
Specification and Validation of
TelephoneSystemsin LOT OS1,2

Rezki Boumezbeur and Luigi Logrippo

Protocols and Software Engineering Research Group
University of Ottawa,

Computer Science Department
Ottawa, Ontario, Canada K1N 9B4

E-mail: rezki@csi.uottawa.ca

�

1 The research for this paper was carried out under the Design of Validation Environments for Protocol Engineering project as part of TRIO’s
Protocol and Software Engineering thrust.
2 This paper was presented at the TRIO Retreat at Trent University (Peterborough, Ontario, Canada), May 8–10th, 1991.

Abstract

LOTOS (Language of Temporal Ordering Specification) is a Formal Description Technique that was
developed by the ISO for the specification of OSI services and protocols. In this paper we present a
design methodology for the description in LOTOS of telephone systems with modern telephone features.
The description of a SampleTelephoneSystemis formalized. The LOTOS specification was extensively
debugged and tested using the facilities provided by the University of Ottawa interpreter.

1. Intr oduction and Motivation
LOTOS [ISO89][BB87] is a specification language developed by ISO over the last few years for
the specification of OSI services and protocols. It has a formal basis and it has been shown to be
appropriate for the specification of other types of distributed systems as well.
During the last few years, our research group has been working on different applications of the
LOTOS language such as the formal specification of some OSI services and protocols, distributed
algorithms, and basic telephone systems. The latter study was the subject of an early work leading
to the specification of a simple telephone system (POTS: Plain Old Telephone System).
In this paper, we show that the LOTOS language is appropriate for formally specifying not
only POTS systems, but also Telephone Systems where more sophisticated telephone features
are provided to users. This includes features such as: Forward an incoming call, Ring Again,
Transfer the current call/Three-Way Calling, Hold a call, and Conference call features. Our LOTOS
specification of a SampleTelephoneSystemallows for an arbitrary number of subscribers to use the
Telephone Service simultaneously. It also allows the environment to update the system at any time
during its functioning3. A particularity of Telephone Systems is that they are governed by the use of
signals depending on the status of the requested lines. This has led to the design of a specification
based on the use of constraints including the constraints imposed by the real world functionality of
a specific entity. All these aspects are discussed in this paper at least in some detail.
We conclude our work with a discussion of debugging the specification using an interpreter. This
will include a presentation of some interesting test sequences taken from the real world functioning
of Telephone Systems.
2. Specification of TelephoneSystemsin LOT OS
Over the last few years, our research group has produced different types of specifications of
telephone systems using the FDT language LOTOS [FLS90][Bou91]. In addition, the domain of
formal description of telephone systems is receiving increasing interest from other researchers.
Some related work may be found in [Zav85][Tvr89].
The idea of applying the FDTs to telephone systems comes from the fact that several concepts
originally developed for the description of data communication applications are found to be very
appropriate for the description of telephone systems. There are, however, some important differences
between telephone system specifications and OSI service specifications; for example, the “data
communication” phase for telephone systems cannot be specified precisely in LOTOS, unless voice
is packetized. Also timing concepts are neglected in LOTOS at the current stage, whereas they are
�

3 Updating the system refers to adding new lines to the system or removing some old lines from that system.

1

very important in telephone systems. However, some research has been done in this latter subject
and some proposals exist [QF87][Bri88].
The most abstract view of a system is that of a black box. In this view, one is not trying to
specify the internal structure of the system but, instead, all the focus is on the input/output of the
interface functions between the system and its environment. For more details on this concept refer to
[VSA

�

89][Bou91]. In the domain of telecommunications, we can distinguish three different types
of structures of a system: the centralized structure, the decentralized structure, and the distributed
centralized structure. Each of these structures is applied to a system depending on the range it is
intended to cover [Tan89][Bou91].
3. Specification Design Principles
The first aim of a system design process is to derive an implementation that fulfils the user
requirements. But due to the complexity of some distributed systems, the design process may
become a more complicated task. In order to achieve a better - clear and readable - representation
of a system, the design process may be carried out in steps, where each step represents a level of
abstractness of the system. In LOTOS, the complete specification of the behavior of a (complex)
system may be achieved in a step-wise fashion. First, the system is described in terms of a
set of processes that represent distinct objects, then each resulting process is decomposed into
sub-processes. The process of refinement of a system is repeated until we end up with simpler
descriptions where no further decomposition is possible. Each stage of refinement represents a
level of abstraction in the formal description of a system. This method of step wise refinement
helps designers to get more precise descriptions of the behavior of each separate component, and
therefore it gives a well structured and readable behavior of the overall system.
In the design of our SampleTelephoneSpecificationwe used a mixture of the different specification
styles discussed in [VSvS88]. The use of a specification style in the design of a system must respect
some general principles to achieve a qualitative design. These are mainly Orthogonality, Generality,
and Open-endedness. Orthogonality preserves locality aspects of (sub)systems, Generality suggests
the use of general-purpose parameterized definitions, and Open-endedness supports flexibility of
the design to ease the modification of the system functionality.
The (formal) description of a system may have as its prime concern the description of observable
behavior, like a black box, or the description of the internal behavior of that system, like a white
box. The former description is called "extensional", while the latter is called "intensional". For
each type of description some specification styles have been defined to guide the design process. In
the extensional description of a system only observable interactions are shown and their temporal
ordering relationship is defined in terms of alternatives of sequences or parallel composition of
constraints. With the intensional description, however, both observable and internal interactions
of a system are presented.
4. Specificationof the SampleTelephoneSystemin LOT OS
In our SampleTelephoneSpecificationand in addition to the standard NaturalNumberand Boolean
types, some other data items are defined. First, as we are dealing with telephone systems, we need
to define telephonenumbersand some operations on them
We need also to define the sets BusySet(for busy numbers), ServiceSet(for numbers in service),

2

and ForwardSet(for numbers where a Forward feature is active) with the operations (empty, insert,
remove, isin, notin, is_empty, head, and tail) to manage them. We defined a set ForwardPairSetthat
contains pairs of numbers of the form ForPair (N,FN)where N has forwarded a call to FN. Other
data items needed by our specification are keyboard keysand signals. Note that the signals RING,
BUSY, DITO (DIal TOne), DISC (DISConnection), OOFS (Out OF Service), FORW (FORWard),
and RANO (Ring Again NOtification) are of special use. They differ from the others on two
accounts. First of all, an event with such a signal occurs only if specific conditions are satisfied.
Second, they may affect the set BusySet.
4.2. Informal Description of the Specification
The specification must be written in such a way as to allow for an arbitrary number of Subscribers
to use the TelephoneServicesimultaneously. It must also describe the interactions of the system
with the environment, for which we define a gate user, and of signal exchanges between different
components, where we use gate line. Within an event, different types of data may be associated
with the same gate. The first data item defines the line being used while the second one defines
the action being handled on that line (a primitive). Possibly, there is an additional data item to
determine the destination line.
Within a single connection, OneConnection, the TelephoneSystemworks in the following manner:
the Origination Sidepicks up the telephone handset, then it gets: an out of service signal4 or a dial
tone signal if its line is free. In the first situation, the Origination Side is forced to hang up its
telephone, while in the second one it may start dialing the callee’s number. The latter results in one
of three situations: the Origination Sidegets (1) a busy signal, (2) an out of service signal or (3) an
audible ring if the callee’s line is free. In (2), the OriginationSidemust hang up the telephone while
in (1) the Origination Sidemay hang up the telephone and then terminate the call, or may invoke a
RingAgain feature and then hang up the telephone. Thereafter, the SystemNetworkkeeps looping
on the DestinationSide’s line until it gets free to notify (RANO) the Origination Side. The latter
may then pick up the telephone handset, which causes the communication path to be established,
or cancel the Ring Again feature without lifting the handset. It can also cancel this feature while
waiting for a RANOsignal. However, in situation (3) the Origination Sidemay wait for an answer
or hang up the telephone. The callee’s telephone then starts ringing or the DestinationSidemay
have forwarded incoming calls to another line, and therefore the EndDestinationis now the party
to whom this call was forwarded. If the EndDestinationanswers the call before an OnHookfrom
the Origination Sideis detected, then its telephone stops ringing, the communication path between
both subscribers is established, and the conversation may begin. Meanwhile, either subscriber may
invoke any feature among Hold, TWC, Transfer and Conferencefeatures.
1. If a subscriber decides to invoke a Hold feature, it must first let the other party know then it
presses the appropriate key. The other party is now on hold but it may leave the original call at
any time. The process of calling a new party within a connection is similar to the one found in
a simple connection, except that the Origination Side’s telephone is already OffHook, and that in
order to terminate or abort a call, the Hold key again is pressed, which causes re-connection to the
first party. However if the first party has left the connection, the Origination Sidemust hang up
the telephone after it returns to the first call and the connection is released.
�

4 In real world this is not a signal, however the subscriber can recognize it.

3

2. When a call comes in to its telephone, the DestinationSidemay press the Transferkey then it
dials the number of the party to whom this call is to be transferred. When the new party answers
the call, the DestinationSideleaves for good the conversation and this new party will be connected
to the Origination Side in a normal call.
3. If after a transfer of a call, the DestinationSide doesn’t leave the call, all three parties are
connected together in a conference like conversation. The feature is then called a Three-Way-
Calling (TWC).
4. While in conversation, a participating subscriber may press the Conference key, consult
(privately) with a third party then press the Conference key again to bring this new party to
the conference. Note that an arbitrary number of subscribers may be involved in a conference call
and may leave it at any time.
4.3. Ar chitecture of the Specification
As mentioned above, the LOTOS constraint-oriented style is the one which we used the most. In
this style, the overall behavior of a system is specified in terms of a parallel composition of the
behavior of the component subsystems. The main operators in this style are || (parallel composition
with synchronization on all gates) and |[L]| (parallel composition with synchronization on all gates
in the list L). Of course, the “choice” operator [] is also used. However, other styles were also
used. As a result of using the constraint-oriented style, three types of constraints were identified.
The constraints introduced in our Sample Telephone Specification [Bel88] are of different uses.
A constraint may be applied within the behavior of a process (Local), between two processes
(End-to-End), or on the overall system behavior (Global).
4.3.1. Initial Ar chitecture
The top level of our specification is the parallel composition of two processes, Multi_Connections
and System_Network. The former process creates a single connection, One_Connection, and gives
the environment the possibility of invoking new connections. To each connection, a local controller
of the behavior of subscribers is associated. All the connections must synchronize on internal signal
exchanges (gate line) with the process System_Network. We explicitly hide the gate line because in
real world the first stage of processing a signal exchange is an internal event to the TelephoneSystem.
To control the lines and provide subscribers with appropriate signals, the process System_Network
uses the sets of numbers, BusySet, ServiceSet, ForwardSetand ForwardPairSet. Initially, all these
sets are empty. To update the set ServiceSet, the environment must choose the appropriate action and
then enter a number (telephone number). The top level of the specification is presented in Code 1.

specification Telephone_System[user] :noexit
(* ...Abstract Data Type Definitions... *)
behavior

hide line in
Multi_Connections [user,line]
|[line]|
System _Network[user,line](empty,empty,empty,nopair)
where

(*...Process Multi_Connections Definition...*)
(*...Process System_Network Definition...*)

endspec (* Telephone_System *)
Code 1 Top Level of the Specification

4

Telephone_System
user

System_Network
[]

|[line]|

|||
Multi_Connections

Multi_Connections

|||
Multi_Connections

|[line]|
One_Connection

line

Figure 1 Top Level’s Graphical Representation of the Specification

4.3.2. Creating Concurrent Connections

Processes that describe the behavior of different connections are composed in parallel. The LOTOS
Interleaving operator "|||" is used because in real world an arbitrary number of connections may be
handled in parallel and each connection is processed separately, see Code 2.

process Multi_Connections [user,line] :noexit :=
One_Connection [user,line]
|||
i ;
Multi_Connections [user,line]

endproc
Code 2 Process Multi_Connections Definition

Process Multi_Connectionsgenerates a new connection and then loops on itself to generate other
connections in parallel5. The graphical representation corresponding to Code 1 and 2 is given by
Figure 1, where parallel processes are represented next to each other while interleaved ones are
drawn on top of each other. The gate over which processes synchronize is shown in the upper left
corner of the box that includes those processes. In this figure, gate useris drawn on the border line
of the outer box to be the access point for the environment. Gate line, however, is drawn inside
that box to represent the fact that it handles only internal events.

Process One_Connectionconsists of the processes Subscribersand Connection_Handlercomposed
in parallel and synchronize with each other on gate line. The corresponding graphical representation
is shown in Figure 2

�

5 The internal action "i" following the interleaving operator is used to prevent the LOTOS interpreter from looping endlessly, by attempting to
provide an infinite number of connections.

5

One_Connection
|[line]|
Subscribers
|||

Connection_Handler

user

Destination_Side
Origination_Side

line
Figure 2 Graphical Representation of a One_Connection

4.3.3. ProcessingDisconnectionof Telephones
Process Connection_Handler plays the role of a controller within a single connection. It is
responsible for handling the connection of the lines, and also their disconnection, once the associated
call has been terminated.

 >>

Subscriber (N) --> OffHook { N: The Initiator of a Call }

Get Dial Tone (N)
Termination to End Destination (CN)

[> Disconnection of
Only N is requiredHang Up (N)

Ring (CN)
[> Hang Up (N)

Disconnection of N
and CN is required

Conversation {N,CN}
[>

Hang Up (N)
[]
Hang Up (CN)

Disconnection of N
and CN is required

[]

[]
Forward (CN --> FN) { FN: The New End Destination }

Unsuccessful Termination to CN
Disconnection of Only N
is required

[]
Unsuccessful OffHook of N No Disconnection

is required

{ CN: The End Destination }

Figure 3 Different Types of a Disconnection

A call may be aborted by the OriginationSide, may not terminate successfully to the end destination,
or may be terminated by a subscriber after its successful termination. To abort or terminate a call
we used the LOTOS disable operator “[>” that kills the current process by transferring the control to

6

the process that follows that operator. Instead, the LOTOS enable operator “>>” is used to sequence
two processes. When the first process terminates successfully, the control is then transferred to the
process following that operator, see Figure 3.
4.4. Design Steps of the Specification
Within a single connection the temporal ordering of the actions performed by different subscribers
is handled by a local controller, called ConnectionHandler. The behavior of the participating
subscribers is defined in process Subscribers.
4.4.1. The Subscribers
Any subscriber, Code 3, may be the originator of a call and its actions are handled in parallel
with the ones performed by any specified receiver of that call. However, subscribers don’t have
to synchronize on any action, and therefore we use the LOTOS interleavingoperator “|||” for their
parallel composition.

process Subscribers [user,line] :noexit:=
Origination_Side [user,line]
|||
Destination _Side [user,line]

endproc
Code 3 Process Subscriber Definition

After an OffHook, the Origination Sidemay get a DITO or an OOFSsignal. This depends on the
current status of its line and it is defined in LOTOS by use of the choice operator "[]". A sequence
of actions is performed by the Origination Sidebefore establishment of a connection and the call
may be aborted at any time, see Section 4.3.3. The control is passed from one phase of a call
processing to another by use of the LOTOS enabling operator ">>". After a successful termination
of the first phase, the next phase starts by ringing at the DestinationSide, by a busy signal, or by
an out of service signal. After establishment of a connection, the conversation may begin. The
destination line is identified by the dialed number "CN", and its behavior is described in process
Destination_Side. The DestinationSide’s telephone may start ringing or the call has been forwarded
to another telephone, and therefore the DestinationSide’s telephone must be kept busy. Once it
rings, disconnection of the DestinationSide’s line is required if the Origination Sideaborts the call
and also if the DestinationSideanswers the call. However, if a call is aborted during its first phase,
disconnection of the DestinationSide’s line is not required, see Figure 3.
4.4.2. The Connection Handler

- Control Termination
 of the Call

- Send Busy Signal
 to
- Connection
 Released

[]
- Send Out Of Service
 to
- Connection
 Released

[]

[]

Successful OffHook of the Origination Side

Unsuccessful OffHook of the Origination Side

OffHook ()Origination Side

Origination Side Origination Side

- Apply Ringing at
 the Destination Side

Figure 4 Connection_Handler Refinement

7

Within process Connection_Handler, the signals associated with both sides are ordered according
to their origins. Each line is identified by the associated number. The top level description of the
process Connection_Handler is summarized in Figure 4.
4.4.3. TelephoneFeatures
For modularity of the specification and to ease its modification, each feature is specified in a
different process. In this section we describe some of the features that are provided by our Sample
TelephoneSystem. Ring Again and Call Forward features are possible only before establishment
of a connection. However, the remaining ones, Hold, TWC/Transfer, and Conferencefeatures are
possible only after the establishment of a connection.
1. The Ring Again feature may be invoked by the Origination Sidewhen attempting to call a
subscriber whose line is currently busy. This feature is described by a process Ring_Again_Feature
that is instantiated by process Origination_Sideprovided that the requested number (RN) is different
from its number (N). However, if on the detection of a busy signal the Origination Sidedecides
to hang up its telephone, the process Ring_Again_Feature is not instantiated and therefore the
connection is released by a process Hang_Up. The process Ring_Again_Feature is instantiated
as follows:

- - -> Ring_Again_Feature[user,line](N,RN)

2. The Forward feature may be invoked only by the DestinationSide (CN). This is to forward
all incoming calls to its telephone, to another telephone with a different number. Whenever a call
comes in to the first telephone, it is automatically forwarded to the other telephone. This feature
remains in effect until it is cancelled. A sample instantiation of such a feature is:

- - -> Call_Forwarded [user,line] (CN)

3. After a connection between two subscribers has been established, either subscriber may invoke
any feature among the remaining ones. When such a feature is invoked, the conversation with
the other side is disabled and the invoker of the feature may proceed to call a third side. The
conversation is also disabled but for good if a subscriber goes OnHook. A sample instantiation
of such a feature is:

- - -> Feature [user,line] (N,FeatureKey)

In the call of a process Feature, FeatureKeystands for the key of the feature being invoked. The
feature keys are HoldK, TransK, and ConfK.
4.4.4. The System Network
The process System_Networksynchronizes with process Multi_Connectionson gate line. An event
with a signal is possible only if the associated predicate is evaluated to true. A sample configuration
of the SystemNetwork is presented in Figure 5.

System Network

[]
Receive/Send a SignalUpdate the System

Use a Forward Feature Key

Figure 5 Structure of the System_Network

8

Note that the SystemNetworkallows the environment to update the set ServiceSetat any time. This
requires certain predicates to be satisfied. For instance, a new number can be added to the set
ServiceSetonly if it was out of service (notin(new_num,ServiceSet)).
5. Debugging the Sample TelephoneSpecification
Using the LOTOS interpreter of the University of Ottawa [HH88], we were able to extensively
debug our specification of the SampleTelephoneSystem. In Step-by-Step execution, the debugging
focuses on specific stages of processing a call. It may also be used to check the consistency of a
particular feature by validating at each step the sequence of events. Symbolic execution [GL89],
instead, is used to generate a tree of symbolic sequences of events involved in a call. This gives all
the possible paths allowed by the specification for that particular phase. Note that due to the size
of our specification, the generation of the whole symbolic execution tree is not practical. However,
symbolic execution trees for some specific processes of the specification were generated using a
small depth of execution.
6. A Sample Testing of the Sample TelephoneSpecification
The testing process is an appropriate way to detect errors in a specification. Using the facilities
provided by the interpreter ISLA, some test sequences have been run on our Specification. This
was done by composing in parallel a test sequence, as a process, with the whole specification. The
execution of the composition will result in an execution tree, from which a test sequence may reach
its last action. If it does, we say that the test sequence is accepted by the specification, otherwise
we say that it is refused. Note that a test sequence must be deterministic in order to be able to
judge its acceptance. However, LOTOS concepts allow specification of non-deterministicsystems
[BSS87]. Note also that when composing in parallel the test process with the specification, the
internal action ‘i’, see Code 2, is replaced by gate ’line’. This is to avoid the occurrence of multiple
i’s in the execution tree and also to allow synchronization of a test process with the specification
when it involves multiple calls in parallel.
7. Conclusions
We have presented a design methodology to specify Telephone Systems in LOTOS. We have also
shown how modern telephone features can be specified and included in the initial specification of
a system.
A method to debug LOTOS specifications was presented and test sequences were validated using an
interpreter. By precisely specifying the features of the system at the design stage, the development
team can achieve a better view of the system’s functionality. The specification can then be validated
by various debugging, testing, and verification methods, and therefore costly design errors can
be detected at the design stage. Finally, an implementation can be obtained from the formal
specification, and test cases for the implementation can be derived from the specification. The
latter topic is not covered in this paper, however the related methodology is also subject of research
[BSS87].
Acknowledgments This work was supported in part by the Algerian Government, the Telecom-
munications Research Institute of Ontario, and by Bell-Northern Research. We are grateful to J.
Sincennes, M. Faci, M. Haj-Hussein, and other colleagues of the Protocols Research Group of the
University of Ottawa for valuable suggestions and technical assistance.

9

Appendix Technical Abbr eviations
i. Signals

The following is a list of the signals sent/received by the SystemNetworkto/from the telephones.
They represent internal events within the TelephoneSystem.
BUSY : Busy Signal
DISC : Disconnection Signal
DITO : Dial Tone Signal
FORW : Forward Signal
OOFS : Out Of Service Signal
RANO : Ring Again Notification Signal
RING : Ring Signal

ii. Other Abbr eviations

In this section, we list some of the keys available on the SampleKeyboard DMS-100 [Bel88],
followed by some common abbreviations used in this paper.
In addition to the Call Transfer feature key, any other feature may be activated by first pressing
the Call Transfer feature key and then dialing the appropriate feature code.
ConfK : Conference Feature Key
HoldK : Hold Feature Key
OffHook : Pick up Handset
TransK : Transfer Feature Key
FDT : Formal Description Technique
ISLA : An Interactive System for LOTOS Applications
ISO : International Organization for Standardization
LOTOS : Language Of Temporal Ordering Specifications
OSI : Open Systems Interconnection
POTS : Plain Old Telephone Systems

References

[BB87] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language LOTOS.
ComputerNetworksand ISDN Systems, 14:25–59, 1987.

[Bel88] Bell Canada, Inc. TheDMS-100BusinessSetUser Manual, 1988.
[Bou91] Rezki Boumezbeur. Design, Specification, and Validation of Telecommunication Systems

in LOTOS. Master’s thesis, University of Ottawa, Ottawa, Ontario, Canada, (Forthcom-
ing) 1991.

[Bri88] E. Brinksma. On the Design of Extended LOTOS. A Specification Language for
Distributed Systems, 1988. Doctoral Dissertation.

[BSS87] E. Brinksma, G. Scollo, and C. Steenbergen. LOTOS Specifications, their Implementa-
tions and their Tests. In G. von Bochmann and B. Sarikaya, editors, ProtocolSpecifica-
tion, Testing,and Verification VI, pages 349–360. North-Holland, 1987.

[FLS90] M. Faci, L. Logrippo, and B. Stepien. Formal Specifications of Telephone Systems
in LOTOS. In E. Brinksma, G. Scollo, and C. Vissers, editors, Protocol Specification,
Testing,and Verification IX. North-Holland, 1990.

10

[GL89] H. Guillemot and L. Logrippo. Derivation of Useful Execution Trees from LOTOS
by using an Interpreter. In K. J. Turner, editor, Formal DescriptionTechniques, pages
311–325. North-Holland, 1989.

[HH88] Mazen Haj-Hussein. An Interactive System for LOTOS Applications (ISLA). Master’s
thesis, University of Ottawa, Ottawa, Ontario, Canada, November 1988.

[ISO89] ISO, IS 8807. InformationProcessingSystems- OpenSystemsInterconnection- LOTOS
- A Formal DescriptionTechniquebasedon the TemporalOrdering of Observational
Behaviour, May 1989.

[QF87] J. Quemada and A. Fernandez. Introduction of Quantitative Relative Time in LOTOS.
In H. Rudin and C.H. West, editors, ProtocolSpecification,Testing,andVerificationVII,
pages 105–121. North-Holland, 1987.

[Tan89] Andrew S. Tanenbaum. ComputerNetworks.SecondEdition. Prentice-Hall, Inc., 1989.
[Tvr89] I. Tvrdy. Formal Modelling of Telematics Services using LOTOS. Microprocessingand

Microprogramming, 25(1-5):313–317, 1989.
[VSA

�

89] C.A. Vissers, G. Scollo, R.B. Alderden, J. Schot, and L. Ferreira Pires. TheArchitecture
of Interaction Systems.The Structuring of Distributed Systems. Lecture Notes. C.A.
Vissers, Enschede, The Netherlands, February 1989.

[VSvS88] C. A. Vissers, G. Scollo, and M. van Sinderen. Architecture and Specification Style in
Formal Descriptions of Distributed Systems. In S. Aggarwal and K. Sabnani, editors,
Protocol Specification,Testing, and Verification VIII , pages 189–204. North-Holland,
1988.

[Zav85] P. Zave. The Distributed Alternative to Finite-State-Machine Specifications. ACMTrans.
On Prog. Lang. and Systems, 7(1):10–36, January 1985.

11

