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ABSTRACT
Deriving a formal specification and a detailed design from
informal requirements can be a tedious and error-prone task
unless a methodical or rigorous approach is used. An
increasing number of designers are interested in scenario-
driven approaches that allow them to focus on the main func-
tional aspects of the system to be specified. We present an
approach where informal requirements are described with a
use case notation called Use Case Map, and formal specifica-
tions and test cases are written in the process-algebraic lan-
guage LOTOS. We present the approach by using an
example: a Group Call service of the mobile data system
GPRS. This work also aims to present ideas on how to inte-
grate LOTOS and Use Case Maps in the ROOM methodol-
ogy, and to discuss several strategies for scenario-based
validation.

Keywords
Scenarios, Requirements Engineering, Formal Specifica-
tion, Tests, Standards, GPRS, LOTOS, Use Case Maps,
ROOM.

INTRODUCTION

The Standardization Challenges
Under the auspices of standardization bodies such as ITU,
ISO, ANSI, ETSI, TIA, etc., standardization committees are
constantly at work to produce standards for telecommunica-
tions products, for which the main logic is meant to be
implemented in software. In the early stages of this pro-
cesses, many features, services, and functionalities are
described using informal operational descriptions, tables and
visual notations such as Message Sequence Charts (MSCs)
[12]. These descriptions evolve dynamically, and their draft-
ing and validation quickly become difficult to manage.
MSCs are also used in the ROOM methodology [18] as the
primary scenario notation.

In this context, the following issues should be addressed:

• While designing systems and services at the initial
stages, the discussion might focus at a level of detail that
is too low with respect to the knowledge (about data,
messages, components, etc.) available at the time.
Descriptions that include irrelevant details tend to
obscure the main idea behind a feature/service/function-
ality, especially when the latter needs further modifica-

tions or refinements. Several levels of detail (abstractio
are often mixed in a single description.

• A focus on message exchanges (using MSCs) is nec
sary for detailed design, but this can be cumberso
while defining the functionalities in the initial design
steps. A simpler visual notation that abstracts from me
sages would help focusing on the real issues while p
viding for more manageable and reusable scena
descriptions.

• There are possibly ambiguities, inconsistencies or int
actions inside or between service descriptions, 
between levels of abstraction of a given service. The
remains difficult to detect with conventional inspectio
methods, and often remain hidden until errors are disc
ered after implementation, at which point correction c
be very costly.

Need for Scenarios in a Rigorous Approach
The process of going from informal functional or operation
requirements to a high-level formal specification is 
research subject where much work has been done. Howe
many challenges still remain, especially regarding new
techniques for defining requirements and formal specific
tions. Formal Description Techniques (FDT), such as
LOTOS [11], were created in order to formally express fun
tional requirements. In particular, they are well suited for t
precise definition of telecommunication systems. 

Over the last few years, there has been a strong interest, 
both academia and industry, in the use of scenarios for s
tem design. The introduction of use cases [13] in the OO
world confirmed this trend. Many methodologies are no
available. However, many different meanings were asso
ated to the word “scenario”. They are related to traces 
internal/external events), message exchanges between c
ponents, interaction sequences between a system and its 
to a more or less generic collection of such traces, e
Numerous notations are also used to describe them: gr
mars, automata, and message exchange diagrams simil
MSCs. The approaches available differ on many aspe
depending on the definition and the notation used. It sho
be noted also that this work relates mostly to software tha
sequential in nature, while we concentrate on concurr
software.
p. 1
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Several techniques can be used to address the issues related
to standardization processes and scenarios. We use LOTOS
to describe the specification obtained from high-level sce-
narios, described as Use Case Maps (UCM) [7][8]. These
designs are also documented with tables describing the
activities. We use tools and techniques developed or used
within our research group for verification, validation, sce-
nario-based testing, and coverage measurement, in order to
detect inconsistencies, ambiguities, incompleteness, and
other problems as soon as possible. The goal is to produce
documentation that is more easily understood and also is
validated as far as possible, and to produce a validated test
suite that can be reused at later stages, including implemen-
tation. We illustrate this process on a case study involving
the Point-to-Multipoint Group Call service of General
Packet Radio Services. Later, we present ideas on how such
an approach could leverage the design and validation pro-
cesses in the ROOM methodology.

BACKGROUND

General Packet Radio Services (GPRS)
GPRS [10] allows the service subscriber to send and receive
data in an end-to-end packet transfer mode. This service is a
set of Global System for Mobile Communications (GSM)
[14] bearer services that provides packet transfer in inter-
working with external networks and within a Public Land
Mobile Network (PLMN).

The service is divided in two main branches: Point-To-Point
(PTP) and Point-To-Multipoint (PTM), based on existing
and standardized network protocols.

Typical applications for PTP services are: retrieval services
(Web), messaging services (mailbox), real time conversa-
tions (Telnet), and short tele-actions (credit-card validation).
Typical applications for PTM services are: unidirectional
distribution services (newsgroups), bidirectional dispatch-
ing services (taxi fleet), and multi-directional conferencing
services, without store and forward, between multiple users.

The PTM services have several capabilities, including geo-
graphical routing to restrict distribution and scheduled
delivery. In this project, we focus on the PTM-Group Call
(PTM-G). This service allows transmissions to specific
groups of users in specific geographical areas. At any point
in time, the network has the knowledge of the number of
users and their location.

Language Of Temporal Ordering Specification (LOTOS)
Formal methods have proven their usefulness in capturing
descriptions of complex, concurrent, and communicating
systems. LOTOS is an algebraic specification language and
a standardized Formal Description Technique [11]. Using
LOTOS, the specifier describes a system by defining the
temporal relations along the interactions that constitute the
system’s externally observable behavior. Data abstractions
can also be described by using Abstract Data Types (ADTs).

LOTOS is powerful at describing and prototyping commu-
nicating systems at many levels of abstraction through the
use of processes, hiding, and synchronization. LOTOS is
suitable for the integration of behavior and structure in a

unique executable model. LOTOS models allow the use
many validation and verification techniques such as step-
step execution (simulation), random walks, testing, expa
sion, model checking, and goal-oriented execution. Ma
tools can be utilized for the automation of these techniqu
and several development cycles based on stepwise ref
ment are available [5].

Use Case Maps (UCMs)
UCMs are a visual notation we utilize for capturing th
requirements of reactive systems. They describe scena
in terms of causal relationships between responsibilities.
They can have internal activities as well as external on
Usually, UCMs are abstract (generic), and could inclu
multiple traces. With UCMs, scenarios are expressed ab
the level of messages exchanged between compone
hence they are not necessarily bound to a specific structu

To illustrate several UCM concepts, Figure 1(a) shows
very simple UCM that contains only one route, linking a
cause to an effect. A scenario starts with a triggering ev
or a pre-condition (filled circle) T and ends with one or
more resulting events or post-conditions (bar) R. Intermedi-
ate responsibilities (a, b, c) have been activated along th
way. In this picture, the activities are allocated to abstr
components (C1, C2, C3). We call such superposition a
bound map (and respectively an unbound map when there
are no components). The notation also allows for alterna
and concurrent paths, and for interactions between pa
For a detailed description of the notation, refer to [8]. A te
tual format (linear form), where UCMs can be defined usi
a formal grammar, is also described in [4]. Such linear fo
is generated automatically by our UCM graphical editor f
further processing by other tools (compilers, code gene
tors...).

Figure 1: Use Case Maps Notation

A causal relationship can be refined in many ways in ter
of exchanges of messages, depending on the compon
structure, the available communication channels, and on
chosen protocols. Several MSCs could be considered
valid implementations of a UCM. For example, the MSC 
Figure 1(b) represents a straightforward interpretation 
Figure 1(a). The MSC in Figure 1(c) could result from a
architecture where there is no channel directly linking C1

C1

C2 C3

a

b c

C1 C2 C3

a
b

c

m1
m2

C1 C2 C3

a
b

c

m1
m2

m3

(a) Original UCM

(b) An interpretation of (a) (c) Another interpretation of (a)

T

R

R

TT

R

Triggering Event
(Pre-condition,
or Start Point)

Resulting Event
(Post-condition,
or End Point)

Path

Responsibility

UCMs describe scenarios in terms of causality, above the level of messages.
p. 2
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and C2, and hence the causality between a and b would have
to be refined by, for instance, messages m1 and m2.

The construction of a UCM can be done in many ways.
Usually, one starts by identifying the activities that are to be
performed by the system. They can then be allocated to sce-
narios and/or to components. Components can be discov-
ered along the way. Eventually, the two views are merged to
form a UCM.

A first attempt at formalizing UCMs was done in [1]. That
technique was illustrated with a small telephony example in
[2]. As this method tried to derive a complete model as one
single UCM, it appeared to be not sufficient for describing
complex systems composed of multiple views. Our new
approach addresses this issue.

RIGOROUS APPROACH BASED ON SCENARIOS
We believe that the usage of UCMs in a scenario-based
approach represents a judicious choice for the description of
reactive and communicating systems. They fit well in the
design approach that we propose in Figure 2, where we
intend to bridge the gap between informal requirements and
the first system design.

Figure 2: Scenario-Based Approach Used in this Project

Requirements are usually dynamic; they change and are
adapted over time. This is why we promote an iterative and
incremental process (in spiral) that allows rapid prototyping
and test cases generation directly from scenarios. Figure 2
introduces an approach where the main cycle is concerned
with the description of the scenarios and of the architecture
(which can be done independently). They are then merged
in order to (manually) synthesize a LOTOS specification,
our prototype. Concurrently, test cases can be generated
from these scenarios and then be used to test the specifica-
tion. The results we obtain from those tests allow us to see
whether or not additional test cases are necessary in order to
achieve the desired specification coverage. We then con-
sider that the prototype corresponds to the requirements. 

We observed several advantages to this rigorous approach:

• Separation of the functionalities from the underlying
structure: since scenarios are formalized at a level of
abstraction higher than message exchanges, different
underlying structures or architectures can be evaluated
with more flexibility. The scenarios then become highly
reusable entities. As mentioned below, they can be used

again to test the implementation.

• Fast prototyping: once the structure and the scenario
are selected and documented, a prototype can then
generated rapidly.

• Test cases generation: scenarios facilitate the generatio
of test cases that relate directly to the operation
requirements. The test suite can itself be validated us
structural coverage criteria on the model.

• Design documentation: the documentation is done a
we go along the design cycle. Very often, designers d
ument their design only when they have to; we belie
this approach encourages designers to methodically p
duce useful documentation.

SPECIFICATION OF GPRS GROUP CALL (PTM-G)

Informal Requirements and Assumptions
Six operations are defined in [10] for the implementation 
the PTM-G service: Initiate Call, to create a call; Terminate
Call, to delete a call; Call Status, to get the attributes of a
call; Join Call, to join an existing call; Leave, to quit a
joined call; Data Transfer, to send messages and data.

In order to generate the Call Terminate and Leave ope
tions invoked by the network, we defined three artifici
operations that we could trigger at will. Two of them a
located in the underlying services: Attach GPRS and Detach
GPRS. The third one, Change Zone, emulates the routing
operation triggered by the physical layer.

In this paper, we will consider only one operation, name
Initiate Call. Upon such request (Req_Init), two outcomes
are possible: the acceptance (Ack-C-Init) and the rejection
(Err-Rejinit). In case of acceptance, the indication Ind_Init is
multicast to the receivers only if the Initiate Call Notifica
tion (call_not) attribute defined for the call says so. Besid
the usual member identification number (M_ID) and the
International Mobile Group Identity (IMGI), the different
parameters provided with this request are: the Data Tran
Mode (DTM), the quality of service (QoS), the geographical
area (GeoZone), the join_leave indication (to inform when
someone joins or leaves the call), and the Initiate Call No
fication (call_not). 

We also included a last parameter named send_to_all. It is
not defined in [10], but it seemed convenient to conside
as it allows the multicast of a join/leave indication to a
members in the call. In the draft standard, the initiator w
the only one allowed to receive this indication.

The main reasons for rejecting an Initiate Call reque
include: incorrect geographical zone, invalid IMGI, o
insufficient privilege access.

Architecture
Our approach allows designers to specify the system ar
tecture independently of scenarios, i.e., before, during,
after the specification of the scenarios. In our case, we f
defined an abstract architecture, independent of GPR
Once the scenarios are validated, they can be mapped 
more concrete architecture. A detailed architecture (e.g
ROOM structure) could also be used from the beginnin
However, this is not the goal of the current work, and th

Architecture

Results
(Coverage)

UCM on 
Architecture

Test  Suite
(LOTOS)

Results 
(Functions)

Requirements

Allocation

Testing

Scenarios
(UCM)

Test Cases 
Generation

Modify if
necessary

Synthesis

Prototype  
(LOTOS)

Add tests if
necessary
p. 3
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step is postponed to a later stage of the development cycle,
possibly in the detailed design.

Figure 3 presents our GPRS abstract architecture. It shows
several kinds of objects: active processes as parallelograms,
passive objects (e.g., databases) as rounded-corner rectan-
gles, and containers (teams) are represented by rectangles.
Arrows represent channels. The components in dotted lines
are dynamically instantiated when required. Stacks of pro-
cesses show that multiple concurrent instances may coexist.

We have identified three teams in the PLMN, each with a
specific role. The Controller Team manages the mechanisms
of control and reception of requests. The Answer Team
sends responses back to the Requester. The Sender Team
sends to the other participants, called Receivers in this case,
the indications resulting from a request. A client can accu-
mulate both the roles of requester and receiver as a Mobile
Station, or even a Fixed Station (MS/FS) since GPRS can
support connections with non-mobile clients.

Figure 3: GPRS Abstract Architecture

We defined several databases that contain the information
required by our scenarios: DBZS for the localization of sta-
tions, DBCM for the list of members who joined a call,
DBSM for member characteristics, DBGC, for the list of
Call-ID of each group, and DBCI for the parameters of each
call.

Several unidirectional and bidirectional channels allow for
communication between pairs of components.

Scenarios
We described nine scenarios for the PTM-G service: six for
the regular operations and three for the artificial ones. We
obtained them fairly easily since GPRS services are
described rather operationally, although very informally, in
[10]. Our scenarios usually start with a single triggering
event, leading to one or possibly many resulting events.

Figure 4 presents the bound map of our Initiate Call exam-
ple. Channels have been removed from the picture to make
it simpler. The stars (* ) indicate that the information within
these components has changed. This UCM has used one
OR-Fork to express a choice between responsibilities a and

b, and two AND-Fork to introduce concurrent paths. Fo
instance, c and e are performed concurrently after b. This
scenario captures the causal relationships expressed in
informal requirements.

Figure 4: Initiate Call UCM

Additional information on the responsibilities is provided i
Table 1. At this point, it is possible to detail their typ
(request, error, acknowledgement, indication, condition, 
internal activity), parameters, allocation to a compone
and additional comments. Conditions can be refined m
formally once the data types and data structures are know

LOTOS Specification
The process structure of the specification is derived from 
architecture found in Figure 3. Each process, object, a
team is mapped to a LOTOS process (except for DBZ
DBCM, and DBSM, which become parameters of proce
Controller in order to minimize the number of message
Containment relationships are also maintained (e.
Answer_Team is defined within PLMN). Channels becom
gates on which processes synchronize.

Several data types, mainly enumerations and lists of co
plex data structures, were defined to specify our databa
variables, and parameters.

Requester Receivers

 PLMN

DBCM

Controller team

Sender teamAnswer Team

DBSM

DBZS

DBGC DBCI

Ident.

Controller

MS/FS

Informer Senders

Ch-Uplin
k

Ch-Downlink

Ch-ID

Ch-Answer

C
h-Sending

Ch-D
ownlin

k

Ch-Req

Table 1: Responsibilities information for Initiate Call UCM
Resp. Type Parameters Alloc. Comments

Req-
Init

Request M_ID, IMGI, DTM, 
QoS, GeoZone, 
join_leave, send_to_all, 
call_not

Requester Request creation of a call, 
requester attached

Err-
Rejinit

Error IMGI, M-ID, cause Requester Request rejected (wrong 
GeoZone, wrong IMGI,...)

Ack-
C-Init

Ack. IMGI,C-ID, Cipher_Key Requester Acknowledgement of call 
creation

Ind-
Init

Indic. IMGI, C-ID Receivers Indication of call creation

a Cond. Controller Request not accepted

b Cond. Controller Request accepted

c Internal Controller Update DBCM, DBSM

d Internal Informer Update DBGC, DBCI

e Cond. Controller Call Notification needed

f Internal Senders Sending notification

Requester Receivers

 PLMN

DBCM

Controller team

Sender teamAnswer Team

Req-Init

Err-Rejinit

Ack-C
Ind-Init

*

*

* *

a
b

c

d

e

f

DBSM *

DBZS *

-Init

DBGC
*

DBCI*

Ident.
p. 4
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We synthesized the behavior of each component from all the
responsibilities that have been allocated to them. We had to
make sure that the causality relationships defined in the
UCMs were preserved. We therefore considered, for each
component, all the paths that were going through it. Finally,
causal relationships across components were refined as
exchanges of messages.

This resulted in a LOTOS specification with 1140 com-
mented lines of code for the ADTs and 1400 lines for the
behavior part (the processes).

VALIDATION

LOTOS Testing Theory
Test cases derived from scenarios can be composed with the
specification to detect possible errors. The verdict of this
composition falls into one of the following categories: 

• Must pass: all the possible executions were successful.

• May pass: some executions were successful.

• Reject: all executions failed.

LOLA [5] is the tool we used to automate the testing of our
specification. The tests themselves are expressed as LOTOS
processes.

Test Cases Derivation
The ultimate goal of testing is to detect errors as soon as
possible, especially in the specification. Our aim was to val-
idate the specification against the functional requirements
by using a test suite derived from the UCMs.

We could not generate an exhaustive test suite because of
the state explosion problem we almost always encounter
with concurrent systems (especially when we also consider
data). We could, however, derive a sound test suite from
each scenario. The test selection is based on UCM path
exploration (all end-to-end paths, all combinations, all con-
current executions, etc.) and on predicate coverage (all con-
ditions, all sub-expressions of a condition, etc.), similarly to
white-box testing in traditional software engineering [15].
The level of coverage depends on the critical nature of some
paths, or their cost. However, in our formal prototyping
approach, cost issues are not very relevant, as the cost of
testing is very low.

Usually, test cases include preambles and verification steps.
In a typical test case for the Initiate Call operation, we must
first have a sequence of events ensuring that the requester is
attached to GPRS. We could then use a Call Status opera-
tion to verify that the call was correctly initiated.

The following LOTOS process is a short black-box test
case. It checks that the Initiate Call request is rejected when
the MS does not have sufficient privileges. In this case, data-
base DBSM (not shown here) initially contains information
stating that mem1 is not an initiator. As a preamble, mem1
has to attach to GPRS. Test_Init_Call4 corresponds to the
route <Req-Init; a; Err-Rejinit> in Figure 4. 

process Test_Init_Call4[ch_Uplink, ch_Downlink, Success]: noexit :=
ch_Uplink !mem1 !Req_Attach !Encode(1 of Geozone);

    ch_Downlink !mem1 !Ack_Attach !nomsg;  (* End of preamble *)
    ch_uplink  !mem1 !Req_Init !encode(1, one_way, qos2, NoGeozone,
                                        join_leave_ind, send_to_all_ind, no_call_not);
    ch_downlink !mem1 !Err_Rejinit !encode(cause); (* End of path *)
    Success; stop
endproc

LOLA can verify that all possible executions of this test te
minate successfully. One possible trace is illustrated a
MSC in Figure 5, where relevant components and intern
messages within the PLMN are shown.

Figure 5: MSC from Test_Init_Call4 Execution Trace 

35 test cases were generated for our system, including 5
cases for Initiate Call, resulting in a total of 780 lines 
code. While the length of these test cases varied betwee
and 31 events, the length of the 1933 execution traces va
between 3 and 155 events (including internal events).

Coverage Measurement
Once errors that have been detected are corrected, we w
like to assess the coverage of our test suite in order to ch
that it is sufficient according to some criteria. In our cas
we want to achieve a functional coverage based on the func
tionalities expressed in the requirements and based on
structure of the specification (and its underlying labeled
transition system—LTS).

The insertion technique we used is different from pro
insertion methods for structured sequential programs [1
We basically insert probes at strategic places in the p
cesses of the LOTOS specification (before stop, exit, and
process instantiations) that are candidates for being lea
in their respective LTS.

When the coverage is achieved, the test suite can be re
for regression testing (when we modify the requirements)
for testing further refinements leading to the implemen
tion, and ultimately for testing the implementation itself.

Observations
We successfully executed all 35 test cases (1933 execu
traces) in 3 minutes on a Sparc Ultra. We first tested 
PLMN alone, and then we specified a typical mobile stati
and tested its composition with the PLMN. Our test cas
led to unexpected traces that were used to diagnose bug
the specification (due to the ADTs, to the conditions, or 
unfeasible synchronizations between processes). Pro
helped uncover unreachable code in the specification, 
they supported the improvement of the test suite.

mem1
MS Controller InformerPLMN

Req_Attach(1)

Ack_Attach(memb1)

Ack_Attach

Req_Init(1, one_way, qos2,...)
Err_Rejinit(memb1,cause)

Err_Rejinit(cause)
p. 5
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CONNECTIONS BETWEEN LOTOS, USE CASE 
MAPS, AND ROOM

Several Integration Strategies
The ROOM methodology [18] and ObjecTime, the tool that
supports it, offer powerful concepts and features for the
detailed design, at a level of abstraction lower than the one
used for our LOTOS prototypes. We envisage a software
development strategy that includes UCM (for use case
description and design), LOTOS (for formal specification
and validation), and ROOM (for implementation). In further
research, we aim at exploring connections between these
three notations. Possible areas of research include the five
strategies illustrated in Figure 6 and described below.

Figure 6: Five Integration Strategies

1. Implementing a LOTOS specification using ROOM as an 
intermediate representation.

The scenario-based approach, described above, allows us to
iterate towards a LOTOS prototype which satisfies the
requirements. Furthermore, the application of validation
techniques to the LOTOS prototype offers considerable con-
fidence that it doesn't exhibit undesirable behaviour, such as
deadlocks, and that it does exhibit the desired behaviour. We
would like to transfer this confidence to the final implemen-
tation, and deriving code in some automatic or semi-auto-
matic way from the specification offers a way of doing this.

Earlier work on implementing formal specifications [5]
have tended to use C as a target language, creating ordinary
functional code. For reasons of reusability and maintainabil-
ity, among others, it would be desirable if we could target an
object-oriented implementation, perhaps using C++ or Java
as the target language. Targeting an object-oriented lan-
guage is not enough, however, to ensure that the resulting
code offers the benefits of object-orientation. We suggest
that using the ROOM modeling language as an intermediate
step will help us to focus on encapsulation and possible
inheritance of behaviour, producing better-quality code. It
would also help to bridge the relatively large gap between
high-level specification languages and implementations,
while at the same time allowing for the reuse of the avail-
able code generation features of ObjecTime. 

2. Creation of a ROOM model from UCMs.

Earlier work by Francis Bordeleau and Ray Buhr [6] illu
trated a methodology for creating ROOM models from sc
narios modeled as UCMs. Each UCM was converted int
high-level Message Sequence Chart (hMSC) and a coll
tion of ordinary Message Sequence Charts (MSCs). The 
ter are then bound to a ROOM structure, where t
behaviour of components is defined as hierarchical fin
state machines. Architectural elements used in this pa
such as the ones in Figure 3, would therefore be substitu
with elements from the ROOM graphical notation.

This approach provides useful thinking tools and traceab
ity between the detailed design, the scenarios, and 
requirements, but no formal validation strategy has be
proposed.

3. Testing a ROOM model using test cases derived from 
LOTOS specification.

Concurrent with the creation of a LOTOS prototype, w
may create test cases which describe the correct behav
of the specification. They can also be derived from the p
totype according to a selected test derivation strategy 
Having created a LOTOS test suite, we may wish to conv
these test cases into a form suitable for application to 
ROOM model or the final implementation, to ensure th
these conform to the specification.

4. Testing a ROOM model using test cases derived from 
UCMs.

Because UCMs describe scenarios which we wish the s
tem to support, we may derive test cases from UCMs, wh
may then be converted into a form suitable for application
the ROOM model or the final implementation. This wou
help validating the ROOM model against the requirement

Our approach allows the definition of a test suite, fro
UCMs, that may be used for systematic validation (acco
ing to selected coverage criteria) of the model with resp
to requirements. This could represent an important contri
tion to the ROOM methodology.

5. Validation of a ROOM model using LOTOS.

Deriving a LOTOS specification from a ROOM mode
would allow the developer to take advantage of the V&
theory (including testing) available in the former to formal
verify the properties of the model. We are aware of so
previous work by Olivier Basset and Francis Bordeleau
the automated generation of LOTOS specifications fro
ROOM models.

The current LOTOS standard and tools focus on reac
systems. However, real-time issues could also be conside
with LOTOS extensions such as RT-LOTOS [9], for which
simulation tool is already available, and the upcoming 
LOTOS standard [17]. An interesting research directi
could be the verification of ROOM models with time usin
such new specification techniques.

UCM-
Based 
Tests

LOTOS-
Based 
Tests

LOTOS 

ROOM

UCMs

12 34 5
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Figure 7: Combining Strategies 3 and 4

Obviously, these strategies are not mutually exclusive. In
Figure 7, strategies 3 and 4 are merged to reflect an immedi-
ate use of the approach suggested in this paper. Combining
the test case generation from UCMs with the creation of a
LOTOS prototype (generated from UCMs) increases confi-
dence in the test suite as it is validated with respect to the
requirements, the UCMs, and the LOTOS prototype, when
measuring the achieved functional and structural coverage.
Such test suite can then be used to validate the ROOM
detailed design, and later on to validate the implementation.
The ROOM model could be derived from a LOTOS specifi-
cation (strategy 1), derived from UCMs (strategy 2), or even
generated using ObjecTime. 

Whenever two or more metholodogies are combined, a
major challenge is to use each of them for best mutual sup-
port. This may require finding new ways of using them.

Structuring Specifications for Implementation through 
ROOM Models.
LOTOS specifications may be written in a number of differ-
ent styles, each being applicable to different needs [5]. An
integral part of our research on the connections between
LOTOS, UCMs and ROOM will be the determination of
appropriate styles of specifications. For example, a LOTOS
specification could be written with the intention that ulti-
mately be implemented through the ROOM modeling tech-
nique to an object-oriented language. Important issues to be
considered in the creation of this specification style include:

• Encapsulation of Actors. Actors should be clearly identi-
fied, and should hide their internal structure and behav-
iour, communicating through relatively few, well-
defined ports. This can be done in LOTOS’ resource-ori-
ented style.

• Hierarchical Organization of Behaviour. ROOMcharts
allow behaviour to be specified at varying levels of
abstraction. LOTOS similarly allows us to specify
behaviour in terms of a few processes, whose internal
structure is revealed later in the specification.

• Synchronous vs. Asynchronous Semantics. LOTOS is
based on a notion of synchronous communication, in
which processes must agree to synchronize. This con-
trasts with Message Sequence Charts and ROOM, in
which asynchronous communication is typical. Syn-
chronous communication may be more appropriate for

high-level design and formal verification. However a
implementation-oriented specification may have to de
with issues of unreliable media, etc. This amounts to
refinement of the LOTOS specification by means 
intermediate processes.

• Multiway Rendezvous vs. Two-Way Communicatio.
LOTOS allows more than two processes to synchron
on a message. This may be regarded as an abstrac
from implementation behaviour which will typically
involve message passing between two entities. Dur
the process of deriving an implementation from a form
specification, instances of multi-way synchronizatio
must be converted to some form of two-way messa
passing. Earlier work [5] has indicated a number 
methods by which this may be done.

• Directionality of Communication. The synchronous
nature of LOTOS semantics abstracts away from t
directionality of message passing. The structuring 
LOTOS specifications with a view to implementatio
must make more explicit which entity is the sender of
message and which is the recipient. This may 
achieved through well-defined message patterns or ev
structures.

• Abstract Data Types: The use of ADTs, a powerful yet
abstract technique for the description of data, should
restricted so that automated or semi-automated tran
tion towards programming languages (such as C++ a
Java) is possible. Some LOTOS tools allow to repla
ADTs by their implementation [9].

• Distributed Systems: ROOM and LOTOS both target,
among other things, distributed systems. Mappings 
distributed entities, and also of components that supp
this distribution (ports, communication channels, etc
need to be well established between the two models.

• Real-Time Systems: Current LOTOS specifications tend
to abstract from quantitative time either by not specif
ing it, or by using specific actions to express time
events. If hard real-time constraints need to 
described, a LOTOS style would have to reflect the
systematically. LOTOS enhancements that support ti
exist, however tool support currently is weaker.

CONCLUSION
We have demonstrated an iterative and incremental des
approach based on a visual scenario notation (UCM) an
FDT (LOTOS) that leads to the generation of validated s
tem prototypes and test suites. Although we could not d
cuss this in the text, it helped us unveil several ambiguo
and incomplete descriptions in a draft standard documen
the GPRS Group Call service. 

Based on the current experiment and on previous ones w
an artificial Group Communication Server [3] and several
Wireless Intelligent Network (WIN) features, we observed
several interesting points. Scenarios described using UC
focus on causality instead of message exchanges, and 
sequently they can be developed independently of 
underlying architecture. Such scenarios tend to be v
reusable, and they can serve as a basis for the generati
functional test cases. These tests can be used to valida
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formal prototype that can help detecting interactions
between scenarios. The prototype and the test suite can fur-
ther be validated through probes inserted in the specification
and structural coverage measurement.

The Group Call prototype and test cases were mainly done
by one of us (P. Forhan, stagiaire from INT) who initially
was not familiar with any of GPRS, LOTOS, UCM, this
methodology, or LOTOS tools. Nevertheless, it took him
less than 5 months to gain a better understanding of the
Group Call service, and to produce useful documentation, a
validated specification, and a test suite in which we have a
high level of confidence.

We believe that our approach can facilitate the early stages
of typical requirements engineering and design within stan-
dardization processes. We intend to pursue the approach in
several directions, including early consistency and com-
pleteness checking of UCMs through some data dictionary,
formal test case generation (for implementation testing),
semi-automated synthesis through message exchange pat-
terns associated to causality relationships, and better trace-
ability between the models.

Finally, the LOTOS FDT offers a powerful means of for-
mally verifying the behaviour of a design, and provides a
means for test case generation. Deriving an implementation
from the formal prototype can increase confidence in the
correctness of the behaviour of the final code. Using ROOM
as an intermediate step structures the implementation in an
object-oriented style, but this might require the specification
to be written in a style suitable for conversion. Deriving
implementation tests from the test cases produced from the
LOTOS specification or from UCMs further enhances our
confidence in the detailed design and the implementation,
and may provide a regression test suite for future develop-
ment. Many promising research directions related to the
integration of LOTOS, UCMs, and ROOM have been iden-
tified in this document. Further investigation is underway.
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