Status-Oriented Telephone Sevice Specification:
An Exercise in LOTOS Style

Bernard Stepien and Luigi Logrippo
Telecommunications Softare Engineering ReseattGroup
University of Ottava

Department of Computer Science
Ottawa, Ont. Canada K1S 9B4
email: bernard{luigi}@csi.uottaa.ca

1. Motivation

The authors and other members of their growye ledready written some papers and research re-
ports on specifying telephone call processing iTOS. Wwo such papers, whereawlifferently
organized specifications of the Plain Oleldphone System service (PE) were presented, were

[FLS 90][FLS 91]. The specification in the second papes mainly in the constraint-oriented

style, while the one in the firstas in a combination of constraint-oriented and state-oriented style.
We are nw presenting yet another style of specifying telephone systems, because we feel that this
new style has some definite ahtages eer the ones used in pieus papers. In particular:

1. In the preious specifications, the identification afdy telephone numbersas done by includ-
ing such numbers in a set; in this specificatiarsyltelephones directly inform others of their
state by dering thebusy action only

2. While in preious specifications a disconnection caused all the components of the connection
(the two stations and the controller) to end up in a deadlock and thus to become “dead” and non-
reusable, in this specification these components go back to initial state and are reusable in an-
other connection.

3. Resource - oriented style: specification modules more closely modehreofimiities such as
processes that control the imidiual phones and the indglilual connections. Such processes
can be dynamically created for an unlimited number of phones and connections.

4. In previous specifications, thereas no mechanism for installingmestations. W have such a
mechanism here.

Structurally the main diference between this specification and/jnes ones are:

1. ACT ONE has almost disappeared from the specification (we are still using it to maintain the set
of “installed” phones, a feature not present irvjmes specifications).

2. Control is realized by king processesxehange status information: therefore, we identify our

specification style as axiation of the resource-oriented style, which we statls-oriented
style.

1 - May 7, 1996 7:55 pm

This style is appealing, because it mimicks tlag Wblack boxes” exchange status information in
a plysical system. Also, atery step of simulation a small number only of actions can beedkri
in other words symbolic behaor trees are narve This is in contrast with the constraint-oriented
style, where symbolic beh@r trees tend to include maminfeasible paths. As a consequence,
simulation, model-checking, and generation of test casexjaeeted to be all easier

2. The Informal Specification

The Plain Old €lephone System, or HS, is composed of axiable number oftations which
(unless the are out of service, see belpcan perform the tavbasic roles ofall initiator andcall
responder, and of aontroller that can establish the connection betwegmaa stations, or can
disconnect already connectadtions. The call initiator role alays starts with aoff _hook trigger
action, while the call responder rolevalys starts with ang trigger action.

Stations do not communicate directly: thare connected via tlwntroller which is a distinctie
physical entity just as thetations are. When it is\ailable, acontroller can preide two types of
services: connecting twstations upon a connection request from one of them, or disconnecting a
station. The latter service can bd@fed either upon a disconnection request from anethgon,

or by thestation’s avn initiative while it is in the process of being connected.

The purpose of this paper is to pide a specification of the H@ service from a usearpoint of
view. Therefore the switching function will not be specifieglieitly.

Each entity has a lifeycle that starts with an idle state and finishes by returning to the idle state.
A station’s lifegycle can start with aaff hook or aring and terminates withlaang_ upor by
stopping taing . At the point of termination th&tation is agin available with aroff hook or a

ring action.

A connection control process starts with a connection request and ends when all palied in

in a connection are disconnected.éstablish an initial understanding of what we are trying to
specify we describe informally the lifgcles of our entities.

Station Lifecycle

ina call initiator role

off hook -> dial tone -> dialing a number -> requesting a connection to the controller ->
being connected by the controller -> talking

or inacall responder role

ringing -> answering -> being connected by the controller -> talking

2 - May 7, 1996 7:55 pm

Termination of a statiors lifecycle:

inaninitiator role:

Thestation can be hung up gniime after aroff hook. If a connection request has already been
placed to theontroller, it will request a disconnection to thentroller. Thestation could also
receve a disconnection indication from thentroller only after a connection request has been
placed.

in aresponder role:

Thestation can only terminate if it has rung. If it has not answengalgg it can terminate by stop-
ping toring. If it has answeredring it canhang_upand request a disconnection tot¢beatroller

or it can receie a disconnection indication from thentroller.

In both initiator or responder roles, the line should/g® abusy signal to agone attempting to
ring it while it is already used in another connection.

Controller’s lifecyle:

in a connector role:

receve a connection request ->
either ring the called party -> connect the called party -> connect the caller
or obtain ausy signal -> send a disconnection indication to the caller

in a disconnecting role:

receve a disconnection request from one station -> disconnect the other station

Termination of a controllers lifecycle:

There are tw situations where theontroller provides a disconnection:

* as a call establishment abortion.
* as an established connection termination.

The two situations are dirent:

in an already established connection, both parties tzabe disconnected, while in the call estab-
lishment abortion case, the parties to be disconnected will depend on the phase in which the con-
nection process is.

We nawv provide a formal specification of the betar described ab@. We hare used the foll-

ing corventions: constan&ues (such asalues denoting status information) are identified ay lo
er-case names, while LS \ariables are identified by capitalized names.

3 - May 7, 1996 7:55 pm

3. Specification structue: Call connection

In the top-leel structure, we specify the ysical entities thatxsts in a telephone system. As we
have seen in the informal specification, there ar@ gwoups of entities: the inddual phone sta-
tions and the indidual connection control processes.

A phone station can be specified generically imTOS, with a ariable representing the phone
number An unlimited number of instances of phone stations can thus be produced. All of these
independent stations will be in parallel with ttmatroller and will interact on some actions with it.

collection of stations

controller

We specify a phone station using the process rsaatien(N: phone_number)wherethe \ariable

N represents the phone number assigned to the generic phone pracestiection of stations
would thus be represented by a number of interleatagibns. The above high level design could
be expanded to the following structure:

(
station [b,g,n,t,tn](1234)

Il
station [b,g,n,t,tn](5678)

Il
Il
station [b,g,n,t,tn](9999)

controller[n,tn]
where 1234, 5678 and 9999 are phone numbers.

In LOTOS there is a more gant way to specify that there is an unlimited number of pletae
tions, which uses recura interleae. In our case we specify a phone staimtaller, that can
install ary new instance of a phorstation. The installed phone will then remain aetat all times,
since we hee not specified a phone disconnection service.This will be discussed in Section 5.

While the phone stations representygibal instances of phones that wiis permanently once
installed, the instances of thentroller have a diferent type of life gcle. Thecontroller provides

an instance of a control process tg atation that initiates a call through a connection request. The
control process is an end to end constraint thavskioe protocol follewved by the parties wolved.
Once a connection is terminated, the control process will merely die, correspondingutd tihet f

4 - May 7, 1996 7:55 pm

it represents a virtual machine, more than gspal entity

This is the high beel structure of the telephone system specification:

hide n, tnin

(

installer[c,b,g,n,t,tn]({} of phone_set)
|[b,n,tn]|

contoller[b,n,tn]

)

The specification of a generic station

As we hae seen in the informal specification, a phone station cantha possible xclusive
roles: a call initiator or a call respondaArstation cannot by itself decide which role it will assume.
In LOTOS we use the non deterministic choice opelfattar describe such a structure.

process station[b,g,n,t,tn](N: phone_number): noexit :=

(

call_initiator_station[b,g,n,t,tn](N)

I

call_responder_station[b,g,n,t,tn](N)

)

>>
station[b,g,n,t,tn](N)

endproc

We also specify that a phostation should be able to rgcle itself upon completion of either one
of its roles. This is achved with the use of the LTIDS enable operatot> and a recursion to pro-
cessstation.

The specification of the call initiator role of a station

The LOTOS specification follas relatvely easily the informal specification using theT@S5 ac-
tion prefix operator to specify the sequence afeaits and the LDOS disable operat¢» to spec-
ify the fact that a termination may occur aydime after aroff hook.

process call_initiator_station[b,g,n,t,tn](N:phone_number): noexit:=

g ! N!off hook;

(

(

(
g!N!tone;
g ! N ! dial ? C: phone_number ;
n!N!conreq!C;

5 - May 7, 1996 7:55 pm

n!N!connect;
talking[g](N)

)
Il

continuous_husy_signal[b](N)

)

[> station_call_termination[t,tn](N)

)

endproc

The fact that astation should preide abusy signal to agione attempting to ring it while it is al-
ready ivolved in a connection is portrayed using thena® parallel interleze operatot||. The
procesontinuous_husy_signalis in parallel with the group of actions fraomme to talking
which indicates that thetation is already engged as soon as aff hook action is performed.

The processontinuous_husy_signalis a process that contains only one action and is reeursi
This recursion is not intended to specify the soriyofical beep dusy signal usually consists of.
Rather it is intented to ally an unlimited number of callers to attempt to connect withsy b
phone and obtaintausysignal. In LO’OS, &rery synchronization on thrisy signal will consume
this action. The recursion will prae a ngv instance of dusy signal for the net caller to syn-
chronize on.

process continuous_tsy_signal[b](N:phone_number):noexit:=
b!N!lsy;
continuous_hsy_signal[b](N)

endproc

6 - May 7, 1996 7:55 pm

Phone_installer]
I station[...](NNNN)
‘ station[...](2222)
station[...](1111) r
call_initiator call_responder
u ! off_hook ... nlring ...
n!con_req... u ! answer ... o
(=) +.tn (§)
Controller]
connection_contol
connection_contol
nlcanreq : t _not
connection_contol vice
t_not
n!conreq..... ; wvice
ring_a_free detect_lusy detect_not
number signal in_sewice —
1 [

Figure 1.Overall Specification Structure

May 7; 1996 7:55 pm

Note that we are making a methodological point here: continuous signals can be modeled in LO-
TOS by actions that are continuousljeoéd. & use this carention repeatedly in this specifica-
tion.

The processalking is also recurse to portray the concept of dialogue between tleegarties.

process talking[g](N:phone_number):noexit:=
g ! N ! wice ; talking[g](N)
endproc (* talking *)

The specification of the call responder role of a station

The LOTOS specification uses the samell@s features and the sameemall structure as in the
call initiator role

process call_esponder_station[b,g,n,t,tn](C:phone_number): noexit:=

n ? N:phone_number! ring ! C;
(
(
(
g!C!lanswer;
n!C!connect;
talking[g](C)

)

1]
continuous_husy_signal[b](C)

)

[> station_call_termination]t,tn](C)
)

endproc

The call termination can occuryatime after theing has beenx@cuted and also trstation pro-
vides abusy signal as soon as it rings, since the line is no longeladle to another connection.

Common eatures betwen the call initiator and responder role of a station

In both cases we kia a role trigger action: thaff _hook action in thecall initiator process or the
ring action in thecall responderprocess. Oncexecuted thg will determine the subsequent be-
havior of a station, including pxading abusy signal or terminating.

Abstract interaction points.

There are tw classes of interaction points: general and specialized interaction points
general interaction points:

g is the interaction point between thezeonment and thetation.
n is the interaction point between tstation and thecontroller.

8 - May 7, 1996 7:55 pm

specialized interaction points:
b is the interaction point between tht@ation and thecontroller in the case of bhusy sig-
nal.
t is the interaction point between therieonment and thetation in case of termination.
tn is the interaction point between station and thecontroller in the case of termination.

The specification of the controller process

Thecontroller is specified as capable of prding an unlimited number of control processes, one

for each connection. This is acheel in a similar \ay as the phoniastaller, using the recurge
interleave construct. Each instance of tenection controlprocess is instantiated with the ap-
propriate parameters for its connection as determined by its unique trigger action, the connection
request, which upon synchronization witbadl initiator station process will obtain these param-
eters by alue passing. Theontroller can ofer only one connection request at a time. As soon as

a connection request has been processeahrection controlprocess is created to handle the
connection, and a meinstance of theontroller is also created in order tofeff a connection re-

guest action to the recandidate caller

The LOTOS specification mirrors in part te&ation specification. There is n@ver a basic dféer-
ence with thédusy signal specification. While forsation thebusy signal is a status that iSefed
continuously at anpoint of the connection lifgte, thecontroller will offer it only once as an al-
ternatve to a ring. This corresponds to tlaetfthat acontroller can either ring atation because
it is free or obtain &usy signal if it is not free.

process contoller[b,n,tn]:noexit:=
n ? N: phone_number ! coneq ? C: phone_number ;
connection_contol[b,n,tn](N,C)

endproc

process connection_conti[b,n,tn](N,C:phone_number):noexit;=

(
(

ring_a_fre_number[n](N,C)
I
detect usy_signal[b,tn](N,C)
I
detect_not_in_sdce[b,tn](N,C)

)

[> control_termination[tn]
)

9 - May 7, 1996 7:55 pm

controller[b,t,tn]

endproc
Theconnection_controlprocess can perform threefdient types of functions:

* ring a free number
* detect a bsy signal
* detect a number that is not in service

The processng_a_free_numberis the behaor of a successful completion of a connection, un-
less it is aborted.

process ring_a_fee_number[n](N,C:phone_number):noexit:=

n!N!'ring!C;
n!C!connect;
n!N!connect;
stop

endproc

Thedetect_busy_signaprocess will occur when the callsthtion is busy.

process detect sy signal[b,tn](N,C:phone_number):noexit:=

b!C!busy;
(

tn I N I disind ? S:status ; stop

I
tn ! N ! digyg ? S:status ; stop

)

endproc

Finally if the control process cannot synchronize with eith@rgaor abusy signal, this means
that there is no phone with such a number at all. It willdver synchronize with the
not_in_sewice action of thanstaller (see belw).

process detect_not_in_seice[b,tn](N,C:phone_number):noexit:=

b!C!not_in_serice;

(

tn ! N I disind ? S:status; stop

I
tn I N ! digq ? S:status; stop

)

endproc

As mentioned, theontroller connects the tavparties if the responder is natdy and then dies

10 - May 7,1996 7:55 pm

when the connection is terminated.
4. Specification Structue: Call Termination
The need 6r different termination patterns

Unfortunatelywe are nw obliged to complicate considerably our aorelatvely straightforvard
specification in order to takinto consideration all possible termination patterns.

For the whole system, there are four termination patterns depending on the stage where the termi-
natingstation is in a connection.dt instance, beforestation places a connection request to the
controller, a termination can be performed by simply hanging up. If a connection request has been
sent, then a disconnection request has to be placed witbritreller in order to release then-

troller as well. If the respondingtation was ringing, it has to stop ringing. Finallyhen both

stations are connected, either one of them can become disconnexgtd\AMll these possibilities

in Fig. 2. Boxes at the left-hand-side of the figurewttbe diferent stages of the connection. Dis-
connection sequences, leading back to the initial state, asm simothe right. Br example, by

reading this diagram we see that if a call initiator hangs up aftefarffhook, tone, ordial, the

system can return to the initial state withoug &urther action. Hwvever, if a call initiator or call
respondehang up after aly of answer, connect ortalk, appropriate disconnection requests or
indications hge to be gchanged.

Since our system specification consists af tmain components, tistation and thecontroller,

we must nw specify termination sequences inTQOS for each one of thesedwomponents. &/
first discuss in detail the termination sequences fasttten. Note that sodr we hae considered
separately thanitiator andresponder roles. Havever, since termination sequences are almost the
same for the tev roles, it it comenient to combine them into one specification.

The problem that presents itself at this point is how to represent in LOTOS a control structure such
as the one presented in Fig. 2. Itis a situation of disable, which therefore must be represented as
S:=P [> D where P is the normal connection sequence (on the left in the diagram), and D is a
choice construct, representing all possible termination sequences (on the right). This structure is
shown in processall_initiator_station shown above. Which choice must be taken in D, however,
depends on where the disable occurred in P. We can think of P as consisting of a sages of
each stage being a sequence of LOTOS action offers. All actions in a stage have in common the
fact that if a disable occurs after any of them, the same disconnection sequence must be used. The
disable operator, which allows transferring control from P to D at any point within P, is not capable
at the same time of transmitting knowledge of the stage where the disabling occurred. In order to
save and transmit this information , we use a “memory” process M that synchronizes with P[>D,
in the form(P [> D) || M. This structure is presented in Fig. 3, where P [> D and M are shown on
the left and right respectively. M itself is made of two parts: a state recording process R and a ter-
mination logic T, which are in alternative. The following structure results:

(PED)II(ROT)
M is recursive, it reinstantiates itself after each interaction with P. Before the disable in S, at each
reinstantiation, R is executed and the current state of P is passed as a parameter. By synchronizing
with P, R keeps track of its progress. We shall see that in order to inform R of its progress, P passes

11 - May 7,1996 7:55 pm

to R what we calprimitive values. R keeps track of the stage reached within P by generating pa-
rameter values, calleghtus values. When D takes over, it will no longer synchronize with R, rath-

er it will synchronize with T. T will pass back to D the last reached state of P. Now D and T can
synchronize to carry out the appropriate termination procedure. Thus T is also a choice between
several termination sequences. Note that T and D must keep synchronizing after the trigger action
during the termination sequence, otherwise deadlock will occur.

Station Termination

Applying this concept to procesall_initiator_station, seen abee, we obtain the follwing mod-
ified structure (using a processnnection _behaior which will be a process of the form P[>D,
an appropriateariation of proces<all_initiator_station seen abee):

process call_initiator_station[b,g,n,t,tn](N:phone_number):exit;=
(* connection _behaor *)
|[0,g.n.t,tn]|
station_pocessor_memory[b,g,n,t,tn](N, idle, none)
endproc

the same structure applies to tadl_responder_station.

The disabling process, corresponding to D in the discussioe aisaas follavs:

process station_call_termination[t,tn](N:phone_number):exit:=

station_terminate_set_up[t](N) (*1%)

Dstation_terminate_during_con_&q [t,tn](N) (*2%)

Dstation_disconnect_once_connected[t,tn](N) (*2%)

Dstation_terminate_after_rung[tn](N) (*3%)

|:lstation_terminate_once_connected[t,'[n](N) (*4*)

Dstation_disconnect_during_congq[t,tn](N) (*4'*)
endproc

Following is a description of the use of each one of these termination sequences:

1. This termination sequence applies afteoffiiook, tone, ordial. Therefore, it only applies to
the initiator.

2 and 2'. These termination sequences apply atteneeq. Therefore, they apply to both initiator
and responder.

12 - May 7,1996 7:55 pm

3. This termination sequence applies to the responder only aiigy. a
4. and 4. These sequences apply to either an initiator or a responder afiewan connect or
talk.

Each termination sequence is now further specified. Note that each such sequence trgyifers an
which returns to initial state.

The termination sequence in the set_up stagerissimple.

process station_terminate_set_up[t](N:phone_number):exit:=
t! N !'hangup ! set_up ; exit
endproc

The two following termination sequences reflect the possibility of collision. A collision occurs
when both partiesang_up, each before Wéng receved notification of the otheshang_up Col-

lision is handled by theontroller who informs each party of the disconnection, instead of for-
warding a disconnection request from a party to anoiierefore, these sequencesammposed

of a termination action, which acts as a trigger, followed by a choice of disconnection request or
disconnection indication.

process station_terminate_once_connected[t,tn]
(N:phone_number):exit:=

t!' N ! hangup ! conctd ;
(
tn I N ! diseq ? PT phone_number ? S: status ;
exit
I
tn I N ! disind ? S: status ; exit

)

endpioc

process station_terminate_during_con aq|[t,tn]
(N:phone_number):exit:=

t!' N ! hangup ! ecvd_req;
(
tn I N ! diseq ? PT phone_number ? S: status ;
exit
I
tn I N ! disind ? S: status ; exit

)

endpioc

process station_terminate_after_rung[tn]
(N:phone_number):exit:=
tn I N ! stopring ! rung ; exit
endpioc

13 - May 7,1996 7:55 pm

process station_disconnect_once_connected|t,tn]
(N:phone_number):exit:=
tn I N ! disind ! conctd ;
t! N !hangup ! conctd ; exit
endpoc

process station_disconnect_during_coneq][t,tn]
(N:phone_number):exit;=
tn I N ! disind ! ecvd_req ;
t! N!hangup! ecvd req ; exit
endpoc

Specification of the memory process

As already mentioned, the memory processyis track of the stage reached withirstaéon pro-
cess by using synchronization. The memory is represented by a formal pgrdrasteus value.

For example when aoff hook occurs:

g ! CIN ! off_hook ; station_processor_memory[b,g,n,t,tn](CIN,set_up,CRN)
the primitive valueoff _hook is passed to the memory process, which generates the siateset
up. This is a parameter for the reinstantiation of the memory process. At the same time, the num-
bers of the initiator and responder stations are passed on.
The connection request action generateseoed_req state in the sameay:

g ! CIN!conreq! CRN ; station_pocessor_memory[b,g,n,t,tn](CIN,ecvd_req,CRN)

Both thetone anddial actions are represented using the same construct.
Each of the choices that constitute the termination logic starts by an abdtiothat synchronizes
with one of the choices of termination actionsstdtion_call_ termination. An appropriate alue
offer ensures that the choice is deterministic.
For example, we can specify the proper termination sequence sethepstate as:

t! N ! hang_up!set up; exit

which informally means that a hang up is falexd by arexit (with return toidle) in the set up
stage. Theontroller is not irvolved because it has not reas a connection request.

14 - May 7,1996 7:55 pm

15

idle

offhook
tone
dial

call initiator —

call setup

hangs up

conreq

call initiator hangs up

received conreq

disconnect request
to controller

ring

call initiator hangs up

rung

Y

answer
connect
talking

disconnect request,
controller stops
ringing responder

call initiator or call
responder hang up

connected

send disc. req. or | -
receive disc. indic.

Figure 2: End-to-end Termination Sequences

" May 7, 1996 7:55 pm

process station (S)
(initiator or responder)

normal connection
process (p)

synchronization

patterns

passing

primitive value

status

Y

memory_processor process
(status)formal parm. (M)

[>

process
station_call_termination

(D)

passing
status value
-

-

record state process (R)

primitive value determines
status value of formal
parameter of recursive
instantiation of memory proces

[]

termination logic ()

the status value obtained
from the formal parameter
will impose the appropriate
termination sequence

S

Fig. 3. Structure of a state memory processor

If the connection request has been nemgby thecontroller, we use the follwing termination se-

quence:

t!'N!hang up!recvd req;
tn I N ! disreq ! C ! recvd_req ; exit

where the second action forces termination otthdroller. These termination actions are speci-
fied in thestation_call_termination process. The processor with memomyud have similar ac-
tions lut with one diference, the formal parameter that acts as a memory instead of aktate v

16

May 7; 1996 7:55 pm

t!' N !hang_up! Status ;
(
exit
1
tn I N ! disreq! C ! Status ; exit

)

where the identifier Status will contain the status information. If tdaewasset_upthe first ac-
tion of the processor memoryowld synchronize with the! N ! hang_up ! set_upaction in the
station_call_termination. That process ould then dier anexit that would resole the non deter-
ministic choice between threxit or thedisreq action in thememory_processor process.

At the highest Ieel, our phone memory processor has tmain functions:

» Record the stage where the system is.
* Indicate the termination pattern depending on the stage the phone prasess w

process station_pocessor_memory[b,g,n,t,tn]
(N:phone_numhé&: status, C:phone_number): noexit:=

station_record_status[b,g,n,t,tn](N,Status,C)

I

station_indicate_termination_sequence[b,g,n,t,tn](N,Status,C)
endproc

Each sequence for recording the sta@tage starts by an action which determines a stage change.
Processtation_processor_memorys then reinstantiated with the updated stage. There are fiv
groups of stages for which the termination patterrferlds indicated in the
station_record_statusprocess.

process station_ecord_status[b,g,n,t,tn]
(N:phone_numbelPT:phone_number):exit:=
is_not_eachable[b,g,n,t,tn](N,PT)
I
is_in_set_up[b,g,n,t,tn](N,PT)
I
is_in_con_eq[b,g,n,t,tn](N,PT)
I
has_rung[b,g,n,t,tn](N,PT)

I
is_fully_connected[b,g,n,t,tn](N,PT)

endproc

Each one of these processes responds to an action that is possible in the connection phase. It records
a change of stage, and this information is then used to direct (choose?) the termination sequence.
The first group of actions deals with a non reachable phone, either becaussyitas because it

doesnt exist.

17 - May 7,1996 7:55 pm

process is_not_@achable[b,g,n,t,tn](N,PTphone_number):exit:=

b!N!hsy;
station_pocessor_memory[b,g,n,t,tn](N,sbsy,PT)

1
b!N!not_in_sevice ;
station_pocessor_memory[b,g,n,t,tn](N,sbsy,PT)
endproc

We leave most of the remaining details to the readleey are in [SL 93]. The second group of
actions are for the set up stage. yrhecord whether aoffhook, tone, ordial, has occurred. The
third group of actions records thect that a connection request has been performed. This means
that both a phone andcantroller process hae been actiated, implying that both processes will
have to be terminated in casel@ng_upThe fourth process is a single action process that records
that aring has occurred. Finallyhe fifth status recorder process recordsdbethat a phone sta-
tion is connected. Thiedicate termination_sequencegrocess will nar be able to impose se-
guences through thehue of the status that it inherits after each recursion.

There are three groups of actions corresponding to three possible terminations of a phone process.

* The user hangs up. This may lead to a stragitif the controller was not inolved yet (set up
stage).

» Thestation was a responder andiag had already been performed.

* Thestation has recefed a disconnect indication from tbentroller and the user has no other
choice lut hanging up.

The following process synchronizes with procetsion_call_termination given abeoe.

process station_indicate_termination_sequencelt,tn]
(CIN:phone_number,Status:status,CRN:phone_number):exit:=

t! CIN ' hang_up ! Status ;
(
exit

1
tn ! CIN I disreq ! CRN ! Status ; exit

)
1
tn ! CIN ! stopring ! Status ; exit

I

tn ! CIN ! disind ! Status ;
t! CIN ! hang_up ! Status ; exit

endproc

This process»ats to processtation shavn abave. In other wrds, we are ready to restart alko

18 - May 7,1996 7:55 pm

again. The memory and termination sequence processes are almost mirror imagsatibthe
andstation_call_termination processes,ut they don't indicate the temporal ordering of these ac-
tions relatve to each othefheindicate_termination_sequenceyives a temporal orderingub
without specifying where in the connection.

The formal parameters CIN and CRN mean Call Initiator Number and Call Responder Number re-
spectvely. The updatedtation_call_termination process wuld nav shav a status &lue for each
of its termination sequences.

Controller Termination

Again, the reader is referred to [SL 93] for the detaitootroller termination. In this case, there

are only the last three termination patternsxshm Fig. 2, because tlwentroller is not irvolved

at all in the first one. Whenantroller receves a disconnection request during the connection
establishment phase, it willya&to determine if it can go straight back to idle state or also act upon
the respondestation. If it is causing the respondstiation to ring, it will have to stop the ringing.

If the responder has already answered the calGdhtoller should send it a disconnection indi-
cation. Thecontroller should also be able to detect cases of collision, i.e. independent disconnec-
tion from both sides.

Thecontroller will have its avn memory and processor mainly to decide if after véogia dis-
connection request from the call initigtidishould stop ringing the respongdsgnd a disconnection
indication if the responder has answered, or merely stop if the responder has notdbesthyet.
Consequentlyits structure will be similar to the onesihtion. The same design applies for the
connection controlprocesses. Eadonnection contiol processs in parallel with a
control_memory_processor

5. Installing Stations

The status oriented specification style eslmo well-knovn constraints easily: theisy number
detection and the number aetiion. Havever, there remains the problem of specifying what hap-
pens when one dials a number that has not been installed. The specification tivat sheaso

far would merely deadlock.

In an old-Bshioned telephone system a number not in service could be detected through some
grounding mechanism at some point of the hierab&tween xchanges. In a more computai-

ented system, lngever, one vould hare a data base of numbers in service. QO we can use
abstract data types to specify such a data base. Using the stan@@8 li@ary data type Set, we

can huild a set of installed phone stations. This set of numbers can then be used by a separate pro-
cess, which will be déred as an alternaé to all instances of aggé numbers. The process will

offer anot_in_sewice action, which can be tak as an abstraction for the announcement usually
obtained wheneer a dialed number is not installed.

This action will hae a mirror action in theontroller process. The latter will mobe able to either
ring, get abusy signal, or a not in service announcement after vexwea connection request.

19 - May 7,1996 7:55 pm

This is the reised procesmistaller:

process installer[c,b,g,n,t,tn](Pev_SetofPhones:phone_set): noexit:=

¢ ? NewNumber: phone_number ;

(
station[b,g,n,t,tn](NewNumber)

installer[c,b,g,n,t,tn](Insert(NewNumber,Prev_SetofPhones))
)

I

not_in_sewice[c,b,g,n,t,tn](Prev_SetofPhones)
wheg

process not_in_sefice[c,b,g,n,t,tn](SetofPhones:phoneset):noexit:=
b ? CRS: phone_number ! not_in_setice [CRS Notln SetofPhones] ;
installer[c,b,g,n,t,tn]SetofPhones)

endpioc

endpoc

At interaction point, the enironment can prade the number of a meinstance of thetation
process. The ¢ behaior expression consists in thewénstance interlesed with theinstaller
itself.

6. Conclusions

We have presented a style of @S specification based on synchronization between processes to
exchange status information. This styledslfull adwantage of the capabilities of the control part
of LOTOS, so the importance of the data part can be reduced significantly

It remains to be seen to whatent this style can be used to adtage in order to specify more
comple entities than the simple HQ service described in this papéiso the significance of this
style with respect to other aspects of thelO3-based softare deelopment process, such as v
lidation, testing, and implementation, is yet to be clarified.

Acknowledgment. This work was supported in part by grants and contracts of Bellcore, Bell-
Northern Research, and thel@communications Research Institute of Ontario.

References

[B 91] R. BoumezbeuDesign, Specification, andaktlation of Elephory Systems in LOOS.
Master of Computer Science Thesis, \msity of Ottava, 1991 (Obtainable by ftp on lo-
tos.csi.uotteva.ca).

20 - May 7,1996 7:55 pm

[BL 92] R. Boumezbeur and L. Logrippo, Specifyingl@phone Systems in D@S and the Fea-
ture Interaction Problem. Internationabkkshop on Feature Interactions ildcommunications
Systems (St.Petensty, Fla., Dec. 1992), 95-108.

[BL 93] R. Boumezbeur and L. Logrippo. Specifyingldphone Systems in J@S. IEEE Com-
munications Magzine, August 1993, 38-45.

[CV 90] R.C. Cam and S.NMuong. A Fermal Specification, in LDOS, of a Simplified Cellular
Mobile Communication System. In: SNuong (ed.) Brmal Description &chniques, Il. North-
Holland, 1990, 485-499.

[DCB 92] L. Drayton, A. Chetwind, and G. Blalntroduction to LOOS through a \&tked Ex-
ample. Computer Communications, 15 (1992), 2 70-85.

[EHM 93] P Ernbeg, T. Hovander FE Monfort. Specification and Implementation of an ISDN
Telephone System Using O@S. In: M. Diaz, R. Groz (eds.pFnal Description &chniques, V
North-Holland 1993, 171-186.

[FLS 90] M. Faci, L. Logrippo, and B. Stepienofmal Specification ofdlephone Systems in LO-
TOS. In: E. Brinksma, G. Scollo, and Gs¥ers (eds), Protocol Specificatioesiing, and ¥fifi-
cation, IX North-Holland, 1990, 25-34.

[FLS 91] M. Faci, L. Logrippo, and B. Stepienofmal Specification of@lephone Systems in LO-
TOS: the Constraint-Oriented Style Approach. Computer bidts\and ISDN Systems, 21 (1991),
53-67.

[SI 93] B. Stepien and L. Logrippo. Status-Orientetephone Service Specification: Andegise

in LOTOS Style. Untersity of Ottava, Department of Computer Science, TR-93-07 (E6B3)
(Obtainable by ftp on lotos.csi.uotta.ca).

21 - May 7,1996 7:55 pm

