring, sig, disp, agent2agent]

442 (info(userld, userFeatures, OCSIist), state)

443 )

444 1

445 (* Prepare to accept new creation requests *)

446 UserAgentFactory [req, ring, sig, disp, init, agent2agent]
447 )

448 endproc (* UserAgentFactory *)

The UserAgentFactory  process enables the instantiation of user-agent pairs in a recursive
way. Each user can communicate with its agent, but agents can communicate with each other only
through the medium. The nature of the medium can be of many kinds. In the TTS example, the

medium is specified as a bidirectional FIFO channel of length 2 (lines 451 to 473 in Appendix B).

The process composition is illustrated in Figure 32(a). Note that some groupings of compo-
nents in the specification structure differ from those of the abstract component structure found in the
integrated UCM. This is becaus®10s processes are composed udimgary operators. However,
the resulting groupings and possible ways of establishing communications are semantically equiva-
lent (Guideline CG-5). The logical view of how the components communicate is best shown in
Figure 32(b).
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FIGURE 32. Structure of the LOoTOS Specification

UserA UserB UserN
UserAgentFactory
User i req, ring, req, ring, req, ring,
sig, disp sig, disp sig, disp
- i AgentA AgentB AgentN
req, ring, agentZagent | Medium g g g
sig, disp
Agent
g agent2agent agent2agent agent2agent
Medium
(a) Process Composition View (b) Logical View

5.3.2 TTS Data Types and Operations
The above component structure required different parameters for the processes: user identifiers, lists

of features, OCS screening lists, states, etc. Responsibilities are also likely to modify these values.
Appropriate abstract data types are needed to support these data structures and their operations, as

suggested by Guideline CG-8.

The LoTos standard provides a library of common ADTs, some of which were included and
adapted in the specification of TTS (lines 19 to 169 in Appendix B). Booleans, natural numbers, ele-
ments, and sets are at the basis of all other ADTs defined for the support of TTS data structures and

operations. This is achieved through mechanisms like inheritance, renaming, and actualization.

The ADTs specific to TTS (lines 170 to 361 in Appendix B) include:

« ldentifiers: State (busy or idle) Announcement (callDenied, busySig, ringBack, etc.),
User (userA, userB, userC), am@ature (BC, CND, OCS). The typbirection  (line
352) is also utilized to identify the direction of a message sent to or received from the
medium (Guideline CG-7.b). Note how this type uses the renaming capabilitiesa@$ L

to simplify its definition.
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« Operations: Most types include operations for comparing values suél s equal to)
andne (is not equal to). For enumerated types with many elements-éatgre ), the
operationmapis used to map elements to natural numbers. This enables the reuse of oper-
ations defined for natural numbers as well as additional flexibility in adding elements to
the type or removing elements from the type. The ADifo (line 317) uses operations

to represent records and to extract information for these records.

« Conditions: Throughout the specification, conditions make use of comparison operators

in guards (e.g. lines 519 and 528) and selection predicates (e.g. line 539).

« Databasestheocsilist passive object is represented as a set of usersU$gpest |, line
251), to which additional operations were added (t@@Scheck, line 260). Another
database is used by each agent to maintain the list of subscribed featureksftypdine
308). Many operations on databases are automatically inherited from the staeadard
ADT.

ADTs are also defined for stub entry points and exit points (lines 362 to 407 in Appendix B).
Identifiers (typeStubPath ) and databases (typ®List ) are used in the binding of plug-ins to stubs,
as suggested by Guideline CG-3.c.

5.3.3 TTS Process Definitions
In this section, the construction guidelines are used to build process definitionsUs¢rthadAgent

components.

Process User

The process$iser is relatively simple as it considers only four short segments (Figure 33(a)) coming
from the originating and terminating roles found in the root map and in the CND plug-in. Both roles
are merged according to Guideline CG-5.a, and their respective path segments are integrated as
explained in Guideline CG-6 and Guideline CG-6.d. Figure 33(b) shows the resulting process defini-
tion: thereq andsig points are integrated sequentially (as implied by the context, see Guideline CG-

6.b) whereas theng anddisp segments are integrated as alternatives.usbed process parameter
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enables the instantiation of multiple users that are unique and that can realistically assume both roles

at the same time. The process reinstantiates itself recursively in order to handle the next events.

FIGURE 33. Construction of Process User

480 process User [req, ring, sig, disp] (userld: User): noexit =
481 (* Initiate a call request and get an announcement/signal *)
User 482 req luserld ?callee:User;
= 483 sig luserld ?msg:Announcement;
‘5{ rea @ e 484 User [req, ring, sig, disp] (userld)
=2 I 485 0
o s\ I_ e 486 (* Receive a ring *)
. 487 ring luserld;
I ring £ 488 User [req, ring, sig, disp] (userld)
}g 489 I
. 1S 490 (* Observe a displayed phone number *)
I disp 2 491 disp !userld ?caller:User;
492 User [req, ring, sig, disp] (userld)
493 endproc (* User *)
(a) Path Segments of User (b) Process User

Process Agent

The proces#gent is more complex as it considers more path segments as well as inter-component
causality relationships. This process can be found between lines 496 and 646 in Appagdix B.
includes theocsilist, as suggested by Guideline CG-5.d, but as a process parameter instead of as a
sub-process. The six responsibilities bound toatet componentdhk , pds, vrfy , pbs, prbs and

upd) are represented a®tos gates (Guideline CG-1) and are locally hidden (Guideline CG-5.c).
They come from both the originating and terminating roles, which are again integrated in one process
definition (Guideline CG-5.a). Several responsibilities, sughrias , pbs, andpds, affect the value

of the sgnial returned to the originator, whilgl updates the terminator’s status (Guideline CG-1.a).

One interesting difference between thgr component and thegent component is that
agents contain stubs, which in turns contain plug-ins. According to Guideline CG-3, stubs are defined
locally as sub-processes. This is effectively the case for proce3sesIST (lines 582 to 644). Rep-
resenting a dynamic stub, the stub pro&3also specifies the selection policy (Guideline CG-3.b).

Conditions (guards) are used to provide priority to OCS over the default behaviour; if the user has
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subscribed to OCS, then the OCS plug-in process is instantiated, otherwise the default plug-in process

is instantiated.

Guideline CG-3 also mentions that plug-ins are mapped to independent processes, therefore
process definitions are provided e&fault , Terminating , OCS andCND(lines 648 to776). Note
that theTerminating plug-in also contains a stubr) specified as a sub-processregrminating . The
resulting process calling tree for the agent component is illustrated in Figure 3efabe plug-
in process can be instantiated by two stub processes, na@ahdSD, so the consistency and reus-

ability found at the UCM level are reflected in theTios prototype.

FIGURE 34. Process Calling Tree for the Agent Component

L EGEND
Agent

Component
process

[ ]
<> Stub process
>

Plug-in process

Having processes for the plug-ins simplifies the integration of path segmentsAgetite
process. The latter only has to cover the path segments found in the root map. These segments ar
integrated according to Guideline CG-6.c. Alternatives are used to integrate most segments, except
for the two segments coming out of stsib found in the terminating role: its plug-iieminating)
contains an AND-fork which can lead to a behaviour where both segments are active simultaneously.

Therefore, the interleave operatfiy () is used to integrate these two segments (line 563).
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The proces3erminating  (Figure 35) represents a good illustration of how causal paths are
represented inside a component. The OR-fork found imetienating plug-in (Figure 20) is mapped
to the LOTOS choice operator (line 694), as prescribed by Guideline CG-2.a. Both alternatives are
guarded by conditions representing those found on the UCM path segments. The AND-fork found in
the same plug-in is represented by the interleave operator (line 689), as suggested by Guideline CG-
2.b. The OR-join in th@erminating plug-in is captured by thexit operator (lines 686 and 698),
which outputsut4 as the end point to be connected to an outgoing segment in the calling stub. This

case of duplicated behaviour concords with what was explained in Guideline CG-2.c.

FIGURE 35. Extract from the Terminating Plug-in Process

677 [state eq idle] ->

678 (
679 (
680 SD[disp](Insert(in3, EmptySPList), ui, state, userO)
681 >>
682 accept ui:UInfo, state:UserState, userO:User, piep:SPList
683 in
684 [out5 IsIn piep] ->
685 upd; (* Updates the busy status *)
Guideline CG-2.c- 686 exit  (ui, busy, any Announcement, userO,
687 Insert(out3, Insert(out4, EmptySPList)))
688 )
Guideline CG-2.b- 689 I
690 prbs; (* Prepares the ringBack signal *)
691 exit (ui, any UserState, ringBack, userO,
692 Insert(out3, Insert(out4, EmptySPList)))
693 )

Guideline CG-2.a» 694 |
695 [state eq busy] ->

696 (
697 pbs; (* Prepares the busy signal *)

Guideline CG-2.c- 698 exit  (ui, state, busySig, userO, Insert(out4, EmptySPList))
699 )

Binding Plug-ins to Stubs

Each stub process is responsible for calling plug-ins with parameters such that the stub/plug-in bind-
ing relationship is preserved. This is achieved with the help of input/output segments specified by the
StubPath andSPList abstract data types. Figure 36 illustrates this idea, corresponding to Guide-
line CG-3.c, by showing how the stub procgsaises the plug-in proce€ss
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The first parameter @CSisinl (line 595), which corresponds to the plug-in start point trig-
gered by the stub incoming segment of the same name (Guideline CG-3.a). The remaining parameters
are internal values of thigent process, which can be used and modified by the plug-in pra»ess.
exits with another list of parameters whose last elenpéai, (stands foplug-in end pointsline
599), is the list of end points reached by the plug-in. The elements of this list are then bound to their
respective stub output segment (lines 602 to 606), hence completing the implementation of the bind-

ing relationship.

FIGURE 36. Binding of a Plug-in to a Stub in Process SO

594 (* First in1 parameter is the plug-in start point *)

595 OCS|chk, pds](inl, ui, state, userT)

596 >>

597 (* Connect the resulting end points to the stub exit paths *)
598 accept ui:UInfo, state:UserState, msg:Announcement, userT:User,

599 piep:SPList

600 (* piep is the resulting list of plug-in end points *)
601 in

602 [outl IsIn piep] ->

603 exit  (ui, state, msg, userT, Insert(outl, EmptySPList))
604 1l

605 [out2 IsIn piep] ->

606 exit  (ui, state, msg, userT, Insert(out2, EmptySPList))

For plug-ins that contain multiple start points that can be activated simultaneously, a list of
start point names (typ8PList ) should be used instead of a single start point name e
Path ).

Inter-Component Causality

The last topic to be addressed for the construction ofdbet process is inter-component causality.
Because there are paths crossing the originating and terminating roles, agents need to communicate

with each other in order to support this causality.

The path that goes from tlagent:0 to Agent:T in Figure 20 is used here as an example. Guide-
line CG-7 states that inter-component causality needs to be refined through exchanges of messages

The path of interest can be refined as a message sent from the originating agent to the terminating
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agent. This message essentially forwards the call request, hence it will beraqumed . An agent

communicates with the medium through gadent2agent . One possible message is:
522  agent2agent !toMedium !uid(ui) 'userT !request;

The direction of the messag®Nedium ) is made explicit through gate splitting, as pre-
scribed by Guideline CG-7.b. The sourc@(ui) ) and destinationugerT ) are also included as

identifiers of sorUser .

The terminating agent receives a request in the same way. Note that the originating user is not
known in advance, therefore a question mark is used to get its identifier. Note also that the direction of

the message has been changed to the opposite directiéopiMedium .
546  agent2agent !fromMedium ?userO:User !uid(ui) !request;

The medium receives the first message from the originating agent and forwards it to the appro-
priate terminating agent. Guideline CG-7 mentions that symmetry should be enforced in synchro-
nized actions. Since both agents are synchronized with the medium, the latter needs to support both
types of events, with parameters of the same sorts and in the same order. Indeed, thdqafiooess

possesses such events (e.g. lines 459 and 461 in Appendix B):

459  agent2agent !toMedium ?from:User ?to:User ?msg:Announcement;
461 agent2agent !fromMedium !from !to !'msg;

The behaviour of the medium is also inferred by the forwarding of messages between agents,
as suggested in Guideline CG-7.c. Other types of messages are used to implement the inter-compo-

nent relationship from terminating agents to originating agents.

5.4 Chapter Summary

This chapter proposes an analytic approach for the constructioaTaiSlspecifications from Use

Case Maps. Section 5.1 provides an overview of the approach in the context eEtheABU E
methodology. It recalls whydTosis appropriate as a specification language for the prototyping of
telecommunications systems described with UCMs. This section also discussed the reasons why

TMDL is unfit as a language for the synthesis of specifications for complex telecommunications sys-
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tems. An analytical approach to the construction of specifications appears to be a more practical solu-

tion.

The core of this chapter is found in Section 5.2, where three families of construction guide-
lines are presented (for paths, structures, and data) and where several are illustrated individually. A
total of 8 general guidelines and 22 small-grained guidelines cover many important topics such as:
interaction points and responsibilities (2), causal paths (5), stubs and plug-ins (4), other path elements
(4), structure and components (5), unrelated path segments (5), inter-component causality (4), and
data (1). The application of these guidelines results inT@& specification that is close to the UCM
model. Using this construction approach, the translation of telecommunication features described

with UCMs is systematic.

As discussed in Section 5.2.5, construction guidelines for UCM structures are the most com-
plex to automate because designers and requirements engineers have to choose among numerous pc
sible solutions. Some of these decisions could be embedded in the UCM description, but this would
require further formalization of the notation and of annotations. How best to capture these decisions

in UCM terms is outside the scope of this thesis and is left as a topic for future work.

The guidelines are applied to the Tiny Telephone System example, and the resuitisy L
specification (found in Appendix B) is discussed in Section 5.3. Particular emphasis is put on the
structure, on data types and operations, and on the definition of processes for users and agents. Th
complexity of theAgent process requires the use of many guidelines related to stubs, plug-ins, and

inter-component causality.

The next chapter will discuss the validation of this prototype against the UCMs and the

requirements, as well as a testing framework based on UCMscaias$ L

Contributions

The following items are original contributions of this chapter:
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« Partial illustration of Contribution 1 (Section 1.4.1) regarding fast prototypingric S
VALUE.

« Partial illustration of Contribution 2 (Section 1.4.2) regarding the guidelines for the con-

struction of loTos specifications from UCMs inf&EGVALU E.
 lllustration of sted] in SPEGVALUE, i.e. from UCMSs to bTOS

« 8 general construction guidelines and 22 small-grained guidelines for the generation of

LoTosprototypes from UCMs.
- Brief evaluation of the potential for automation of these guidelines.

« Construction of a bTos prototype for the Tiny Telephone System.
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UCM-LoTos Testing Framework

Examining a program to see if it does not d
what it is supposed to do is only half of the
battle. The other half is seeing whether the
program does what it is not supposed to do

Glenford J. Myers, 197

LoTos prototypes can be constructed from Use Case Maps, as seen in the previous chapter. Becaus
an analytic construction approach represents a major step where important design decisions are made
some of which are prone to mistakes, it is essential to verify the targeisimodel against the

source UCM model. The current chapter addresses this issue by presenting a novel framework for val-
idating requirements and designs described with Use Case Maps and prototypeddnTlhe con-

cepts behind this framework are founded on tlads testing theory and on new test selection

strategies based on UCMs.

The testing approach is first placed in the proper context with respect teeb&d/A UE
methodology (Section 6.1). Basic concepts related to the UGM&testing framework, including a
new validation relation, are introduced in Section 6.2. Test goal selection techniques based on a
UCM-oriented testing pattern language are developed in Section 6.3, and Section 6.4 complements
the testing patterns with additional strategies for the generation of test cases. These techniques are
applied to the TTS system example, and the results are presented in Section 6.5. A summary of this

important chapter is found in Section 6.6.
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6.1 Testing Approachin S PEC-VALUE

Testing is one technique among many others used for the validation and verification of systems. The
main motivations behind this strategic choice for V&V are recalled in Section 6.1.1, whereas Section
6.1.2 presents the context in which testing is used in pEe-¥ALU E methodology. Section 6.1.3

contrasts the concepts of validation testing (use®BGSALU E) and conformance testing.

6.1.1 Justification for a Testing Approach
Many validation and verification concepts and techniques, with a special focus on those related to

LoTos were introduced in Section 2.3.7 and Section 3.4. A particular attention was given to some of
the most popular ones, namely step-by-step execution, equivalence checking, model checking, and
testing. When compared to the three other approaches, testing appears to be the most practical and
suitable technique for verifying that atos specification respects the intent of the UCMs from

which it was constructed:

« With appropriate tool support, checking a@tos specification against a test case requires
less effort than covering the same traces with step-by-step execution. Many of these traces
are caused by the interleaving semantics @fds combined with non-determinism and
internal actions in the specification under test. For one test case, a tool such asito-
matically covers all the non-deterministic traces where internal actions are interleaved.
Moreover, a test suite can be checked in batch, a useful feature for verifying the specifica-
tion each time it is modified. Step-by-step execution is laborious to use for verifying real-

istic telecommunications systems due to the numerous and lengthy traces to cover.

- Testing requires the presence of only one formal model to test, and test cases can be
derived or generated systematically from requirements or scenarios, whereas equivalence
checking usually requires two formal models to be compared. Equivalence checking is
hardly useful in 8EGVALUE (and in the early steps of the design process in general)
because the construction approach aims to produce a first high-level specification from
informal requirements and semi-formal scenarios. Hence, testing appears to be more

appropriate.
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« The requirements addressed in this thesis are expressed and captured mostly operationally
as (UCM) scenarios. Test cases are small-grained properties defined at a level similar to
the one offered by scenarios, whereas large-grained liveness and safety properties, for
which model checking is most useful, are often difficult to extract or infer from scenario
descriptions (Section 3.4.1). Again, testing appears to be the most appropriate approach in

our context.

Note however that these approaches are not mutually exclusive but complememsary. S
VALU E focuses on testing because testing is unavoidable in any design process [51][68], but this does
not prevent the use of additional V&V techniques. Provided sufficient resources, the other techniques

can be used beyond testing:

« Step-by-step execution can be useful to debug a specification declared faulty, possibly by

an unexpected verdict resulting from the execution of a test.

« Equivalence checking can be used when refinements or improvements are done at the

LoToslevel only.

« Model checking can be used to cover additional properties, when they are available.

Despite the potential usefulness of a multi-technique approach to validation and verification,

this thesis limits its scope to the testing approach about to be presented in this chapter.

6.1.2 Testingin S PEC-VALUE
SPEGVALU E's testing framework is illustrated in Figure 37. In a nutshelifdstest cases are gener-

ated manually from UCMs (stép). Test selection strategies make use of (unbound) UCMs to extract
abstract sequences, and the presence of an underlying component structure is optional. These abstra
sequences are transformed intoTbs test processes. The testing itself is performed by composing
the test cases with theollos prototype (stef!). This operation is performed automatically with

LoLA, which then outputs the resulting verdict for each test. If a verdict is not satisfactory, then appro-
priate modifications might be brought to the requirements (S)epvhich may result in cascading

modifications to the scenarios, the tests and the prototype. In many cases however, the required modi-
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fications will be more localized (e.g. to the prototype or to the tests), without affecting the require-

ments. Coverage measurements (&§tgvill be the topic of the next chapter.

FIGURE 37. UCM-Based Testing with SPEC-VALUE
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Although the termestingis used most commonly in the sense of implementation testing, exe-
cutable specifications and formal prototypes can also be tested in order to see whether they satisfy
requirements. The latter is essentially a validation activity, yet many of the methods and concepts
used in implementation testing also apply. PESVALUE, testing the prototype/specification is
really intended to begalidation testingln this context, the methodology helps to validatecads
prototype against its requirements by verifying (through testing) that this prototype corresponds to the

UCMs from which it was derived. This is essentially the research hypothesis discussed in Section 1.2.

An important assumption here is that UCMs capture the functional requirements correctly.

Users, requirements engineers and designers casadictthe UCMs derived from informal require-
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ments, thus establishing their validity. UCMs are defined at a level of abstraction that is efficient for
early inspection of the system design. Inspection is known to be a very cost-effective quality improve-
ment technique, especially for requirements documents [218]. Unlike inspection, testing requires an
executable or formally defined artifact, which is, IREEVALUE, the LOTOS prototype resulting

from the construction step. Testing acts as an essential supplement to inspection for detecting behav-
ioural problems. It also improves the level of confidence in the validity and the consistency of the dif-

ferent models involved.

There is an apparent circularity issue in the testing cycle of Figure 37. lbtlesiprototype
and test cases are both correctly generated from the same UCMs, then one could think that the tes
suite should not detect any problem. However, we believe this is seldom the case (especially as the
complexity of the system increases) and several experimentations in Chapter 8 show that problems
can indeed be detected. Constructing a component-basemk specification from UCM involves
several design decisions caused by a more detailed level of description and by the transformation of
end-to-end scenarios into component behaviour. These decisions may introduce unexpected errors ir
the specification. However, when deriving functional test cases from end-to-end scenarios, many of
these decisions need not be taken. Hence, functional tests are closer to the UCMs and more likely to
be correct than a component-based specification that integrates all scenarios. Testing the specificatior
against these functional test cases can therefore lead to the detection of errors and to a higher level o
confidence when errors are no longer detected. Also, since we assume that UCMs capture the require:
ments correctly, functional testing based on UCMs becomes a validation technique applicable to

LoTosprototypes as well as detailed design models and, possibly in the future, implementations.

6.1.3 Validation Testing and Conformance Testing
The validation testing offered by8cVALU E is different from the conventional conformance testing

introduced in Section 3.4.2 and standardized in the Conformance Testing Methodology and Frame-
work (CTMF) [193]. Conformance testing usually requires a model (e.g. a formal protocol specifica-
tion) from which a black-box test suite is derived and then used to test an implementation or another

model. Test suites are generally abstract (e.g. not necessarily defined in terms of user requirements)

Specification and Validation of Telecommunications Systems with Use Case Mapsaad L173



CHAPTER 6 UCM-bTosTesting Framework

they are defined in a specification language with operational semantics (e.g. TTCN), and they target
artificial coverage criteria defined in terms of the source model PEG-BALUE, the test suite is

derived from informal requirements and semi-formal scenarios (the UCMs), and the goal is to create
and check the first formal model (th®tos specification). This test suite, composed of test cases
whose purposes can be related to the requirements, is used to validate the model against the require-
ments, hence the term validation. Conformance testing can be used at a later stage of the design cycle,

when an implementation is required to be declared conformant to the formal model.

The Formal Methods in Conformance Testing (FMCT) framework [196] was an effort to inte-
grate new techniques based on several formal methods (SDL, Estell®@sog to the context of
conformance testing. Among many others, concepts and techniques adaedswere proposed
by Brinksma [69], Carver and Chen [87], Tretmans [346], and van der Schoot and Ural [323]. Cavalli
et al also included a conformance testing methodology for all specifications that can be transformed
into a finite state machine [89]. This particular methodology will be discussed further in one of the

case studies (Section 8.5).

Although the means and the intent of validation testing are different from those of conform-
ance testing, many general concepts and techniques are common. To some extent, this chapter instan-
tiates the FMCT framework in the context of UCMs amrhs as suggested by Hogrede al. in
their final report [179]. Consequently, most of the terminology used here can be related to that of
FMCT.

6.2 UCM-LoTOos Testing Concepts

Several concepts for UCMdros testing need to be introduced before tackling the problem of test
selection, which is addressed in Section 6.3. First, Section 6.2.1 presents how different approaches to
testing are combined irr€GVALU E. Then, a general structure for UCM-based test suites is given in
Section 6.2.2. Section 6.2.3 defines the validation relation that will be used for determining whether
the LOTOS prototype verifies the UCMs and hence validates the requirements. This relation is then

compared to the conventionabtosconformance relation in Section 6.2.4.
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6.2.1 Combination of Approaches
There exists an enormous number of testing techniques for formal methods. A classification that has

been proposed by Poston identifies the three following categories [287]:

« Black box: testing based on externally visible behaviour of a specification or program
[44].

« White box: testing based on the internal structure of a specification or program.

« Grey box: testing based on the design.

The UCM-LoTostesting framework suggested iRE®S-VALU E uses ideas from all these cat-
egories. It focuses mainly on causal sequences at the design level as defined by UCMs (grey-box), on
the generation of functional tests imtos (black-box), on structural coverage measurement tech-
niques for loTOs (white-box), and on the use of relevant data values (boundary analysis and equiva-

lence classes, i.e. black-box testing).

SPEGVALU E makes use of several guidelines and assumptions related to testing. Often,
UCMs are generic enough to provide for implicit equivalence classes of data and behaviour, and we
intend to take advantage of this characteristic during the selection of test cases. The focus will also be
on deterministic test cases (as sequences of events) whenever possible, i.e. when the specificatiol
under test is deterministic. Such tests are usually faster to check and their results simpler to under-
stand. They can also be reused more easily in the stages of the design cycle closer to implementation

Finally, recursion will not be given much attention, except for critical system functionalities.

6.2.2 Structure of UCM-Based Validation Test Suites
Test cases have to reflect the UCMs in order for them to be traceable to the requirements and, obvi-

ously, to the UCMs themselves. This is particularly important when faults are detected at testing time;
traceability to the UCMs and to the requirements helps assessing where the problems are located ant
what modifications should be made. The structure of test suites defined in CTMF and presented in
Section 3.4.2 can help in the implementation of such a traceability relationship. This structure is flex-

ible and can be tailored to the context pESVALUE.
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A UCM-basedvalidation test suités a collection of test groups, where each group is linked to

one UCM (in the case where multiple non-integrated UCMs are available) or to a particular set of

functionally related root maps and plug-ins (in the case where only the integrated UCM is available).

A test group may contain multiple @rog test cases, which are composed of the following parts:

Test purpose a pair<type, goal>where the tedlypeis either acceptance (must test) or
rejection (reject test). As explained at the end of Section 3wh@,testsare not really

helpful here because they require too much effort for the interpretation of verdicts. The
test purpose also containgi@al, which is the specific UCM route that is covered by the
test. This route is usually defined as an abstract sequence of events corresponding to UCM

start points, responsibilities, waiting places, timers and end points.

Test preamble test events needed to bring Byeecification Under Te$SUT1) in a state

that satisfies the preconditions attached to the UCM route corresponding to uatest

Test body. test events corresponding to the selected goal, instantiated with appropriate
data values. Reusable test steps, representing fragments of routes, may optionally be
defined and built upon. This can help to define test suites that are more consistent and eas-

ier to extend.

Test verification (optional): test events used to check that the SUT has reached the post-
condition attached to the UCM route corresponding togthed. The verification is not
based on FSM techniques, such as unique input/output sequences, because FSMs are usu-

ally not available at requirement time.

The individual test cases that constitute the test suitecredprocesses where test events,

which belong to preambles, bodies, and verification steps, are transformedombs évents.

Table 15, which supplements the definitions found in Table 12, formalizes the notation for test pur-

poses. Note that this representation is significantly simpler than a full-fledge standard testing lan-

1. Inthe thesis, SUT refers tespecificationunder test, not systenunder test (implementation)
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guage such as TTCN. TTCN is not used here because it uses a format and a level of detail that would

lead to unnecessarily long and verbose descriptions of test purposes.

TABLE 15. Notation for Test Purposes

Notations Definitions

Universe of all possible abstract causal sequences (linear LTSSs).
ABSSEQ [ SPECS.

TESTTYPE |Acceptance or rejection test casesTTYPE = {Accept Rejec}

Test purpose of test casg composed of a test type and of a goal (abstract qausal
sequence)TP(Ty) U TESTTYPE x ABSSEQ.

Type(TP(])) |Projection ofTP(T,): type of test cas€,. Type(TP(])) U TESTTYPE.
Goal(TP(T,)) |Projection ofTP(T,): goal of test cas€,. Goal(TP(T)) [l ABSSEQ.

ABSSEQ

TP(T)

A test suiteTScan be partitioned into two mutually exclusive subsets according to the type of

test cases, i.e. acceptance and rejection test cases:

Definition 6.1: ACCEPT(TS) ={ T, | T, O TSO Type(TP(})) = Accept}
REJECTTS) ={ Ty | T, U TSC Type(TP(])) = Reject}

Definition 6.1 respects the two properties described in Section 3.4.3: the two sets do not over-

lap REJECTTS)n AccePT(TS)=[]) and they are complet®EJECTTS)] ACCEPT(TS)=TS).

Defining Tests Groups

For each individual UCM or functionally-related set of root maps and plug-ins in an integrated UCM,

it is desirable to create at least two test groups: one for acceptance test cases and another one fc
rejection test cases. Groups can be described as a collection of sequential test processes, one for eau
test case. This way of representing test groups has the benefit of establishing clear traceability rela-
tionships between test cases and requirements UCMs. They also simplify diagnostics and debugging

when unexpected verdicts are encountered, and they require a minimum quantity of memory
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resources from tools. However, to increase testing performances and to reduce the number of test pro-

cesses, test cases may be regrouped under one process, as illusteabed vy Tests

process Group_of Tests [gatelist, Success] : noexit :=
i ; TestSequencel... (* First test case *)
1
i ; TestSequence2... (* Second test case *)
I
1
i ; TestSequenceN... (* Nth test case *)

endproc  (* Group_of Tests *)

Internal events usually need to be inserted to ensure the execution of all test cases. A test case
that is not even able to perform its first action will not be detected as a failure if one of the other test
cases is successful. The choifje)(operator hence must be used with caution in test groups. How-
ever, if it is certain that the first action of each test case is accepted by the SUT, then these internal

actions can be removed. Such test groups are used in the GCS experiment discussed in Section 8.1.

Another way of regrouping test cases would be to merge related acceptance and rejection test
cases. In many occasions, a rejection test case and its corresponding acceptance test case have a com-
mon prefix. For instance:

» Acceptance test case: a?x:int; b; c!x [x gt 3]; success; stop

« Rejection test case: a?x:int; b; c!x [x le 3]; reject; stop

These two test cases can be merged into the following acceptance test case, without any loss

of testing power:

* New acceptance test case:a?x:int; b; ( c!x [x gt 3]; success; stop

I

c!x [x le 3]; reject; stop )
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For complex test cases and complex specifications, the creation of one process for each test
case is recommended. The state space resulting from the testing composition will be more manage-

able by the tools, and the overall test cases traceability and reusability improved.

Towards Implementation Test Suites

For LOTOS prototypes, test postambles are seldom used because the execution of each test case ca
easily start with the initial state of theotos specification (i.e. resetting aolros SUT is not an

issue). Moreover, the selection of data values is eased by the fact that we only have constraints anc
conditions associated to one path to satisfy, starting from a well-known initial state. However, if the
test suite is meant to be refined asmplementatiortest suite, then postambles become most relevant
because the cost of resetting a real machine after each test might be too high. In this case, we need t

give much attention to four points:

« Ordering: the order in which test groups and test cases within test groups are executed
becomes relevant. An ordering strategy is needed for reducing the cost of executing the

test suite.

« Postambles they become necessary for bringing the SUT back to an acceptable initial
state, where the preamble of the next test case can satisfy its precondition. A merging of
postambles and preambles can be performed in some cases, but at the cost of an increaset

coupling between test cases.

« Data values their selection becomes critical as they have more constraints to satisfy
across many test cases. They need to be carefully chosen and be consistent within a test
group.

« Target: tests need to be retargetable and readable by test equipment. Cur@rly, L
processes are not used in a standard way to describe test cases, and hence they might hav
to be translated into a more suitable representation. TTCN-3, the latest ITU-T standard

notation for the specification of abstract test cases, is such a representation [209]. TTCN-3
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provides sufficient support fordTos constructs used in most test cases (sequence, choice,

interleave, process instantiation, value passing, etc.).

These issues will not be investigated further in the thesis as it focuses on specification testing

rather than on implementation testing.

6.2.3 Validity Relation
Checking the SUT against the test cases must help to establish the validity of the specification against

the UCMs and the requirements. At this point, we assume that the test casesas@rocesses

derived from UCMs capturing the requirements faithfully. Several equivalence and implementation
relations for loTos have been presented in Section 2.3.6. Among them, theadatibn is the most
common for establishing the conformance of a model with respect to another. One weakness of the
conf relation is that it focuses exclusively on acceptance testing, and it is always possible to build a
trivial model that conforms to another (e.g. a process that accepts everything, as in Figure 13(h)). To
solve this weakness, rejection testing can be used in addition to acceptance testing (Section 3.4.3).
This solution is at the basis of a new relation calledwhlch is used to determine thalidity of a

SUT against a validation test suite.

Using the notations and definitions found in Table 12 and Table 13, suppo3&ibat vali-
dation test suite generated from informal requirements and/or a collection of USMS§sTs). TS
is composed of finite sets of finite acceptance test cdsEEpPTTS) see Definition 6.1) and rejec-

tion test caseREIECT(TS), as shown in Figure 38.

FIGURE 38. Partitioning of Acceptance and Rejection Test Groups and Test Cases
Validation Test Suite TS

ACCEPT(TS) REJECT(TS)
Test TGAl TGAZ vee TGRl TGRZ
Groups
Test Taz1: Ta2.1, o | Tre1s Tro.1,
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Intuitively, aSUTis valid with respect to a validation test stitif and only if all acceptance

test cases imSpass successfully and all rejection test cas&Sare rejected. Formally:

Definition 6.2: val : Validity relation. _val ] Specs x PowerSef(EsTs).
SUTval TS = SUTpasse#\cCEPTTS) O SUTfailsall REJECTTS)

Conformance test suites can be sound, exhaustive or complete (Section 3.4.2), and this con-
cept is also applicable to a validation context. Assuming an idealized variant cdlieal val-id
which could handle very large or even infinite sets of acceptance and rejection tesiSesakl be

characterized in the following way:

« Necessary condition for validity:Sis sound «
(OSUTO Specs, SUTval-id TSO SUTpasse#\CCEPT(TS) O SUTfailsall REJECTTS))

« Sufficient condition for validity TSis exhaustive <
(OSUTO SPecs, SUTpassefccEPTTS) [ SUTfailsall REJECTTS) O SUTval-idTS)

e TSiscomplete = TSissoundTSisexhaustive

For most realistic telecommunications systems, validation test suites have to be truncated to
finite and manageable sets of acceptance and rejection test cases. Consé@eartiiae sound but
cannot be exhaustive (nor complete). ESVALU E, the soundness diSwill result from its deriva-
tion from UCMs (or from the requirements in some cases) interpreteairinsLIn practice, the lack
of completeness caused by testing limitations forces us to accept a more pragmatic interpretation of
the validity relation: if a SUT is not shown to be valid by a test suite, then it is considered invalid

(Proposition 1).

- ( SUTpasse#\ccEPTTS) SUTfailsall REJECTS)) O —(SUTvalTS) (PROP. 1)

Proposition 1 is a direct result of the logical implication defining the concept of soundness.
This pragmatic interpretation can take other equivalent forms, one of which (Proposition 2) makes use

of the failsrelation defined in Table 13.

SUTfails AcCEPYTS)0 - ( SUTfailsall REJECTTS)) O —(SUTvalTS) (PROP. 2)
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These two pragmatic propositions are insufficient to prove formallyStidtval TS but this
was expected: it is not possible to prove formally that a formal model validates an informal one. This
issue is also connected to timait of testabilityillustrated in Figure 15. This is a reality with which
testers are already familiar, especially in the telecommunication field where complex systems exhibit
infinite behaviours. To cope with this limitation, testers need to increase the quality of the test suite by
improving its detectability, which will lower the testability limit (Section 3.4.2). This will help to
detect more invalid SUTs and to increase the level of confidence in the system. However, an equilib-
rium between the quality of the test suite and the costs of its derivation and/or execution is also
required. Practical and efficient test selection techniques can help reaching such a balance, and this

issue will be addressed in Section 6.3.

6.2.4 Comparing Validity and Conformance in the Two Worlds
In a “perfect world”, requirements would already be formalized from the beginning. Assuming that

the requirements can be represented as an LTS enables an interesting comparison between the rela-
tions_valand_conf This comparison becomes possible by creating a test suite equivalent to the canon-
ical tester of the requirements. In the “real world” however, requirements are usually informal and

such canonical tester cannot be defined.

Suppose thaReqgrepresents the formalized requireme®sd[] SPecs) and that it is possible
to derive its canonical testea€T(Req) or a test suite with the same discriminatory power (denoted by
TSO{CT(Req)} or TS CT(Req)for short). Definition 6.3 says that two test suites have the same

discriminatory powerl() if and only if any SUT passes them both or fails them both.

Definition 6.3: 00 SUTO Specs, TS1 O Tests, TS2 O TeSTS,
TS10TS2< (SUTpassegS1l- SUTpassegS2)

Proposition 3 suggests that an SUT passes the canonicald&greq)(or the equivalent test

suiteTS if and only if this SUT conforms to the requirements.

SUTpasse€T(Req) = SUTconfReq (PrROP. 3)
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Proposition 3, which is proven in [69][242], is at the basis of the classification illustrated in
Figure 39. Note tha€T(Req)and the tests derived directly from this canonical tester are all accep-
tance test cases. Intuitively, the expresssiT val ACCEPT(TS) means that each sequence or trace
refused bySUTis also refused blReq Hence, similarly to the conformance relati®JTis allowed
to be more deterministic and to have more behaviourRemnHowever, the additional behaviour in
SUTmust not be rejected by any rejection test case. Therefore, fResset(TS)must also be a cri-
terion for comparing vahnd _conf Figure 39 classifies test suites according to these two criteria.
Although the signatures of these relations are not exactly the same, the mappinés cigioature to
val's is made implicit by Proposition 3, which enables a more direct comparison. This comparison is

detailed through various propositions and illustrated with an example in Appendix C:

FIGURE 39. Comparison Between val and conf

Real world Perfect world
= (AcceP(TS)OCT(Req)) AccePT(TS)CT(Req)

val

Without —
Rejection Tests
ReJECT(TS)= [

With cont
Rejection Tests
ReJECT(TS)# U

The key points resulting from this comparison are:

« In the real world, confs more powerful than valhen there are no rejection test cases

involved. However, they are incomparable when there are rejection tests cases.

« In a perfect world, both relations are equivalent in the absence of rejection test cases.

However, valbecomes more powerful than cavifien rejection test cases are considered.

Specification and Validation of Telecommunications Systems with Use Case Mapsaad L183



CHAPTER 6 UCM-bTosTesting Framework

« The use of rejection test cases permits the detection of invalid yet conforming SUTs, even
in the presence of incomplete acceptance test suites. Therefore, rejection tests improve
detectability over conventional conformance testing foras and they lower the limit of

testability, as suggested in Section 3.4.2.

This theoretical result does not solve the problem of test selection and generation, which are
the topics of the next two sections. However, as suggested by Myers’ citation (found below the title of
this chapter) and by Harel’s attention to rejection scenarios at the requirements level [167], this result
emphasizes the need to produce both acceptance and rejection tests when validating a specification

against requirements.

6.3 UCM-Oriented Testing Patterns for Test Goal Selection

The relation_valpresupposes the existence of a sound test suite used to establish the validity of the
LoTos prototype, which integrates all the scenarios generated from the requirements, against the
intended functional requirements. Such test cases can be generated in numerous ways. This section
introduces a novel approach where system UCMs are used in combinatidasiity patterngor

the selection of goals for test purposes in a test plan. These goals take the form of abstract causal
sequences suitable for the generation @fdstest suites composed of acceptance and rejection test
cases. The selection and generation of test cases correspondsitinstiep $ECGVALU E methodol-

ogy (Figure 37).

Section 3.4.5 already provided an overview of patterns in general, with an emphasis on design
and testing patterns. Section 6.3.1 discusses how the pattern concept can be applied to UCM-based
testing, and a template is tailored accordingly in Section 6.3.2. A testing pattern language is defined in
Section 6.3.3 in order to explain how to apply individual UCM-oriented testing patterns on a complex
UCM. Sections 6.3.4 to 6.3.9 present the individual testing patterns with strategies for the selection of
test goals based on alternatives, concurrent paths, loops, multiple start points, single stubs, and caus-
ally linked stubs. These testing patterns, which capture the author’s experience in UCM-based test

selection, represent an important constituent of the U@¥Iaks testing framework. Section 6.3.10
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attempts to relate UCM-oriented testing patterns to the conventiamalsltesting theory. A sum-

mary of the main points and a brief discussion follow in Section 6.3.11.

6.3.1 Introduction to UCM-Oriented Testing Patterns
UCM scenarios are constructed from requirements. Not only can they be used to construct the first

design, but they also can be reused to guide the generation of functional test cases. To exploit this
idea, testing patterns will be defined based on the nature and target coverage of UCM paths. These
paths capture causal flows and they essentially become visual templates for the selection of test goals

at a development stage close to requirements definition.

This novel approach to test selection shares many concepts with white-box testing [267][290].
However, the selection is done at a much higher level abstraction, and the focus is on the structure of
a UCM (paths and constructs) rather than on the structure of a program. Each UCM route, where data
parameters are instantiated, is a candidate for becoming a functional test case applicabtertusthe L
prototype for validation purpose. Tretmans suggested the use of goals as a means to select tests fc
complex systems [346] (see Section 3.4.2), and UCM routes can indeed be interpreted as test goals tt
be fulfilled.

Testing Patterns as a Semi-Formal Approach to Test Selection

Testing patterns represent a trade-off between intuitive test case generation, still heavily used nowa-
days, and formal test case generation, more rarely used, even in the telecommunications industry. Fot
instance, in many @Tosbased techniques, test selection is done either informally, or formally
through a model like finite state machines (e.g. transition tours [143]) or LTSs (e.g. using a canonical
tester [69]). BEGVALU E targets the generation of the first system formal model from requirements
and scenarios that are not necessarily formalized, therefore a formal model-based strategy cannot be
used here. Testing patterns happen to be rather useful in this particular context. Their users can poten
tially benefit from the existence of visual requirements and design information (the UCMs) together

with suggestions of mappings onto test cases. Testing patterns can be sssmige@nal approach
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to test selectiomhat fits nicely with the level of abstraction targeted by a semi-formal notation like

Use Case Maps.

UCM paths and constructs represtmtes(introduced in Section 3.4.5) related to the func-
tional coverage of the requirements, the quality of the tests, the number of tests to generate, the com-
plexity of each test, and the overall cost of testing. The higher the number of routes or end-to-end
paths covered in a UCM, the higher the coverage and the confidence in the validity of the system, but
the longer the test suite and the higher the costs of its derivation and execution. Testing patterns can

help achieving good compromise solutions between cost and effectiveness by balancing these forces.

A UCM may include many possible routes, some of which might not be necessary for testing
purposes. In this context, the traditional questibaw much testing is enough testihdggcomes
“what are the routes to be testédPhere is no unique answer to this question. Achieving the cover-
age of all UCM path segments and constructs is certainly a sensible testing objective. However,
depending on how critical, important, or relevant are the routes, a UCM may be tested more or less
thoroughly. The assumption here is that UCM constructs are where such decision can be taken. Test-

ing patterns targeting UCM constructs hence helps concretizing test plans.

Naturally, the use of testing patterns is not the only way to derive test cases from requirements
and UCMs. For instance, UCMs could be transformed into an intermediate model (e.g. FSM or span-
ning tree) from which test cases could be generated using conventional techniques. However, such test
cases would be rather synthetic, whereas the application of testing patterns to the UCM scenarios will
lead to test cases that are closer to the requirements and the initial intent of the scenarios. Moreover,
we believe such patterns to provide more flexibility to the tester in the selection of appropriate test

cases; not all the information necessary to the generation of effective test suites is found in the UCMs.

The eight UCM-oriented testing patterns defined in this chapter record the experience gained
during the validation of various specifications by the author (Chapter 8). They focus on how abstract
causal sequences, used as goals in test purposes, can be generated from UCMs containing different

constructs. Because of the abstract nature of UCMs and because these testing patterns are indepen-
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dent of underlying structures of components, the patterns can be applied to a multitude of contexts,

and can be combined together (e.g. in a pattern language) for dealing with complex UCMs.

Targeted Coverage

The testing patterns we develop here target the coverage of scenarios described in UCM terms. Thest
patterns aim to cover functional scenarios at various levels of completeness: all results, all causes anc
all results, all path segments, all end-to-end paths, all plug-ins, and so on. The rationale is that cover-
ing UCM paths leads to the coverage of the associated events and responsibilities (and of their relative
ordering) forming the requirements scenarios. The patterns are inspired partly from various existing
test selection strategies for implementation languages constructs such as branching conditions anc
loops [44][267][290], or for cause-effect graphs [267][270]. The contribution of these patterns is in

their application to UCM scenarios at a level close to requirements.

6.3.2 Template for UCM-Oriented Testing Patterns
The UCM-oriented testing patterns are formatted according to a template inspired from Binder’s [51]

and from generic templates used in the design pattern community (Section 3.4.5). The former is spe-
cifically tailored for test patterns in general whereas the latter suggest useful fields such as forces and
examples. In his book, Binder regrouped most test selection and generation techniques available now-
adays for object-oriented and procedural models and programs, and he describes them using his pat
tern template. Table 16 presents the template used in the thesis and how it relates to the template:

mentioned above.
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TABLE 16. Correspondence Between Templates for Design Patterns and Test Patterns
Design Patterns Binder’s Test UCM-Based Definitions for UCM-Based Testing Patterns
(in general) Design Patterns | Testing Patterns
Name Name Name Descriptive name that identifies the pattern
Problem Intent Intent Type of tests produced by the pattern (test goq
Fault Model Fault Model Type of faults targeted by the pattern
Context Context Situations under which the pattern applies
Context Relevant factors contributing to the problem aif
Forces Forces . T .
the solution/strategy, and their interactions
) Strategy
Solutions __ Strategy How the test goals are constructed
Entry/Exit Criteria
Example — Example lllustration of UCM with selected test goals
Consequences Consequences |Consequences |Benefits and drawbacks of using this strategy
Known Uses Known Uses Known Uses Related uses in terms of other UCM construct
Related Patterns | Related Patterns |Related Patterns | Related testing patterns (see also Section 6.3

Problems are split into two fieldsitent andfault model Binder'scontextfield already con-
tainsforces but our template makes them more explicit, as suggested by the design pattern commu-
nity [256]. The entry and exit criteria used by Binder are useful for classifying very different
approaches to test selection and generation, but they are rather useless in our context where UCMs are
always involved. A solution, callestrategyin our template, takes certain forces into account and
resolves some of them at the expense of others. Related solutions will be described under the same
pattern for the sake of conciseness. Consequently, a testing pattern can include multiplé&tratgles <
egy Example Consequences accompanied by a unique strategy name for future reference and for

traceability. As a visual convention, horizontal dashed lines will separate these triples.

In the following testing patterns, a UCM route (delimited by angle brackets) is an abstract
causal sequence that representgtiad part of a test purpose (Section 6.2.2). A test goal establishes
the traceability between the UCM and a test case, and it is independentypietbetest (accept or
reject). The type will be taken into consideration only when transforming a test goal into an accep-

tance or rejection @Tostest process.
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6.3.3 UCM-Oriented Testing Pattern Language
A pattern language is a set of cooperating patterns that combine to provide solution guidelines for a

problem in a particular context. Each of the testing patterns developed in this chapter focuses on one
particular type of UCM construct (alternative, loop, stub, and so on.). These patterns can cooperate to
help solution more complex UCMs where multiple constructs of various type are used. However, The

connections between patterns (how they relate with one another) are not always obvious.

The followingUCM-oriented testing pattern languaggplains how the individual testing pat-
terns can be connected together in order to derive test goals from UCMs with multiple constructs.
This language itself is expressed as a UCM that shows the various steps (static stubs) and pattern:
(dynamic stubs) involved (Figure 40). A similar way of expressing pattern languages has already been
used successfully by Andrade and Logrippo [33][35], and it seems appropriate in our context. The
proposed combination of testing patterns should be seen as a general recommendation rather than as
strict procedure to be followed blindly. The testing pattern language is a guideline and is no substitu-

tion for the test engineer’s judgement and experience.

FIGURE 40. UCM-Oriented Testing Pattern Language

HandleStubs HandleStartPoints HandleConstructs
ucMm @ \/> \/> \/> ] Test Goals

Figure 40 shows the progression from UCMs to test goals through three steps. Stubs can first
be substituted by their plug-ins in order to produce a collection of flattened Haapr$tubs). Each
flattened map may contain multiple start points, and various subsets of these start points may be
enabled in order to generate test gaadsdleStartPoint Shows how to select such subsets, which lead
to further flattened maps where disabled start points are essentially considered absent. The final stef
(HandleConstructs) consists in generating test goals from flattened maps that contain alternatives, con-
current segments, and loops. These three static stubs are refined by three plug-ins with the same

names.
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The first step, captured by thandleStubs plug-in in Figure 41, flattens the stubs using two
testing patterns. First, if there are stubs that are causally linked (e.g. in sequendegtitherattern
6—CAUSALLY LINKED sTuss IS used {P6 stub), for which three strategies are defined. Many flattened
maps could result from these strategies (shown with:thAND-fork). They may however still con-
tain single stubstPs), which are flattened using one of the three strategies founetiiy Pattern 5—

SiNGLE sTuB. This pattern will generated multiple flattened maps for dynamic stubs (the sesond
AND-fork). In turn, if there are nested stubs in the plug-ins, they would appear in the flattened map

and both testing patterns could be applied iteratively.

FIGURE 41. Plug-in HandleStubs (Step 1)

TE’G TE’5
N LN N LN
Causaly [YIf v’ Single [YIf v’ Stubs
LinkedStubs? Stubs? Left? [nj
UCM % % Flalsltened
[N] [N] aps
[vi

Flattened maps may contain multiple start points. If so, then they should be handled by the
Testing Pattern 4—MULTIPLE START POINTS @S Shown in Figure 42. This pattern leads to flat maps where
different subsets of the start points involved are enabled and the other removed according to one of the
eight defined strategies. Again, some of them may lead to a multiplication of such flatitngps (

Maps with a single start points are assumed to have this start point enabled by default.

FIGURE 42. Plug-in HandleStartPoints (Step 2)

TP4
st 1:N
[v] v
Flattened MultipleStartPoints? Flat Maps
A V4 .
Ma ‘ 7€ with Enabled
P IN] !

Start Points
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Finally, the last step iteratively handles remaining UCM constructs for alternatives, concurrent
segments, and loops until an end point is reached (Figure 43). These constructs can be nested or it
sequenceTesting Pattern 1—ALTERNATIVE has 4 strategies, wheremsting Pattern 2—CoNcUrRRENT has 3

strategies antksting Pattern 3—Loopr has 4 strategies. Multiple partial test goals are constructed along
the way (:N), until they are finalized when end points are reached.

FIGURE 43. Plug-in HandleConstructs (Step 3)

1:N
Flat Map CheckConstruct |
with Enabled @) >
Start Points I

I Test Goals

This UCM-oriented testing pattern language helps to identify the paths to test from the origi-
nal UCM by using combinations of patterns. The strategies described in these patterns are coverage-
driven and aim to balance the various forces involved in order to come up with cost-effective test

goals. The next five sub-sections define and illustrate the various testing patterns and strategies usec
in our testing pattern language.

6.3.4 Testing Pattern and Strategies for Alternatives
NAME: TESTING PATTERN 1—ALTERNATIVE
INTENT

To generate, for alternative UCM routes, test goals expressed in terms of sequentially linked start

points, responsibilities, waiting places, end points, and other such events.
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CONTEXT

The functionality under test is captured as a UCM path that contains multiple routes connected
through OR-forks. Some of these routes may also merge at a later point through OR-joins. Figure 44
shows a UCM used to illustrate strategies for alternatives. Four responsilaltbes (dentify differ-

ent path segments found between the UCM start ppi)tgnd the end poinEP). Branches in OR-

forks may also be guarded by boolean conditions.

FIGURE 44. Reference UCM: Testing Pattern for Alternatives

a Cc
SP.—<>—<>—|EP
b d

FAULT MODEL
A test goal is a route from a start point to an end point. The fault model assumes that faults can hide in
UCM path segments not traversed by any test goal. These faults are independent of their allocation to

components, if any. The coverage of all path segments would ensure that these faults are detected.

FORCES
Alternatives that join and then fork again lead to multiple end-to-end combinations (routes) for cover-
ing the path segments. Generating test goals for all combinations leads to more thorough test suites,

but at a higher cost.

The following four strategies are inspired from control flow testing. They are ordered accord-

ing to the completeness of their route coverage, from the least complete to the most complete.

STRATEGY 1.A: ALTERNATIVE — ALL RESULTS
Each end point (result) is covered. There could be many end points connected by an OR-fork, leading

to the same number of goals.

192  Specification and Validation of Telecommunications Systems with Use Case Mapsasd L



UCM-Oriented Testing Patterns for Test Goal Selection

EXAMPLE: {<SP, a, ¢, EP>}

CONSEQUENCE

Minimal coverage for all results. Very low cost, but some path segments might not be covered.

STRATEGY 1.B: ALTERNATIVE — ALL PATHS

All decisions (e.g. true or false) of conditions are exercised. Also referred to as “All branches”.
EXAMPLE: {<SP, a, ¢, EP>, <SP, b, d, EP>}

CONSEQUENCE

Minimal coverage for all segments. Some end-to-end paths might not be covered.

STRATEGY 1.C: ALTERNATIVE — ALL PATH COMBINATIONS
All combinations of conditions (e.g. True-True, True-False, False-True, False-False) are explored.

Also referred to as “All branch combinations” or “All decision combinations”.
EXAMPLE: {<SP, a, ¢, EP>, <SP, a, d, EP>, <SP, b, ¢, EP>, <SP, b, d, EP> }

CONSEQUENCE

Minimal coverage for all end-to-end paths. There might be various ways of satisfying (or not) one
condition, and only one possibility is explored. This strategy may result in abstract causal sequences
that are not feasible according to the conditions attached to the branches. For instance, if two branches
from two consecutive OR-forks respectively have the conditietis and[not(cl)] , then an
abstract sequence covering these two branches cannot be used to create an acceptance test case. S

sequences however are good candidates for rejection test cases.

STRATEGY 1.D: ALTERNATIVE — ALL COMBINATIONS OF SUB-CONDITIONS
Complex conditions include more than one operator, and all combinations of basic boolean expres-

sions can be explored. This strategy can further be applied to multiple conditions when necessary.
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EXAMPLE

Observe the following @Tosguard:(c1 AND c2) OR (c3 AND c4)] . Sincec1, c2, ¢3, andc4
can all evaluate to True or False, there are up to 16 possible combinafijpfar (Bis condition
only®.

CONSEQUENCE

Results in thorough test suites when combined to Strategy 1.C, but at a very high price.

KNOWN USES
This testing pattern can also be applied to timers with time-out paths, which represent a point where
two alternatives are possible (time-out and no time-out). Also applicable to failure points, which rep-

resent yet another type of alternative.

RELATED PATTERNS
Alternative paths may further contain concurrent segments and loops, to be handled respectively with
Testing Pattern 2-SONCURRENT and Testing Pattern 3keor. UCMs with stubs and multiple start

points are assumed to have been flattened during a previous step.

6.3.5 Testing Pattern and Strategies for Concurrent Paths

NAME: TESTING PATTERN 2—CONCURRENT

INTENT
To generate, for concurrent UCM path segments, test goals expressed in terms of sequentially linked

start points, responsibilities, waiting places, end points, and other such events.

CONTEXT

The functionality under test is captured as a UCM path that contains multiple segments connected
through AND-forks. Some of these segments may also merge at a later point through AND-joins.
Figure 45 shows a UCM used to illustrate strategies for path segments that run concurrently due the

presence of AND-forks.

1. If sub-conditions are not independent, some combinations might be impossible to satisfy. For instance, in the predi-
cate [x <3 OR x> 5], there is no solution such that x<3 is true and x>5 is true. See Section 6.4.3.
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FIGURE 45. Reference UCM: Testing Pattern for Concurrent Paths

a

sp @ |b CI | er

A test goal is a route from a start point to one or multiple end points. The fault model assumes an

FAULT MODEL

interleaving semantics a laolros for the concurrent path segments. Faults can result from some
interleaved combinations that are prevented undesirably by the prototype specification. The coverage

of all interleaved combinations would ensure that these faults are detected.

FORCES
The number of possible combinations in an interleaving semantics depends on the number of concur-

rent path segmentg)(and the number of responsibilities and events along these segmenihis

number can be computed by the functioierComb(interleaved combination — Definition 6.4). For
example, the concurrent segments in Figure 45 ledd¢oComlfl, 2) = (1+2)!/(11*2!) = 3 possible

combinations (g, b, c>, <b, a, ¢c>, <b, ¢, a>).

k
n )1
_ (ptnp+. 4+l i:zl ')

Ny xno! xox I'klni!
i=1

Definition 6.4: InterComb(R, ny, ..., 1)

The interleaving semantics quickly produces a high number of possible combinations, and
generating test goals for all combinations leads to more thorough test suites, but at a higher cost.
However, from a functional testing viewpoint, this number can reduced when concurrent responsibili-
ties and events are hidden. For instance, if responsibdities andc in Figure 45 are bound to a
component, then the only visible events in the correspondimg4prototype would b&P andEP.

With a tool such asdLA, only one functional test case is sufficient to cover all combinations. Hence,
we can abstract from hidden concurrent responsibilities and events when selecting test goals that are

intended to be used for the generation ofhstest cases.
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Nested AND-forks and sequences of AND-forks separated by AND-joins can be handled
independently.

The following three strategies are ordered according to the completeness of their combination

coverage, from the least complete to the most complete.

STRATEGY 2.A: CONCURRENT — ONE COMBINATION
One combination is chosen. This simple strategy is to be used when the verification of concurrency is

not critical, i.e. any ordering of the responsibilities or events along the concurrent paths will suffice.
EXAMPLE: {<SP, a, b, ¢, EP>}

CONSEQUENCE

Minimal coverage. Very low cost, but many combinations (and potential faults) might not be covered.

STRATEGY 2.B: CONCURRENT — SOME COMBINATIONS
Several combinations are chosen. This strategy is to be used when concurrency is important, but when
the total number of possible combinations is too high. The higher the number of goals generated, the

higher becomes the level of confidence.
EXAMPLE: {<SP, a, b, c, EP>, <SP, b, a, ¢, EP>}

CONSEQUENCE

Affordable cost, but some combinations (and potential faults) might not be covered.

STRATEGY 2.C: CONCURRENT — ALL COMBINATIONS
All combinations are generated. This simple strategy is to be used only when concurrency is critical

and when the number of combinations is practical.
EXAMPLE: {<SP, a, b, ¢, EP>, <SP, b, a, ¢, EP>, <SP, b, c, a, EP> }

CONSEQUENCE

Total coverage, but potentially very high cost.
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KNOWN USES
This testing pattern can also be applied to asynchronous interactions between two UCM paths. The
UCM path triggered in passing evolves concurrently with the rest of the other UCM path, with a

causal behaviour similar to an AND-fork.

RELATED PATTERNS
Concurrent paths may further contain alternatives and loops, to be handled respectively with Testing
Pattern 1-ALTERNATIVE and Testing Pattern 3eeor. UCMs with stubs and multiple start points

are assumed to have been flattened during a previous step.

6.3.6 Testing Pattern and Strategies for Loops

NAME: TESTING PATTERN 3—LOOP

INTENT
To generate, for looping UCM path segments, test goals expressed in terms of sequentially linked start

points, responsibilities, waiting places, end points, and other such events.

CONTEXT
The functionality under test is captured as a UCM path that contains loops. Figure 46 shows a UCM

used to illustrate relevant strategies.

FIGURE 46. Reference UCM: Testing Pattern for Loops

b
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a

FAULT MODEL
A test goal is a route from a start point to an end point. The fault model assumes that faults can result
from the prototype specification allowing an incorrect number of iterations in a loop. The coverage of

all numbers of iterations would ensure that these faults are detected.
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FORCES

Loops (specified using recursion imtog may have a minimal number of iterationg (vhich could

be 0) and a maximal number of iterationp (n this case, the overall number of test goals is bounded
by n-m However, this number may be too large for practical testing. In the absence of an upper

bound, this number may even be infinite. Compromise solutions are needed for such cases.

In some cases, it may not be sufficient to check that the prototype specification accepts valid
numbers of iteration. Some invalid number of iterations @or >n) should also be rejected. Also,

different strategies can be used on nested loops and series of loops independently.

The following four strategies, inspired from [44][267], are ordered according to the complete-

ness of their iteration coverage, from the least complete to the most complete.

STRATEGY 3.A: LOOP — ALL SEGMENTS
A minimal number of iterations that covers all path segmems (1, m) iterations) is selected. This
strategy generates one test goal for the loop and should be used when testing the loop is not utterly

important, for instance when focusing on some other aspect or construct of the UCM path under test.
EXAMPLE: {<SP, a, b, a, EP>} (if m=0)

CONSEQUENCE

The looping path is tested at a minimal cost, but some numbers of iterations (and potential faults)

might not be covered.

STRATEGY 3.B: LOOP — AT MOST K ITERATIONS
A maximal number of iterationsis selectedrfi< k < n). This strategy generatesleht+1 test goals
for the loop and should be used whremis very large or when is undetermined. The closkgets

to n, the better the coverage but the higher the cost.
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EXAMPLE: {<SP, a, EP>, <SP, a, b, a, EP>, <SP, a, b, a, b, a, EP>} (if m=0 andk = 2)

CONSEQUENCE
The looping path is tested at a pragmatic cost, but some numbers of iterations (and potential faults)

might not be covered.

STRATEGY 3.C: LOOP — VALID BOUNDARIES
The valid boundaries in terms of iterations are seleatent+1, n-1, andn. This strategy generates at

most 4 test goals for the loop and should be used wmers practical.

ExampLE: (if m=0andn=4)
{<SP, a, EP>, <SP, a, b, a, EP>, <SP, a, b, a, b, a, b, a, EP> <SP, a,b,a,b, a,b, a, b, a EP> }

CONSEQUENCE
The looping path is tested at a pragmatic cost, with an emphasis on the lower and upper bounds
(where many faults usually occur). Some numbers of iterations (and potential faults), however

unlikely, may still not be covered. Also, invalid boundaries are not checked.

STRATEGY 3.D: LOOP — ALL BOUNDARIES

The valid boundaries in terms of iterationg (n+1, n-1, andn) together with the invalid boundaries

(m1 andn+1) are selected. This strategy generates at most 6 test goals for the loop and should be
used whem-m s practical. Note that the invalid boundaries target the generation of rejection test

cases.

ExampLE: (if m=1 andn=05)
{<SP, a, EP>, <SP, a, b, a, EP>, <SP, a, b, a, b, a, EP>, <SP, a,b,a, b, a, b, a, b, a, EP>,
<SP, a,b,a,b,a,b,a,b,a,b,a EP> <SP, a,b,a,b,a,b,a, b, a b, ab,a EP> }

CONSEQUENCE
The looping path is tested at a pragmatic cost, with an emphasis on the lower and upper bounds
(where many faults usually occur). Invalid abstract sequences are also checked for both boundaries,

i.e. if mor nis incorrectly specified in the loop conditions, then the problem can be detected. How-
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ever, some numbers of iterations (and potential faults) might not be covered, although this is often

unlikely.

KNOWN USES
This testing pattern can also be applied to loops attached to stubs, e.g. when a path segment exits a

stub and enters it again.

RELATED PATTERNS
Looping paths may further contain alternatives and concurrent segments, to be handled respectively
with Testing Pattern 1-ALTERNATIVE and Testing Pattern 2€oNCURRENT. UCMs with stubs and

multiple start points are assumed to have been flattened during a previous step.

6.3.7 Testing Pattern and Strategies for Multiple Start Points

NAME: TESTING PATTERN 4—MULTIPLE START POINTS

INTENT
To generate, for UCM with multiple start points, test goals expressed in terms of sequentially linked

start points, responsibilities, waiting places, end points, and other such events.

CONTEXT
The functionality under test is captured as a UCM that contains multiple start points. These start
points can be triggered concurrently, representing multiple potential causes for a resulting event.

Figure 47 shows a UCM used to illustrate relevant strategies.

FIGURE 47. Reference UCM: Testing Pattern for Multiple Start Points
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In Figure 47,EP can be caused either Isp1 alone, or bysP2 in conjunction withsp3
(responsibilities could be added, but they have no impact on the rationale behind the strategies devel-
oped here). This example is generic enough to capture all cases and derive general strategies while

avoiding superfluous constructs.

FAULT MODEL
A test goal is a route (or many route segments that join) from one or many start points to an end point.
The fault model assumes that faults can result from a subset of the start points triggered simulta-

neously. The coverage of all such subsets would ensure that these faults are detected.

FORCES

There could be numerous subsets to cheGkaBeren is the number of start points). Generating test
goals for all subsets leads to more thorough test suites, but at a higher cost. Some of these subset
could provide insufficient stimuli for the observation of the expected result. Some subsets could pro-
vide redundant stimuli, whereas others could provide just the right set of necessary stimuli. Addition-
ally, stimuli could be given in may sequential orders. These combinations would again multiply the

number of test goals.

STRATEGY OVERVIEW

In order to determine which start points need to be triggered for reaching a specific end point, we can
usepath sensitizatiomlgorithms such as the ones suggested for cause-effect graphing by Myers [267]
and by Nursimulu and Probert [270]. Starting from an end peit (e follow the path backward to

find the causessgn) that need to be triggered. Weyuktial. [373] also suggested test selection strat-
egies for boolean specifications (without behaviour however) from which the representation of several
ideas discussed in this section were inspired. Different strategies can be defined based on the coverag

of the start points and on how easy diagnostics can be established in case of an unexpected verdict.

In logical terms, considering start points and end points only, Figure 47 translates to the fol-
lowing boolean expressioEP = SP1 [ (SP2 [0 spP3). The corresponding truth table is shown in
Table 17, where T and F denote the presence and absence of a triggering event. Cases 1 to 7 are to |

addressed by the following eight strategies. Case 0 is not really interesting because no behaviour is

Specification and Validation of Telecommunications Systems with Use Case Mapsaad 1201



CHAPTER 6 UCM-bTosTesting Framework

initiated. Although in this case the ge&lP> could be used for the generation of a rejection test case,

the latter is unlikely to be effective (very low yield).

TABLE 17. Truth Table for Multiple Start Points Example (from Figure 47)

Case#| sp1 | sp2 | sp3 | sp1ll(spz2lsp3) Subset

0 F F F F Insufficient stimuli. Not interesting.
1 F F T F Insufficient stimuli

2 F T F F Insufficient stimuli

3 F T T T Necessary stimuli

4 T F F T Necessary stimuli

5 T F T T Redundant stimuli

6 T T F T Redundant stimuli

7 T T T T Racing stimuli

WhenEP is expressed as a minimal sum of product tetersnf [ termy, ... [ term,), then
eachterm taken individually characterizes a subset@dessargtimuli (start points). Moreover, each

subset of stimuli that falsifiesp is qualified agnsufficient Racingstimuli are subsets that can cause
two or more resulting evenep (i.e. two or more product terms evaluate to true), wheszasidant
stimuli are the subsets that do not belong to any of the other categories. These four categories are at

the basis of eight strategies for multiple start points:

« Necessary subsetsStrategies 4.A, 4.B, and 4.C

Redundant subsetsStrategies 4.D and 4.E

Insufficient subsets Strategies 4.F and 4.G

Racing subsetsStrategy 4.H

Note that some of these strategies may collapse (i.e. become indistinguishable) for simple
maps. Note also that some test goals may not be feasible due to contradicting preconditions attached
to different start points. These sequences need to be filtered out or be used for the generation of rejec-
tion test cases. The following strategies also consider whether one, some, or all possible stimuli order-

ings in a subset should be selected for the generation of test goals. The combinations that appeared to
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be most pragmatic are covered here. Finally, strategies from different subsetsnantually exclu-

sive and can be used in combination.

STRATEGY 4.A: MULTIPLE START POINTS — ONE NECESSARY SUBSET, ONE GOAL
When multiple necessary subsets can cause the end point (case 3 or case 4), then select one of the
subsets and generate one goal accordingly. This strategy targets the minimal set of causes that ca

lead to the end result. It produces test goals useful for the generation of acceptance test cases.
ExamMPLE: {<SP2, SP3, EP>} (if case 3 is selected)

CONSEQUENCE
The coverage of end points is insured, but not that of start points (for insg&ade,not covered). In
case of an unexpected verdict, the diagnostic is simple because the end-to-end path to be followed is

known.

STRATEGY 4.B: MULTIPLE START POINTS — ALL NECESSARY SUBSETS, ONE GOAL
Select one test goal for each necessary subset (cases 3 and 4). This strategy targets the minimal set

causes that can lead to the end result, and it targets the generation of acceptance test cases.
EXAMPLE: {<SP2, SP3, EP>, <SP1, EP>}

CONSEQUENCE
The coverage of start points linked to the target end point is complete, but not that of the interleaving
start points. In case of an unexpected verdict, the diagnostic is simple because the end-to-end path tc

be followed is known.

STRATEGY 4.C: MULTIPLE START POINTS — ALL NECESSARY SUBSETS, ALL GOALS
Select all possible test goals for each necessary subset (cases 3 and 4). This strategy targets the mir

mal set of causes that can lead to the end result, and it targets the generation of acceptance test case
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ExampLE: {<SP2, SP3, EP>, <SP3, SP2, EP>, <SP1, EP>}

CONSEQUENCE
The coverage of start points linked to the target end point is complete, as well as the interleaving start

points (two such situations for case 3). Diagnostics remain simple.

STRATEGY 4.D: MULTIPLE START POINTS — ONE REDUNDANT SUBSET, ONE GOAL

The necessary causes are present, plus some redundant (but insufficient) causes. One test goal is
selected for one redundant subset. This strategy is non-minimal with respect to the causal relation-
ship. It is useful for the generation of acceptance test cases for testing robustness and partial race con-
ditions on top of expected functionalities. It can be used in a context where the start points are

connected to OR-joins and AND-joins.

EXAMPLE: For case 6SP1 can causeP by itself, and this should remain the case in the presence
of SP2: {<SP1, SP2, EP>}

CONSEQUENCE
Start point coverage is partial, and diagnostics are difficult due to the presence of irrelevant and possi-

bly interfering events and responsibilities.

STRATEGY 4.E: MULTIPLE START POINTS — ALL REDUNDANT SUBSETS, ONE GOAL

The necessary causes are present, plus some redundant (but insufficient) causes. One test goal is
selected foeachredundant subset. This strategy is non-minimal with respect to the causal relation-
ship. It is useful for the generation of acceptance test cases for testing robustness and partial race con-
ditions on top of expected functionalities. It can be used in a context where the start points are

connected to OR-joins and AND-joins.
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EXAMPLE: SP1 can caus&P by itself, and this should remain the case in the presence of either
SP2 (case 6) 06P3 (case 5): €SP1, SP2, EP>, <SP3, SP1, EP>}

CONSEQUENCE
Start point coverage is total, but diagnostics are difficult due to the presence of irrelevant and possibly
interfering events and responsibilities. Rejection test cases could also be derived from abstract

sequences to which a secdgfl (which should not be observed) is added at the end.

STRATEGY 4.F: MULTIPLE START POINTS — ONE INSUFFICIENT SUBSET, ONE GOAL
Select a test goal for one subset with insufficient stimuli (cases 1 or 2). This strategy checks that the

end result cannot be reached, and it targets the generation of rejection test cases.
ExamPLE: {<SP2, EP>}(if case 2 is selected)

CONSEQUENCE

Incomplete coverage of the start points, but simple diagnostics.

STRATEGY 4.G: MULTIPLE START POINTS — ALL INSUFFICIENT SUBSETS, ONE GOAL
Select a test goal for each subset with insufficient stimuli (cases 1 and 2). This strategy checks that the

end result cannot be reached, and it targets the generation of rejection test cases.
EXAMPLE: {<SP3, EP>, <SP2, EP>}

CONSEQUENCE
Still an incomplete coverage of the start points (if some start points are necessary stimuli all by them-

selves, likesP1 for instance), but simple diagnostics.

Strategies where all test goals for all insufficient subsets are considered may lead to a higher
cost with limited gain in effectiveness (if any). Unless the scenario or application is highly critical,
such strategies will produce numerous rejection test cases that are unlikely to be useful. Hence, suct

strategies are not discussed here.
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STRATEGY 4.H: MULTIPLE START POINTS — SOME RACING SUBSETS, SOME GOALS
This strategy targets the testing of race conditions with acceptance test cases (case 7). It is left very
loose in terms of path coverage and interleaving of stimuli because many test goals could exist, and

selecting the most appropriate ones should be based on the functionality under test.

EXAMPLE: {<SP1, SP3, SP2, EP, EP>, <SP2, SP3, SP1, EP, EP>}
The example includes sequences where the stimuli associated to each product term
(SP1 and E€P2 [1SP3)) are used sequentially. Note that two resulting events are gener-
ated, and they could be distinguished if necessaryEB g3, andEPgp ispa.

CONSEQUENCE
Start point coverage is partial (in general), and diagnostics are difficult due to the presence of possibly
interfering events and responsibilities. However, the resulting goals are of interest because they can

detect race conditions that would not be detectable otherwise (high-yield test goals).

KNOWN USES

This testing pattern can also be applied to (a)synchronous interactions involving multiple start points.
The waiting places or timers involved then have a behaviour similar to an AND-join. When a waiting
place or timer is triggered by many alternative end points, then this testing pattern needs to be applied

to each alternative end point separately.

RELATED PATTERNS

Sensitized paths may further contain alternatives (OR-forks), concurrent segments (AND-forks) and
loops, to be handled respectively with Testing PatterrALFERNATIVE, Testing Pattern 2-SON-
CURRENT, and Testing Pattern 3tkeor. UCMs with stubs are assumed to have been flattened during

a previous step.

206  Specification and Validation of Telecommunications Systems with Use Case Maps@sd L



UCM-Oriented Testing Patterns for Test Goal Selection

6.3.8 Testing Pattern and Strategies for a Single Stub and its Plug-ins

NAME: TESTING PATTERN 5—SINGLE STUB

INTENT
To generate, for UCM paths that contain a single stub with plug-ins, test goals expressed in terms of

sequentially linked start points, responsibilities, waiting places, end points, and other such events.

CONTEXT
The functionality under test is captured as a UCM path that contains a single stub. Various plug-ins
may be included in dynamic stubs, and stubs can be nested. Figure 48 is used to illustrate relevant

strategies. It shows a UCM containing a stub (left side) together with a set of plug-ins (right side).

FIGURE 48. Reference UCM: Testing Pattern for Single Stubs
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FAuLT MODEL

A test goal is a route from a start point to one or multiple end points. The fault model assumes that
faults hide in a plug-in or in the selection of appropriate plug-ins in one stub (e.g. there could be a
non-deterministic choice between two plug-ins). The coverage of all plug-ins in flattened maps,

where the stub is substituted with appropriate plug-ins according to the binding relationships, would

ensure that these faults are detected.

FORCES
By flattening a UCM that contains stubs and plug-ins, the resulting UCM no longer contains stubs or

plug-ins, but it may contain alternatives, concurrent paths, loops, and multiple start points. Therefore,

the testing patterns previously presented can be applied. However, a plug-in can be used in different
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stubs (contexts). For dynamic stubs, the use of the selection policy in the flattening procedure can

help reducing the number of valid combinations of plug-ins in a stub.

The following three strategies are ordered according to the number of plug-ins covered.

STRATEGY 5.A: SINGLE STUB — STATIC FLATTENING

The stubs in Figure 48 is assumed to be static (would be shown as a diamond without the dashed
lines), hence it contains only one plug-in without any selection policy. The selection of test goals is
based on the simple substitution of the stub by its plug-in. The testing patterns seen so far (alternative,

concurrent, loop, and multiple start points) can then be used on the flattened map.

ExampLE 1: if Plug-in 1is used ins, together with Strategy 1.B: Alternative — All paths:
{<SP, a, EP1>, <SP, b, EP2>}

ExampLE 2: if Plug-in 2is used ins, together with Strategy 2.A: Concurrent — One combination:
{<SP, c, d, EP2, EP1>}

CONSEQUENCE
For static stubs, all the plug-ins are obviously covered by the strategy (since there is only one plug-in).

The resulting path coverage is as good as that offered by the strategies used on the flattened map.

STRATEGY 5.B: SINGLE STUB — DYNAMIC FLATTENING, SOME PLUG-INS
The stubs in Figure 48 is dynamic, hence it contains many plug-ins and a selection policy. In this
strategy, the selection of test goals is based on the substitution of the atshlizebf the plug-ins
bound to that stub. Multiple flattened maps may result from this procedure. The testing patterns seen
so far (alternative, concurrent, loop, and multiple start points) can then be used on each of the flat-
tened maps. This pattern is useful when the same plug-in is bound to many stubs. If this plug-in is
already tested in another stub, then the tester might wish not to cover it again, even if the context is
different.
EXAMPLE: Assume this selection policy, where both plug-ins are bound to the:stub

if (condition==true) then use Plug-in 1 else use Plug-in2

Now, suppose tha&lug-in 1is already tested elsewhere in another stub. This strategy
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would suggest tha&lug-in 2be used irs, but notPlug-in 1 One flattened map would
result, on which Strategy 2.A: Concurrent — One combination can be used:
{<SP, c, d, EP2, EP1>}

CONSEQUENCE

All plug-ins are tested, but possibly in different stubs. The plug-ins are not tested in all the contexts
where they belong. The resulting path coverage is as good as that offered by the strategies used on th
flattened maps. This strategy leads to fewer test goals than Strategy 5.C because some combination

of plug-ins in stubs are not covered.

STRATEGY 5.C: SINGLE STUB — DYNAMIC FLATTENING, ALL PLUG-INS
The stubs in Figure 48 is dynamic, hence it contains many plug-ins and a selection policy. In this
strategy, the selection of test goals is based on the substitution of the atuthbyplug-ins bound to
that stub. Multiple flattened maps may result from this procedure. The testing patterns seen so far
(alternative, concurrent, loop, and multiple start points) can then be used on each of the flattened
maps. This pattern is useful when a high coverage of the plug-ins in all their potential contexts (stubs)
is required.
EXAMPLE: Assume this selection policy, where both plug-ins are bound to the:stub
if (condition==true) then use Plug-in 1 else use Plug-in2
A first flattened map would result from the useRdiig-in 1in S, and then Strategy
1.B: Alternative — All paths can be used. A second flattened map would result from
the use oPlug-in 2in s, and then Strategy 2.A: Concurrent — One combination can
be used. The final collection of goals is the union of those selected for each flattened

map: {<SP, a, EP1>, <SP, b, EP2>, <SP, c, d, EP1, EP2>}

CONSEQUENCE
All plug-ins are tested in each of the stubs where they are bound (contexts). The resulting path cover-

age is as good as that offered by the strategies used on the flattened maps.

KNOWN USES

No other uses at this point.
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RELATED PATTERNS
Flattened maps may contain multiple start points, in which case Testing PatteluL4P+E START
POINTS should be used. UCMs with causally linked dynamic stubs are assumed to have been flattened

during a previous step using Testing Pattern3wWSALLY LINKED STUBS.

6.3.9 Testing Pattern and Strategies for Causally Linked Stubs

NAME: TESTING PATTERN 6—CAUSALLY LINKED STUBS

INTENT
To generate, for UCM paths that contain causally linked dynamic stubs (e.g. in sequence), test goals
expressed in terms of sequentially linked start points, responsibilities, waiting places, end points, and

other such events.

CONTEXT

The functionality under test is captured as a UCM path that contains multiple causally linked dynamic
stubs. Various plug-ins may be included, and stubs can be nested. Stubs are assumedié&bchdive a
plug-in representing the absence of specific features at this location. Plug-ins are used téeeapture
turesthat deviate from the basic behaviour. Figure 48 is used to illustrate relevant strategies. It shows
a UCM containing two stubs (left side) together with their plug-ins (right sklay-in 1 is the

default behaviour for both stulsd (End is bound taouT2) ands2 (End is bound taouT4). Plug-in 2

belongs tosz whereadlug-in 3is used bys2.

FIGURE 49. Reference UCM: Testing Pattern for Causally Linked Stubs
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FAULT MODEL

A test goal is a route from a start point to one or multiple end points. The fault model assumes that
faults result from combinations of plug-ins bound to causally linked stubs (potentially a feature inter-

action). The coverage of all combinations of plug-ins in flattened maps, where all stubs are substi-
tuted with appropriate plug-ins according to the binding relationships, would ensure that these faults

are detected.

FORCES

By flattening a UCM that contains stubs and plug-ins, the resulting UCM no longer contains stubs or

plug-ins, but it may contain alternatives, concurrent paths, and loops. Therefore, the testing patterns
previously presented can be applied. However, there might be many possible combinations, especially
in situations where a UCM has many levels of nested stubs and plug-ins or where stubs have numer-
ous plug-ins. Generating test goals for all combinations leads to more thorough test suites, but at a
higher cost. For dynamic stubs, the use of the selection policy in the flattening procedure can help

reducing the number of combinations of plug-ins in a stub and across causally linked stubs.

The following three strategies are ordered according to the likelihood of finding undesirable
interactions between plug-ins (from low-yield test goals to high-yield test goals). Note that these

strategies araot mutually exclusive and can be used in combination.

STRATEGY 6.A: CAUSALLY LINKED STUBS — DEFAULT BEHAVIOUR
The default plug-ins are used in all the causally linked stubs, and the selection of test goals is per-
formed based on the resulting flattened map, where the testing patterns seen so far (alternative, con

current, loop, and multiple start points) can be used.
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EXAMPLE: Plug-in lis used ins1 and ins2. With Strategy 1.B: Alternative — All paths:
{<SP, EP3>}

CONSEQUENCE
Targets the validation of default behaviour, in the absence of features captured by untested plug-ins.
The resulting path coverage is as good as that offered by the strategies used on the flattened map. The

coverage of plug-in combinations is very weak (low-yield test goals).

STRATEGY 6.B: CAUSALLY LINKED STUBS — INDIVIDUAL FEATURES

One feature (plug-in) is used in one stub, while the default plug-ins are used in all the other causally
linked stubs. Multiple flattened maps may result from this procedure, one for each feature. The selec-
tion of test goals is performed based on the resulting flattened maps, where the testing patterns seen

so far (alternative, concurrent, loop, and multiple start points) can be used.

EXAMPLE: A first flattened map results froRlug-in 1being used irsz1 andPlug-in 3in s2. The
second map results froRlug-in 2being used irs1 andPlug-in 1in s2. With Strategy
1.B: Alternative — All paths, the overall set of test goals is:
{<SP, a, EP1>, <SP, b, EP3>, <SP, ¢, EP2>, <SP, d, EP3>}

CONSEQUENCE
Targets the validation of individual feature behaviour, in the absence of other features. The resulting
path coverage is as good as that offered by the strategies used on the flattened maps. The coverage of

plug-in combinations is still weak (low-yield test goals).

STRATEGY 6.C: CAUSALLY LINKED STUBS — FEATURE COMBINATIONS

All combinations of two or more features (plug-ins) are used in causally linked stubs. Multiple flat-
tened maps may result from this procedure. The selection of test goals is performed based on the
resulting flattened maps, where the testing patterns seen so far (alternative, concurrent, loop, and mul-

tiple start points) can be used.

212  Specification and Validation of Telecommunications Systems with Use Case Maps@d L



UCM-Oriented Testing Patterns for Test Goal Selection

EXAMPLE: The flattened map results froRlug-in 2being used irsz andPlug-in 3in s2. With
Strategy 1.B: Alternative — All paths, the set of test goals becomes:
{<SP, a, EP1>, <SP, b, ¢, EP2>, <SP, b, d, EP3>}

CONSEQUENCE

Targets the validation of feature interactions resulting from combination of plug-ins in different
dynamic stubs. The resulting path coverage is as good as that offered by the strategies used on th
flattened maps. The coverage of plug-in combinations is good (high-yield test goals). The most inter-
esting test goals are those different from the goals generated by Strategy 6.A and Strategy 6.B, i.e.
{<SP, b, c, EP2>, <SP, b, d, EP3>} in the example above. Some of these interactions might be clas-
sified asundesirableby designers and requirements engineers; they should be prevented by the use of
appropriate conditions and selection policies at the UCM level, and the corresponding test goals

should be used as a basis for the generation of rejection test cases.

KNOWN USES

No other uses at this point.

RELATED PATTERNS

Flattened maps may still contain individual stubs, to be handled by Testing Patt8mci-£-STUB.

Rather than covering all possible combinations of features, checking all pair-wise combinations, as
suggested by Williams [375], could represent a sensible and cost-effective solution when more than

two stubs are causally linked.

6.3.10 DiscussION
This section discusses three topics related to UCM-oriented testing patterns. First, it provides a link

between testing patterns and thetbstesting theory. Second, it briefly compares these patterns to
closely related test patterns written by Binder. Last, the test purposes generated through our testing

patterns are compared to other types of test purposes found in the literature.
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Relating Testing Patterns to the loTOS Testing Theory

Test goals are selected by applying testing patterns on a given UCM. If individual UCMs were formal
models, then our testing patterns could be linked to dt@&testing theory. Under the assumption of

the existence of adros interpretation for each UCM obtained from the functional requirements,
which could be constructed according to the guidelines described in the previous chapter, abstract
causal sequences could be compared to reductions of canonical testers. Table 18 gives additional def-

initions for unbound UCM paths (without components) that can be described in terms of LTSs:

TABLE 18. Notation for UCMs Interpreted in LOTOS

Notations Definitions
Set of LoTos interpretations (behaviour expressions) of UCM paths used fpr the
LoTtUcwms . e
construction of a specification under tesbTUCMS [0 SPECS
LU, LoTosinterpretations of UCIM LU, O LoTUcMmSs.

There may be many UCMs involved in the construction obads prototype. Each of them
could be transformed, while abstracting from underlying components, into a separatentodel

LU,. The generation of sound test cases for the integrated prototype model can be reinforced by
checking that test goals (abstract sequences) selected frorp t@Spéct the behaviour described by

LU,. In other words, test goals used in acceptance test cases should be reducjiohth@exdnoni-

cal tester of the corresponding individual model,. We suggest this asssundness propertihat

must be satisfied by our goals. This is described by Property 1, wherg id@btd for the construc-

tion of LU, and for the selection of test goals in a test gib@p (see Table 15).

OLU,, 0Ty, Ty O ACCEPTTG,) O Goal(TP(T)) redCT(LU,,) (PROPERTY 1)

As for rejection test cases in the test siliffetheir goals must not be reductions of the canon-

ical tester of anyU,, (Property 2).

OLU,, OT,, Ty O REJECYTS) O -( Goal(TP(T)) redCT(LU,) ) (PROPERTY 2)
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To illustrate the effect of Property 1, the UCM of Figure 45 is reused as an example in

Figure 50, where several steps are identified:

FIGURE 50. Individual UCM in LoTos with its LTS, Canonical Tester and Test Purposes

a

sP @ b ¢ II dep
(a) Individual UCM, without components
Application of (1) [2) Application of Goals
Construction Guidelines Strategy 2.C

LU := SP; TP1 = <Accept<SP a, b,'c, EP>>

(a; exit ||| b:c; exit TP2 = <Accept<SP b, a, ¢, EP>>

)» TP3 = <Accept<SP b, c, a, EP>>

EP; stop (c) Test purposes
(b) LU (LoTosform) Application of
Property 1
© (5] (6]
a
b
o C
e EP
(d) LU (LTS form) (e)CT(LV)

O A LoTtos behaviour expressionU (b) is constructed from an individual UCM without

components (a) according to the guidelines in Section 5.2.

® According to Section 6.3.5, Strategy 2.C can be applied to the same UCM (a) in order to

generate goals for test purposes (the latter also include test types, i.e. accept or reject) (c).
©® LU (b) can be transformed into a labelled transition system (d) (see Section 2.3.5).

® A canonical teste€T(LU) (e) is generated from the LTS (d) (discussed in Section 2.3.6).
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© According to Property 1, the goal of each test purpose in the (acceptance) test group gen-
erated from the UCM needs to be a reductio@BfLU). Indeed:
Goal(TP1)redCT(LU), Goal(TP2)redCT(LU), andGoal(TP3)redCT(LU).

Step® shows that the test goals are sound, and hence the confidence in the soundness of the
LoTos test cases to be generated is increased. The soundness of the test cases is a property that is
required for the vatelation to hold. Property 1 can therefore help ensuring that testing patterns and

their strategies generate sound test purposes.

Applications of Property 2 are of a similar nature. If a test goal is intended to be used for gen-
erating a rejection test case, then this goal must not be a reduction of the canonical tester of any UCM

considered in the requirements.

The existence of a canonical tester for an individual UCM, which is more manageable in terms
of complexity and size than the canonical tester of the whole integrated set of UCMs, also enables
another strategy to be used on top of testing patterns for the selection of test purpo®ssugtep
gests that test purposes can be derived directly @&(hU), provided that they are irreducible reduc-
tions of this canonical tester. Conventionalribstest selection techniques could therefore potentially
be used at this point, but these techniques are outside the scope of this thesis. Alternatively, more
detailed test purposes (represented as trees) could be generated from a goal comUintlechtgh
techniques like Probert and Wei’'s Non-deterministic Ripple Sets [295]. However, such test purposes
would no longer be sequential and could include inconclusive verdicts, two things that augment the

difficulty of assessing validity and of establishing simple diagnostics.

Note that for non-deterministic choices, the application of some testing patterns may lead to
test goals that violate Property 1. For example, if a UCM OR-fork is guarded by two overlapping con-
ditions (X>3 andX<5), selecting<=4 for any of the two path would result in a test goal thabtsa
reduction of the canonical tester of the UCM interpretedands and to anay paswerdict at test-

ing time. This could be detected by s@pbefore applying the test case to the prototype. Solutions
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could involve modifying the conditions in the UCM (see Section 6.4.3) or usin@@stepaugment

the test case until it satisfies Property 1. The resulting test would become a tree with alternatives and

would no longer be linear.

Comparison with Binder’s Test Patterns

In his book, Binder presented test patterns for object-oriented systems [51]. To the knowledge of the

author (and to mine), this is the most comprehensive collection of such patterns. Multiple levels of

details are addressed, from classes to applications to regression testing.

Two of his test patterns stand out as being related to the ones defined in this chapter:

Round-trip Scenario Te$b0]: its intent is to extract a control flow model from a UML
sequence diagram and then develop a path set that provides minimal branch and loop cov-
erage (similar to Testing Patterns 1 and 3). The proposed solution, based on heuristics,
leads to fairly synthetic tests. Our testing patterns are more flexible and better tailored to
UCMs, and they lead to test goals and test cases of higher quality and closer to require-
ments. Binder’s solution does not consider concurrency (partial orders) and sub-models
(e.g. plug-ins). The UCM-oriented test patterns handle such constructs and provide strate-
gies for coping with related issues such as scalability and state explosion which are
avoided altogether by Binder. Since his book focus on OO models and programs that are
mostly sequential in nature, topics relevant to concurrent and distributed systems (such as

telecommunications systems) are covered only to a very limited extent.

Extended Use Case Tefis intent is to develop a system-level test suite by modeling
essential capabilities as extended use cases. Binder cites many benefits related to the use
of use cases: close to requirements, developed by various stakeholders, leverage design
information, capture main functionalities and relationships, and so on. UCMs provide sim-
ilar advantages, together with a better management of several disadvantages enumerated in
this pattern: difficult to find the right level of abstraction (UCMs provide an appropriate

level of abstraction for early design stages), performance is usually not specified with use
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cases (it can be with UCMs), and UMktendandincluderelationships for use cases are
difficult to flatten (flattening is simpler with the UCM stub/plug-in mechanism). The solu-
tion proposed is very generic and is not of much help for the generation of concrete test
goals, whereas the UCM-oriented testing pattern language offers a more systematic way of

generating test goals.

UCM-oriented testing patterns, language and strategies hence address some of the weaknesses

of Binder’s patterns related to the testing of telecommunications systems.

Comparison with Related Types of Test Purposes

In this thesis, a test purpose is a paype goal> where the test type is either acceptance (must test)

or rejection (reject test). The testing patterns target the selection of functional test goals from UCMs
capturing requirements or high-level designs. These test goals are abstract sequences of events corre-
sponding to UCM start points, responsibilities, waiting places/timers, and end points. The test cases
generated from such test purposes aim to validate formal specifications (prototypes) that integrate

functionalities of complex telecommunications systems expressed as Use Case Maps.

Test goals and test purposes have often been used in various contexts. In general, they are
combined to formal specifications (assumed to be correct and valid) in order to generate conformance

test cases. Here is a brief comparison between our test purposes and related ones:

« The Conformance Testing Methodology and FrameworkCTMF) [193] use test pur-
poses to describe well-defined test objectives, focusing on a single conformance require-
ments or a set of related conformance requirements, in a rather informal way using prose

descriptions. How to generate these test purposes is outside the scope of this framework.

« The Formal Methods in Conformance Testing(FMCT) framework [196] defines a
generic and formal test purpose as an abstract requirement or behaviour accompanied by
an implementation or satisfaction relation. Such test purpose hence describes the set of

implementation models that should contain this behaviour or requirement. Our test pur-
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pose is essentially an instantiation of this concept, where the requirement is the test goal

and the satisfaction relation_is vambined with the test type.

Grabowski et al [158], Ek et al.[123], and more recentRrobert et al.[297][298] spec-

ify test purposes as MSCs and use them to guide the generation of TTCN test cases from
an SDL specification. This is one of the techniques currently supported by SDL tools (e.g.
Telelogic’s). Due to their graphical nature, MSCs represent an attractive way of capturing
test goals. Unfortunately, how these MSCs are generated is not discussed (they are
assumed to be given or validated by customers). Moreover, these test purpositatarget
tests as they describe successful sequential traces, and the SDL specification helps com-
puting other branches that fail or that are inconclusive in the corresponding test case. The
test purposes emphasized in this thesis leddust tests andRejecttests, which lead to

simpler diagnostics and clearer assessments.

Probert and Wei [295] use prose test purposes in an algebraic semantic cadtext (
deterministic Ripple Sets- NRS) to guide the generation of test cases for the validation
and conformance checking of implementations. Much in line with test goals derived from
UCMs, their concept of test purpose implies a specific, biased set of paths (specified using
choice patternsthat have the potential to be traversed. Again, a correct and possibly non-
deterministic service specification (LTS) is required, and the origin of the test purposes is
not discussed (assumed to come from the requirements). The leaves of the resulting test

case (trees) also have to be tagged manually with a verdict (pass, fail, or inconclusive).

Bertolino et al.[48] use “architectural descriptions” of systems in abstract LTS form and
derive test purposes directly from them in order to test conformance of implementations
against software architectures. The difficulty here resides in the complexity of the LTS,
which becomes very large (or even infinite) for any realistic telecommunications system.
Also, the LTS is assumed to be correct, whereas our test goals aim to validabedise L

LTS specification that integrates all the functionalities expressed with UCMs.

Jard et al.[214][217] use graphs (partial LTSs) as test goals and use them to generate or

validate test cases using a formal specification (in SDLogol) and the TGV toolkit. In
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general, how these test goals are generated remains unclear (although model checking is

presented as a candidate) and the formal specification is again assumed to be correct.

e Charfi uses a path traversal algorithm adapted from Miga’s [258] to traverse a UCM
model (augmented with key annotations @b and extract test goals [91]. These goals
are then used, in combination with @los specification and the TGV toolkit, to generate
acceptance test cases. Although the level of automation is rather high, the quantity of test

goals generated becomes difficult to manage for any complex collection of UCMs.

Note that a recent addition to the UCM language cateshario definition$84][258] offers
another alternative to UCM designers for defining test goals using an initialization of global path vari-

ables. Applications to the generation of tests is however future work.

6.3.11 Section Summary
UCM scenarios that describe the requirements or the design should also be used for the selection of

appropriate test goals. This section argues that testing patterns can be used as a sensible and semi-for-
mal approach to test selection that fits the level of abstraction targeted by a semi-formal notation like

Use Case Maps.

This section provides a UCM-oriented testing pattern language and an appropriate template to
support this selection. Six testing patterns and a total of twenty-five coverage-directed strategies
based on UCM constructs were defined, motivated, and illustrated. The patterns represent a traceable
link between functional requirements and test cases. They produce abstract causal sequences (test
goals) which in turn can be used for the generation of soomdd.test processes (acceptance and
rejection). These patterns are independent of any underlying structure of components, hence they

apply to a wide variety of systems.

A relation between testing patterns and tligdstesting theory was established. The testing
patterns were compared to those of Binder’s, and the resulting test goals and test purposes were
briefly compared with relevant techniques that also use test purposes in the telecommunications sys-

tem domain.
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Although UCM-based testing patterns represent a major step in the selection of appropriate
test cases, additional information still needs to be considered for the generation of detailed L

processes from abstract sequences. This topic is addressed in the next section.

6.4 Complementary Strategies and Test Case Generation

In order to generatedTostest cases from Use Case Maps, test goals first need to be selected using
the testing patterns defined in the previous section. However, several problems remain, such as linking
an abstract sequence to the design decisions made during the constructionafaserbtotype
(Section 6.4.1), selecting appropriate values (Section 6.4.2), dealing with incompleteness and non-
determinism (Section 6.4.3), and generating rejection tests (Section 6.4.4). The current section pro-
poses several complementary strategies as elements of solution for the €JICKItésting frame-

work.

6.4.1 From Test Goals to Test Cases
Dealing with telecommunications systems often involves the use of components and data. The con-

struction of a loTos specification from UCMs is based on several guidelines (Section 5.2), but also
on design decisions related to the definition of data, messages, parameters, visibility of responsibili-
ties and events, etc. Beside the obvious consistency required between the gate names used in the te
cases and in the specification (CG-1), these design decisions influence the generationosftadt

case from a test purpose. More precisely, the following elements need to be taken into consideration

(the relevant construction guidelines are cited):

« Visibility : due to the presence of components in the original set of UCMs, some responsi-
bilities and events from the abstract sequence may be hidden at some level. Common situ-
ations involve responsibilities and events located inside a component or messages/
interactions between two given components (CG-5.c). Timers (CG-4.a) and failure points
(CG-4.c) may also have visible events in order to improve controllability and testability.
Since a loTos process can only synchronize on visible gates, hidden responsibilities and

events should not be part of the test cases.
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« Parameters when a responsibility or an event is specified with parameters indhesL
prototype, these parameters need to be included and instantiated in the test case. Common
cases include the use of dynamic responsibilities (CG-4.d) and component interfaces (CG-

5.b). Parameter values need to conform to the type definitions (CG-8).

« Messagesif visible messages are used to specify the causality relationship between two
responsibilities in the abstract sequence under consideration (CG-7), then these messages
need to be included in the test case as well. Shared responsibilities (CG-7.a) and direction

of messages also need to be considered (CG-7.b).

« Preambles if a precondition is attached to the UCM from which a test goal was selected,
then this precondition needs to be satisfied by the test case. To bring the system from an
initial state to a state that satisfies this precondition, an appropriate preamble might be

necessary.

« \Verification steps if a postcondition is attached to the UCM from which a test goal was
selected, then this postcondition needs to be tested by the test case. To do so, an appropri-

ate sequence of verification steps might be necessary.

Note that stubs (CG-3) and the integration of path segments (CG-2 and CG-6) have little
impact on how to go from test goals to test cases because most of the related decisions are already

embedded in the goals generated from the testing patterns.

Additional selection strategies, discussed in the next two sections, can guide the selection of

suitable data values for parameters.

6.4.2 Strategies for Value Selection
When parameters need to be instantiated, the values must satisfy the guards and selection predicates

accompanying theatosevents that correspond to the selected goal. However, a possibly large num-
ber of such values might exist, and selecting one combination might not be sufficient to ensure a good
coverage of parameters. If some data-oriented coverage is required, multiple test cases could be cre-

ated for each test goals. Conventional strategies related to traditional black-box testing can be used at
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this point [44]. Two of the best-known strategies are equivalence classes and boundary interior analy-

sis [267]. Note that the UCMdTostesting framework does not focus on data-oriented coverage.

6.4.3 Completeness and Determinism Issues
UCMs may contain some non-deterministic behaviour due to overlapping conditions. For example,

suppose a two-branch OR-fork where two conditiGisandC2 are located, one per branch. These
conditions use variables whose type is a subset of natural numbers ([0..5]). For these conditions, there
are four cases where the generation of test cases can be influenced by the lack of completeness and/

determinism:

« Complete and disjoint conditions assume thatlis X>3 andC2 is X<3

The simplest case. Any value will lead to the selection of one specific alternative.

« Complete conditions with conjunction assume thatlis X>3 andC2is X<5
X=4 is a value that will result in a non-deterministic execution (and possibly to a may pass

verdict).

« Incomplete and disjoint conditions assume thatlis X>3 andC2is X<3

X=3 is a value that will cause a deadlock.

« Incomplete conditions with conjunctiont assume thatlis 0<X<3 andC2is 1<X<5
X=2 is a value that will result in a non-deterministic execution (and possibly to a may pass

verdict).X=5 is a value that will cause a deadlock.

The choice of a specific value in a test case can influence the resulting verdict for a given test
goal. The second case indicates a UCM where refinement of conditions may be needed in order to get
a deterministic specification. The last two cases are symptoms of a problematic UCM. For OR-forks
in general and for selection policies in dynamic stubs, Parnas tables can help to assess, at specificatiol
time, that a collection of conditions is deterministic and complete [276]. Such tables could be used in

combination with testing patterns for alternatives and for stubs/plug-ins (Sections 6.3.4 and 6.3.8).
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6.4.4 Strategies for Rejection Test Cases
Deriving rejection test cases from requirements is a challenging task. If some scenarios or properties

are explicitly forbidden (e.g. as suggested by Harel and his play-in scenarios [167]), then UCMs can
be used to capture them, and then the proposed testing patterns and strategies, which mainly target
acceptance test cases, could be used to derive rejection test cases. However, such forbidden scenarios
are usually missing from the requirements. Often in telecommunications systems, anything can go
wrong and the number of potential rejection test cases is unlimited. Consequently, selection strategies

for rejection test cases appear just as necessary as for acceptance test cases.

Several rejection test case selection strategies are introduced in this section. They are inspired
by various sources and techniques, including: invalid output, invalid input resulting in a valid output
(in black-box testing [267]), use of explicit safety properties (i.e., something bad should not happen),
and “dirty” testing [44], which is automatable to some extent for testing robustness of implementa-
tions [234]. Our strategies adapt some of these techniques and ideas tordsJCM testing
framework. These strategies focus on high-level specifications and may not all be relevant for testing
real implementations. For instance, implementations are usually required to handle errors with detec-
tion routines and exceptions (hence, acceptance test cases should cover these situations), whereas
high-level specifications (such as the ones we use in this thesis) may defer such treatment to a later

stage in the design process.

We suggest the following non-exhaustive list of five strategies:

R1.Forbidden scenarios from requirements several rejection test cases can be generated directly
from requirements or safety properties. The generation is usually straightforward when forbidden
scenarios are defined as explicit requirements.

R2.Use of testing patternsseveral goals generated from testing patterns and their strategies can only
be used for rejection test cases. The most notable ones are:

« Unsatisfiable set of conditions in successive alternatives found in OR-forks (Strategy 1.C).

« mliterations in a loop, whermais the minimal number of iterations, ¢l iterations in a

loop, wheren is the maximal number of iterations (Strategy 3.D).

224 Specification and Validation of Telecommunications Systems with Use Case Mapsad L



Complementary Strategies and Test Case Generation

« Redundant stimuli that cause two instances of the resulting event (Strategies 4.D and 4.E).
« Insufficient stimuli that still cause the resulting event (Strategies 4.F and 4.G).
« Unsatisfiable set of conditions attached to multiple start points (Strategies 4.A to 4.H).

« Unsatisfiable set of conditions found in selection policies of nested dynamic stubs (Strate-
gies 5.B and 5.C)

« Unsatisfiable set of conditions found in selection policies of causally linked dynamic

stubs, e.g. undesirable feature interactions (Strategy 6.C).

R3.Incomplete conditions several collections of conditions can be incomplete. Selecting a value
that is not covered by any of these conditions, as seen in Section 6.4.3, leads to a rejection test
case. This however is usually a symptom of a problem in the UCMs.

R4.0Off-by-one value an invalid output for a given set of valid inputs translates, in UCM terms, in an
incorrect resulting event. Sinceotos allows non-deterministic behaviour, valid and invalid
resulting events could be offered simultaneously to a test case. Invalid resulting events can be
detected with a rejection test case by using the acceptance test case and by complementing it:
resulting values. The sametos gate is used, but the accepted values are totally disjoint. For
instance, using appropriate predicates, the resulting &®enbisplay !3  could be comple-
mented IintoEP !Display ?n:number [n ne 3] or into EP ?msg:MsgType ?n:number
[(msg ne Display) or (n ne 3)] . This fault model seems rather simple yet, in the absence
of explicit forbidden scenarios, it increases the confidence that the expected result, usually found
in a corresponding acceptance test, is the only one the system can offer. Specification languages
such as SDL have explicit catch-all constructs (@rgerwiseclause) that can be used in similar
situations.

R5.Off-by-one gate similar to the off-by-one value strategy, only this time the gate name is modi-
fied. This gate mutation is particularly useful when values and gate splitting (interfaces) are not
used, i.e. only the gate name represents the expected result. This strategy is not mutually exclusive
with the off-by-one value strategy.

Some of these strategies will be further illustrated with the TTS example and with the experi-

ments discussed in Chapter 8.
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Rejection Test Cases and Incomplete Requirements

A difficulty appears when requirements are incomplete, which is to be expected especially in the ini-
tial stages of system development. An incomplete set of UCMs and validation test cases usually
results from such situations. Some rejection test cases constructed following strategieRguch as

R5 (described above) can be problematic as they might imply the rejection of a valid requirement that
has not been specified explicitly. Accordingly, rejection test cases should be inspected by require-
ments engineers in order to assess their correctness and to confirm that they do not correspond to
implicit and valid requirements. Incorrect rejection test cases can motivate modifications to the

requirements, and hence to the specification.

Also, as requirements evolve, several constraints expressed as forbidden situations in the
requirements may be relaxed to allow the creation of new functionalities and features. The list of

rejection test cases needs to be revised accordingly and some of them might have to be removed.

6.5 Testing the TTS System

The TTS Use Case Maps, together with the defined testing patterns, enable the selection and genera-
tion of functional test cases for verifying that the prototype satisfies the UCM scenarios and for vali-
dating scenario integration. First, abstract causal sequences are selected from the UCMs (Section
6.5.1). Additional abstract sequences aiming to test the robustness of the prototype are selected in
Section 6.5.2. All these abstract sequences are test goals, which are then transfornoasttest

processes in Section 6.5.3. The results of their execution are presented in Section 6.5.4.

6.5.1 Test Goals for TTS
Test purposes are composed of test goals extracted from the UCMs and of test types (accept or reject).

Since many test goals may exist, guidance is required for selecting the ones most appropriate accord-

ing to the test plan. Testing patterns can help in this selection process.
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The integrated UCM view of the Tiny Telephone System (Figure 20) is the starting point
where testing patterns can be applied. The three steps suggested in the UCM-oriented testing pattert

language (Section 6.3.3) are used here.

The first step (Figure 41) consists in flattening the stubs contained in the TTS UCM. There are
no causally linked stubs at the beginning, so Strategy 5.A is applied tsTstulhich is therefore
replaced by its plug-in ERMINATING). This results in an intermediate flattened map where two
dynamic stubsq0 andsD) are causally linked. Since the number of plug-ins is small for both stubs,
all three strategies in Testing Pattern 6 are applied. As a result, four combinations of stubs lead to four
flat UCMs (i.e. without stubs).

The second step (Figure 42) handles flat maps that have multiple start points. This is not the

case for any of the maps here, so Testing Pattern 4 is not used.

The third step (Figure 43) consists in handling the remaining UCM constructs (alternatives,
concurrent segments, loops) for each flat map. Four test groups are created for the four combinations
of stubs (flat maps), and each group will contain test goals than can be used to generate acceptanc

and/or rejection test cases.

Combination 1: SO = DEFAULT, ST = TERMINATING, SD = DEFAULT

This combination, resulting from Strategy 6.A applied to sed&ndsD, corresponds to the basic

call UCM of Figure 18. Strategy 1.B (Alternative — All paths) is applied to the OR-fork and Strategy
2.B (Concurrent — Some combinations) to the AND-fork. This leads to the following three test goals,
where hidden responsibilities are marked by a sfaCpnditions found along the selected paths and

in the selection policies are also enumerateis the originating partyB is the terminating party, and

C is a third party). For all these sequendeandB are not subscribed to any feature. Note fet
originally busy at the beginning (see the informal requirements in Section A&I)ot yet involved

in any call, butA cannot receive any call request (this is similar to a situation where a user’s phone is

initially off hook).
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« Abstract sequenceteq, vrfy*, prbs*, upd*, sig, ring>
Constraintsjnot(has(A, OCS))], [busy(A)], [not(has(B, CND))], [idle(B)]
Informally: A callsB (idle), ringback first.

« Abstract sequenceteq, vrfy*, prbs*, upd*, ring, sig>
Constraintsjnot(has(A, OCS))], [busy(A)], [not(has(B, CND))], [idle(B)]
Informally: A callsB (idle), ring first.

« Abstract sequenceteq, vrfy*, pbs*, sig>
Constraintsjnot(has(A, OCS))], [busy(A)], [not(has(B, CND))], [busy(B)]
Informally: A callsB (busy).

In these constraint$ias(A, 0CS) means thaf has subscribed to OC8ysy(A) meansA is
busy,idle(B) stands foB is idle, and so on.

Note that the application of Strategy 2.B to the AND-fork resulted in the coverage of all com-
binations of visible eventsi§ andring), just as Strategy 2.C would have because hidden responsibili-

ties are not used in test cases.

Combination 2;: SO = DEFAULT, ST = TERMINATING, SD = CND

This combination, resulting from Strategy 6.B applied to stth&ndsD, corresponds to the CND
UCM of Figure 19(b). Again, Strategy 1.B is applied to the OR-fork and Strategy 2.B to the AND-

fork. There are three test goals:

« Abstract sequenceteq, vrfy*, prbs*, disp, upd*, ring, sig>
Constraintsjnot(has(A, OCS))], [busy(A)], [has(B, CND)], [idle(B)]
Informally: A callsB (idle), displays, ring first.

« Abstract sequenceteq, vrfy*, prbs*, disp, upd*, sig, ring>

Constraintsjnot(has(A, OCS))], [busy(A)], [has(B, CND)], [idle(B)]
Informally: A callsB (idle), displays, ringback first.
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« Abstract sequenceteq, vrfy*, pbs*, sig>
Constraintsjnot(has(A, OCS))], [busy(A)], [has(B, CND)], [busy(B)]
Informally: A callsB (busy), no display.

Note that the last test goal is the same as the last one from the previous combination. Whether
B has subscribed to CND or not is of no consequence because the selected path does not go throug

stubsb. Consequently, only the two first sequences will be used in the test suite.

Combination 3: SO = OCS, ST = TERMINATING, SD = DEFAULT

This combination, also resulting from Strategy 6.B applied to ssobandsD, corresponds to the

OCS UCM of Figure 19(a). This time, Strategy 1.C (Alternative — All path combinations) is used on
the two consecutive OR-forks, and Strategy 2.A (Concurrent — One combination) is applied to the
AND-fork because the ordering betwesmy andsig is not critical and because the intermediate

responsibilities involved are hidden. There are three new test goals:

« Abstract sequenceteq, chk*, vrfy*, prbs*, upd*, ring, sig>
Constraintsjfhas(A, OCS)], [busy(A)], [allowed(B)], [not(has(B, CND))], [idle(B)]

Informally: A callsB (idle), allowed.

« Abstract sequenceteq, chk*, vrfy*, pbs*, sig>
Constraintsjfhas(A, OCS)], [busy(A)], [allowed(B)], [not(has(B, CND))], [busy(B)]
Informally: A callsB (busy), allowed but busy.

« Abstract sequenceteq, chk*, pds*, sig>
Constraintsjhas(A, OCS)], [busy(A)], [denied(B)], [not(has(B, CND))], [busy(B)]
Informally: A callsB, denied.

The conditiorallowed(B) implies thaB is not part oRs OCS list, whereasenied(B) means the

opposite.
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Combination 4: SO = OCS, ST = TERMINATING, SD = CND

This last combination, resulting from Strategy 6.C applied to stabsndsD, allows for the detec-

tion of undesired behaviour when both features are active, an interesting case that was not explicitly
considered when capturing the requirements with individual UCMs. The following test goals repre-
sent desired fine-grained liveness properties which might be violated by the prototype where both fea-
tures are integrated. Strategy 1.B is used for both OR-forks and Strategy 2.A for the AND-fork. Three
test goals are hence sufficient, but two of them are similar to sequences defined for previous combina-

tions:

« Abstract sequenceteq, chk* vrfy*,prbs*, disp, upd*,ring, sig>
Constraintsfhas(A, OCS)], [busy(A)], [allowed(B)], [has(B, CND)], [idle(B)]

Informally: A callsB (idle), allowed, displays.

« Abstract sequenceteq, chk*, vrfy*, pbs*, sig>
Constraintsfhas(A, OCS)], [busy(A)], [allowed(B)], [has(B, CND)], [busy(B)]

Informally: A callsB (busy), allowed but busy. Already covered.

« Abstract sequenceteq, chk*, pds*, sig>
Constraintsfhas(A, OCS)], [busy(A)], [denied(B)], [has(B, CND)], [busy(B)]

Informally: A callsB, denied. Already covered.

Combining the Test Goals

A total of nine original test goals were extracted from the integrated UCM (Table 19). The use of test-
ing patterns led to three duplicate goals which will not be included in the test suite. Because test goals
are described at a high level of abstraction, duplicate test goals are easier to detect and eliminate than

duplicate test cases and this elimination results in a more optimized test suite.
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TABLE 19. Test Goals Extracted from UCMs Through Testing Patterns

Test Test
Group # StubSO | StubST | StubSD Goal # Abstract Sequence

1 |<req, vrfy*, prbs*, upd*, sig, ring>

1 Der. | TERM. | DEF. <req, vrfy*, prbs*, upd*, ring, sig>

<req, vrfy*, pbs*, sig>

<req, vrfy*, prbs*, disp, upd*, ring, sig>
2 Der. | TERM. | CND

<req, vrfy*, prbs*, disp, upd*, sig, ring>

<req, chk*, vrfy*, prbs*, upd*, ring, sig>

3 OCS | ERM. DEF. <req, chk*, vrfy*, pbs*, sig>

<req, chk*, pds*, sig>

ol | N|oOjJO | A~jJWIDN

4 OCS | ERM. | CND <req, chk*vrfy* prbs*, disp, upd*,ring, sig>

Test purposes include these goals together with test types, i.e. acceptance or rejection. All the

test goals seen here will be used to create test cases of both types.

6.5.2 Further Test Goals for Robustness Testing
It should be emphasized that one should not limit the testing to the goals set through testing patterns.

Further goals can be defined for other types of requirements (e.g. robustness), concurrent scenarios
along the same paths, or data values prone to errors (e.g. using boundary analysis). Risk analysis [55]
business goals and non-functional requirements can be used to suggest scenarios useful as robustne

tests. The following five test goals are used as an illustration of such cases:

« Abstract sequenceteq, vrfy*, pbs*, sig>
Constraintsjnot(has(A, OCS))], [busy(A)]

Informally: A callsA (busy), should return a busy signal.

« Abstract sequenceteq, vriy*, upd*, ring, sig, req, vrfy*, pbs*, sig>
Constraintsjnot(has(A, OCS))], [busy(A)], [not(has(B, CND))], [idle(B)], [busy(C)]
Informally: A callsB (idle), thenC callsB (busy). The busy state Bfshould be set.
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« Abstract sequenceteq, req, vrfy*, vrfy*, pbs*, pbs*, sig, sig>
Constraintsjnot(has(A, OCS))], [busy(A)], [busy(B)]
Informally: A callsB (busy) whileB callsA (busy).

« Abstract sequenceteq, chk*, pds*, sig>
Constraintsjhas(A, OCS)], [busy(A)], [denied(A)]

Informally: A callsA, denied A is on its own OCS list).
« Abstract sequenceteq, chk*, pds*, sig, req, chk*, pds*, sig>
Constraintsjfhas(A, OCS)], [busy(A)], [denied(B)], [denied(C)]

Informally: A callsB, denied, ther\ callsC, denied (tests OCS list longer than 1 element)

These test goals are summarized in Table 20, where the “-” symbol is used as a don'’t care

value, i.e. any plug-in could be used.

TABLE 20. Further Test Goals for Robustness

GrToeuS; | Stubso | stubsT | stubsp | T, Abstract Sequence
DEF. | TERM. - 10 |<req, vrfy*, pbs*, sig>
DEF. TERM. DEF. 11 [<req, vrfy*, upd*, ring, sig, req, vrfy*, pbs*, sig>
5 DEF. TERM. - 12 |<req, req, vrfy*, vrfy*, pbs*, pbs*, sig, sig>
OCS - - 13 [<req, chk*, pds*, sig>
OCS - - 14 |<req, chk*, pds*, sig, req, chk*, pds*, sig>

6.5.3 Test Cases Generation
Now that the test goals are availabl&Tbs test cases can be generated by considering the points

cited in Section 6.4.1. Multiple acceptance and rejection test cases can be generated for each goal.
However, for the sake of simplicity and because many decisions related to the choice of values are

implicit, only one test case of each type will be generated for each test goal.

The test goal #1 (Table 19), composed of the abstract causal segugnegy*, pros*, upd*,

sig, ring>, Will be used as an example. Since the actions annotated by+ atarhjdden, they will not
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be part of the test case. The constraints associated to this tesfng@iads(A, OCS))], [busy(A)],
[not(has(B, CND))], [idle(B)]) require a preamble that will initialize the SUT with us&randB, their
subscribed features, and their initial state. In terms of the current prototype, this translates to:
init luserA !Insert(BC, EmptyFList) 27dummy:UserList !busy;
init luserB !Insert(BC, EmptyFList) 27dummy:UserList lidle;
Thedummyvalue identifier used here for the OCS screening list is a don’t care value because

these users are not subscribed to OCS.

The test body is composed of three events correspondiag &y, andring:

req !userA !userB;
sig 'userA 'ringBack;
ring 'userB;

These five loTOSsactions represent an acceptance test case. A rejection test case can be gener-
ated by choosing one of the strategies discussed in Section 6.4.4. For instance, the application of the

“Off-by-one value” strategy leads to a mutation of the last action into:
ring 2dummy:User [dummy ne userB]

This action means that a phone other tBaris ringing. Because the acceptance test case and
the rejection test case differ only by their last event, they can be regrouped into a single test process.

As discussed in Section 6.2.2 (page 178), such a combined test process becomes an acceptance test

process tl [req,ring,sig,disp,init,reject,success]: noexit =
init luserA !Insert(BC, EmptyFList) 2dummy:UserList !busy;

init luserB !Insert(BC, EmptyFList) 2dummy:UserList lidle;

req !userA !userB,

sig luserA 'ringBack;

(

ring !userB; success; stop

I

ring 2dummy:User [dummy ne userB]; reject; stop

)
endproc (*t1*)
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This process containssaccess event (for the acceptance part) andjact event (for the
rejection part). The testing toobLA will look for success as the indication of a successful execu-

tion, and a must pass verdict is expected.

A total of 14 test processes (see Appendix B, lines 778 to 947) were created in a similar way.
Each process uses one of the 14 test goals (Table 19 and Table 20) as the basis for an acceptance test
case and a rejection test case. The rejection parts are all generated according to the “Off-by-one

value” strategy.

6.5.4 Results from Test Execution
The TestExpanccommand of bLA allows for the execution of@Tos test cases [279]. This com-

mand has parameters for limiting the depth of the expansion resulting from the composition of a test
process and the specification, for maintaining internal events or for simplifying them according to
testing equivalence, for specifying the expected verdict (from the test purpose), for generating diag-
nostic traces, and for doing partial expansions according to state space and memory usage heuristics
[280].

LoLA was used to check the 14 test cases composing the TTS tesT Suifehé resulting
verdicts were all as expected, i.e. must pass for each test case. Formally, this means ¢itatsthe L
prototype TTS constructed from the UCMs passed all the acceptance test cases and failed all the
rejection test case§ (SpasseACCEPTTS) [0 TTSfailsall REJECTTS). Note that there were no
rejection test processes as such in the test suite, because rejection test cases were integrated to accep-
tance test cases. According to Definition 6.2, the conclusion is that the TTS specification is valid with
respect to the UCMs and the requirememi&Sval TS.

Naturally, several small defects and discrepancies between the specification and the tests have
been found during the construction and the validation of this prototype, but they were easily fixed
because the TTS system is rather simple (more interesting problems are discussed in Chapter 8).
LoLA allows for the tester to look at execution traces ending with an unexpected result, which eases

diagnostics and debugging. Alsoola allows for batch testing. All test groups or test cases can be
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executed in sequence, and their individual expected result can be checked. With the help of simple
shell scripts, any unexpected result of a test can be discovered very quickly. This approach becomes
very useful for regression testing. A change to the specification or to the test suite can be validated

within a few seconds by re-checking the whole test suite

6.6 Chapter Summary

This chapter presented a novel framework for the validation of high-level system specifications based
on UCMs and on @Tostesting theory and tools. This testing approach to validation, integrated to
SPEGVALU E and motivated in Section 6.1, is different from conventional conformance testing,

although many of the terms and concepts used here are instantiated from CTMF.

In Section 6.2, test purposes are defined by a type (acceptance or rejection) and an abstract
causal sequence known as the test goal. A new validity relatignw@aldefined in terms of sound
acceptance/rejection test cases. Differences betweeandathe well-known &Tos conformance

relation_confwere discussed and they are illustrated thoroughly in Appendix C..

UCM scenarios describing requirements or designs are used in Section 6.3 for the selection of
appropriate test goals. Six testing patterns regrouping 25 selection strategies, used to extract abstrac
causal sequences from UCM structures, are defined and illustrated in conformance with an appropri-
ate template. These patterns, which suit the level of abstraction and formality addressed by UCMs, are
connected in a UCM-oriented testing pattern language. The patterns are independent of any underly-
ing structure of components, hence they apply to a wide variety of systems. They are also linked to
the LoTOsS testing theory, and were compared to Binder’s test patterns (which do not really address

complex issues such as concurrency and nesting of sub-paths) and to other test purpose notations.

The generation of tTOs processes from abstract sequences is addressed in Section 6.4. Con-

sideration needs to be given to the design decisions made during the constructioroobtheraito-

1. Compiling the TTS specification and checking the 14 test cases takes less than three seconds on a Pentium Il (Cele-
ron) 300MHz with 64MB RAM and Windows 98. This is fast enough to be used in an iterative and incremental
design cycle.
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type and the selection of appropriate values. The generation of rejection test cases, which is missing
from most loTostest derivation techniques, is explored through the application of multiple strategies

based on requirements, conditions, testing patterns, and the structure of the UCMs.

The testing patterns were applied to the TTS UCMs in order to select appropriate test goals
and to generate acceptance and rejection test cases (Section 6.5). A test suite composed of 14 test pro-
cesses was described and executed. Following the successful execution of the test suite according to
the expected verdict of each test case, it was concluded thaitbs fhrototype was a valid represen-
tation of the UCMs and the requirements. The testing patterns were used rather precisely in this sec-

tion, but experienced testers are likely to use them more informally in practice.

Contributions

The following items are original contributions of this chapter:

« Partial illustration of Contribution 1 (Section 1.4.1) regarding test case generatregcin S
VALUE.

« Partial illustration of Contribution 2 (Section 1.4.2) regarding a UGMeés testing
framework integrated to thee8G-VALU E methodology.

 lllustration of sted’] in SPEGVALUE, i.e. from UCMs to lbTOStest cases.

« The validation relation vaWwhich is well suited for validation testing and which is more
discriminating than the comélation when the latter is evaluated through a finite test suite
(Section 6.2.3).

« A UCM-oriented testing pattern language that explains how 25 coverage-driven strategies
regrouped under six testing patterns can collaborate to select test goals from systems spec-
ified by UCMs (Section 6.3).

« Motivation and strategies for generating rejection test casestnod(Section 6.4.4).

« Application of the framework (test case selection, generation, and execution) to validate

the Tiny Telephone System example (Section 6.5).
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Structural Coverage

Le doute sage et vraiment philosophique
existait) consisterait donc a éteindre (ou plut
voiler) les lumiéres qui nous éblouissent,
juger par un autre organe de l'esprit que celu
sa vue.

Joseph Joubert, 18

The use of testing patterns for the selection of test cases ensures an appropriate coverage of systel
functionalities according to the UCM scenarios and the test plan. However, one can doubt that this
coverage measure is sufficient when tloerds prototype is taken into consideration. As implied by
Joubert in his citation (found below this chapter’s title), a different point of view on the coverage
could be wise and beneficial. This new viewpoint will be based ostthetureof the prototype, not

on itsfunctionalities the latter being already covered by the test suite.

This chapter, which uses coverage concepts introduced in Section 3.4.4, presents a new tech-
nique for measuring the structural coverage @fds specifications. This technique is first placed in
the proper context with respect to thee§&VALU E methodology (Section 7.1). Because the tech-
nique uses instrumentation with probes, some issues are raised in Section 7.2. Section 7.3 illustrates
how probes are used in sequential programs, whereas Section 7.4 adapts this idea to the context o
LoTos specifications. The technique is used to measure the structural coverage of the TTS system in
Section 7.5. A brief discussion of other potential applications is included (Section 7.6), and then the

chapter summary follows.
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7.1 Structural Coverage in S PEC-VALUE

The generation of test cases from scenarios or from requirements jgian approach to validation.

Such test cases can be constructed in parallel with the specification, or even before the specification is
written. In $EGVALU E, thefunctional coveragés achieved, according to the test plan based on test-

ing patterns and related strategies, when the test suite is executed success&illl (iad TS. This

functional coverage is semantianeasure of the correctness of a specification.

Observing the structure of the specification, composed of branches, events, and other such
constructs can further enhance the quality of the test suitestiitural coverageof a test suite
relates to the parts of the specification that have been visited by test cases. When this coverage is
unsatisfactory, new test cases can be addmukteriori(stepl] in Figure 51). New types of faults or
defects can be uncovered along the way. Under the assumption of a complete functional coverage, the

structural coverage can be used as a basis for test suite completeness.

FIGURE 51. Structural Coverage with SPEC-VALUE
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This chapter is concerned with tegntacticmeasure of the coverage of a formal specification
by a validation test suite. This is different from implementation coverage by a conformance test suite
derived (often automatically) from a formal specification. In our case, the validation test suite is

obtained manually, hence coverage measures become necessary at the specification level.

The focus is on the structural coverage offbsspecifications usingrobe insertior{26]. We
can instrument a specification and then assess that the structural coverage is achieved when all probe
are visited by at least one test case. The main goals are to provide hints and assistance in the detectio
of unreachable portions of real-size specifications, and to measure the completeness of the test suite
with respect to the syntactic structure of the specification under test, and not its underlying semantics
or functionalities. Another goal is to cast these ideas in a pragmatic environment where the necessary

steps for coverage measurement are automated as much as possible.

7.2 Issues in the Use of Probes

Probe insertion is a well-known white-box technique for monitoring software in order to identify por-
tions of code that has not been yet exercised (Section 3.4.4). A program is instrumented with probes
(counters) without any modification of its functionality. When executed, test cases trigger these
probes, and counters are incremented accordingly. Probes that have not been “visited” indicate that

part of the code is not reachable with the tests in consideration.

The following four points are notable software engineering issues related to approaches based

on probe instrumentation of implementation code or of executable specifications:

1. Preservation of the original behaviouNew instructions shall not interfere with the intended
functionalities of the original program or specification, otherwise tests that ran successfully on the
original behaviour may no longer do so.

2. Type of coverageBecause probes are generally implemented as counters, it is easier to measure
the coverage in terms of control flow rather than in terms of data flow or in terms of faults. Other
techniques, summarized by Charles in [92], are more suitable for the two last categories of cover-
age criteria.
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3. OptimizationIn order to minimize the performance and behavioral impact of the instrumentation,
the number of probes shall be kept to a minimum, and the probes need to be inserted at the most
appropriate locations in the specification or in the program.

4. AssessmenWhat is assessable from the data collected during the coverage measurement repre-
sents another issue that needs to be addressed. Questions such as “Are there redundant test cases?”
and “Why hasn’t this probe been visited by the test suite?” are especially relevant in the context of
SPEGVALUE.

These issues will be discussed for sequential program in the next section, anddeshec-

ifications in Section 7.4.

7.3 Probes in Sequential Programs

For well-delimited sequential programs, Probert suggests a technique for inserting the minimal num-
ber ofstatement probesecessary to cover all branches [291]. Table 21 illustrates this concept with a
short Pascal program (a) and an array of counters narake|] . The counters indicate the number

of times each probe has been reached.

TABLE 21. Example of Probe Insertion in Pascal

a) Original Pascal code b) Three probes inserted c¢) Optimal number of probes
statement1, statement1, statement1,
if ( condition inc(Probe[1]); inc(Probe[1]);
then if ( condition ) if ( condition )
begin then then
statement2 begin begin
end inc(Probe[2]); inc(Probe[2]);
else statement2 statement2
begin end end
statement3 else else
end begin begin
{end if} inc(Probe[3]); {No probe here!}
statement3 statement3
end end
{end if} {end if}
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Intuitively, (b) shows three statement probes being inserted on the three branches of the pro-
gram. In (c), the same result can be achieved with two probes only. Using control flow information,
the number of times thatatement3 is executed is computed froPmobe[1]-Probe[2] . After
the execution of the test suite,Afobe[2] is equal toProbe[1l] , then the conclusion is that the

‘else’ branch that includesatement3 has not been covered.

It has been proved in [291] that the optimal number of statement probes necessary to cover all
branches in a well-delimited sequential prograti|s |V| + 2, where|E| and|V| are respectively the
number of edges and the number of vertices of the underlying extended delimited B6hm-Jacopini

flowgraph of the program.

The four issues raised in Section 7.2 are covered as follow:

1. Preservation of the original behaviauf the probe counters are variables that do not already exist
in the program, then the original functionalities are preserved.

2. Type of coveragedhe coverage is related to the control flow of the program.

3. Optimization there exists a way to minimize the number of statement probes so it can be smaller
than the number of statements.

4. Assessmenthis technique covers all branches in a well-delimited sequential program.

7.4 Probe Insertionin L OTOS

Similarly to probe insertion in well-delimited sequential progranag,dsconstructs could be used to
instrument a specification at precise locations while preserving its general structure and its externally
observational behaviour. Although the execution of test cases can be slowed down by this instrumen-
tation, it is not desirable to affect the functionality of the specification or the results of the validation

process.

Among the lOTOS constructs, the most likely candidate for incarnating a probe is an internal

event with a unique identifier. Such event can be composed of a hidden gate name that is not part of
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any original process in the specification (€2gbe), followed by a unique value of some new enu-
merated abstract data type (2g0 P_1 P_2 P_3,etc.).

A simple probe insertion strategy footosis presented in Section 7.4.1, followed by a more
optimized version in Section 7.4.2. The interpretation of coverage results and tool support are dis-

cussed respectively in Sections 7.4.3 and 7.4.4.

7.4.1 A Simple Insertion Strategy
According to Table 3 on page 31basic behaviour expressi¢BBE) is either the inactiostop , the

successful terminatioexit , or a process instantiatioR[(.] ). In LOoTOs abehaviour expression

(BE) can be one of the followihg

« ABBE.

« A BE prefixed by a unary operator, such as the action prefppagide , alet , or a guard

([predicate]-> ).

« Two BEs composed through a binary operator, such as a cfjojcail enablex>), a dis-

able (> ), or one of the parallel composition operatdfrs]( Al sorll ).

« A BE within parentheses.

In this chapter, aequencés defined as a BBE preceded by one or more events, separated by
the action prefix operatoeq; ey; ... g,, BBE). A BBE that is not preceded by any event is callstha

gle BBE

Probes enable the measure of the coverage of every event in a behaviour expression, and there-
fore in a whole specification. The simplest and most straightforward strategy consists in adding a
probe after each event at the syntactic level. For each ewttt each behaviour expressi®nthe
expressiore; Bis transformed inte; Probe!P_id; BwhereProbeis a hidden gate arfel id a unique

identifier. A probe that is visited guarantees, by the action prefix inference rule, that the prefixed event

1. We consider a very common subset offbswhere there are no generalizeat or Choice operators.
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has been performed. In this case, if all the probes are visited by at least one test case in the validatior
test suite, then the test suite has achieved aawe¢git coveragd.e. the coverage of all the events in

the specification (modulo the value parameters associated to these events).

Table 22 illustrates this strategy on a very simple specific&b(a). Since there are three
occurrences of events in the behaviour, three probes, implemented as hidden gates with unique value
identifiers, are added ®1to formS2(b). The validation test suite is somehow derived from scenar-
ios or requirements according to some test plan or functional coverage criteria (e.g. UCMs and testing
patterns). In this example, it is composed of two test casesl( and Test2 ), which remain

unchanged during the transformation. The third specification (c) will be discussed in Section 7.4.2.

TABLE 22. Simple Probe Insertion in LOTOS
a) Original L oTos specification ( S1) |b) 3 probes inserted in the c) 2 probes inserted, using
specification ( S2) the improved strategy ( S3)
specification Sl[a,b,c]: exit | specification S2[a,b,c]: exit | specification S3[a,b,c]: exit
(* ADTs *) (*ADTs %) (*ADTs %)
behaviour behaviour behaviour
a; exit hide Probe in hide Probe in
I ( (
b; c; stop a; ProbelP_1; exit a; ProbelP_1; exit
I I
where b; Probe!P_2; b; c; Probe!P_2; stop
process  Testl[a]: exit = c; Probe!P_3; stop )
a; exit )
endproc (* Testl *) where
where ... (* Testl and Test2 *)
process  Test2[...]: noexit := ... (* Testl and Test2 *) endspec (*S3*)
b; c; Success; stop endspec (*S2*)
endproc (* Test2 *)
endspec (*S1*)

Probe insertion is a syntactic transformation that also has an impact on the underlying seman-
tic model. Table 23 presents the LTSs resulting from the expansi®hafdS2 A LoTosexit is
represented by at the LTS level. When a test case endingshiyy is checked (e.drestl ), LOLA
automatically transforms suéhintoi followed by SuccessAlthough the LTSs (a) and (b) are not
equal as trees, they are observationally equivalent. Therefore, the tests that are accepted and refuse

by S1will be the same as those $2
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TABLE 23. Underlying LTSs

a) Original L oTOS b) 3 probes inserted in the c) Composition of S2 with two
specification( S1) specification ( S2) test cases: Testl & Test2
a b a b
o c i(*P_1%) i(*P_2% i(*P_1t (*P_2%)
5 c i(*8
i(*P_3% Succes *P_37%)
Success

Table 23(c) presents two traces, resulting from the composition of each test process found in
Table 22(a) witl52 that cover the events and probeSafTestl coversP_1 in the left branch of (c)
whereasTest2 coversP_2 andP_3 in the right branch. Neither of these tests covers all probes, but
together they cover all three probes, and therefore the event coverage is achieved, as expected from
such a validation test suite. The fact that the entire LTS is covered here is purely coincidental, as it is

usually not the case for complex specifications.

Going back to the four issues enumerated in Section 7.2, the following observations are made:

1. Preservation of the original behaviauysrobes are unique internal events inseatiéer each event
(internal or observable) of a sequence. They do not affect the observable behaviour of the specifi-
cation. This insertion can be summarized by Proposition 4, which coincides with one of the
LoToscongruence rules found in the standard [191] (congruence rules preserve observational and
testing equivalences in any context):

e; B =, hide Probein (e; Probe!P_id; B = e;i; B (PROP. 4)

2. Type of coveragethe coverage is concerned with the structure of the specification, not with its
data flow or with fault models. The resultiegent coveragenakes abstraction of the semantic
values in the events (e.g. the expressiatPn:nat  abstracts from any natural numiogr
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3. Optimization the total number of probes equals the number of occurrences of events in the speci-
fication. Reducing the number of probes is the focus of the next section.

4. Assessmenthis strategy covers all events syntactically present in a specification. Single basic
behaviour expressions are not covered.

7.4.2 Improving the Probe Insertion Strategy
The simple insertion strategy leads to interesting results, yet two problems remain. First, the number

of probes required can be very high. The composition of a test case and a specification where multiple
probes were inserted (and transformed into internal events) can easily result in a state explosion prob-
lem. Second, this approach does not cover single BBEs as such, because they are not prefixed by an
event. Single BBEs may represent a sensible portion of the structure of a specification that needs to be
covered as well. This section presents four optimizations that help solving these two problems, fol-

lowed by an assessment of this improved strategy.

First Optimization: Sequences

In a sequence of events, the number of probes can be reduced to one probe, which is inserted jus
before the ending BBE. If such a probe is visited, thends action prefix inference rule leads to the
conclusion that all the events preceding the probe in the sequence were performed. The longer the
sequence, the better this optimization becomes. Table 22(c) shows specif&tibare two probes

are used instead of three asSia Thissequence coveragmplies the coverage of events with fewer

probes or the same number in the worst case.

Second Optimization: Parentheses

The second optimization concerns the use of parenthesigB) whereB is not a single BBE. In this
case, no probe is required bef@B). The behaviour expressi@will most certainly contain probes
itself, and a visit to any of these probes ensures that evecbvered (again, by the prefix inference

rule).
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Third Optimization: Single BBEs

For the structural coverage of single BBEs (without any action prefix), there are some subtle issues
that first need to be explored. Suppose thstone of the bTosbinary operators enumerated at the
beginning of Section 7.4.7(, >>, [>, |[...]| Al Il ). If asingle BBE is prefixed with a probe

in the generic patterr@BE * BE andBE * BBE , then care is required in order not to introduce any
new non-determinism. Additional non-determinism could lead some test cases to fail. A probe can

safely be inserted before the single BBE unless one of the following situations occurs:

e BBEisstop : This is the inaction. No probe is required on that side of the binary operator
(*) simply because there is nothing to cover. This syntactical pattern is useless and should

be avoided in the specification.

« BBEIis a process instantiatiéj...] : A probe before the BBE can be safely used except
when* is the choice operatadj (), or wher¥ is the disable operatder() with the BBE on
its right side. In these cases, a probe would introduce undesirable non-determinism that
might cause some test cases to fail partial:A_-would return anay paswverdict instead
of amust passA solution would be to guard the process instantiation. One way of doing
S0 in many cases would be to partially expand praeeagh the expansion theorem so an

action prefix would appear. Another solution is presented below, in the last optimization.

« BBEisexit : The constraints are the same as for the process instantiation. The solution is

also to prefix thiexit with some event.

Fourth Optimization: Process Instantiations as BBEs

When a procesB is not defined as a single BBE, then the necessary number of probes can be further
reduced whe® is instantiated in only one place in the specification (except for recursionself).

In this case, a probe befdrels not necessary because probes inserted wathnill ensure that the
instantiation ofP is covered. This is especially useful when facing a process instantiation as a single
BBE. For example, suppose a proc@sisat instantiateB in one place only, wherris not a BBE and

P is not instantiated in any process other tQamdP itself:
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Q[...] :i=el; e2; e3; stop [] P[...]

A probe inserted before would make the choice non-deterministic, which could lead to
undesirable verdicts during the testing. Howevep, ig not a single BBE and if it is not instantiated
anywhere else, then no probe is required beffdrethis expression. Any probe coveredrPinvould

ensure that the right part of the choice operat@has been covered. This situation often happens in

processes that act as containers for aggregating and handling other process instances. For instance, t

process representing a UCM stub would instantiate plug-in processes. If a plug-in is used only in this

stub, then the stub process does not need any probe in front of the instantiation of this plug-in process.

Comments on Probe Insertion Issues

Regarding the four issues enumerated in Section 7.2, the improved strategy achieves a coverage of th

specification that is larger than the simple strategy, and it takes fewer probes to do so.

1. Preservation of the original behaviauprobes are unique internal events inserted before each

BBE. When such BBE is prefixed by an event, then the probe does not affect the observable
behaviour of the specification (Proposition 4). When the BBE is not prefixed, a case not addressed
by the simple strategy, then special care must be taken in order not to introduce new non-deter-
minism.

Type of coveragehesequence and single BBE coveraghich implies the event coverage of the
simple strategy, is also concerned with the structure of the specification.

Optimization the total number of probes is less or equal to the total number of sequences and
BBEs in the specification.

. Assessmenthis strategy covers all events syntactically present in a specification, as well as single
BBEs other thastop (which should not be found in alros specification anyway).

7.4.3 Interpreting Structural Coverage Results

Several problem sources can be associated to probes that are not visited by a test suite. They usuall

fall into one of the following categories:
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« Incorrect specification In particular, the specification could include unreachable code
caused by processes that cannot synchronize properly or by guards that can never be satis-
fied. Note that there is a well-known theoretical result that shows there can be no algo-
rithm to determine whether or not a particular statement of a program is reachable [110].
Similarly, one cannot determine automatically that a probe in a specification is unreacha-
ble.

« Incorrect test caserhis is usually detected before probes are inserted, during the verifica-

tion of the functional coverage of the specification.

« Incomplete test suit€aused by an untested part (an event or a single BBE) of the specifi-

cation (e.g. a feature of the specification that is not part of the original requirements).

« DiscrepancyDue to the manual nature of the construction of the specification from the
UCMs, there could be some discrepancy between a test and the specification caused by

ADTs, guards, the choicg () operator, or other such constructs.

Code inspection and step-by-step execution of the specification can help diagnosing the
source of the problem highlighted by a missed probe. Although unreachable code cannot be detected
automatically, practical experience and various empirical experiments have shown that human beings

are, in fact, quite good at determining whether or not code is reachable [371][372].

LoLA’s FreeExpandcould also be used to expand the specification in order to check that all
probes are in the underlying LTS. This would ensure that no part of the code is unreachable. However,
for most real-size specifications, this approach is not likely to work because of the state explosion
problem and incomplete evaluation of guards and predicates. Using on-the-fly model checking, the
verification of an appropriate property, which would state that a particular probe could be eventually
reached, seems a more practical solution. Goal-oriented execution, a technique basgdson L
static semantics proposed by Haj-Hussetiral. in [165], represents a promising approach to the
determination of the reachability of a uniquely identified probe. However, this technique would first

have to be extended in order to allow specific internal events (the probes) to be used as goals.
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7.4.4 Tool Support
A filter tool called LOT2PROBE, written in LEX, was built for the automated translation of special

comments manually inserted in the original specification (@.¢?ROBE_*) ) into internal probes

with unique identifiers (e.g?robe!P_0; ). A new abstract data type that enumerates all the unique
probe identifiers is also added to the specification. Care is taken not to add any new line to the original
specification, in order to preserve two-way traceability between the transformed specification and the

original one.

Since most DTOS prototypes specified in a resource-oriented style (including those con-
structed from UCMs) do not contain any full synchronization operatoPrtie gate was hidden at
the topmost level of the specification (thehaviour section), and was added to the list of gate
parameters of all process definitions and instantiations. Where a full synchronization ofjejasor (
used, the tool suggests the use of the generalized synchronization ogferfitor () to avoid unex-

pected deadlocks.

Batch testing underadLA can then be used for the execution of the validation test suite against
the transformed specification. Several scripts, writtenBRLRand LEX, compute probe counts for
each test and output textual and HTML summaries of the probes visited, with a highlight on probes

that were not covered by any test.

Though full automation of probe insertion is possible, the solution developed so far is still
semi-automatic because of some special cases (i.e. with problematic BBES) that are not trivial to han-
dle. However, the manual insertion of these probe comments has the benefit of being more flexible,

and it can be done at specification time or after the initial validation.

7.5 TTS Structural Coverage Results

The improved strategy was used to insert probes in the TTS specification (3¢ePHR@BE_*)
comments in Appendix B). This specification contains 25 events, 18 sequences, and 22 single BBEs.
The simple insertion strategy of Section 7.4.1 would have required 25 probes, but no single BBE

would have been covered. To cover all events and single BBEs straightforwardly, 44 probes (25+22)
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are required. However, by using the optimizations discussed in Section 7.4.2, this number can be
reduced to 26, which represents a very good improvement. This reduction is explained in part by the
presence of sequences and by the high number of stub processes and plug-in processes that are instan-

tiated only once.

The TTS specification was transformed yT2PROBE into a new but equivalent specification
where thg* PROBE_*) comments are translatedReobe gates with a unique identifier, from 0
to P_25. The test suite was executed against this new specification, and the tests resulted in the same
verdicts as with the original specification, so no new non-determinism had been added, as expected. It
took 140 seconds to create the new specification, to compile it, to execute the tests and to compile the
test results automatically through scripts and batch'fidsst of this time (>95%) was spent on the
testing itself, the latter is a laborious task favLh because internal actions can no longer be
abstracted using simplifications based on testing equivalence. This is caused by the approach which
requires the probe (internal) events to be output in the execution traces in order to measure the struc-
tural coverage. If these probes are not explicitly part of the traces, then no measure can be done.
Although this coverage measurement takes a few minutes to be computed instead of a few seconds for
a simple validation of the specification against the test suite, the impact is minimaE®vA U E
because structural coverage measurements are done sporadically, once the functional coverage is

achieved.

7.5.1 Summary of Coverage Results
The results of this experiment are summarized in Table 24, with 26 probe identifiers shown on the left

(together with their respective line number) and 14 test case identifiers at the top.

1. Ona Celeron 300MHz, 64 MB RAM, runnin@lLA on Windows 98.
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TABLE 24. TTS Structural Coverage Results

I,fgg i line . 1|2 3,45 |6 7|8 9|10 11 12 13|14 gjlfé
P_0, line 462 9 | 16| 8| 16| 9| 16| 8 16| 2| 73 87 260
P_1, line 467 21 21
P 2, line 484 1 1 2 | 28 1 33
P_3, line 488 1 1 1 1 1 5
P_4, line 492 1 1 1 3
P_5, line 523 1 1 1 1 1 1 1 1 1] 17 9 35
P_6, line 532 1 1
P_7, line 541 2 2 4 56 64
P_8, line 559 4 4 2 4 4 4 2 4 1] 24| 30 83
P_9, line 569 2 2 2 2 2 10
P_10, line 574 1 1 1 9 8 20
P_11, line 577 2 1 2 2 1 2 1] 16| 20 47
P_12, line 603 1 1 1

P_13, line 606 1 1| 2 4
P_14,line 616 1 1 1 1 1 1 9 7 22
P_15, line 638 1 1 1| 8| 8 19
P_16, line 641 1 1 1 1 1 1 1 7
P_17, line 661 2 2 1 1 1 1 1 10 7 26
P_18, line 686 1 1 1 1 1 1 1 7
P_19, line 691 1 1 1 1 1 1 1 7
P_20, line 698 1 1 1] 8| 8 19
P_21,line 721 1 1 1 3
P_22, line 731 1 1 1 1 4
P_23, line 751 1] 1 1 3
P_24, line 756 1 1 2 4
P_25, line 774 1] 1 1 3
Traces no probe 1 3 1 6 2 3 1 1 6 1 3| 1277 1 1|| 157
Traces, probes 16 | 24 | 12| 24| 16| 24| 12| 1| 24 2 95 223 1 1l 475

The test suite covers all 26 probes, therefore the structural coverage of the TTS specification is

complete. All the specification code is reachable and no additional test case is required.
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7.5.2 Comments on L oLA and Missing Probes
For the TTS specifications (with and without probes), the number of traces generatad hgrithe

test cases can be found at the bottom of each column. Because probes add new internal actions to a
specification, the number of possible traces gets higher in the presence of interleaving. This explains
why many more end-to-end sequences are executed for a same test case in the presence of probes.
When a specification gets complex and when many probes are inserted, this interleaving of new inter-
nal actions can result in an explosion of the number of states. To avoid this problem, the testing func-
tionalities of LOLA come with optional heuristics for the partial expansion instead of the default
exhaustive expansion. In our experience (six specifications with probes in the last three years), the
probe coverage given by a heuristic expansion is the same as with an exhaustive expansion. However,
heuristic expansions lead to an important reduction (nearly 99%) of the size of the resulting LTS and

of the time required for the expansion. This option was used in the structural coverage measurement

of the TTS specification.

Table 24 also shows that some robustness test cases (#10 to #14) covered probes that were not
visited by the UCM-based validation test suite (#1 to #9). This is the caRelforisited only by test
#12, and folP_6 visited only by test #14 (grey cells in Table 24):

« ProbeP_1 (line 467 in Appendix B): this probe belongs to the process definition of the
medium used by agents to communicate with each other. This medium is not part of the
UCMSs, hence no specific validation test case was generated using testing patterns. Test
#12 is covering this probe because this medium represents a FIFO buffer of size two, and
it takes two simultaneous calls for reaching this probe. Only test #12 initiates two simulta-

neous call requests.

« ProbeP_6 (line 532 in Appendix B): th@destExpanccommand of bLA indicates that
this probe is not covered by tests #1 to #9. However, using step-by-step execution or free
expansion of the test #8, the resulting traces indicate that prolbeandP_2 (see the

black cells in Table 24) are visited on top of those discoverde$t{ExpandFor instance:
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init 'usera! ...;

req !usera! userb;

i: (* chk *)

i; (* pds *)

i; (*probe ! p_24 %)

i; (* exit (...) ¥)

i; (* probe ! p_13 %)

i; (* exit (...) ¥)

sig !usera ! calldenied;

i; (*probe!p 2%

i; (*probe!'p 6%

success;
This discrepancy is caused by a bug inTiagtExpandommand which stops when the
success event is reached, even if further internal events can be executed and added to
the trace. In fact, test #14 could have given the same inexact result. This problem can
be solved using step-by-step execution or free expanbieeHExpandl on the test

cases which are suspected to cover probes that are not visitedestiBgpand

Using LOLA, if a probe is not covered, then the bugestExpandnight just be the real cause.
Else, the four possible explanations described in Section 7.4.3 must be considered. In any case, the

use of a heuristic expansion is more efficient and does not affect the coverage result.

7.6 Discussion

Section 7.6.1 comments on the compositional coverage of the structure in the presence of many
probes whereas Section 7.6.2 addresses the impact of the specification style on the coverage measure
ment. Section 7.6.3 gives a brief overview of how coverage measurements could be used for test case

management.

7.6.1 Compositional Coverage of the Structure
A full structural coverage of adTosspecification does not imply that inserted probes need to be cov-

ered all at once. Since probes do not affect the observable behaviour of the specificatiomsi-
tional coverage of the structure becomes possible. Probes can be covered independently, and one

could even do this one probe at a time. This reduces the size of the resulting LTSs to a minimum, and
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thus helps avoiding the state explosion problem. Toi2PROBE filter allows different variations of

the probe comment in the specification (§QPROBE_A *) , (* PROBE_B *) , etc.). Different

groups of probes can therefore be transformed into hidden gates, one group at a time. This approach is
applied to another case study, where there are too many probes to handle all at the same time (Section
8.2).

7.6.2 Specification Styles
Two equivalent specifications written using different styles might lead to different coverage measures

for the same test suite. The way aTbs specification is structured usually reflects more than its
underlying LTS model. For instance, in a resource-oriented style, the structure can be interpreted as
the architecture of the system to be implemented [364]. In a constraint-oriented style, processes

impose local or end-to-end constraints on the system behaviour.

This problem is also true of programs in general, as observed in Weyarkeextensionality
property which states that the semantic equality of two programs is not sufficient to imply that they
should necessarily be tested the same way [371]. In any situation, the important thing is to achieve the

target functional and structural criteria.

7.6.3 Test Case Management Based on Structural Coverage
Structural coverage results could be used for test case management in at least two ways. First, these

results could help detecting redundant test cases by providing useful hints in terms of probes visited.
A test case whose visited probes are all already visited by another test case (or by a set of test cases) is
an indication of redundancy from a structural perspective. If this test case is not motivated by a rele-
vant rationale (functionality, robustness, etc.), then it could be removed from the test suite. Test suites

could be reduced in size while retaining the same structural coverage.

Second, the optimization of the order of passage of the test cases could also be determined
structurally according to similar criteria. For instance, the tests that visit the highest number of
probes, i.e. the largest probe coverage, could be executed first. If a larger structural coverage at the

specification level implies a larger coverage at the implementation level, then such criteria could help
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sort test cases with the hope of finding faults and errors earlier when validating an implementation

with the test suite.

7.7 Chapter Summary

This chapter presented a new theory and a semi-automated technique for the measure of structura
coverage of bTosspecification against test suites. This coverage can improve the quality and consis-
tency of both the specification and the validation test cases, hence resulting in a higher degree of con-
fidence in the system’s description. This technique provides an assessment of how well a given test
suite has covered a0ltos specification rather than providing a guideline on how the specification is

to be covered for testing implementations.

Section 7.1 motivated the need for a syntactic measure that complements the semantic (func-
tional) coverage achieved when a validation test suite is successfully executed. This section also posi-
tioned the structural coverage approach in thecS/ALU E methodology. Section 7.2 presented four
general issues related to the instrumentation of programs and specifications with probes. The theory
behind an existing probe insertion technique for sequential programs was reviewed in Section 7.3. In
Section 7.4, a similar theory is tailored for a process algebra with concurrency, namety This
section presented a probe insertion strategy that covers events and basic behaviour expressions whil

maintaining observational equivalence and minimizing the number of probes.

The coverage results provided by this technique can help detect incomplete test suites, dis-
crepancy between a specification and its test suite, and unreachable parts of the specification, with
respect to the requirements and UCMs in consideration. A tool set composed26RtBE and
other scripts supports this technique. AlthoughA is conveniently used in this thesis, the technique
and tool set are independent from therds execution environment. Section 7.5 applied the tech-
nique to the TTS example and discussed the coverage results. Section 7.6 discussed the compositiong
coverage of specifications, the impact of specification styles over coverage results, and the potential

use of structural coverage for test case management and optimizations of test suites.
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Contributions

The following items are original contributions of this chapter:

« Partial illustration of Contribution 2 (Section 1.4.2) regarding a new theory and a new

technique for the structural coverage affos specifications, integrated t®ScVALUE.
 lllustration of sted] in SPEGVALUE, i.e. coverage measures.

« Partial tool support: from manually insert¢td PROBE_*) comments to coverage

reports. Probe insertion is not automated yet.

« Application of the technique and tools to measure the structural coverage of the Tiny Tele-

phone System example.
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CHAPTER 8

Experiments with S PEC-VALUE

Que dites-vous?... C'est inutile?... Je le sais!
Mais on ne se bat pas dans I'espoir du succt
Non! non, c'est bien plus beau lorsque c'est
inutile!

Cyrano de Bergere
Edmond Rostand, 18

This chapter introduces six experiments based on real-life and hypothetical telecommunications sys-
tems used to validate thei&>VALU E methodology and techniques. Five of them contain technical
descriptions as well as lessons learned during the specification and the validation of the aforemen-
tioned communicating systems (Sections 8.1 to 8.5). Most of these case studies include sections tha
provide overviews of the system and the UCM descriptions, of the resuttimgsispecification, of

the selection and execution of test cases, of the structural coverage achieved, and general discussion:
A sixth experiment uses mutation analysis to study the effectiveness of validation test cases generatec

from testing patterns in finding faults (Section 8.6). A global summary follows in Section 8.7.

8.1 Group Communication Server (GCS)

The Group Communication Serv€GCS) was an academic exercise used to demonstrate the applica-
bility of multiple specification, validation, and performance evaluation techniques developed at Carle-
ton University and the University of Ottawa, two of which were UCMs apitbls The $EGVALUE
methodology was mainly developed at the same time as this experiment, whose details can be found
in a technical report [17] and a publication [15]. Also, UCM-based performance analysis of the GCS
is studied by Scratchley and Woodside in [324][325].
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8.1.1 System Overview and UCM Descriptions
A GCS allows the multicasting of messages to members of a group. Groups are created and destroyed

dynamically as the need arises. A GCS offers the core services required for the implementation of the
server side of systems such as mailing lists, Internet Relay Chat (IRC), videoconferences, and pub-
lish-and-subscribe systems. Users are permitted to join and quit one or many groups. Messages con-
sist in a variety of types (voice, video, data, etc.) and are multicast to the members of the group via
different communication channels, selected to suit the requirements of the group. A group may have
an administrator whose tasks include registration management and group deletion. A group may also
have a moderator whose task is to approve or reject messages sent to the group. A group is defined
according to different parameters, some of which can be changed dynamically: administered or not,
moderated or not, public subscription or private subscription (i.e. performed by the administrator),

and open multicasting or closed multicasting (i.e. posting by group member only).

Twelve individual scenarios, described as UCMs, were extracted from the twelve GCS func-
tionalities drafted in the informal requirements: group creation, list groups, get attributes, group dele-
tion, member registration, list group members, member deregistration, multicast, change
administrator, change open attribute, change private attribute, and change moderator. Tables describ-
ing the responsibilities and conditions supplemented the UCMs. Different potential structures were
defined and evaluated, and the selected one includes a dozen components, including senders, receiv-
ers, database objects, and group and multicast processes. Different communication channels are also
identified. Group teams and multicast processes are created and destroyed when required through the

use of dynamic responsibilities.

This collection of UCMs does not use any stubs or plug-ins; the integration of the scenarios
was done at theaToslevel by using preconditions attached to UCM start points and postconditions

attached to end points.
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8.1.2 Construction of the L 0TOS Prototype
The prototype was constructed by integrating the GCS functionalities (UCM scenarios) directly into

the LoTos specification. The twelve functionalities were integrated one by one, in the order given in

the previous section.

The structure of the GCS specification is intended to be flexible and dynamic. The process
definition of a group contains sub-processes (one per functionality), one of which is instantiated upon
the arrival of the corresponding service request from the sender. This type of structure was very useful
for the incremental integration and validation of the required functionalities. Also, groups can be cre-
ated and destroyed dynamically. In fact, no predefined set of users or groups needed to be hard-code
in the specification. This flexibility enables the use of different system configurations at testing time,
at the cost of having a specification that cannot be represented as a finite LTS or state machine (as
required by somedarostools like GESAR[146]). Another level of flexibility is found in the modular-
ity of the multicast process. The requirements and the UCMs were not specific about the way a mes-
sage was to be multicast by the group communication server to the receivers. Hence, the specification
includes a generic solution where the multicast protocol can be changed without affecting the rest of

the specification. In this experiment, three such protocols were included as examples:

« Sequential Multicast instead of sending the messages to receivers concurrently, the

sending is done sequentially in a LIFO order.

« Best Effort Sequential Multicast as for Sequential Multicast, the sending is done
sequentially in a LIFO order. However, problems may occur during the sending of mes-
sages, or during their reception if the sending is synchronous. This protocol includes a
timeout mechanism to ensure that such failures do not block the protocol. The number of

successful messages sent is also counted.

« Broadcast instead of using point-to-point communication, some underlying broadcast
mechanism (such as IP broadcast) is used to send a message to all group members at once
Receivers are responsible for the filtering of relevant messages based on their belonging to

specific groups.
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The resulting GCS specification contains 29 abstract data type definitions (800 lines of com-
mented loTos code) and 19 process definitions (750 lines). Passive components, i.e. databases, were
specified as process parameters. Since the focus was on the server side, the clients (i.e. senders and

receivers) were not specified.

8.1.3 Test Selection and Execution
The application of testing patterns to the 12 UCMs lead to the definition of 12 acceptance test groups

and 12 rejection test groups (one of each type per UCM, to improve traceability), for a total of 56
acceptance test cases and 51 rejection test cases. Most rejection test cases were created by mutating
the last action in an abstract sequence, or by mutating the values accepted on this last action (strate-
giesoff-by-one gatandoff-by-one valuén Section 6.4.4). Two additional acceptance test cases were
added to illustrate other testing possibilities, such as the use of abstract timers in test cases or the use
of generic test process definitions that make use of verification steps (in order to reduce the need for
rejection tests). The number of lines of commenteuds code used to describe these 109 tests is

close to 1600. LA executed all the tests properly in less that 5 seconds, including the time for com-

piling the specificatioh

8.1.4 Structural Coverage
The GCS specification contains a total of 5FTbs events, as well as 35 simple basic behaviour

expressions (BBES). The events are structured in 40 different sequences. Using the improved strategy
and its optimizations, a total of 54 probes were inserted in the prototype. This strategy and the optimi-
zations hence resulted in a 41% reduction of the number of probes necessary to cover all events and
BBEs (i.e. (57 + 35 - 54) / (57 + 35)). Owing to the presence of more internal actions, the time taken
to measure the coverage was higher, but still manageable in an iterative process: 3 minutes 55 sec-
onds. Five probes were missed during the first measure. Two of these were caused by the bug in
LoLA’s TestExpanccommand (see Section 7.5.2) and they could be reached through simulation, so

they are not really problematic. The three other probes were missed for the following reasons:

1. In this chapter, all times are measured on a Celeron 300MHz, 64MB RAM, running Windows 98.
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« Two probes were related to a feature that was not part of the requirements or the UCMs,
but that was specified indTosanyway (a group is deleted when there is no member left).
As such, relevant test cases could not have been derived from the UCMs. This problem
was solved by documenting the UCM appropriately and by adding two test cases, obtained

from a step-by-step simulation of the specification, which cover these probes.

« One probe was not covered because a UCM path had been specified as a choice betweer
two guarded behaviour expressions with different values. It seemed easier to code in such
a way this particular UCM path indTtos However, the test case derived from the UCM
covered one alternative only. Another test case, which covers the probe found on the other

alternative, was added to the corresponding acceptance test group.

The three additional test cases are already included in the numbers given in the previous sec-

tion.

8.1.5 Discussion
This specification went through several small iterations as rEe¥ALU E methodology gained in

maturity. A large proportion of the construction guidelines, the testing patterns, and the structural cov-

erage techniques were developed during this experiment.

One lesson learned during this experiment is that modifications to the scenarios@tdbe L
level may have an impact on the Use Case Maps and on the requirements, and hence could lead t
modifications at these levels of abstraction. Deviations may be caught by the test suite and/or the
structural coverage measurement (e.g. the missing probes in this GCS example), but there is no guar
antee that they will. It is the responsibility of theTlos specifier to evaluate the impact of deviations
from UCM paths and construction guidelines and to report to the UCM designers and/or the require-

ments engineers in order to determine what needs to be updated.
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8.2 GPRS Group Call (PTM-G)

The General Packet Radio Servi¢€PRS) is a mobile telephony service standardized by the Euro-
pean Telecommunications Standards Institute (ETSI) [128]. It allows its subscribers to send and
receive data in an end-to-end packet transfer mode. Built on top of the concepts and technologies of
Global System for Mobile CommunicatiofGSM) [127][264], a connection-oriented service for
mobile telephony, GPRS provides connectionless packet transfer witliultfie Land Mobile Net-

work (PLMN) in interworking with external networks (such as X.25 and TCP/IP). The focus of the
experiment was on one specific GPRS servicePtat-To-Multipoint-Group CallPTM-G). This

service allows transmissions to specific groups of users in specific geographical areas. At any point in

time, the network has the knowledge of the number of users and their location.

This experiment was done in collaboration with an industrial partner and a student (“stagi-
aire”) from France during the first standardization stage of GPRS. This evolving draft standard repre-
sented a great opportunity for assessing the usefulness and adequaegCGOAISJE in a
standardization context. Details on this experiment can be found in two publications [16][24]. Other
papers presentingdrosspecifications of GSM and GPRS include contributions from Tuok and Log-
rippo [348][349] and from Ghribet al.[36][151].

8.2.1 System Overview and UCM Descriptions
The PTM-G service is composed of six operatidngiate Call, to create a group callerminate

Call, to delete a group calGall Statusto get the attributes of a group cdtin Call, to join an exist-

ing group callLeave Call to quit a joined group call; arigiata Transferto send messages and data.

In order to model the Terminate Call and Leave Call operations invoked by the network, three artifi-
cial operations were also defined. Two of them are located in the underlying seitiaes: GPRS
andDetach GPRSThe third oneChange Zoneemulates the routing operation triggered by the phys-

ical layer.

As no concrete structure or architecture was imposed in the preliminary version of the stan-

dard, we defined an abstract structure (using logical entities) independent of the physical components
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of GPRS. Figure 52(a) presents the 15 components included in this structure. The PTM-G service is
transparent to the user, so it is located inside the PLMN component. The requesters and receivers ar
roles that can be assumed by the users, identified byntlobite stationgMS).

Nine UCMs were created, one for each operation. The first six UCMs were obtained easily
since PTM-G operations are described rather operationally, although very informally, in the draft
standard [128]. The three others were created according to our general understanding of GSM and
GPRS. All nine UCMs start with a single start point, leading to one or possibly many end points.
Figure 52(a) shows the UCM for the Initiate Call operation, which is triggered by a requester (a
mobile station). Without getting into the details of the example, this operation updates several data-
bases (represented as objects), returns an acknowledgement to the requester, and may propagate na
fications concurrently to the receivers who are members of the group. Tables were used to provide

details related to the UCM responsibilities and conditions (Figure 52(b)).

FIGURE 52. UCM and Responsibilities Information for “Initiate Call’ Operation

PLMN
Controller_Team Resp.| Type Parameters Alloc. Comments

Req_ |Request M_ID, IMGI, DTM,| Requester| Request creation of a
Init QoS, GeoZone, group call, with requeste
join_leave, attached.
Controller send_to_all, call_not

Requester ‘ Receivers Ii:rlt_ Error IMGI, M-ID, cause RequesterGeF;(;%L:ees’tmrltre(j;Zt?SA(G\/\{’r?1g
Ind_Init_ |"aAck_|Ack.  |IMGI, C-ID, Requester| Acknowledgement of call
Init Cipher_Key creation.
Ind_ [Indic. IMGI, C-ID Receivers| Indication of call creation.
Ack_ Init
[r] |Cond. Controller] Request refused.
[a] |Cond. Controller| Request accepted.
ul [Internal Controller] Update DBCM, DBSM.
u2 |Internal Informer | Update DBGC, DBCI.
[n] |Cond. Controller| Call Notification needed|
Answer_Team s |Internal Senders | Sending notification.
(a) Initiate Call UCM p) Description of Responsibilities, Events, and Conditions

The PTM-G scenarios are in essence quite similar to those of the GCS, i.e. the same basic

behaviour patterns are found in both systems. The UCMs themselves were also constructed in a simi-
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lar way (no integration with stubs and plug-ins, structure that involves the same types of components

and channels, use of tables for detailed descriptions, etc.).

8.2.2 Construction of the L 0TOS Prototype
Building on the experience gained with the GCS system (Section 8.1), the construction guidelines

(Section 5.2) were applied to the nine UCMs without any major problem. Again, the scenarios were
integrated at the &Troslevel rather than at the UCM level. The core of the logic is found in the pro-
cess Controller (see Figure 52(a)), which receives all requests and select the appropriate operation, all

of which are specified as individuablros processes for improved modularity.

The construction complexity resulted mainly from the large number of abstract data types
required to represent the various databases involved in this systeéms ADTs are cumbersome
when used to describe complex data structures such as lists of lists of lists of records, which were

used on several occasions in this experiment.

Whereas only the server side was specified in the GCS experiment, the PTM-G specification
includes both the server side (PLMN) and the client side (MS). The PLMN and MS process defini-
tions were constructed in a robust way; if one side does not work properly, then additional conditions
and behaviour would ensure that the other side would go back to a stable state. Such robustness,
although claimed to be desirable in the draft standard requirements [128], was described in an
obscure, ambiguous, and incomplete way. Hence, several design decisions were taken at the specifica-

tion level.

The resulting specification is composed of 53 ADT definitions (1125 linepob&code), 7
processes for the MS (300 lines), and 23 processes for the PLMN, where the group call service was
defined (1100 lines). To date, this is one of the most complex specifications constructedPBsing S
VALUE.
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8.2.3 Test Selection and Execution
Testing patterns were used on each individual UCM in order to generate test goals. The resulting test

suite was limited mainly to acceptance tests (35 test cases divided into 9 test groups). Only one rejec-
tion test was created, essentially for illustrative purpose, because the robust PLMN server accepts
almost any operation at any time and always replies with acknowledgements or error messages. The
absence of rejection tests was partially compensated by the use of verification steps in the test cases

which are more suited to this type of robust specification.

Many abstract sequences derived from the UCMs were reused as preambles and verification
steps for other tests. Preambles are sequences of events that satisfy the preconditions of a scenar
under test. For instance, to test the Initiate Call operation (Figure 52(a)), the preamble could include
abstract sequences from the Attach GPRS and Join Call UCMs to ensure that the requester gets prop
erly attached to the network. Verification steps are sequences of events that check some aspect of the
system’s current state. At the end of a test for Initiate Call, an abstract sequence based on the Call Sta
tus UCM could be invoked to verify that the group call was correctly initiated in the PLMN. Abstract
sequences were very reusable in the context of this experiment, and they helped improving the consis-

tency among the test cases.

The PTM-G specification was initialized with a static configuration of users and databases
used as the main context for the execution of the test suite. This configuration was defined in way that
enables the satisfaction of the preconditions of all the UCM paths selected as test purposes. Examina.
tion of these test preconditions revealed that a single configuration with six mobile stations is suffi-
cient for allowing all the 36 test purposes to be fulfilled. These six mobile stations have different
identities, locations, and privileges, they belong to diverse groups, and they are all initially detached
from the GPRS network. The five databases are initialized with sufficient information to eventually

satisfy all the preconditions associated to the UCMs.

The test suite was checked first against the composition of the servers (PLMN) and the clients
(MS), and then against the server alone. The rationale for testing the server alone is that the server is

no longer constrained by well-behaved clients, and robustness can be checked more easily. The ver:
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dicts provided by bLA were however the same in both cases because the validation test suite did not

explicitly test robustness.

As expected, the test suite led to incorrect traces that were used to diagnose bugs in the speci-
fication (due to the ADTSs, to the guards, or to unfeasible synchronizations between processes). After
several small iterations, the 36 test cases (800 linesbdcode) were successfully executed in 2
minutes. While the length of these test cases varied between 2 and 31 observable events, the length of
some execution traces (test runs) reached 155 events with the internal events. The verification of such

large 155-event deep LTS explains the time takendalto validate the specification.

8.2.4 Structural Coverage
The improved insertion technique was used to instrument the MS and PLMN process definitions

respectively with 30 and 69 probes. This addition of 99 new internal event to an already-large specifi-
cation resulted in a state explosion problem, andals TestExpandommand could not be used. In

deed, the length of some traces exceeded 185 events. However, since probes can be covered in smaller
groups by checking the test suite against each sub-group (as suggested in Section 7.6.1), the structural
coverage could be measured compositionally. Coverage measurements were first collected for the
specification with probes in the MS (client), and then for the specification with probes in the PLMN

(server). IOLA was able to cope with this state space and it returned results after several hours.

The long time taken to measure the structural coverage in this experiment was not entirely sat-
isfactory. An alternative solution came up through the usecoAk OneExpanccommand. Rather
than attempting to do a full exploration of the state space, this command allows for the generation of a
given number of random traces (partial exploration) reachable from the composition of a test and the
specification. MoreoverDneExpanddoes not suffer from the bug found TestExpand(Section
7.5.2). A partial exploration is more than adequate to show that a probe can be reached, but it cannot
ensure that a probe is unreachable by a test. Nevertheless, by extracting 5 traces for each test, the cov-
erage results provided I§neExpandvere the same as those providediegtExpandonly this time
81 seconds were necessary to generate them. This pragmatic and efficient solution was also used on

all the other specifications discussed in this chapter (see irowable 30).
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Since the robustness of the PLMN and the MS was defined attteslevel but not in the
UCMs, ten probes were expected to remain unvisited as a result of events that should not occur in the
normal use of the system. Indeed, these ten probes were missed by the validation test suite. Anothel
probe was however missed in the PLMN; this unvisited probe highlighted a portion of the code that

was useless. This code and its probe were removed from the specification.

The validation test suite was meant to be used on the composition of the PLMN and several
MS. It could have been completed with robustness test cases for the PLMN process alone and for the
MS process alone.dLA demonstrated that it was possible to create traces that visit these “robust-
ness” probes using step-by-step execution of the corresponding processes. These traces can serve as
basis for the generation of additional robustness test cases for the PLMN and the MS processes. How-

ever, such tests were not added as part of the experiment.

8.2.5 Discussion
The application of 8EGVALU E to PTM-G service raised many questions about the GPRS standard.

Multiple errors, inconsistencies, and ambiguities were unveiled as a result of the applicatiea of S

VALU E. Some of the problems that were uncovered include:

« Sending of indicationsfor the successful execution of operations Join Call and Leave

Call, it is not clear whether an indication is sent to all participants or not.

« Rejection causenvhen a rejection is provided (e.g. for a Call Initiation request), the end-
user receives an ambiguous answer that can be interpreted in many ways, making it diffi-

cult to diagnose the reason of the rejection.

« Restrictions of joining callsin a Join Call operation, there is no restriction to the calls
which a subscriber could ask to join. This potential flaw in the design raises many security
and privacy issues. It was decided to constrain the use of this operation omtheplo-

totype.

In most cases, the descriptions are operational and supported by informal figures in the stan-

dard. Nevertheless, they represent only partial scenarios, and no system view of the functionalities is
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provided. Improving these descriptions with UCMs would represent a good step towards avoiding
problems similar to those enumerated above. Moreover, such standards could gain in quality, consis-

tency and completeness if rigorously tested and validated using an approactEdké\BU E.

The first versions of the PTM-G UCMSs, prototype and test suite were created mainly by an
undergraduate student (P. Forhan), who initially was not familiar with any of GPRS, UOMzs L
and its tools, or &EGVALU E. Nevertheless, it took him less than 5 months to gain an understanding
of this mobile group call service and to produce useful documentation, concise and descriptive sce-
narios, a validated specification, and a test suite in which we have a high level of confidence. He
based his work on an earlier study of the GCS system, for which the UCM scenarios were generic
enough to be reused for the design of the PTM-G service. Since the structures of these two systems
are not alike, this reuse of scenarios would have been more difficult with component-based scenarios

such as Message Sequence Charts.

This experiment also showed that functionalities can be added incrementally to the system.
For PTM-G, the integration and validation started with the operations that were independent of the
others, followed by the operations whose dependencies were already specified (irAtadér:
GPRS thenDetach GPRSthenlnitiate Call, thenCall Status thenJoin Call Data Transferand
Change ZonghenLeave CallandTerminate Ca)l. With UCMs, adding new functionalities when the
structure is stable is no more difficult than doing it with scenarios based on components and message
exchanges. However, when a new functionality requires modifications to the structure, the impact
appears to be softened when UCMs are involved. The scenario paths can be easily adapted to the new
structure by reallocating the responsibilities, hence providing a traceable link to the components/pro-
cesses in the specification whose behaviour needs to be adapted. Doing this remodeling requires more

efforts with scenarios based on MSCs or the like.

The limitations of [OLA in terms of handling large state spaces for structural coverage mea-

surement were reached with this example. Fortunately, relief strategies based on compositional cover-
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age of probes and on the usé&uwfeExpandor partial exploration of the state space have proven to be

effective and pragmatic.

Another lesson relates to specification structures. In client-server systems, not only should the
specification be suitable for system-level validation (e.g. testing clients composed with servers), but it
should also allow for unit-level robustness testing (e.g. testing clients and servers as standalone enti-

ties). The PTM-G specification was created and tested in this way.

Finally, when robustness is involved in the specification but not in the requirements or in the
UCM scenarios, then verification steps appear to be more useful than rejection test cases based ol

mutation of acceptance test cases.

8.3 Feature Interactions (FI)

This section discusses the specification and validation of a set of telephony features described in the
First Feature Interaction Conte$161]. As explained in Section 2.1.2, the telecommunication indus-

try usually understands features as customer services packaged into marketable units. In this experi-
ment, a special emphasis is put on the avoidance and the detection of undesirable interactions betwee
features. Such interactions still represent nowadays a complex problem that telecommunication sys-
tems designers must face [65][85][159][230][385], and this situation is likely to remain challenging

in the future.

By definition, features interact with each other and with the basic system services, which is in
many cases the so-callBthin Old Telephone SystgfaOTS). However, a feature might be prevented
from working according to its intent because of some unexpected interactions with other features in
the system. This is at the heart of feature interaction(FI) problem. Similar challenges can be
found in the agent community where agent goals might be conflicting and impossible to fulfil simul-
taneously [42][160]. For the last decade, many partial solutions have been suggested to avoid, detect
analyze, and solve feature interactions at design time and run time. Keck provides an interesting sur-

vey on the FI problem and related solutions in [227].
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The approach taken in this experiment aims to facilitate the creation of an interaction-avoidant
design, and to detect remaining interactions at design time with the help of an executable prototype.
Avoidance of interactions between operational requirements is achieved through the visual integration
of scenarios expressed with UCMs, and the detection of remaining interactions is achieved through

testing of LoTOS prototypes.

LoTos has been used for years for the specification and validation of telephony systems.
Boumezbeur, Faci, Logrippo and Stépien have pioneered many approaches basedosn L
[66][129][130][133]. The availability of executabledlLos prototypes enabled the detection of feature
interactions. Different such techniques were developed by Logrippo and his collaborators (Faci
[131][132], Fu et al. [141][142], Kamoun [222][223], and Stépien [338][339]), by Turner
[352][353][354][355], and by Thomas [343]. One of the challenges in using this language consists in
writing the first system specification from informal requirements. However, once a specification is

available, rigorous methods can be used to validate and verify the specification.

Use cases have been utilized for the analysis of interactions in telephony systems by Kimbler
and Sgbirk [229]. More recently, Buér al. used UCMs to tackle the problems of feature interactions
and resolution of conflicts in plain telephone systems [79] and in multi-agent systems [77][78]. The
UCM notation helps designers with the visualization of problematic situations and their avoidance at

a high level of abstraction. However, UCMs do not support formal validation and verification directly.

With such knowledge and experience available, a methodology that would use the best charac-
teristics of UCMs (e.g. visual description and integration of features) @nold(e.g. powerful theory
and tools for validation and verification) for the avoidance and detection of interactions in telecom-
munications systems seems like a natural evolutieBGSALU E is therefore suited as a candidate
for demonstrating that integrating UCMs together helps avoiding many interactions before any proto-
type is generated, and thabtos prototypes can be used to detect remaining interactions. Detailed
descriptions of this experiment can be found in a technical report [18] and a publication [22]. Addi-

tional insights on the use of UCMs as a feature description notation can be found in [28].
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8.3.1 System Overview and UCM Descriptions
The first FI detection contest, organized by Griffettal. in [161], describes twelve features whose

choice has been dictated by the need for them to interact. The network is modeled as a collection of
black boxes communicating with each other via defined interfaces. Definitions for POTS and the fea-

tures are given as informal requirements (in English) and as Chisel diagrams [4].

The graphical language Chisel is used for defining requirements of communication services.
Chisel diagrams are trees whose branches represent sequences of (synchronous) events taking plac
on component interfaces, whereas UCMs are described in terms of responsibilities performed by
components. In essence, the Chisel language is at the level of synchronous messages, and so UCI
scenarios have to abstract from this level. Although it is possible to use Chisel diagrams directly to
generate bTOS specifications and test cases, this is not the purpose of this experiment. Since the
focus of SEGVALUE is on the capture of informal requirements, the given Chisel diagrams are con-
sidered as such. Further information on the transition from Chisel to UCMs is given in [18], whereas

Turner discusses the direct translation of Chisel ilttods[354].

Features

The twelve features include switch-based services as well as services basedntellitient Net-
works (IN) reference model [202]. On top of POTS, the first phase of the contest described ten fea-

tures, but this experiment mainly focuses on four of them:

« IN Teen Ling(INTL): restricts outgoing calls based on the time of day (i.e. hours when
homework should be the primary activity). This can be overridden on a per-call basis by

anyone with the proper personal identity number (PIN).

« Calling Number Deliverf(CND): allows the called telephone to receive a calling party’s

directory number and the date and time.
« IN Freephone BillingINFB): allows the subscriber to pay for incoming calls.

« Terminating Call ScreeningTCS): restricts incoming calls from lines that appear on a

screening list.

Specification and Validation of Telecommunications Systems with Use Case Mapsaad 1271



CHAPTER 8 Experiments wittp>-VALUE

The six remaining features welld Freephone RoutingCall Forwarding Busy LingThree-
way Calling IN Call Forwarding Call Waiting andCharge Call The second phase contained two
additional features, namelgellular (air-time fees) andReturn Call The UCMs developed in this
