
1 January 29, 1997 12:21 pm

Feature Interaction Detection
using Backward Reasoning with LOTOS

 Bernard Stepien and Luigi Logrippo

Telecommunications Software Engineering Research Group
Department of Computer Science, University of Ottawa
Ottawa, Ont. Canada, K1M 6N5
(bernard | luigi)@csi.uottawa.ca

The problem of detecting feature interactions in telephone systems design is
addressed. The method proposed involves specification of the features in LOTOS,
and uses an analysis technique called backward reasoning. This is is imple-
mented in LOTOS by a combination of backward and forward execution. A tool to
help carry out backward execution is presented. A detailed example of the use of
the technique is given, involving the three-way-calling and call-waiting features.

Keyword codes: D.2.2; C.2.1; H.4.3
Keywords: Tools and Techniques; Network Architecture and Design; Communica-

tions Applications

0. OVERVIEW

Feature interactions have been categorized according to the kinds of features,
the number of users and the number of network elements [CGLN93]. The causes
of feature interactions are equally varied. They mainly revolve around problems
of ambiguity and errors in logic intrinsic to distributed systems. It is reasonable
to think that different causes require different detection methods. This paper con-
centrates on the problem of detecting ambiguous actions, which are seen as symp-
toms of feature interactions. Features are specified in LOTOS, and the
specification is analyzed by using backward reasoning [DB78] [Hol85] [Lin 90].

1. SPECIFICATION OF FEATURES USING THE STATUS ORIENTED
STYLE

There are several published LOTOS specifications of telephones with features
[BL93][Najm93]. They often use the constraint-oriented specification style where
abstract data types play an important control role. The status-oriented style
[SL93], a variation of the resource-oriented style, makes greater use of the princi-
ple of synchronization on discrete values, which usually represent signals and
phone numbers. When complex control structures need to be specified, the logic is

2 January 29, 1997 12:21 pm

encoded into separate processes that work as constraints on a local basis, corre-
sponding to what one would use as implementation structure. In the constraint-
oriented style, all processes collaborate together to form the global behavior. Thus
the behavior expressions representing features are mixed together and it may
become difficult to follow the life cycle of a feature. The status-oriented style is
closer to the concept of components communicating via interfaces, a concept that
is central in ODP.

 The specification we have used describes three cases of feature interactions
that are illustrations of the classification of feature interactions found in
[CGLN93].

The Single User Multiple Element (SUME) class is represented by the case of
the interaction caused when a user presses the pound key to change her personal
options in voice mail when accessing it through a calling card call (action which
also involves the use of the pound key).

The Single User Single Element (SUSE) class is represented by the case of the
interaction caused when a user attempting to establish a three way call presses
the flash_hook key while being called by another user and after having sub-
scribed to call waiting. The flash-hook key becomes ambiguous because it can also
be used to answer the waiting call.

The Multiple User Single Element (MUSE) class is represented by the case of
the interaction caused when a user has a number in her originate screen list that
is the number to which another number this user is calling is forwarded to.

The two first cases are essentially cases of detections of ambiguities while the
third case is a violation of intentions.

While developing the specification we have been faced with one interesting
reality: for specification of features in LOTOS one can observe the same phenom-
enon as for implementation of features in software: features are scattered
throughout the code. However while code can be tested only by running various
test scenarios, LOTOS (due to its algebraic nature) can be manipulated to verify
properties. Also the very activity of specifying features using LOTOS forces the
designer to think more and thus detect feature interactions just by trying to spec-
ify them. One difference is that the cost of experimenting with specifications is
considerably less than the cost of experimenting with real software or hardware.

The general structure of the specification is as follows:

 (
 phone[u, n](num1, { three_way_calling, call_waiting,originate_screening }, no_active_service , num1, {
num4 })
 |||
 phone[u, n](num2, { call_forward }, no_active_service ,num4, no_screen_list)
 |||
 voice_mail[u, n](num3)
 |||
 phone[u, n](num4,no_services, no_active_service,num4, no_screen_list)
 |||
 phone[u, n](num5,no_services, no_active_service,num5, no_screen_list)
)

3 January 29, 1997 12:21 pm

|[n]|

 network[n,a]

The formal parameter list of each instance of phone determines the activation
of the various services presented here. Each phone is defined as a choice of call
initiator and call responder. The process network allows to manage simultaneous
connections and is of the usual following form:

 process network[n,a]:noexit:=
 n ? CALLER:phone_number ! tone ; (connection_handler[n,a](CALLER) ||| network[n,a])
 endproc

The features are inserted wherever they can be invoked within the basic
POTS behaviors. For example, in the call_initiator_phone behavior, the call-wait-
ing and three-way-calling features are inserted after the connect event in process
complete_connection as an interleaving between instances of processes
user_events and features.

process call_initator_phone... := off_hook ; tone ; dial ; complete_connection...
where
 process complete_connection[u,n](NUMBER:phone_number,SUBS_SERV:subscrib_services):noexit:=
 n ! NUMBER ! connect
 ; (user_events[u,n](NUMBER,SUBS_SERV) ||| features[u,n](NUMBER,SUBS_SERV))
 endproc

The process features is itself an interleaving of the two features.
The structuring of feature interactions proposed in [CGLN93] has been useful

to explore the problem using LOTOS. It enabled us to isolate problems and to
concentrate on them. This idea was further developed in the concept of backward
execution of a specification. By using this method, we can produce rapidly a sce-
nario where an interaction can be found under the guidance of the designer. The
method consists in decomposing problems into sub-problems to isolate scenarios
that are likely to generate interactions.

2. DETECTING AMBIGUITIES BY BACKWARD REASONING

2.1 Ambiguous actions
We say that an observable action in a LOTOS specification is ambiguous if in

the behavior tree of the specification there is a branching point where the action
is the first observable one in at least two branches. Ambiguity represents nonde-
terministic behavior of the ‘black box’ being specified: it represents the situation
where the user presses a button, and one of two different effects can follow.
Ambiguous actions can be offered in several cases: most obvious are the cases
where two behaviors are specified using the choice [] or disable [> operator. These
are easy to detect, thus they are of limited interest. The most important case is
when two behaviors are interleaved and both contain the same action, leading to
the possibility that one of the many combinations of interleavings produces a sit-

4 January 29, 1997 12:21 pm

uation of ambiguity.
As a trivial example, in the following behavior

a ; b ; c ; stop

 |||
 e ; b ; f ; stop

after trace <ae> we end up with

 b ; c ; stop
 |||
 b ; f ; stop

We can think that b here represents an ambiguous key, leading to two behav-
iors that represent two different features. Because of the way the specification is
written, a disorderly mix of the two features results if the user presses b. One can
easily construct more complex examples involving process instantiations, etc.
where the nondeterminism is far from obvious. In [BL93] such an example is
given. We give a similar example in this paper, however much simpler and spec-
ified in a different style.

We concentrate on the problem of detecting cases of ambiguity, seen as symp-
toms of feature interaction. Note that in general ambiguity and nondeterminism
can involve internal actions, however these will be ignored here for simplicity of
discussion.

2.2 Case studies
The case of call-waiting and three-way calling is relatively simple. Both

involve the action flash_hook. Since the two processes are interleaved, it is clear
that an interaction could exist.

Fig 1. specification and resulting execution paths

specification level execution level

a

b

c

e

b

f

a

e

b b

c f

F1 F2 F1 F2|||

5 January 29, 1997 12:21 pm

 process features[u, n](NUMBER:phone_number,SUBS_SERV:subscrib_services):noexit:=
 call_waiting[u,n](NUMBER,SUBS_SERV)
 |||
 three_way_calling[u,n](NUMBER,SUBS_SERV)
 endproc

where

 process call_waiting[u,n](NUMBER:phone_number, SUBS_SERV:subscrib_services):noexit:=
 [call_waiting IsIn SUBS_SERV] ->
 n ! NUMBER ! ring
 ; u ! NUMBER ! flash_hook
 ; n ! NUMBER ! connect
 ;
 (user_events[u,n](NUMBER,SUBS_SERV)
 [>
 (n ! discon_req
 ; stop
)
)
 endproc

 process three_way_calling[u,n](NUMBER:phone_number,
 SUBS_SERV:subscrib_services):noexit:=
 [three_way_calling IsIn SUBS_SERV] ->
 u ! NUMBER ! flash_hook
 ; u ! NUMBER ! dial ? C:phone_number
 ; n ! NUMBER ! conreq ! C
 ; n ! NUMBER ! connect
 ;
 (user_events[u,n](NUMBER,SUBS_SERV)
 [>
 (n ! discon_req
 ; stop
)
)
 endproc

Note that the simplest case of call-waiting sequence has been proposed. In
reality one should be able to answer call waiting immediately after receiving a
dial tone. We found that it is difficult to specify this more general case by using
existing LOTOS operators. This is because when a subscriber is involved in a fea-
ture, the other features can sometimes be disabled, something that cannot be
expressed easily with the interleave operator. In order to deal with such cases, we
have proposed a new suspend and resume operator for LOTOS, which is described
in [CDN93].

The SUME case of ambiguity, resulting when a user tries to change the per-
sonalized options of the voice mail feature while a card connection is being used,
is more complex because the ambiguity of the pound key action is due to two pro-
cesses that are not directly interleaved. The interleaved situation is entirely con-
tained in process network_complete_connection via instances of processes

6 January 29, 1997 12:21 pm

calling_card_intercept and relay_user_events where the predicate is_user_actions
could be evaluated with respect to the value pound_key. This case shows that it is
not always easy to find feature interactions directly.

 process network_complete_connection[n,a] (CALLER,CALLED:phone_number):noexit:=
 n ! CALLED ! ring
 ; n ! CALLED ! connect
 ; n ! CALLER ! connect
 ;
 (
 relay_user_events[n](CALLER,CALLED)
 |||
 calling_card_intercept[n,a](CALLER)
)
 endproc

where
 process relay_user_events[n] (CALLER,CALLED:phone_number):noexit:=
 n ! CALLER ? EVENT:primitives [is_user_actions(EVENT)]
 ; n ! CALLED ! EVENT
 ; relay_user_events[n](CALLER,CALLED)

 []
 ...
 endproc

 process calling_card_intercept[n,a](CALLER:phone_number):noexit:=
 n ! CALLER ! pound
 ; a ! CALLER ! play_announce_new_number
 ; n ! CALLER ? NEW_NUMBER:phone_number ! conreq
 ; network_complete_connection[n,a](CALLER,NEW_NUMBER)
 endproc

 process voice_mail[v, n](NUMBER:phone_number):noexit:=
 n ! NUMBER ! ring
 ; v ! NUMBER ! voice_mail_answer
 ; n ! NUMBER ! connect
 ; v ! NUMBER ! play_announce_pwd
 ; n ! NUMBER ! pwd
 ; v ! NUMBER ! deliver_messages
 ; v ! NUMBER ! play_announce_star_pound
 ;
 (
 n ! NUMBER ! star
 ; v ! Number ! good_bye
 ; stop
 []
 n ! NUMBER ! pound
 ; v ! NUMBER ! play_announce_management
 ; stop
)
 endproc

7 January 29, 1997 12:21 pm

It is the evaluation of the predicate [is_user_actions(EVENT)] that risks pro-
ducing an ambiguity with respect to the two actions in boldface. If the variable
EVENT captures a pound sign, the predicate will be true and thus the action will
be executable. It is process voice_mail that plays the role of the environment and
decides this case.

2.3 The method
Most LOTOS tools available today are based on systematic use of inference

rules or expansion. In both cases one runs sooner or later into state explosion.
Some new techniques such as goal oriented execution [HLS93] [BE93] and inter-
leaved expansion [QLP93] provide partial relief to this problem.

The method presented here consists in exploring a specification by focusing on
detection of ambiguities when a new feature is introduced, thus exercising only
portions of the specification that are relevant to the problem. This is achieved by
using well-known concepts and techniques, but in a particular manner. We
decompose the specification, we find local traces, we substitute them into the
overall behavior expression, and then conventional stepwise techniques are
applied. Therefore, this is an incremental method.

 The method consists of three steps:
Step 1: collect the various instances of an action found in different features

throughout the specification.
Step 2: verify if the behavior expressions that contain these identical actions

are interleaved.
Step 3: apply backward reasoning to verify if there are cases where the behav-

ior expressions found in step 2 that are interleaved can produce non-deter-
ministic choices when these behaviors are executed under the constraints
of their environment. This means verifying if other behaviors that are in
parallel with them can lead to such a case. In other words the fact that two
behaviors containing the same action are interleaved is a necessary but not
a sufficient condition.

Note that we have made the hypothesis that features are interleaved, and
that their simultaneous occurrence is pathological, which seems to be true in
most cases.

The above method is relevant to detect ambiguity of signals. There are other
cases of non-determinism that are not caused by ambiguities of signals but by
errors in logic. In LOTOS these reveal themselves as incomplete or contradictory
abstract values in guards and/or predicates. In these cases, step 1 is no longer
necessary, and the method consists in finding features that are interleaved in
step 2 and then applying the procedures of step 3.

Step 3 has been implemented in a tool, which is discussed below.

2.4 Backward reasoning in LOTOS
As mentioned, the simple fact that an action is in interleave with itself is not suf-
ficient for two behaviors to lead to ambiguities. It is also necessary that paths
leading to the ambiguity be simultaneously possible under a given set of condi-
tions. The fact that two events that are interleaved can create non-determinism

8 January 29, 1997 12:21 pm

can be proved by executing the specification to reach the first case and then,
using the resulting behavior expression, trying to execute the second case. This
can be done in several ways, for example by using already known techniques such
as forward step-by-step execution in combination with automatic generation of
symbolic trees and goal-oriented execution [HLS93][BE93].However these tech-
niques will produce state explosion to various degrees. Most of the state explosion
is the result of interleaved behavior expressions. The multiple combinations of
solutions all lead to the same desired state where our two ambiguous actions are
possible. Backward reasoning allows to find the two paths necessary to reach our
ambiguous case without having to worry with the problems created by interleav-
ing.

Our method of ‘backward reasoning” appears to be effective in many cases. In
a step-by-step, interactive way, LOTOS specifications can be executed backward.
This is due to the fact that the language has no side effects, with the exception of
those that determine the order of actions in traces. One can start from a selected
behavior expression and travel in reverse direction through action prefix, choice,
disable, and enable operators.Whenever a new variable is encountered, a value
for it is provided.This value may fail because of predicates encountered later;
however the same thing can also occur in forward execution.When interleaved
behavior expressions are encountered, they are attached to the behavior tree
developed so far, since they could be needed for synchronization later.When a syn-
chronization operator is encountered, the trace developed so far needs to be vali-
dated, so it needs to be executed forward with respect to the synchronized
behavior.This may require synchronization with some of the interleaved behavior
expressions attached earlier. There can be several such behavior expressions,
both on the trace side and on the synchronized behavior side. Note also that this
synchronization may depend on appropriate values having been entered earlier.
Goal-oriented execution can be used to facilitate the process. When a process dec-
laration is encountered, we must search all the instantiations of that process in
the behavior expression, choose one of them, and decide on parameters passed

Fig 2. stepwise execution of features

execute
second
feature

behavior
Resulting

expression interaction

succeeds

Initial
behavior
expression

execute
first
feature

9 January 29, 1997 12:21 pm

(this is the only case of choice in backward execution, which otherwise is deter-
ministic). If we can travel all the way to the root of the main behavior declaration,
we have found an executable path. Just as for regular forward execution, exe-
cuted actions are removed from the behavior expression. Obviously, as in forward
step-by-step execution, success of the procedure depends on the insight of the
user who must select meaningful paths and values to build an appropriate sce-
nario.

The concept of backward execution of protocols and service specifications has
already been studied in [DB78] [Hol85], and more recently, by using logic pro-
gramming concepts related to ours, in [Lin90].

From the above, it should be clear that backward reasoning uses both back-
ward execution and conventional forward execution. While backward execution
requires specially designed tools, forward execution can be done with existing
interpreters and expanders, although in our experience goal-oriented execution is
a necessity.

2.5 Applying the method
In this section, we present the application of the method to the SUSE case of

ambiguity of the flash_hook in the three-way calling and call-waiting case. First
we assume that we have a fully functioning specification of the three way calling
service. We add the call waiting feature and try to see if some of the actions of this
new feature risk nondeterminism with respect to existing features.

The method is applied in two steps. First we must prove that a backward path
satisfying all conditions of synchronizing processes, starting with the action

||

|||

|||

|||

[]

gathering traceverifying trace

Fig.3 Backward reasoning on a parse tree like representation

synchronizations

feature

Service sideEnvironment side

forcing

potential determinism

with interleave of trace

 determinism

sync.

resolving

non-det.

action

10 January 29, 1997 12:21 pm

flash_hook, does exist within the first feature, in our case the three-way calling.
This path is summarized in Fig. 4. Then, given the behavior expression after pro-
ducing this path, we attempt to execute a second path starting from the call wait-
ing flash_hook action. The resulting path is summarized in Fig. 5. Since the two
paths are executable within each feature, we can conclude that it is possible for
the flash_hook action to present itself in a situation of nondeterminism.

We now describe how the first path is derived. Processes involved in this path
have been shaded in Fig. 4. Boxes represent behavior expressions or instantiated
processes. Let’s start with the flash_hook. Step 1 tells us to look for more occur-
rences of a flash_hook action. We find out that there is one in the three-way call-
ing feature. Step 2 tells us to verify if the behavior expressions where the two
flash_hook actions belong are in a situation of interleaving. This is indeed the
case, as it can be seen by simple inspection. Having these two behavior expres-
sions, which happen also to be processes, we can start to analyse how they can be
executed in interleaving.

We therefore start to execute the three-way-call feature backward. First we
observe that our two features are instantiated in a process called features that
itself is instantiated in a process completed_connection:

 process complete_connection[u,n] (NUMBER:phone_number,
 SUBS_SERV:subscrib_services):noexit:=
 n ! NUMBER ! connect
 ;
 (
 user_events[u,n](NUMBER,SUBS_SERV)
 |||
 features[u,n](NUMBER,SUBS_SERV)
)
 endproc

Within the above process we discover that our instance of process features is
further interleaved with user_events. Inspection of this second process leads to
the conclusion that there is nothing of interest for our problem in it, consequently
we keep going backward following action prefixes to end up with the n ! NUM-
BER ! connect action. This action is important because it tells us that a full con-
nection exists when the call_waiting feature is activated.

We are now at the top of the behavior expression of process
complete_connection. We now must look for an instance of this process. We find
one of interest in process call_initiator_phone. We observe that we can follow a
series of action prefixes all the way back to the top of the behavior expression of
this process to the off_hook action. Again we look for instances of this process and
we find that the only case is in process phone. Thus we know the path that leads
to a full connection of a phone.

11 January 29, 1997 12:21 pm

12 January 29, 1997 12:21 pm

Fig. 4 Call waiting interaction with tree way calling summary

|||

|||

|[n]|

network

|||

the phones
phone: num1

phone: num2

phone: num5

connection_handler num1 - num2

network

|||

ring answer connect

num1
ring connect connect

off_hook tone conreq connect

ring flash_hook
call_waiting

 num2

three_way_call
flash_hook

conreq
num2 num2 num2 num1

tone
num1

Backward execution path starting from three way calling flash_hook

backward trace

tra
ce

 sy
nc

hr
on

iz
at

io
n

inactive process

inactive process

backward trace synchronization

synchronization with the interleaved
behaviors of the backward trace

(call_responder role)

(call_initiator_role)

13 January 29, 1997 12:21 pm

14 January 29, 1997 12:21 pm

Fig. 5 Call_waiting interaction with tree way calling summary

|||

|||

|[n]|

network

|||

the phones
phone: num1

phone: num2

phone: num5

connection_handler num1 - num2

connection_handler num5 - num1

|||

off_hook tone conreq ? num1

num5 conreq num1 ring num1

ring flash_hook
call_waiting

three_way_call
flash_hook

Backward execution path starting from call waiting flash_hook

tone
num5

talking[u]

stop

goal oriented execution of the trace

inactive process

inactive process

goal oriented execution to detect the tone signal

This figure depicts the execution of the call waiting path from the state
where the three way call is activated.

15 January 29, 1997 12:21 pm

Process phone has many instances that are all in parallel with an instance of pro-
cess network. First we must pick one of these instances. This has the effect of
instantiating the value of the formal parameter number. In our case we have
picked the instance of phone[u,n](num1). Concerning this choice, as well as the
other choices of parameters that are necessary at this level, note that since the
method consists of finding at least one scenario that verifies our goal, any appro-
priate values can be supplied by the user. In simple phone specifications these
values are usually phone numbers that decide which phones are involved in com-
munication. Here we only need to establish a connection between a phone that
has both features (call waiting and three way calling) and a sort of neutral phone
(without any features) to avoid interferences from features that are not presently
of interest. The instance of process phone[u,n] that we have selected belongs to a
behavior expression that is in parallel with an instance of process network. We
must now verify if the collected trace satisfies the conditions of process network.

Thus we have obtained, by backward execution, the following instantiated
trace, which we call T3waycall :

u ! num1! off_hook -->
 n ! num1! tone -->
 n ! num1! conreq ? num2 (instance of variable Called_num) -->
 n ! num1! connect -->
 u ! num1! flash_hook --> ...

 In other words, the trace must be composed with the remaining high-level
behavior expression:

 (T3waycall ||| phone[u,n](num2) ||| ... ||| phone[u,n](num5))
 |[n]|
 network[n]

Thus we must try to compose T3waycall with the network, this time in forward
execution, keeping in mind that any actions of process network that cannot syn-
chronize with the trace could synchronize with the remaining behavior expres-
sions that are interleaved with the trace (here phone[u,n](num2) ||| ... |||
phone[u,n](num5)).

One available technique to help in this process, is to apply goal oriented execu-
tion taking the sequence of actions of trace T3waycall as a goal. However we shall
continue describing the process as if it were purely manual one, in order to
explain the steps.

Thus, let us examine process network.

 process network[n,a]:noexit:=
 n ? CALLER:phone_number ! tone
 ;
 (
 connection_handler[n,a](CALLER)
 |||

16 January 29, 1997 12:21 pm

 network[n,a]
)
 endproc

The network’s first action is to provide a dial tone. This matches with the sec-
ond action of T3waycall.

 The execution of this action instantiates also the variable CALLER to the
value num1 by value passing.

The next step is to instantiate process connection_handler, noting that we also
have the possibility to interleave recursively with process network.

 process connection_handler[n,a](CALLER:phone_number):noexit:=
 n ! CALLER ? CALLED:phone_number ! conreq ? SCR_LIST:screen_list
 ;
 (
 [CALLED NotIn SCR_LIST] ->
 n ! CALLED ! ring
 ;
 (
 n ! CALLED ! connect
 ; n ! CALLER ! connect
 ; relay_user_events[n](CALLER,CALLED)
 []
 ...
 endproc

Again we see that the next action in T3waycall can match the first action of pro-
cess connection_handler, i.e. n ! CALLER ? CALLED:phone_number ! conreq , but
then the next action from T3waycall (n ! NUMBER ! connect) can no longer match
the remaining sequence of process connection_handler. Thus at this point we
have to go back to the many instances of process phone that are interleaved with
T3waycall to see if one of these instances can provide a matching action to the ring.
We pick instance phone[u,n](num5). Eventually we reach the connect action that
matches our call initiator. This was the last action before the flash_hook action.
No other actions from the network process are required in order to proceed in
T3waycall. So far this exercise has produced a full connection between phones 1 and 2
that is necessary in order to reach the flash_hook action of feature three-way call.

Now we are back to the original problem: how can process call_waiting be acti-
vated when a full connection is established ? This is the second path to explore as
summarized in Fig. 5. Processes involved in this path have been shaded. As we
mentioned at the beginning of this exercise, the second path will be derived with
all behavior expressions starting in the state they have reached while deriving
the first path. We can use again the same kind of backward reasoning, leaving the
details to the reader.

We start with the following behavior expression that results from the back-
ward execution of the first feature (where Rest of3way_call is now reduced to the
flash_hook action and what follows it).

17 January 29, 1997 12:21 pm

 ((Rest of 3way_call ||| Call_waiting(num1)) ||| talking[u](num2) ||| ... ||| phone[u,n](num5))
 |[n]|
 (Stop of connect_handler(num1,num2) ||| network[n])

The call waiting trace will have to find a matching trace in the interleaved
process network and there we can expect that some synchronization will be
required with one of the remaining interleaved phone instances.

When this is done, we have proof that nondeterminism can exist on the
flash_hook trigger for the three-way-calling and the call-waiting features.

The same reasoning can be applied to the call waiting, call forward on busy
example. This time it is the ring action that is ambiguous.

2.6 A tool
The backward execution method used in step 3 has been implemented in a

prototype tool programmed in Prolog. The backtracking feature of Prolog is
uniquely suited for this purpose. The internal representation of LOTOS specifica-
tions in the tool is quite unlike what is found in usual interpreters or expanders.
We have used an inverted data base which makes it possible to walk a behavior
both top- down and bottom-up. Actions, process identifiers, etc., are uniquely
labelled so that the user can instruct the tool to direct execution to those she
wants to use. No new inference rules are needed, the only novelty being in the
way the inference rules are applied.Our tool does not try to validate parameter
values with relation to expressions contained in parameter lists. For example, if
we have an instantiation such as P[...](...,n-1,...) for a process declaration
P[...](...,m,...) it would be necessary to see that n has value m+1. Currently, it is
responsibility of the user to choose values so that such consistency is assured. In
a more sophisticated tool, values would have to be derived automatically when-
ever possible, or at least consistency checks would have to be included.

To carry out easily the type of analysis advocated in this paper, it would be
desirable to include a backward execution facility in conventional LOTOS inter-
preters, together with features to replace behavior expressions with the obtained
traces, and then continue with forward execution (possibly goal-oriented), as we
have shown.

3. CONCLUSIONS

Detection of feature interaction is an existence proof. We explore all the poten-
tial alternatives until we find a symptom of interaction. Backward and forward
execution work together to reduce the number of cases to be considered. The
backward trace from the point of interest acts like a partial test case where a
number of interleaved actions are missing and can be filled by choices of the user.

We have shown that this technique can be facilitated by the use of appropriate
tools. The use of appropriate specification styles may also be important, although
we have insufficient experience in this respect.

This technique has other applications beyond the one discussed in this
paper.For example, it allows generating meaningful scenarios or use cases, start-

18 January 29, 1997 12:21 pm

ing from the desired goals, in a stepwise fashion and with meaningful values.

ACKNOWLEDGMENTS. We wish to thank Yow-Jian Lin of Bellcore for having
motivated us to explore the concept of backward reasoning in LOTOS. Several
members of our group, and especially M. Faci, provided stimulating feedback. We
are also indebted to a referee for several useful comments. This research was sup-
ported by grants of Bellcore, Bell-Northern Research, the National Institute of
Standards and Technology, the NSERC, and the Telecommunications Research
Institute of Ontario.

REFERENCES

[BE93] Brinksma, E., and Eertink, H. Goal-Driven LOTOS Execution. To appear
in: A. Danthine, G. Leduc, and P. Wolper (eds). Protocol Specification, Test-
ing and Verification, XIII. North-Holland.

[BL93] Boumezbeur, R., and Logrippo, L. Specifying telephone systems in
LOTOS. IEEE Communications Magazine, Aug. 1993, 38-45.

[CDN93] The suspend and resume operator. Canadian contribution to ISO TC97/
SC21, WG 1, November 1994 (available from authors).

[CGLN93] Cameron, E.J., Griffeth, N., Lin, Y.-J., Nilson, M.E., Schnure, W.K.,
Velthuijsen, H. A Feature Interaction Benchmark for IN and Beyond.
IEEE Communication Magazine, 31, 3, 64-69, 1993.

[DB78] Danthine, A., and Bremer, J. Modeling and Verification of End-to-End
Transport Protocols. Computer Networks, 2 (1978), 381-395.

[FL94] Faci, M. and Logrippo, L. Specifying Features and Analyzing their Inter-
actions in a LOTOS Environment. To appear in the Proc. of the 2nd Inter-
national Workshop on Feature Interaction in Telephone Systems,
Amsterdam, 1994.

[HLS93] Haj-Hussein, M., Logrippo, L., and Sincennes, J. Goal-oriented Execu-
tion of LOTOS Specifications. In: M. Diaz and R. Groz (Eds.) Formal
Description Techniques, V. North-Holland, 1993, 311-327.

[Hol85] Holzmann, G.J. Backward Symbolic Execution of Protocols. In: Y.Yemini,
R. Strom, and S. Yemini (eds.) Protocol Specification, Testing, and Verifica-
tion, IV. North-Holland, 1985, 19-27.

[Lin90] Lin,Y.J. Analyzing Service Specifications Based upon the Logic Program-
ming Paradigm. IEEE GLOBECOMM ‘90, vol. 1, 611-655.

[Najm93] Dahl, O.C. and Najm E. Specification and Detection of IN Service Inter-
ference using LOTOS. To appear in: R. Tenney, P.D. Amer, M. Ü. Uyar (eds)
Formal Description Techniques, VI, North-Holland, 1994.

 [QLP93] Quemada, J., Larrabeiti, D., and Pavon, S. Compressing the state space
representation, To appear in: R. Tenney, P.D. Amer, M. Ü. Uyar (eds) For-
mal Description Techniques, VI, North-Holland, 1994.

[SL93] Stepien, B. and Logrippo, L. Status-Oriented Telephone Service Specifica-
tion. To appear in: T. Rus and C. Rattray (eds.) Theories and Experiences
for Real-Time System Development, 1994.

19 January 29, 1997 12:21 pm

Annex: The specification

(* ----------
Note1: Termination sequences have been left out of the specification because they are irrelevant
for the purpose of the paper

Note 2: We have used the LOTOSPHERE enhanced data types, as described in [Sto92]
------------*)

specification feature_interaction_system[u, n, a]:noexit
(* written by Bernard Stepien, November 1993 *)

 library Boolean, NaturalNumber , Set endlib

 enumtype phone_number is
 { num1, num2, num3, num4, num5 }
 endtype

 enumtype primitives is
 {
 offhook, conreq, ring, answer, connect, talk, pwd, dial, tone,
 star, pound, voice_mail_answer, busy, flash_hook,
 conreq_calling_card, hang_up, discon_req,
 activate_call_forward,
 play_announce_pwd, deliver_messages,
 play_announce_star_pound, play_announce_management,
 play_announce_new_number, good_bye, detect_forward,
 unconditional_refusal
 }
 subclass

 user_actions { offhook, answer, talk, pwd, dial, star, pound, flash_hook,
 hang_up, activate_call_forward }
 network_actions { tone, conreq, ring, connect, busy, detect_forward, unconditional_refusal }
 voice_mail_actions { voice_mail_answer, play_announce_pwd,
 deliver_messages, play_announce_star_pound,
 play_announce_management,
 play_announce_new_number,
 good_bye
 }
 endtype

 enumtype service is
 {
 three_way_calling, call_waiting, call_forward, originate_screening }
 endtype

 enumtype active_service is
 { no_active_service, forward_calls }
 endtype

 settype subscrib_services is service
 elements service

20 January 29, 1997 12:21 pm

 values
 no_services = { }
 endtype

 settype screen_list is phone_number
 elements phone_number
 values
 no_screen_list = { }
 endtype

 behavior

 (
 phone[u, n](num1, { three_way_calling, call_waiting,originate_screening }, no_active_service , num1, {
num4 })
 |||
 phone[u, n](num2, { call_forward }, no_active_service ,num4, no_screen_list)
 |||
 voice_mail[u, n](num3)
 |||
 phone[u, n](num4,no_services, no_active_service,num4, no_screen_list)
 |||
 phone[u, n](num5,no_services, no_active_service,num5, no_screen_list)
)

|[n]|

 network[n,a]

 where

 process phone[u, n](NUM-
BER:phone_number,SUBS_SERV:subscrib_services,ACTIV_SERV:active_service,FWD_NUMBER:phone_nu
mber, SCR_LIST:screen_list):noexit:=

 call_initiator_phone[u, n](NUMBER,SUBS_SERV,ACTIV_SERV,FWD_NUMBER, SCR_LIST)

 []

 call_responder_phone[u, n](NUMBER,SUBS_SERV,ACTIV_SERV,FWD_NUMBER, SCR_LIST)

 endproc

 process call_initiator_phone[u, n]
 (NUMBER:phone_number,SUBS_SERV:subscrib_services,ACTIV_SERV:active_service,
 FWD_NUMBER:phone_number, SCR_LIST:screen_list):noexit:=

 u ! NUMBER ! offhook
 ; n ! NUMBER ! tone
 ;
 (
 (
 n ! NUMBER ? CALLED_NUMBER:phone_number ! conreq ! SCR_LIST

21 January 29, 1997 12:21 pm

 ;
 (
 complete_connection[u,n](NUMBER,SUBS_SERV)
 []
 n ! NUMBER ! CALLED_NUMBER ! unconditional_refusal
 ; phone[u,n](NUMBER,SUBS_SERV,forward_calls,FWD_NUMBER,SCR_LIST)
)
 []
 calling_card_call[u,n](NUMBER, SUBS_SERV)
)
 []
 (
 u ! NUMBER ! activate_call_forward ? FWD_NUMBER: phone_number
 ; phone[u,n](NUMBER,SUBS_SERV,forward_calls,FWD_NUMBER,SCR_LIST)
)
 |||
 busy_ring[u,n](NUMBER,SUBS_SERV)
)

 endproc

 process call_responder_phone[u, n]
 (NUM-
BER:phone_number,SUBS_SERV:subscrib_services,ACTIV_SERV:active_service,FWD_NUMBER:phone_nu
mber, SCR_LIST:screen_list):noexit:=

 n ! NUMBER ! ring
 ;
 (
 (
 (
 [ACTIV_SERV ne forward_calls]->
 u ! NUMBER ! answer
 ; n ! NUMBER ! connect
 ; u ! NUMBER ! talk
 ; stop
)

 []
 call_forward[u,n](NUMBER,SUBS_SERV,FWD_NUMBER,SCR_LIST)
)
 |||
 busy_ring[u,n](NUMBER,SUBS_SERV)
)

 endproc

 process user_events[u,n](NUMBER:phone_number, SUBS_SERV:subscrib_services):noexit:=

 u ! NUMBER ! talk
 ; user_events[u,n](NUMBER, SUBS_SERV)

 []

22 January 29, 1997 12:21 pm

 u ! NUMBER ! star
 ; n ! NUMBER ! star
 ; user_events[u,n](NUMBER, SUBS_SERV)

 []

 u ! NUMBER ! pound
 ; n ! NUMBER ! pound
 ; user_events[u,n](NUMBER, SUBS_SERV)

 []

 u ! NUMBER ! pwd
 ; n ! NUMBER ! pwd
 ; user_events[u,n](NUMBER, SUBS_SERV)

 []

 (* after the network played a dial a new number announcement *)
 n ! NUMBER ? NEW_NUMBER:phone_number ! conreq
 ; complete_connection[u,n](NUMBER, SUBS_SERV)

 []

 u ! NUMBER ! hang_up
 ; n ! NUMBER ! discon_req
 ; stop

 endproc

 process calling_card_call[u,n](NUMBER:phone_number, SUBS_SERV:subscrib_services):noexit:=

 n ! NUMBER ? CALLED_NUMBER:phone_number ! conreq_calling_card ?
CHARGE_NUMBER:phone_number
 ; complete_connection[u,n](NUMBER, SUBS_SERV)

 endproc

 process complete_connection[u,n](NUMBER:phone_number,SUBS_SERV:subscrib_services):noexit:=

 n ! NUMBER ! connect
 ;
 (

 user_events[u,n](NUMBER,SUBS_SERV)
 |||
 features[u,n](NUMBER,SUBS_SERV)
)

 endproc

 process features[u, n](NUMBER:phone_number,SUBS_SERV:subscrib_services):noexit:=

 call_waiting[u,n](NUMBER,SUBS_SERV)

23 January 29, 1997 12:21 pm

 |||

 three_way_calling[u,n](NUMBER,SUBS_SERV)

 endproc

 process call_waiting[u,n](NUMBER:phone_number,SUBS_SERV:subscrib_services):noexit:=

 [call_waiting IsIn SUBS_SERV] ->
 n ! NUMBER ! ring
 ; u ! NUMBER ! flash_hook
 ; n ! NUMBER ! connect
 ;
 (user_events[u,n](NUMBER,SUBS_SERV)
 [>
 (n ! discon_req

 ; features[u,n](NUMBER,SUBS_SERV)
)

)

 endproc

 process three_way_calling[u,n](NUMBER:phone_number,SUBS_SERV:subscrib_services):noexit:=

 [three_way_calling IsIn SUBS_SERV] ->
 u ! NUMBER ! flash_hook
 ; u ! NUMBER ! dial ? C:phone_number
 ; n ! NUMBER ! conreq ! C
 ; n ! NUMBER ! connect
 ;

(user_events[u,n](NUMBER,SUBS_SERV)
 [>
 (n ! discon_req

 ; features[u,n](NUMBER,SUBS_SERV)
)

)

 endproc

 process call_forward[u,n](NUM-
BER:phone_number,SUBS_SERV:subscrib_services,FWD_NUMBER:phone_number,SCR_LIST:screen_list):n
oexit:=

 [call_forward IsIn SUBS_SERV] ->
 n ! NUMBER ! detect_forward ! FWD_NUMBER

 ; phone[u,n](NUMBER,SUBS_SERV,forward_calls,FWD_NUMBER,SCR_LIST)

 endproc

 process busy_ring[u,n](NUMBER:phone_number,SUBS_SERV:subscrib_services):noexit:=

 [call_waiting NotIn SUBS_SERV] ->
 n ! NUMBER ! busy

 ; u ! NUMBER ! hang_up

24 January 29, 1997 12:21 pm

 ; n ! NUMBER ! discon_req
 ; features[u,n](NUMBER,SUBS_SERV)

 endproc

 process voice_mail[v, n](NUMBER:phone_number):noexit:=

 n ! NUMBER ! ring
 ; v ! NUMBER ! voice_mail_answer
 ; n ! NUMBER ! connect
 ; v ! NUMBER ! play_announce_pwd
 ; n ! NUMBER ! pwd
 ; v ! NUMBER ! deliver_messages
 ; v ! NUMBER ! play_announce_star_pound
 ;
 (
 n ! NUMBER ! star
 ; v ! Number ! good_bye
 ; stop
 []
 n ! NUMBER ! pound
 ; v ! NUMBER ! play_announce_management
 ; stop
)

 endproc

 process network[n,a]:noexit:=

 n ? CALLER:phone_number ! tone
 ;
 (
 connection_handler[n,a](CALLER)
 |||
 network[n,a]
)

 endproc

 process connection_handler[n,a](CALLER:phone_number):noexit:=

 n ! CALLER ? CALLED:phone_number ! conreq ? SCR_LIST:screen_list
 ;
 (
 [CALLED NotIn SCR_LIST] ->
 n ! CALLED ! ring
 ;
 (
 n ! CALLED ! connect
 ; n ! CALLER ! connect
 ; relay_user_events[n](CALLER,CALLED)

 []

25 January 29, 1997 12:21 pm

 n ! CALLED ! detect_forward ? FWD_NUMBER: phone_number
 ; n ! FWD_NUMBER ! ring
 ; n ! FWD_NUMBER ! connect
 ; n ! CALLER ! connect
 ; relay_user_events[n](CALLER,FWD_NUMBER)
)
 []
 [CALLED IsIn SCR_LIST] ->
 n ! CALLER ! CALLED ! unconditional_refusal
 ; stop
 []
 n ! CALLED ! busy
 ; stop
)

 []

 n ! CALLER ? CALLED_NUMBER:phone_number ! conreq_calling_card ?
CHARGE_NUMBER:phone_number
 ; network_complete_connection[n,a](CALLER, CALLED_NUMBER)

 endproc

 process relay_user_events[n](CALLER,CALLED:phone_number):noexit:=

 n ! CALLER ? EVENT:primitives [is_user_actions(EVENT)]
 ; n ! CALLED ! EVENT
 ; relay_user_events[n](CALLER,CALLED)

 []

 n ! CALLER ! discon_req ; stop

 endproc

 process network_complete_connection[n,a](CALLER,CALLED:phone_number):noexit:=

 n ! CALLED ! ring
 ; n ! CALLED ! connect
 ; n ! CALLER ! connect
 ;
 (
 relay_user_events[n](CALLER,CALLED)
 |||
 calling_card_intercept[n,a](CALLER)
)

 endproc

 process calling_card_intercept[n,a](CALLER:phone_number):noexit:=

 n ! CALLER ! pound
 ; a ! CALLER ! play_announce_new_number

26 January 29, 1997 12:21 pm

 ; n ! CALLER ? NEW_NUMBER:phone_number ! conreq
 ; network_complete_connection[n,a](CALLER,NEW_NUMBER)

 endproc
 endspec

