
- 1 -

Structural Models for Specifying Telephone Systems

Keywords: Telephone systems, telephone features, formal specification, specification styles, design, architecture,
structure, LOTOS.

1. Introduction

The structure of a specification of a distributed system should reflect the specification’s
purpose. If the purpose is requirement capture, the processes in the specification may represent
the constraints of the system. If the purpose is systems design, we may wish to emphasize the
abstract architectural components of the design. If the purpose is verification, the structure must
suit the preferences of the verification methods and tools. If the purpose is implementation, the
specification must exhibit a structure that corresponds to an efficient implementation, and must
reflect the architectural components in the implementation. For test case generation, the
specification should facilitate the extraction of relevant test cases with the available tools. It is
common to end up with several specifications during the study of a given system.

Vissers et al [VSVB91] wrote a fundamental paper on the subject of specification styles

Mohammed Faci, Luigi Logrippo, and Bernard Stepien

University of Ottawa
Telecommunications Software Engineeering Research Group

 Department of Computer Science
Ottawa, Ontario, Canada K1N 6N5

E-mail: (mfaci | luigi | bernard)@csi.uottawa.ca

Abstract. Two approaches, resource-oriented and constraint-oriented, for structuring telephone systems
specifications, are presented. Both approaches express behaviour by collections of communicating
processes, using the language LOTOS. However, requirements are distributed differently among processes.
Examples are taken from specifications of telephone systems, first basic, and then with features. The features
used as examples are call forwarding, originating call screening, and three-way calling. The two structuring
methods are compared.

- 2 -

in the LOTOS language [BB87][LFH92]. In that paper, it was shown that LOTOS can adapt
itself to different expressive needs. Four basic styles were identified: constraint-oriented,
resource-oriented, state-oriented and monolithic. Subsequent papers have addressed the
question of transformations between styles [BFLL95][FMN95]. Over the years, our group has
investigated the matter of specification styles by using as examples various types of telephony
systems. We found application not only for the four basic styles[FaLS90] [FaLS91] [BL93]
[FL94], but also for others, which possibly could be considered as derived ones, such as the
status-oriented style [SL93].

From a user’s point of view, a telephone system’s architecture is a simple one. It has two
components: the user (which, if one prefers, is the handset), and the switching system, which
represents everything else. In some respect, the switching system’s architecture is of no concern
to the user, as long as it provides the required services according to expectations. From a
designer’s point of view, however, the switching system’s architecture is a central issue.

In this paper, we illustrate two different structural approaches for specifying a telephone
system: the resource-oriented style and the constraint-oriented style. In the resource-oriented
style, the specification structure shows the architectural components of the design. By contrast,
in the constraint-oriented style, one focuses on the composition of the requirements, expressed
as behaviours. In this sense, one can say that the resource-oriented style is implementation-
oriented and the constraint-oriented one is requirement-oriented.

The paper assumes that the reader has already been exposed to LOTOS or has
familiarity with concepts such as process communication, synchronization, and composition
[Hoar85] [Miln89]. The LOTOS specifications presented are partial, e.g. we may omit
parameters, not consider all cases, etc., in order to keep the attention on the general structure.
Similarly, we did not use G-LOTOS [BNT94] in our graphical representation in order to avoid
the clutter of the details. We did, however, take inspiration from G-LOTOS.

2. The Resource-Oriented Specification Style

2.1 POTS: Plain Old Telephone Systems

 In the resource-oriented style, the specification structure follows the architecture of the
physical components of the system and it has an object-oriented flavor. Processes are similar to

- 3 -

class templates in object-oriented terminology [CRS90][Rud92]. The system is represented by
two entities, the user process and the switching system, which we will take to have a client role
and a server role, respectively. Note, however, that both the user process and the switching
system are part of the switch’s software, which implies that our reference to user is a reference
to a process inside the switch which acts on behalf of the user. So, the client entity, from which
a set of users can be instantiated, expresses the observable behaviour of the system, as seen from
the user. The server, of which a single instance exists for each switch, represents the behaviour
of the switching system. In LOTOS, we represent this high-level architecture by a parallel
composition between instances of phone users and a controller process, that handles the end-to-
end aspects of connection between users. The users themselves are mutually independent, thus
are described as processes in interleave with respect to each other. The following specification
fragment shows how to specify m user processes and a switching system (note that an
unbounded number of phones can be specified by using recursive interleave, this will be shown
later). A user process, expressed by a LOTOS process Phone, communicates with the switching

through gate n and with the user (outside world) through gate u.
(Phone [u, n] (1)

|||
...
|||
Phone [u, n] (m)

)
|[n]|
Switching [n]

In order to communicate, the users must place requests to the server. The server needs to
respond concurrently to requests from many different users. Every time the server receives a
request, it needs to create a new instance of a connection handler. A connection handler
template is defined as a LOTOS process Connection_Handler which can handle one connection
at a time. The template is instantiated with data specific to the user who will be part of the
connection. The Connection_Handler instantiation can be achieved also with a recursive
interleave mechanism, using a predefined action as a trigger. In this specification, the switching

process uses dialtone as a trigger to create a Connection_Handler process. The execution of the
latter is interleaved with the one of process Switching, and possibly with other instances of
Connection_Handler.

- 4 -

 process Switching [n]: noexit :=
n ?Caller: Digits !dialtone;
(Connection_Handler[n](Caller)

|||
Switching [n]

)
endproc

Connection_Handler makes a request for a connection (conreq), then establishes a
connection between Caller and Called.

process Connection_Handler [n] (Caller: Digits) : noexit :=
n !Caller !conreq ?Called: Digits;
Establish_Connection[n](Caller, Called)

endproc

Note the structure of the atomic action in the first line of process Switching. This means
that this process is ready to synchronize on gate n (with process Phone). It is ready to do so (!)
on a constant which represents the dialtone signal, and at the same time, it expects to receive (?)
the number of the Caller, which is of sort Digits. Similarly, in the first line of process
Connection_Handler, the process is ready to synchronize on a signal conreq and only on a
specific (i.e. previously received) Caller number while expecting to receive the number of the
Called. Note that constants are in lower cases, variables have upper case initials. Clear
specifications require carefully planned action structures, which should be as uniform as
possible throughout.

- 5 -

In the simplest model, the behaviour of a connection establisher consists in ringing the
called party and if this party answers the call, starting the voice exchange phase between the two
parties. After that, the server waits for a connection release event. This functionality can be
represented by the sequence of actions shown in Figure 1.

From an idle state, a caller (using phone i) interacts with the i user process by lifting the
handset, which we express as offhook action. Next, user process i synchronizes with the
switching on the dialtone action ➀. Since dialtone is used as detection action, an instance of
Connection_Handler is created. Once the user process collects the digits of the called party
through the dials action, the Connection_Handler synchronizes with the user process, on the
action conreq②, to request the selection of a route for voice transmission. Next, if the called

POTS_System

dialtone

Connection Handler

[]

Caller

Phone i

[]

Caller

Responder

Phones

 Fig. 1. Establishing a connection between two users: user i calls user j.

||

v_connect

ring

v_connect

routing

switching

conreq

Responder

answer

v_connect

ring

Phone j

1

2

5

3

4

Establish_Connection

offhook

dialtone

dials

conreq

v_connect

|||

- 6 -

party (phone j) is idle, the switching process rings ③ phone j, then if the called party answers,
the voice exchange phase between the two parties begins as indicated by the v_connect (for
voice connected) actions ④ and ⑤.

The following behaviour expression shows the state of a system where user 1 is
attempting to call user 3 and user 2 is attempting to call user 4:

(Phone [u, n] (1)
|||
Phone [u, n] (2)
|||
Phone [u, n] (3)
|||
Phone [u, n] (4)

)
|[n]|
(Establish_Connection[n](1,3)

|||
Establish_Connection[n](2,4)
|||
Switching [n]

)

Each of the four users is allowed to execute its specified behaviour independently of the
other three users. However, the ordering of actions between two users (e.g., 1 and 3) is
determined by their corresponding processes for establishing the connection (e.g.,
Establish_Connection[n] (1, 3)).

The mechanism for specifying busy state is explained in Section 2.6.2. The busy phone
goes into a process that continually offers the action busy and is unable to synchronize on
actions implying idle state, such as ring. We refer to [SL93] for a detailed discussion of this
point.

Note that what we show in this paper is still a very idealized picture of the system
architecture. In real systems, components will be distributed, channels will be interposed, and
there won’t be the direct communication between components implied by the |[n]| operator. The
specification of channels, as well as of other implementation details, is the object of further
refinements [BFLL95] [FMN95] and won’t be given in this paper.

- 7 -

2.2 Specification of Features

 A feature is intended to be available to users, consequently we can expect that some
new sequences of operations will be available in the client specification, which needs to match
corresponding sequences on the server side. Thus, a feature cannot always be represented by a
single black box that can be inserted at some specific location in the specification of a phone
system. Rather, it is a combination of distributed behaviours and resources that are combined to
realize the desired behaviour. Therefore, we need to characterize the principles governing such
distribution, to avoid scattering and lack of structure, identifying:

• Aspects dealing with basic types of functionalities;

• Aspects dealing with the activation of features; and

• Aspects dealing with implementation issues.

First, from the point of view of functionality, there are two basic kinds of features:
Features that extend the system with a new type of service, which we call technological features

and features that restrict some behaviour of the existing system or of some other existing
services, which we term policy features.

The second aspect deals with the activation of features: features can be passive or active.
A passive feature will get activated by the system in a background mode, without any action
from the user. Call answer or voice mail are passive because once subscribed to, they get
activated by events that are not under the subscriber’s control. An active feature is a feature that
needs some action of the user in order to get activated. For example, the three-way calling

feature will be activated only if the subscriber is part of an already established connection and
decides to add another party to a conversation. Mixed features combine the two characteristics.
For example, the call waiting feature is of a mixed kind because it responds passively to
incoming calls while the subscriber is engaged in another call, but the subscriber decides if she
wants to answer by performing a flash-hook action.

Finally, implementation issues deal with the efficient mapping of feature behaviours
onto physical system resources. We have already mentioned that the refinements required to
reach a real implementation architecture are beyond the scope of this paper.

- 8 -

2.3 Specifying Features in LOTOS

To specify features in LOTOS, we must find appropriate LOTOS constructs that express
the intended behaviour and, at the same time, allow the structuring of the specification for
clarity and future modifications. First, we present atomic LOTOS concepts appropriate for
feature specification, and then we discuss some stylistic considerations on how to piece these
atomic concepts together to obtain a readable specification.

A feature will usually be specified as an alternative or optional sequence of operations to
some other behaviour. In LOTOS there are three operators that can be used for such a purpose,
the interleave, the non-deterministic choice, and the disable operator.

• The interleave operator ||| is used when a feature is available concurrently with some
other behaviour either to a user or to the switch. This allows both the original
behaviour and the added feature to co-exist, with no side effects.

• The non-deterministic choice operator [] is used whenever a feature is a potential
replacement of another behaviour.

• The disable operator [> is used whenever a feature is intended to take over from
another established behaviour.

LOTOS guards ([E]->), which can be used in combination with any behaviour
expression, are well suited to portray the restriction functionality of policy features. In this case
the features are composed of both a behaviour and some control data. Guard constructs can also
be used to turn a feature’s behaviour expression on or off to reflect the fact that a user did or did
not subscribe. The following two examples summarize the above described design principles
for technological and policy features.

A user’s behaviour having subscribed to the call waiting and three way calling

technological features may be represented using interleave constructs, because these features
are available concurrently to the user while in the talk state:

u !Caller !offhook;
n !Caller !dialtone;
n !Caller !dials ?Called: digits;
...
(Talk [u, n] (Caller, Called)

- 9 -

|||
Call_Waiting [u, n](Caller)
|||
Three_Way_Calling [u, n](Caller)

)

 The processes Call_Waiting and Three_Way_Calling are defined as recursive
processes, with the necessary logic to ensure that only one instance of the feature is active at a
time, and that each feature can be activated more than once during the lifetime of the same call.
For example, if three way calling is activated by a user A, while talking to B, to form a
conference call between A, B, and C, then user A cannot activate a second instance of this
feature until the current instance is de-activated. However, once de-activated, user A may form
another conference call between A, B, and D.

Our next example illustrates the specification of a policy feature such as Originate Call

Screening (OCS). It portrays the fact that a switch has two operational ways to process a
connection request depending on the data presented by the OCS feature that is passed as
parameters in the conreq action. In this case the choice operator [] is used to indicate that the
two alternatives are mutually exclusive and that the guard expressions will determine which
branch is chosen.

n !Caller !conreq !Called ?Scr_List: Screen_List;
(

[Called NotIn Scr_List] ->
n !Called !ring;
...

[]
[Called IsIn Scr_List] ->

n !Caller !Called !refuse_req;
...

)

2.4 The Resource-oriented Control Mechanism

Control is achieved in LOTOS via two basic mechanisms, synchronization on actions
and guards that evaluate abstract data types.

In the resource oriented style, interactions occur between two behaviour expressions,
one that allows interleaved behaviours, the other that allows nondeterministic choices that are
resolved by the interleaved actions of the first behaviour as it goes through its various states.

- 10 -

Let us illustrate this concept with an example. Figure 2 shows a user process (phone)
which supports a feature. The behaviour of the feature is expressed by the sequence: B1 := (f; g;
...). The behaviour of basic call is expressed by the sequence: B2 := (a; b; c; ...). However, the
requirements of this feature dictate that it can be activated only after basic call has executed its
first action a. The resulting specification of the phone is then expressed as: Phone := a; (B3 |||

B1), where B3 := (b; c; ...). A given phone may at any time be subject of requests (feature
activation) from an unlimited number of other phones via the network and more precisely
connection handler instances. In figure 2 we have represented two such instances of connection
handlers performing requests on a single instance of a phone. The basic call sequence of the
phone starts by synchronizing with the first connection handler that offers action a, as shown by
➀. After this, this connection handler and the phone can continue the basic call sequence ②,
however at any point another connection handler can start a feature sequence, which can
continue in parallel with the basic call sequence ➂. Many features can be specified using these
principles. Guards involving simple abstract data types can be used to turn features on or off

depending on the subscriber’s choices, as well as to manage the invocation of features
behaviours.

This approach applies to policy features as well. The main difference is that policy
features will include appropriate guards to enforce the policy. There will be a side that is
deterministic, driven by guards, and another side that is not. The synchronization mechanism
between the two sides resolves the non-determinism and enforces the policy globally.

- 11 -

The specification has to be decomposed into processes that represent individual
components of the system and then these components need to be decomposed further by classes
of reusable functionalities. The design of the user behaviour specification follows a different
pattern from the design of a switching behaviour. This is due to the fact that a switching
mechanism is basically a server (or more precisely an agent) that receives requests from many
clients that are the users. We will look at the separate architectures of these two main
components.

2.5 Structural Considerations for the Client

In the basic call model, a user can play two mutually exclusive roles: a call initiator or a
call responder. This is represented naturally by a nondeterministic choice construct:

User := Call_Initiator [] Call_Responder

[]

|||

Connection_Handler 1

Phonea b c

a

b c

f g

Switching

 Fig. 2. Synchronization paths in the resource oriented style

1

2

f g

|||

||

[]

Connection_Handler 2

a b c

f g

3

- 12 -

 Within these roles, both categories of features (i.e., technological and policy) are
represented by a mix of interleave and non deterministic choice constructs that are composed
with other behaviours.

2.5.1 Feature Activation

 As mentioned, the activation of a feature is controlled either through synchronization
with actions of a user or as passive response to signals from the switching process. Guard
constructs are used only to reflect feature subscription status that will turn feature behaviour
expressions on or off depending on the choices of the subscriber that are represented by values
of formal parameters. But here we need to stress the fact that guarding a feature’s behaviour is
not enough since some features have the additional side effect of restricting other behaviours.
For example, integrating call waiting into a basic call system requires the suppression of busy
signals in some states, such as the talking state.

u !Caller !offhook;
(Call_Establishment [u, n](Caller)

|||
([CallWaiting eq on]-> Call_Waiting [u, n](Caller)

|||
 [CallWaiting eq off]-> Busy_Signal [u, n](Caller)
)

)

2.5.2 Interleave Constructs

 Interleave constructs are used when a feature’s behaviour can be activated at any point
in the basic call sequence, as a concurrent alternative. This means that a feature such as call

forward on busy or call answer is offered at any point in time without distracting the current
active behaviour.

u !Caller !offhook;
(

n !Caller !dialtone;
n !Caller !dials ?Called: Digits;
...
|||

 Call_Forward[u, n](Caller, ForwardNumber)

- 13 -

)
where
 process Call_Forward[u, n](Caller, AnotherNumber: Digits): noexit :=

 n !Caller !detect_forward;
Establish_New_Connection [u, n](Caller, AnotherNumber)

endproc

 In the above behaviour expression the call forward behaviour is executed in parallel
with the behaviour for establishing a call, say from A to B. Assuming that A forwards its calls to
D, the Forward_Call process may be activated, to forward calls from C to D, when C attempts
to call A, while the call from A to B continues. Both passive and active features can be
represented with this construct. The forward call shown above is of a passive nature, but the
three way calling feature that we call active could be represented using the same type of
construct.

2.5.3 Choice Construct

 Choice constructs can be used deterministically when two behaviours are mutually
exclusive or nondeterministically when the resolution of non-determinism resides in the
environment which in this case is the server side.

 ...
n !Caller !conreq ?Called: Digits ?Scr_List:ScreenList;
(

[Called NotIn Scr_List]->
n !Called !ring;
...

[]
[Called IsIn Scr_List]->

 n !Caller !Called !Refuse_Connection;
...

)
In the above example (showing the server side) the choice between action ring and

refuse_connection will be determined by the server’s evaluation of the connection request using
the screening list that the client has passed to the server. The client side doesn’t use guard
constructs in this case because it is not in control of the decision to resolve the non-determinism.

- 14 -

2.6 Structural Considerations for the Server

The server responds to requests from clients using a given set of operations that satisfy
them. Each instance of connection handler handles one request at a time. For example, if a user
is already connected and decides to set up a three way call, the third party is requested via
another connection request. This one is handled by the server which creates another instance of
a connection handler. The server is designed in a monolithic style with choices to handle the
two main situations that arise due to the presence of features, i.e. the various kinds of requests
and the processing of the requests. On the server side there are no specific blocks of actions that
correspond to specific features. There are only resources that can be invoked by features
described on the client side. These resources are similar to SIBs (Service Independent Blocks)
in Intelligent Networks [DV92][Th94].

Operations that correspond to features are inserted as nondeterministic alternatives
among the steps of the Connection_Handler process described for the basic call model. For
example, the call forward feature is specified as an alternative to the ring or busy operations.
Here we need to restructure the original behaviour expression of the Connection_Handler

because a new process Attempt_Call has emerged from the introduction of a new operation that
handles the call forward feature.

process Connection_Handler[n]: noexit :=
n ?Caller: Digits !conreq ?Called: Digits;
Attempt_Connect [n](Caller, Called)

where
process Attempt_Connect[n](Caller, Called: Digits):noexit:=

n !Called !ring;
Connect_parties...

[]
n !Called !busy;
...

[]
n !Caller !detect_forward ?AnotherNumber: Digits;
Attempt_Call [n](Caller, AnotherNumber)

endproc
endproc

- 15 -

2.6.1 Feature Policy Data Passing Considerations

Policy features use data bases to help the server decide on the operations to execute in
order to provide their functionalities. These data bases are represented by abstract data types,
and are not shown in this paper. There will be different kinds of request handling actions where
we will find the usual value of the terminating number but with some critical data that represent
the conditions that trigger policy features. In fact, the switching process is strictly an execution
device that by itself does not know about the user’s subscribed features unless it is told. The
user process is where the knowledge resides and this knowledge has to be passed on to the
switch when making a connection request or when being solicited by a switch, depending on
whether the user is in an active or passive state (caller or responder). For example, in the case of
Originate Call Screening feature, the switch needs to receive the screening list in the connection
request, while in the case of a Terminating Call Screening, the switch needs to receive the
screening list from the called user to decide whether it will establish the connection or refuse it.
Consequently, the connection handler will have to contain some non-deterministic choices of
requesting data, depending on the type of request to be handled:

process Connection_Handler[n]: noexit :=
n ?Caller: Digits !conreq ?Called: Digits;
Establish_Connection[n](Caller, Called, NoData)
[]
n !Caller !conreq ?Called: Digits ?PolicyData: PolicyType;
Establish_Connection[n](Caller, Called, PolicyData)

endproc

2.6.2 Feature Control and Busy State

 In the case of the server, control is achieved by both synchronization and evaluation of
guard expressions. The process Establish_Connection will be composed mainly of choices
between behaviours that are resolved either by the evaluation of the feature policy data received
in the request, or by the state in which the client is because of its activated features. For
example, the decision to actually complete a connection by ringing the requested party may be
taken on the basis of originate call screening data received by the switch. In this case, guard

- 16 -

constructs are necessary:

[Called NotIn Scr_List] -> n !Called !ring; ...
[]
[Called IsIn Scr_List] -> n !Caller !Called !refuse_req; ...

Another example illustrates the case of a decision taken in the switch on the basis of the state of
the called party, that can be either free, leading to a ring, or busy:

(n !Called !ring ; ...
[]
n !Called !busy ; ...

)

This is resolved by the called party, which is represented as follows:

 n ! Called ! ring;
(

 u ! Called ! answer;
n ! Called ! voice_connect;
Talking[u]

 |||

 n ! Called ! busy ; Busy_signal[n](Called)
)

Where Busy_signal is a process that does nothing but offer busy recursively. After there
has been synchronization between client and server on ring, another connection attempt by
another instance of the switch can only synchronize on the busy action that is in interleave with
the normal connection path of the client.

As can be seen in the two above examples, the control of a feature can be internal or
external. The internal control results from the evaluation of guard expressions, while the
external control results from synchronization with actions of the client.

2.7 Control via Client-Server Interactions

In the two previous sections we have considered the structure of the two main
components separately. Now we need to demonstrate how they interact to achieve the
functionality of a given feature. We will look at two examples illustrating respectively the

- 17 -

technological and the policy feature cases. These are illustrations of the principles shown in
Figure 2.

2.7.1 Example of Technology Features: Call forward

From a user’s point of view, we distinguish between Call Forward Always (CFA) and
Call Forward on Busy (CFB). The first feature allows a user to forward all his/her incoming
calls to a second (predetermined) number; the second one forwards incoming calls only if the

user is busy. From a structural point of view, both CFA and CFB can be designed to make use of
a single resource represented by a Call_Forward process, whose functionality is to establish a
connection between two users: the one to whom the call is originally directed and the one to
whom the call is forwarded. However, the different instances of this process need to be guarded
appropriately in order to reflect the user’s subscription choices. Figure 3 shows the structure of
a phone which is designed to support both CFA and CFB, although a user may not want to
activate both of them at the same time. Since a phone can play the roles of call initiator or call
responder, then we must make provisions to support both CFA and CFB for each of the roles. A

Phone i

[]

Call Initiator

dialtone

[]

|||
Establish_Connection

Call_Forward

Call_Forward

detect_forward Call_Forward

 Fig. 3. Structure of a phone design supporting Call Forward

Call Responder

ring
Respond_to_Call

Call_Forward

|||

Case 1

Case 2

Case 3

CFA

CFB

CFB

- 18 -

structure of a well designed phone must consider the following cases:

2.7.1.1 Support for the CFA

This is shown as case 3 in Figure 3. It is expressed as a third alternative to the call

initiator and call responder roles. This alternative is guarded by a detect_forward condition,
which indicates whether or not the feature is activated. If it is, this alternative is chosen
regardless of whether the user is idle or busy. Note that process Call_Forward is recursive,
meaning that a forwarded phone offers continuously the forward signal. This is all process
Call_Forward does. As shown below, the actual forwarding is done by the switch.

2.7.1.2 Support for the CFB in a call initiator role

In a call initiator role, a phone becomes busy as soon as user A sends an offhook signal
to the switch (i.e., A picks up the handset) and receives a dialtone. This suggests that,
structurally, the Call_Forward process must be placed within the call initiator alternative, and
behaviourally, its execution is triggered by the dialtone action, as soon as another user calls A.
This is shown as case 1 in the figure. Also, note that the Call_Forward process may execute in
parallel with the Establish_Connection process (Call_Forward ||| Establish_Connection), which
means that (1) a call directed to A, during any stage of the call processing phases after A has
become busy, is forwarded to another predetermined number, and (2) user A proceeds with its
normal call processing behaviour.

2.7.1.3 Support for the CFB in a call responder role

In a call responder role, a phone (B) becomes busy as soon as a connection path (circuit)
is reserved for communication between the calling user A and the called user B. This suggests
that, structurally, the Call_Forward process must be placed within the call responder

alternative, and behaviourally, its execution is triggered by the ring action, as soon as another
user calls B. This is shown as case 2 in the figure. Again, note that the Call_Forward process
may execute in parallel with the Respond_to_Call process (Call_Forward ||| Respond_to_Call),
which means that (1) a call directed to B, during any stage of the call processing phases after B
has become busy, is forwarded to another predetermined number, and (2) B proceeds with its
normal call processing behaviour.

- 19 -

2.7.1.4 A Call Scenario in the Context of Call Forward

Figure 4 shows the invocation of the different instances of the Call_Forward process in
the context of a typical call from user A to user B. We assume that both phones (A and B) are
instances of the template phone of Figure 3. Also, we assume that A is the caller and B is the
called. In addition, we assume that A and B are in idle state and have activated CFB, but not
CFA. User A starts the call scenario by sending an offhook signal to the switch (not shown in the
Figure). The switch marks A’s state as busy and sends a dialtone to A, as shown by the
synchronization point ➀. After a connection request (conreq action in the Figure) by the switch
and the selection of a communication path, the switch sends a ring to user B. This is shown by
② in the figure. Now, suppose that while B is ringing, a third user C (not shown in the Figure)
attempts to call B. Once the connection handler for C detects that B is busy and that B has
activated CFB, synchronization occurs between the action detect_forward (executing in the
context of the C connection handler) and same action in process Call_Forward in the behaviour
(Call_Forward ||| Respond_to_Call) of B, as shown by ➂. C’s connection handler will then
take over the execution to establish a connection with the user to whom the call is forwarded.

Other scenarios can be easily constructed by making different assumptions about users’
states and activation of features.

2.7.1.5 Server design

The design of the server is considerably simpler. First of all, the call forward detection
action is an alternative to the ring operation. Then if a call forward has been detected, the switch
merely attempts to establish a new call using the new number received from the client to which
the call is forwarded. This results in creating a new instance of process Attempt_connect with
the forward number as a formal parameter. There is no need to distinguish between CFA or CFB
since the result is the same. Note that the detect_forward action in the new instance of process
Attempt_connect could apply to the new number in case this one also has activated its call
forward feature. This process is truly reusable.

- 20 -

 Fig. 4. Structure of a phone design, which support Call Forward Busy

➀ ②

|||

Connection Handler

conreq []

Connect_parties

Attempt_Connect

ring

detect_forward

Connection Handler

conreq
[]

Connect_parties

Attempt_Connect

ring

detect_forward Attempt_connect

③

Phone A

[]

Call Initiator

dialtone

[]

|||
Establish_Connection

Call_Forward

Call_Forward

detect_forward Call_Forward

Call Responder

ring
Respond_to_Call

Call_Forward

|||

Switching System

||

dialtone

Phone B

[]

Call Initiator

dialtone

[]

|||
Establish_Connection

Call_Forward

Call_Forward

detect_forward Call_Forward

Call Responder

ring
Respond_to_Call

Call_Forward

|||

(A)

(C)

- 21 -

2.7.2 Example of Policy Features: Originating Call Screening

Originating Call Screening is a feature which allows a subscriber to prevent outgoing
calls to be made to a predefined set of numbers. It is an interesting example of the policy
features class. First, the policy data is located in the client entity. When a request for this feature

Switching System

conreq
[]

refuse_connect

Attempt_Connect

Connection_Handler

pass screening list

Called IsIn Scr_List

Phone i

[]

Caller Initiator

_

Call Responder

conreq
connect

refuseCon

talk
[]

[]

Caller Initiator

Call Responder

[]

(phone B)

Abandon_Connection

dialtone conreq

connect Talking

➀

dialtone

Called NotIn Scr_List

②

refuse_connect Abandon_Connection

Phone A

||

|||

ring connect

 Fig. 5. Originate Call Screening Example

❶ ❷

ring

❸ case 1

case 2

...

Respond_to_Call

- 22 -

is made to the switch, it will include the screening list in the data passed to the switching
process. Using this data, the switch will evaluate the request of the client and choose only one of
the two alternatives of ringing the requested number, or sending back a connection refusal to the
client. Here nondeterminism is resolved essentially by guard constructs. The client itself is
ready to synchronize on either the connect or the refuse_connect action depending on what
becomes available on the server side. However in order to synchronize on the connect operation
with the originating client, the switch first needs to synchronize on the ring operation of the
terminating client. Here the guards are used to enforce a policy, rather than to signal availability
of the feature.

Let us trace two typical call scenarios, cases 1 and 2 in Figure 5, from A to B in the
context of OCS.

Assuming that A is the call initiator, and that B is not in the screening list of A, when a
connection request (conreq) is made, the list of numbers to be screened is passed from the phone
process to the switch ❶. Assuming that the called number B is idle, a ring is sent from the
switch to user B ❷. Finally, the voice exchange phase begins as shown by ❸.

Now let assume that B is in the screening list of A, shown as case 2 in the Figure. As
soon as a connection request is made ➀, the switching system will refuse the connection ②, and
proceeds to abandon the call and release the system resources.

3. The Constraint-oriented Specification Style

3.1 POTS again

Many of the specification concepts we have seen for resource-oriented style also apply
to resource-oriented style, however there is a change in perspective. While in the resource-
oriented style processes play the role of physical system components, in the constraint-oriented
style they express logical constraints that must be satisfied by the system
[Boch80][ISO88b][TrVs95][VSVB91]. The parallel composition operators acquire a logical
meaning in this style. For example, the expression P1 || P2 || P3 means that every action in the
system must be the result of synchronization, or ‘agreement’ of all three processes (as well as of
the environment) on that action. In other words, it means that the requirements or ‘constraints’
of all three processes must be simultaneously satisfied by the environment. The expression P1 |||
P2 ||| P3 means instead that each action must satisfy the constraints of at least one of the three

- 23 -

processes. As we have just implied, there are no hidden gates in a constraint-oriented LOTOS
specification, all gates are external and all actions of all processes require participation of the
environment. Thus, specifications written in this style describe externally observable behaviour
only.

Using this perspective, we identified three types of constraints for a POTS specification
[FaLS91]:

(1) Local constraints are used to enforce the appropriate sequences of events at each
telephone, and are different according to whether the telephone is a Caller or a Called. For
example, on the caller side, dials must proceed talk. Therefore local constraints are represented
by processes Caller and Called and an instance of each of these is associated with each
telephone existing in the system. Because these two processes are independent of each other,
they are composed by the interleaving operator |||. Typical behaviours are shown in Figure 7.

(2) End-to-End constraints are related to each connection, and enforce the appropriate
sequence of actions between telephones in a connection. For example, ringing at the Called

must necessarily follow dialling at the Caller. Process Controller enforces these constraints.
Because they must apply to both Caller and Called, we have the structure (Caller ||| Called) ||

Controller. Thus the controller must participate in every action of the Caller, as well as in every
action of the Called, separately. Figure 6 shows an instance of this structure. Its behaviour is
shown in Figure 8. Each such structure constitutes a connection. An arbitrary number of
connections is created by recursive interleaving in a process SystemConnections, see below.

(3) Global constraints are system-wide constraints. In our specification we identified
one main such constraint, which is the fact that at any time, a number is used at most once. This
constraint is enforced by the process GlobalConstraints. Because global constraints must be
satisfied simultaneously over the whole system, represented by process SystemConnections, we
have the structure SystemConnections || GlobalConstraints.

In Figure 6, local constraints are expressed by A and B, end-to-end constraints are
expressed by C1, while global constraints are implied. LOTOS gates (represented by dark
squares) are used to structure the specification according to the three different phases of a
telephone communication: connection, talking, and disconnection. The reader unfamiliar with
process algebra should note that lines denote shared gates, and not busses. Assuming that A
plays a caller’s role and B plays a called role, then for the connection phase, process C1

- 24 -

synchronizes with either A or B to exchange signalling information such the offhook and
dialtone signals; this type of synchronization is achieved through the gate potsg. Once the
connection is established, the voice exchange phase is achieved through a three-way
communication between A, B, and C1. This synchronization is represented by the LOTOS gate

potst

potsh

potsg potsg ☎ ☎A B

potsh

C1

 Fig. 6. Structure of a POTS connection.

 potsg !ringsfrom (B, A)

potsg !answer (B, A)

potst !talks (A, B)

•

•

•

potsh !hangsup (B)

 potsg !offhookcall (A)

 potsg !getstone (A)

 potsg !dials (A, B)

potsg !ringsback (A, B)

 potst !talks (A, B)

• potsg !hangsup (A)

potsg !hangsup (A) •

•

•

•

• •potsg !busysignal (A)

C
on

tr
ol

le
r

Caller Side (A) Called Side (B)

•• potsg !hangsup (A)

• potsg !hangsup (A)

•

•

potsh !hangsup (A)

 Fig. 7. Behaviour of Caller and Called with respect to Controller

- 25 -

potst (which expresses the talk phase in a connection). Finally, the hang up phase is expressed
by the LOTOS gate potsh (which expresses the hang up phase in a connection), where C1 has a
two-way synchronization with either A or B. By restricting the synchronization to two-way
communication, we allow for the independent hang up from either A or B. As an example,
synchronization between A and C1 may occur on potsg only if A in not busy. In fact, taking the
global constraints into consideration, the above synchronizations become three-way (for the
gates potsg and potsh) and four-way (for potst). Figures 7 and 8 show the relevant behaviour
trees.

We now provide the details of the general structure already introduced above. The basic
structure of a constraint oriented description of a telephone system is illustrated in Figure 9.

 potsg !offhook (A)

 pots !getstone (A)

 potsg !dials (A, B)

 potsg !ringsfrom (B, A)

 potsg !ringsback (A, B)

 potsg !answer (B, A)

 potst !talks (A, B)

• potsh !hangsup(A)

•

•

•

•

•

•

•

•

••
potsh !hangsup (B) potsh !hangsup (A)

•potsg !busysignal(A)

• potsh !hangsup(A)

• potsh !hangsup(A)

• potsh !hangsup(A)

• potsh !hangsup(A)

• potsh !hangsup(A) potsh !hangsup(B)

•potsh !hangsup(A)

C1

 Fig. 8. Behaviour of Controller with respect to Caller and Called

- 26 -

The top-level behaviour is composed of two processes, SystemConnections and
GlobalConstraints. Stated informally, we want to create as many connections as desired
provided that neither the calling nor the called number is already in use. GlobalConstraints,
which we will describe later, enforces global constraints by keeping track of free and busy
numbers and synchronizing with SystemConnections to exchange values:

SystemConnections[potsg, potsh, potst]
 ||
 GlobalConstraints [potsg, potsh, potst](BusySet)
The parameter to the Global Constraints process is the set of busy numbers, which is

empty at the beginning.
Process SystemConnections is composed of two processes: SingleConnection

interleaved with SystemConnections itself. This creates the desired effect of being able to have
an arbitrary number of connections existing simultaneously. At the initiation of a connection,
the identity of the called party is unknown but its template behaviour is ready to be instantiated.

 process SystemConnections [potsg, potsh, potst] : noexit :=
(

 SingleConnection [potsg, potsh, potst]

SystemConnections

GlobalConstraints

||

|||

oper x Pred

[]

[]

...

enforcing
constraints

SingleConnection i

|||
Called

||

Controller

...

Caller

...

SingleConnection j

|||
Called

||

Controller

...

Caller

...

SingleConnection n

|||
Called

||

Controller

...

Caller

...

constraint x

oper z Pred

constraint z

 Fig. 9. Abstract view of a POTS connection

- 27 -

 |||
 i; SystemConnections[potsg, potsh, potst]

)
 endproc

The process SingleConnection is viewed as the composition of three processes: Caller,
Called and Controller. The conceptual notion of modeling the call initiator (Caller) side and the
call responder (Called) side by two interleaved processes is quite natural; it reflects the
distributed nature of the system, in that local constraints apply to separate portions of behaviour.
Caller and Called exchange information by synchronization with the Controller.

process SingleConnection [potsg, potsh, potst] : exit :=
((
 CallerHandler [potsg, potsh, potst]

 |[potst]|
 CalledHandler[potsg, potsh, potst]
)

 ||
 Controller [potsg, potsh, potst]
)

endproc

3.2 The Constraint-oriented Control Mechanism

As in the resource-oriented style, control is achieved not only by the temporal ordering
of the actions of the constraint processes, but also via predicates attached to actions. Predicates
involve the evaluation of abstract data types, which mimic data structures which are maintained
to record the states of phones. They are consulted for each operation occurring in the system to
determine if an action is available or visible, thus allowing or disallowing potential
synchronizations which cause triggering of behaviours. The process GlobalConstraints

manipulates the data structures of the specification. It synchronizes with SystemConnections in
order to update the list of busy numbers. The mechanics of updates are best described with
respect to the data structure itself.

Our first data structure EngagedSet is a set of pairs which records the engaged pairs,
where two users are engaged if the called user is the ringing state. The caller is inserted in the

- 28 -

EngagedSet when an offhook is executed. The use of EngagedSet is illustrated in Figure 10.

 If several callers execute the dials event while attempting to call the same number, only
one of them will succeed to make the Called ring. Therefore, we must remember which
numbers have executed the Rings event so that they may not ring again for another caller. To do
so, we define a second data structure BusySet. If the Called is not busy, the Rings event is
executed and the associated phone number is added to the set BusySet. If the called number is
busy then the caller must receive a busy signal and the BusySet is not modified. Figure 11

GlobalConstraints

offhook ? N N NotIn EngSet

operation n Predicate

[]

[]

...

Data
Structure
EngSet

up
da

te
:

In
se

rt
(N

,E
ng

Se
t)

SingleConnection

||

Caller N

offhook ! N

dialtone ! N

...

Controller

offhook ? N

dialtone ! N

...

||

ring! C

consulting
EngSet

passing
value N

 Fig. 10. Selecting offhook requires consultation of EngSet (engaged set)

- 29 -

presents a diagrammatic view of the use of this data structure.

Additional details about a complete POTS specification in LOTOS are given in
[FLS91].

3.3 Specification of Features in the Constraint-oriented Style

With some simplification, we define a feature as an extension of the functionality of an
existing telephone system. In general, a feature extends either the calling side or the called side,
or both. To extend a system with a new functionality, we first decide on the role of the feature,

GlobalConstraints

ring ? C C NotIn BusySet

[]

[]

...

Data
Structure
BusySet

up
da

te
:

In
se

rt
(C

,B
us

yS
et

)

SingleConnection

||

Controller

offhook ? N

dialtone ! N

...

||

ring! C

consulting
EngSet

Called C

ring? C

answer

...

[]
busy? C

...

busy ? C C IsIn BusySet

depending on
evaluation of
predicates

[]
busy! C

...connect

 Fig. 11. Selecting ring or busy based on BusySet

- 30 -

which can be derived from its informal description. The integration of the feature’s behaviour
into the system is accomplished by making the appropriate modifications to the user on which
the feature is to be activated, as well as to its controller.Thus, in the constraint-oriented style,
features are themselves constraints. In the most basic terms, if one adds a feature F to a POTS
system A (playing a caller or called role), the local constraints of the combined system will be
specified as A |[L]| F, for some set of gates L, thus allowing a pleasing modularity. Of course,
the processes representing the other constraints may also need to be modified in order to
properly synchronize with F.

Two examples are provided to illustrate the two basic categories of features, the
technological and policy features.

3.4 Technological Feature: Three Way Calling

The three way calling feature (Twc) is specified as an instance of the connection entity.
When a user adds a third party to a call, another connection entity is instantiated. The
mechanism for achieving a three way communication in the context of a POTS connection is the
following.

Figure 12 shows the static structure of the POTS connection (a) and of the Twc

Connection (b). The Twc structure of (b) is very similar to the POTS structure of (a), except for
the calling side of the connection which now represents the local constraints of the Twc feature.

From the analysis of the informal description of the feature, we deduce that Twc has a
calling role, meaning that the first action of the feature requires synchronization with the caller.

Before we give the complete behaviour of the extended specification, let us identify the

potsg
Twcg

potsh

☎C

twct

twclink

C2
Twc(A)

potst

potsh

potsg potsg ☎ ☎A B

potsh

C1

(a) POTS connection (b) TWC connection

 Fig. 12. Structure of a POTS and TWC connections in isolation

- 31 -

local and end-to-end constraints, which express the formal specification of Twc, in isolation.
To define the constraints on this feature we analyse the sequence of actions that can be

exchanged between the feature and its environment, namely the switching system and
subscriber A. A behavioural representation of the feature is shown in Figure 13. Assuming that
the feature executes in a context where A is talking to B, A starts the feature with a flashhook

signal, then continues in a similar fashion as in POTS, until a talking state between A and C is
reached. After the first flashhook, A may cancel the invocation of Twc, by sending a second
flashhook before the talking state is reached. If the feature is cancelled, it returns to its initial
state; the next flashhook from the initial state invokes a new instance. If the talking state

between A and C is reached, the feature allows for another flashhook, which permits the system
to re-activate the connection between A and B while maintaining A and C in a talking state.

The structural integration of the subcomponents (i.e., POTS and Twc) is shown in
Figure 14. However, the structure of the connections is only part of the solution for providing
the three way calling feature in the POTS context. The other part is the integration of the two
structures so that the desired behaviour is achieved. If we assume that A has a calling role and
both B and C have a called role, then the two processes A and Twc(A) must have a common
synchronization point which allows user A, while in a talking state, to flash the hook and

•
 twclink !flashhook (A) (* B onhold *)

•
 twcg !getstone (A)

•
 twcg !dials (A, C)

•
 potsg !rings (C, A)

•
 twcg !ringsback (A, C)

•
 potsg !answer (C, A)

•

•
 twclink !flashhook (A)

 twct !talks (A, C)

twct !talks (A, B, C)

 twclink !flashhook (A)

 Fig. 13. Simplified LTS of the three way calling feature

(A is talking to B)

- 32 -

transfer control to the Twc feature. This is done by identifying the potsh gate of process A with
gate twclink of process Twc(A), by using the LOTOS gate relabeling feature. The behaviour of
the resulting structure is shown in Figure 15. Note that we have abstracted from LOTOS gates
in the figure. For example, the flashhook signal results from synchronization of the two sub-
connections and the global constraints process with the user on gate TwcLink but this gate is not
shown in the figure.

Note that the Twc behaviour of Figure 13 is integrated in that of Figure 15, although the

arrow back to initial state is not shown.

☎

potst

potsh

potsg potsg ☎☎ A B

potsg
Twcg

potsh

☎C

C1

twct

twclink

C2
Twc(A)

Subconnection 2

Subconnection 1

 Fig. 14. Integration of Twc into POTS: Top level structure

- 33 -

Thus, the integration of this feature into POTS requires the specifications of the
following two subconnections:

• Subconnection 1 := (Pots(A) |[potst]| Pots(B)) || C1

• Subconnection 2 := (Twc(A) |[twct]| Pots(C)) || C2

As mentioned, each subconnection has the same general structure as a single POTS
connection. This is illustrated in Figure 16. However some adaptations are necessary. We need
to modify the calling side of a POTSConnection process so that it communicates with the
process TwcConnection, whose behaviour is expressed by subconnection 2. We also need to
respecify the corresponding behaviour of the POTSController (C1) and the TwcController (C2)
processes so that they relate to each other, and we need to compose the two subconnections so

• offhook (A)

•

•
 getstone (A)

•
 dials (A, B)

 rings (B, A)

•

•
 ringsback (A, B)

• answer (B, A)

 flashhook (A)

 flashhook (A)

•
 flashhook (A)

•
 getstone (A)

•
 dials (A, D)

•
 rings (D, A)

•
 ringsback (A, D)

•
 answer (D, A)

•

 flashhook (A)

•
 flashhook (A)

•
 flashhook (A)

 talks (A, B) talks (A, D)

hold (A, B) talks (A, B, D)

POTS behaviour Twc behaviour

•

 Fig. 15. LTSs of Twc in the context of POTS.

•

•

• talks (A, B)

 talks (A, B, D)

- 34 -

that they synchronize on their common actions. Synchronization between the subconnections
occurs on gate TwcLink, which is used for exchanging the signals flashhook and hangsup which
occur on A.

Finally, each modification of the local or end-to-end constraints requires a modification
of the global constraints to support the additional behaviour. In addition to the BusyList and
EngagedList that we described previously, three additional lists are required to maintain the
global view of the system, in the presence of Twc:.

SystemConnections

GlobalConstraints

||
[]

[]

...

|[TwcLink]|

|||
Called

||

PotsController

...

PotsCaller

...

SingleConnection i

PotsConnection

offhook offhooh

flashho

|||
Called

||

TwcController

...

TwcCaller

...

TwcConnection

flashhook
flashhook

talk
|||

TwcList TwcUsers HoldPairs

Ring
oper i Pred

constraint i

flashhook Pred

constraint n

consulting
data structures

(sub-connection 1)

(sub-connection 2)

 Fig. 16. Abstract representation of three way calling feature

1

1

1
1

1

- 35 -

• TwcList: A list of single elements, where each element is a Twc subscriber; this is a
static list. A user can execute a flash hook signal only if he/she is in this list.

• TwcUsers: The list of users who have activated the feature. This is a subset of
TwcList. A user (A) is inserted in this list when synchronization occurs on the first
flash hook signal. If A reaches a talking state with C, the second flash hook has no
effect on the list. If A abandons the call before C rings, or if C does not answer, the
second flashhook has the effect of removing A from the list. If C rings, A is
removed from the list when the third flashhook occurs, or when A hangs up.

• HoldPairs: List of pairs (A, B), where A has put B on hold, by way of the flash-

hook. If the second flashhook occurs before the talking state is reached, the pair is
used to identify the user to which a ring reminder is to be sent. If it occurs after, the
pair is removed from the list.

3.5 Policy Feature: Originating Call Screening

This feature has a caller role, yielding the structure shown in Figure 17. It imposes

further constraints on the caller side with respect to the POTS connection. One such constraint
allows a called party B to ring for A only if B is not in the Scr_List of A. So, after the dials(A,

B) action in the LTS, the system now offers a new alternative, the action refuse(A,B), to indicate
that a connection from A to B is not possible if B is in the Scr_List. If A dials a user who is not
in the list, then the system’s behaviour is reduced to that of a normal POTS call.

This feature can be naturally specified by adding the Scr_List to the data structures of
the global constraints process. Consequently we need to add another formal parameter to the
GlobalConstraints process, modify the predicates associated with the ring action and add

☎ ☎ B A C1

Scr_List = {B}

 Fig. 17. Structure of the specification which integrates Ocs into POTS

- 36 -

another action to indicate that a refusal has occurred. The new data structure is somewhat
different from the Busy or EngagedSet data structures because it is set once for all and is not
updated via events as we have seen before. On the SingleConnection side we need also to add a
choice construct to indicate that a connection can be refused.

In Figure 18 we observe how the nondeterministic choices of the Called and the
Controller processes are resolved with the evaluation of the predicates of the ring and refuse

GlobalConstraints

ring ? C C NotIn Scr_List

[]

[]

...

Data
Structure
Scr_List

SingleConnection

||

Controller

offhook ? N

dialtone ! N

...

||

ring! C

consulting
EngSet

Called C

ring? C

answer

...

[]
refuse

...

refuse ? C C IsIn Scr_List

depending on
evaluation of
predicates

[]
refuse

...connect

set at
initialisation
time

 Fig. 18. Originating Call Screening Feature

- 37 -

operations in the global constraints process. The nature of these predicates makes the associated
operations mutually exclusive.

4. Comparison of the Resource and Constraint oriented specification styles

The two specification styles we have presented have each its own applications and
advantages. The LOTOSPHERE software development methodology [BvdLV] suggests a
specific role for each specification style in a software development trajectory. The constraint-
oriented style is closer to the requirements level, while the resource-oriented style is closer to
the implementation level. Our results support this view.

4.1 General Structure

The resource-oriented style allows a structuring of the specification that can be
visualized easily in terms of action sequences. The features are strongly associated to states in
both the client and the server. Control code of features can easily be located in relation to the
basic call model.

The constraint-oriented approach allows the designer to define the system as a black box
which interacts with its environment via a well defined set of primitives. From this perspective,
the structure is appealing. Once the observable global behaviour is captured, the black box can
be decomposed into several types of constraints which help the designer to achieve a clear
separation of concerns. Local constraints localize design issues so that both the caller entity and
the called entity are expressed in terms of their allowed sequences independent of each other.
End-to-end constraints allow the designer to establish a certain dependency between the local
constraints so that only valid sequences are selected. Finally, the global constraints allow the
designer to impose constraints reflecting the global behaviour of the system. The features
themselves become added constraints. They play a local role, but may require changes in end-
to-end and global constraints.

4.2 Control Mechanism

In the resource-oriented approach, the control mechanism involves at most two entities
at a time.

- 38 -

In the constraint-oriented style, control is expressed incrementally at several levels,
three in our example. Processes representing local, end-to-end, and global constraints must
synchronize together. The advantage of the control mechanism in the constraint-oriented
approach is that restrictions on the set of valid system sequences are incremental. In other
words, the designer starts with the set of all potentially valid sequences for each component, and
restrictions on the set of all possible shuffles of these are imposed at different levels, which
makes the design more manageable. The drawback of this approach is that at the global
constraint level, the data management becomes complex, because at that level all constraints
become composed.

4.3 Incrementality

In constraint-oriented style, an added feature is simply an added constraint.
Unfortunately, however, adding features in this style is more difficult than doing so in resource-
oriented style. Because of the fact that it is not allowed to hide actions in the constraint-oriented
style, changes to several processes are usually required in order to take into account the new
actions belonging to added features. In resource-oriented style, the hiding mechanism makes it
easier to add processes locally, without affecting other existing processes.

4.4 Practical considerations

The constraint-oriented style is rather conceptual, and requires a good level of expertise
and sophistication of the user. The use of the LOTOS process synchronization mechanism, as
well as the use of abstract data types, are much more sophisticated in this style. In addition, the
style is very implementation-independent, and it appears to be more conducive to thinking in
terms of abstract requirements. The structure is not an implementation structure, rather it is a
requirement structure.

On the other hand, the resource-oriented style can be learned quickly and is much more
implementation-oriented.

It is not by chance that our discussion of the constraint-oriented style was dominated by
high-level processes, while our discussion of the resource-oriented style was dominated by low-
level action sequences.

It should not be surprising that resource-oriented specifications tend to be much longer
than constraint-oriented ones, especially if an attempt is made to describe distribution to a

- 39 -

greater extent than we did in this paper. The description of distributed components, and of
processes representing channels, with the related mechanics, can be quite lengthy. The
difference between the two styles becomes much more obvious, since all these details have no
place in the constraint-oriented style.

5. Conclusions and Research Directions

For conventional telephony systems, the typical time requirements for introducing a new
feature to the market was reported to be in the range of three years [Mart88]. Ideally, this should
be in the 2-3 months range.

Several conceptual frameworks are being proposed to shorten this development time.
Formal techniques have a place because they allow logical modeling, prototyping, and
validation of features at the design stage. Possible problems, such as feature interaction, can be
detected at this stage.

This paper presents and contrasts two structural paradigms for formally specifying
telephone systems and their features. The two paradigms view the systems from different
perspectives, and highlight different aspects of interest at the initial stages of the system
development process. These approaches have been successfully used to extend POTS with a
number of features [B91][BL93][SL94][SL95][Faci95] such as Call Waiting, Call Forward on
Busy, Call Forward Always, Automatic Recall, Automatic Callback, Originating and
Terminating Call Screening, Distinctive Ringing, Calling Number Delivery, and Unlisted
Numbers.

The subject of feature interactions was not addressed in this paper. A feature interaction

is defined as the interference of the functionality of one telephone feature with the functionality
of another telephone feature, meaning that the invocation of the first feature modifies the
functionality of another active feature, or even prevents its functionality altogether. This
problem has become a major obstacle for the extension of telephone systems with new services.
There is a considerable body of literature on the subject. Some references are [BDCG89][BL93]
[CGLN94] [SL94] [Fits95] [SL95] [Faci95] and [FaLo96].

The Intelligent Network model [DV92][Th94] provides architectural solutions for rapid
feature introduction. We are studying specification structures corresponding to the various
aspects of this model. Our initial results, which include a method for feature interaction

- 40 -

detection, are reported in [Kam96].

Acknowledgment
We would like to acknowledge the invaluable comments made the anonymous referees,

that lead to a significant improvement of the paper, both in content and style. This research was
funded in part by Bellcore, the National Institute of Standards and Technology (USA Dept. of
Commerce), and the Telecommunications Research Institute of Ontario.

References

[Boch80] G. V. Bochmann. A General Transition Model for Protocols and Communication
Services. IEEE Trans. Comm., 28 (1980), 643-650.

[BB87] B. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language
LOTOS. Computer Networks and ISDN Systems 14 (1987) 25-59.

[BFLL95] T. Bolognesi, D. DeFrutos, R. Langerak, D. Latella. Correctness Preserving
Transformations for the Early Phases of Software Development. In: T. Bolognesi,
J. v.d. Lagemaat, and C. Vissers. LOTOSPHERE: Software Development with
LOTOS. Kluwer, 1995.

[BNT94] T. Bolognesi, E. Najm, and P.A.J. Tilanus. G-LOTOS, a Graphical Language for
Distributed Systems. Computer Networks and ISDN Systems 26 (1994) 1101-
1127.

[BvdLV] T. Bolognesi, J. v.d. Lagemaat, and C.Vissers. LOTOSPHERE: Software
Development with LOTOS. Kluwer, 1995.

[B91] R. Boumezbeur. Design, Specification and Validation of Telephony Systems in
LOTOS. Master thesis, University of Ottawa, 1996. Available by ftp on
lotos.csi.uottawa.ca.

[BL93] R. Boumezbeur, L. Logrippo, Specifying Telephone Systems in LOTOS, IEEE
Communications Magazine, Aug. 1993, 38-45.

[BDCG89] T.F. Bowen, F.S. Dworak, C.H. Chow, N. Griffeth, G.E. Herman, and Y-J. Lin. The
Feature Interaction Problem in Telecommunications Systems. 7th International
Conference on Software Engineering for Telecommunication Switching Systems,
1989, 59-62.

[CGLN94] E. J. Cameron, N. Griffeth, Y. Lin, M. E. Nilson, W. K. Schnure, H. Velthuijsen. A
Feature Interaction Benchmark for IN and Beyond. IEEE Communication 31, 3
(1993), 64-69. Also reprinted in [Fits94].

[CRS90] E. Cusack, S. Rudkin, and C. Smith. An Object-Oriented Interpretation of LOTOS.
In: S.T. Vuong (Ed.) Formal Description Techniques, II. North-Holland, 1990,

- 41 -

211-226.
[DV92] J.M. Duran and J. Visser. International Standards for Intelligent Networks. IEEE

Communications Magazine, Feb. 1992, 34-42.
[Faci95] M. Faci. Detecting Feature Interactions in Telecommunications Systems Designs.

Ph. D. Thesis, University of Ottawa, 1995. Available by ftp on lotos.csi.uottawa.ca
[FaLo96] M. Faci and L. Logrippo. An Algebraic Framework for the Feature Interaction

Problem. Proc. of the 3rd AMAST Workshop on Real-Time Systems, Salt
Lake City, 1996, 280-294.

[FaLS90] M. Faci, L. Logrippo and B. Stepien. Formal Specifications of Telephone Systems
in LOTOS. In E. Brinksma, G. Scollo, and C. Vissers, eds., Protocol Specification,
Testing, and Verification IX. North-Holland, 1990.

[FaLS91] M. Faci, L. Logrippo and B. Stepien. Formal Specifications of Telephone Systems
in LOTOS: The Constraint-Oriented Style Approach. Computer Networks and
ISDN Systems, 21, North Holland, 1991, 52-67.

[FL94] M. Faci and L. Logrippo. Specifying Features and Analysing their Interactions in a
LOTOS Environment. Second International Workshop on Feature Interactions in
Telecommunications Software Systems, eds. L. G. Bouma and H. Velthuijsen, IOS
Press 1994, 136-151.

[Fits94] Second International Workshop on Feature Interactions in Telecommunications
Software Systems. Eds. L. G. Bouma and H. Velthuijsen, IOS Press 1994.

[FMN95] A. Fantechi, B. Mekhanet, E. Najm, P. Cunha, J. Queiroz. Correctness Preserving
Transformations for the Late Phases of Software Development. In: T. Bolognesi, J.
v.d. Lagemaat, and C. Vissers. LOTOSPHERE: Software Development with
LOTOS. Kluwer, 1995.

[Hoar85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[Kam96] J. Kamoun. Formal Specification and Feature Interaction Detection in the

Intelligent Network. Master thesis, University of Ottawa, 1996 . Available by ftp on
lotos.csi.uottawa.ca.

[LFH92] L. Logrippo, M. Faci and M. Haj-Hussein. An Introduction to LOTOS: Learning by
Examples, Computer Networks & ISDN Systems, Vol. 23, No. 5, 1992, 325-
342.Errata in 25 (1992) 99-100.

[Mart88] R.L. Martin. Future Telecommunications Services. IEEE Global
Telecommunications Conference 1988, 721-725.

[Miln89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[Rud92] S. Rudkin. Inheritance in LOTOS. In: K.R. Parker and G.A. Rose (Eds.) Formal

Description Techniques, IV. North-Holland, 1992, 409-424.
[SL93] Stepien, B., and Logrippo, L. Status-Oriented Telephone Service Specification. In:

T.Rus and C.Rattray (eds.) Theories and Experiences for Real-Time System
Development. AMAST Series in Computing, Vol. 2, World Scientific, 1994, 265-

- 42 -

286.
[SL94] B. Stepien and L.Logrippo. Representing and Verifying Intentions in Telephony

Features Using Abstract Data Types. In: Third International Workshop on Feature
Interactions in Telecommunications Software Systems, eds. K.E.Cheng and T.Ohta,
IOS Press 1994, 136-151.

[SL95] B. Stepien and L.Logrippo. Feature interaction detection by using backward
reasoning with LOTOS. In: S.T. Vuong and S.T. Chanson. Protocol Specification,
Testing and Verification XIV. Chapman & Hall, 1995, 71-86.

[Th94] J. Thorner. Intelligent Networks. Artech House, 1994.
[TrVs95] K. J. Turner, and M. van Sinderen. LOTOS Specification Style for OSI. In: T.

Bolognesi, J. v.d. Lagemaat, and C. Vissers. LOTOSPHERE: Software
Development with LOTOS. Kluwer, 1995.

[VSVB91] C. A. Vissers, G. Scollo, M. van Sinderen, and E. Brinksma. Specification Styles in
Distributed Systems Design and Verification. Theoretical Computer Science 89
(1991) 179-206.

	1. Introduction
	2. The Resource-Oriented Specification Style
	2.1 POTS: Plain Old Telephone Systems
	Fig. 1. Establishing a connection between two users: user i calls user j.

	2.2 Specification of Features
	2.3 Specifying Features in LOTOS
	2.4 The Resource-oriented Control Mechanism
	Fig. 2. Synchronization paths in the resource oriented style

	2.5 Structural Considerations for the Client
	2.5.1 Feature Activation
	2.5.2 Interleave Constructs
	2.5.3 Choice Construct

	2.6 Structural Considerations for the Server
	2.6.1 Feature Policy Data Passing Considerations
	2.6.2 Feature Control and Busy State

	2.7 Control via Client-Server Interactions
	2.7.1 Example of Technology Features: Call forward
	Fig. 3. Structure of a phone design supporting Call Forward
	2.7.1.1 Support for the CFA
	2.7.1.2 Support for the CFB in a call initiator role
	2.7.1.3 Support for the CFB in a call responder role
	2.7.1.4 A Call Scenario in the Context of Call Forward
	2.7.1.5 Server design
	Fig. 4. Structure of a phone design, which support Call Forward Busy

	2.7.2 Example of Policy Features: Originating Call Screening
	Fig. 5. Originate Call Screening Example

	3. The Constraint-oriented Specification Style
	3.1 POTS again
	Fig. 6. Structure of a POTS connection.
	Fig. 7. Behaviour of Caller and Called with respect to Controller
	Fig. 8. Behaviour of Controller with respect to Caller and Called
	Fig. 9. Abstract view of a POTS connection

	3.2 The Constraint-oriented Control Mechanism
	Fig. 10. Selecting offhook requires consultation of EngSet (engaged set)
	Fig. 11. Selecting ring or busy based on BusySet

	3.3 Specification of Features in the Constraint-oriented Style
	3.4 Technological Feature: Three Way Calling
	Fig. 12. Structure of a POTS and TWC connections in isolation
	Fig. 13. Simplified LTS of the three way calling feature
	Fig. 14. Integration of Twc into POTS: Top level structure
	Fig. 15. LTSs of Twc in the context of POTS.
	Fig. 16. Abstract representation of three way calling feature

	3.5 Policy Feature: Originating Call Screening
	Fig. 17. Structure of the specification which integrates Ocs into POTS
	Fig. 18. Originating Call Screening Feature

	4. Comparison of the Resource and Constraint oriented specification styles
	4.1 General Structure
	4.2 Control Mechanism
	4.3 Incrementality
	4.4 Practical considerations

	5. Conclusions and Research Directions

