
1 May 7, 1996 7:55 pm1 May 7, 1996 7:55 pm

Status-Oriented Telephone Service Specification:
An Exercise in LOTOS Style

 Bernard Stepien and Luigi Logrippo
Telecommunications Software Engineering Research Group

University of Ottawa
Department of Computer Science

Ottawa, Ont. Canada K1S 9B4
email: bernard{luigi}@csi.uottawa.ca

1. Motivation

The authors and other members of their group have already written some papers and research re-
ports on specifying telephone call processing in LOTOS. Two such papers, where two differently
organized specifications of the Plain Old Telephone System service (POTS) were presented, were
[FLS 90][FLS 91]. The specification in the second paper was mainly in the constraint-oriented
style, while the one in the first was in a combination of constraint-oriented and state-oriented style.
We are now presenting yet another style of specifying telephone systems, because we feel that this
new style has some definite advantages over the ones used in previous papers. In particular:

1. In the previous specifications, the identification of busy telephone numbers was done by includ-
ing such numbers in a set; in this specification, busy telephones directly inform others of their
state by offering thebusy action only.

2. While in previous specifications a disconnection caused all the components of the connection
(the two stations and the controller) to end up in a deadlock and thus to become “dead” and non-
reusable, in this specification these components go back to initial state and are reusable in an-
other connection.

3. Resource - oriented style: specification modules more closely model software entities such as
processes that control the individual phones and the individual connections. Such processes
can be dynamically created for an unlimited number of phones and connections.

4. In previous specifications, there was no mechanism for installing new stations. We have such a
mechanism here.

Structurally, the main difference between this specification and previous ones are:

1. ACT ONE has almost disappeared from the specification (we are still using it to maintain the set
of “installed” phones, a feature not present in previous specifications).

2. Control is realized by having processes exchange status information: therefore, we identify our
specification style as a variation of the resource-oriented style, which we callstatus-oriented
style.

2 May 7, 1996 7:55 pm2 May 7, 1996 7:55 pm

This style is appealing, because it mimicks the way “black boxes” exchange status information in
a physical system. Also, at every step of simulation a small number only of actions can be derived,
in other words symbolic behavior trees are narrow. This is in contrast with the constraint-oriented
style, where symbolic behavior trees tend to include many unfeasible paths. As a consequence,
simulation, model-checking, and generation of test cases are expected to be all easier.

2. The Informal Specification

The Plain Old Telephone System, or POTS, is composed of a variable number ofstations which
(unless they are out of service, see below) can perform the two basic roles ofcall initiator andcall
responder, and of acontroller that can establish the connection between any two stations, or can
disconnect already connectedstations. The call initiator role always starts with anoff_hook trigger
action, while the call responder role always starts with a ring trigger action.

Stations do not communicate directly: they are connected via thecontroller which is a distinctive
physical entity, just as thestations are. When it is available, acontroller can provide two types of
services: connecting two stations upon a connection request from one of them, or disconnecting a
station. The latter service can be offered either upon a disconnection request from anotherstation,
or by thestation’s own initiative while it is in the process of being connected.

The purpose of this paper is to provide a specification of the POTS service from a user’s point of
view. Therefore the switching function will not be specified explicitly.

Each entity has a life cycle that starts with an idle state and finishes by returning to the idle state.
A station’s lifecycle can start with anoff hook or aring and terminates with ahang_ up or by
stopping toring . At the point of termination thestation is again available with anoff hook or a
ring action.

A connection control process starts with a connection request and ends when all parties involved
in a connection are disconnected. To establish an initial understanding of what we are trying to
specify, we describe informally the lifecycles of our entities.

Station Lifecycle:

in a call initiator role

 off hook -> dial tone -> dialing a number -> requesting a connection to the controller ->
 being connected by the controller -> talking

or in a call responder role

 ringing -> answering -> being connected by the controller -> talking

3 May 7, 1996 7:55 pm3 May 7, 1996 7:55 pm

Termination of a station’s lifecycle:

in an initiator role:

Thestation can be hung up any time after anoff hook. If a connection request has already been
placed to thecontroller, it will request a disconnection to thecontroller. Thestation could also
receive a disconnection indication from thecontroller only after a connection request has been
placed.

in a responder role:

Thestation can only terminate if it has rung. If it has not answered aring , it can terminate by stop-
ping toring . If it has answered aring it canhang_up and request a disconnection to thecontroller
or it can receive a disconnection indication from thecontroller.

In both initiator or responder roles, the line should provide abusy signal to anyone attempting to
ring it while it is already used in another connection.

Controller’s lifecyle:

in a connector role:

receive a connection request ->
 either ring the called party -> connect the called party -> connect the caller
 or obtain a busy signal -> send a disconnection indication to the caller

in a disconnecting role:

receive a disconnection request from one station -> disconnect the other station

Termination of a controller’s lifecycle:

There are two situations where thecontroller provides a disconnection:

• as a call establishment abortion.
• as an established connection termination.

The two situations are different:

in an already established connection, both parties have to be disconnected, while in the call estab-
lishment abortion case, the parties to be disconnected will depend on the phase in which the con-
nection process is.

We now provide a formal specification of the behavior described above. We have used the follow-
ing conventions: constant values (such as values denoting status information) are identified by low-
er-case names, while LOTOS variables are identified by capitalized names.

4 May 7, 1996 7:55 pm4 May 7, 1996 7:55 pm

3. Specification structure: Call connection

In the top-level structure, we specify the physical entities that exists in a telephone system. As we
have seen in the informal specification, there are two groups of entities: the individual phone sta-
tions and the individual connection control processes.

A phone station can be specified generically in LOTOS, with a variable representing the phone
number. An unlimited number of instances of phone stations can thus be produced. All of these
independent stations will be in parallel with thecontroller and will interact on some actions with it.

collection of stations

||

 controller

We specify a phone station using the process name station(N: phone_number) wherethe variable
N represents the phone number assigned to the generic phone process.The collection of stations
would thus be represented by a number of interleavedstations. The above high level design could
be expanded to the following structure:

(
station [b,g,n,t,tn](1234)
|||
station [b,g,n,t,tn](5678)
|||
 ...
|||
station [b,g,n,t,tn](9999)

)

||

controller[n,tn]

where 1234, 5678 and 9999 are phone numbers.

In LOTOS there is a more elegant way to specify that there is an unlimited number of phonesta-
tions, which uses recursive interleave. In our case we specify a phone stationinstaller, that can
install any new instance of a phonestation. The installed phone will then remain active at all times,
since we have not specified a phone disconnection service.This will be discussed in Section 5.

While the phone stations represent physical instances of phones that will exist permanently once
installed, the instances of thecontroller have a different type of life cycle. Thecontroller provides
an instance of a control process to any station that initiates a call through a connection request. The
control process is an end to end constraint that shows the protocol followed by the parties involved.
Once a connection is terminated, the control process will merely die, corresponding to the fact that

5 May 7, 1996 7:55 pm5 May 7, 1996 7:55 pm

it represents a virtual machine, more than a physical entity.

This is the high level structure of the telephone system specification:

 hide n, tn in
 (
 installer[c,b,g,n,t,tn]({} of phone_set)
 |[b,n,tn]|
 controller[b,n,tn]
)

The specification of a generic station

As we have seen in the informal specification, a phone station can have two possible exclusive
roles: a call initiator or a call responder. A station cannot by itself decide which role it will assume.
In LOTOS we use the non deterministic choice operator[] to describe such a structure.

process station[b,g,n,t,tn](N: phone_number): noexit :=

(
call_initiator_station[b,g,n,t,tn](N)

[]

call_responder_station[b,g,n,t,tn](N)
)
>>

station[b,g,n,t,tn](N)

endproc

We also specify that a phonestation should be able to recycle itself upon completion of either one
of its roles. This is achieved with the use of the LOTOS enable operator>> and a recursion to pro-
cessstation.

The specification of the call initiator role of a station

The LOTOS specification follows relatively easily the informal specification using the LOTOS ac-
tion prefix operator; to specify the sequence of events and the LOTOS disable operator[> to spec-
ify the fact that a termination may occur at any time after anoff hook.

process call_initiator_station[b,g,n,t,tn](N:phone_number): noexit:=

 g ! N ! off_hook ;
(
(
(

g ! N ! tone ;
 g ! N ! dial ? C: phone_number ;
n ! N ! conreq ! C ;

6 May 7, 1996 7:55 pm6 May 7, 1996 7:55 pm

n ! N ! connect ;
talking[g](N)

)
 |||
continuous_busy_signal[b](N)

)

[> station_call_termination[t,tn](N)
)

endproc

The fact that astation should provide abusy signal to anyone attempting to ring it while it is al-
ready involved in a connection is portrayed using the LOTOS parallel interleave operator|||. The
processcontinuous_busy_signalis in parallel with the group of actions fromtone to talking
which indicates that thestation is already engaged as soon as anoff hook action is performed.

The processcontinuous_busy_signal is a process that contains only one action and is recursive.
This recursion is not intended to specify the sort of cyclical beep abusy signal usually consists of.
Rather, it is intented to allow an unlimited number of callers to attempt to connect with a busy
phone and obtain abusy signal. In LOTOS, every synchronization on thebusy signal will consume
this action. The recursion will provide a new instance of abusy signal for the next caller to syn-
chronize on.

 process continuous_busy_signal[b](N:phone_number):noexit:=
 b ! N ! busy ;
 continuous_busy_signal[b](N)
 endproc

7 May 7, 1996 7:55 pm7 May 7, 1996 7:55 pm

Figure 1. Overall Specification Structure
.

station

call_initiator call_responder

u ! off_hook ... n ! ring ...

n ! con_req ... u ! answer ...

[...](NNNN)

station

call_initiator call_responder

u ! off_hook ... n ! ring ...

n ! con_req ... u ! answer ...

[...](2222)

Phone_installer

Controller

n tn b

station

call_initiator call_responder

u ! off_hook ... n ! ring ...

n ! con_req ... u ! answer ...

[...](1111)

user

connection_control

n ! conreq ;

[] []

ring_a_free
number

detect_busy
signal

detect_not
in_service

connection_control

n ! conreq ;

[] []

ring_a_free
number

detect_busy
signal

detect_not
in_service

connection_control

n ! conreq ;

[] []

ring_a_free
number

detect_busy
signal

detect_not
in_service

8 May 7, 1996 7:55 pm8 May 7, 1996 7:55 pm

Note that we are making a methodological point here: continuous signals can be modeled in LO-
TOS by actions that are continuously offered. We use this convention repeatedly in this specifica-
tion.

The processtalking is also recursive to portray the concept of dialogue between the two parties.

process talking[g](N:phone_number):noexit:=
 g ! N ! voice ; talking[g](N)
 endproc (* talking *)

The specification of the call responder role of a station

The LOTOS specification uses the same LOTOS features and the same overall structure as in the
call initiator role

process call_responder_station[b,g,n,t,tn](C:phone_number): noexit:=

n ? N:phone_number ! ring ! C ;
(

 (
(

 g ! C ! answer ;
n ! C ! connect ;
talking[g](C)

)
 |||
continuous_busy_signal[b](C)

)
[> station_call_termination[t,tn](C)

)

endproc

The call termination can occur any time after thering has been executed and also thestation pro-
vides abusy signal as soon as it rings, since the line is no longer available to another connection.

Common features between the call initiator and responder role of a station

In both cases we have a role trigger action: theoff_hook action in thecall initiator process or the
ring action in thecall responder process. Once executed they will determine the subsequent be-
havior of a station, including providing abusy signal or terminating.

Abstract interaction points.

There are two classes of interaction points: general and specialized interaction points

general interaction points:
g is the interaction point between the environment and thestation.
n is the interaction point between thestation and thecontroller.

9 May 7, 1996 7:55 pm9 May 7, 1996 7:55 pm

specialized interaction points:
b is the interaction point between thestation and thecontroller in the case of abusy sig-

nal.
t is the interaction point between the environment and thestation in case of termination.
tn is the interaction point between thestation and thecontroller in the case of termination.

The specification of the controller process

Thecontroller is specified as capable of providing an unlimited number of control processes, one
for each connection. This is achieved in a similar way as the phoneinstaller, using the recursive
interleave construct. Each instance of theconnection controlprocess is instantiated with the ap-
propriate parameters for its connection as determined by its unique trigger action, the connection
request, which upon synchronization with acall initiator station process will obtain these param-
eters by value passing. Thecontroller can offer only one connection request at a time. As soon as
a connection request has been processed, aconnection controlprocess is created to handle the
connection, and a new instance of thecontroller is also created in order to offer a connection re-
quest action to the next candidate caller.

The LOTOS specification mirrors in part thestation specification. There is however a basic differ-
ence with thebusy signal specification. While for astation thebusy signal is a status that is offered
continuously at any point of the connection lifecyle, thecontroller will offer it only once as an al-
ternative to a ring. This corresponds to the fact that acontroller can either ring astation because
it is free or obtain abusy signal if it is not free.

process controller[b,n,tn]:noexit:=
n ? N: phone_number ! conreq ? C: phone_number ;

 connection_control[b,n,tn](N,C)
endproc

process connection_control[b,n,tn](N,C:phone_number):noexit:=

 (
 (

 ring_a_free_number[n](N,C)

[]

 detect_busy_signal[b,tn](N,C)

 []

 detect_not_in_service[b,tn](N,C)
)

[> control_termination[tn]
)

|||

10 May 7, 1996 7:55 pm10 May 7, 1996 7:55 pm

controller[b,t,tn]

endproc

Theconnection_control process can perform three different types of functions:

 • ring a free number
 • detect a busy signal
 • detect a number that is not in service

The processring_a_free_number is the behavior of a successful completion of a connection, un-
less it is aborted.

 process ring_a_free_number[n](N,C:phone_number):noexit:=

 n ! N ! ring ! C ;
 n ! C ! connect ;
 n ! N ! connect ;
 stop

 endproc

Thedetect_busy_signalprocess will occur when the calledstation is busy.

 process detect_busy_signal[b,tn](N,C:phone_number):noexit:=

 b ! C ! busy ;
 (

 tn ! N ! disind ? S:status ; stop
 []
 tn ! N ! disreq ? S:status ; stop
)
 endproc

Finally if the control process cannot synchronize with either aring or abusy signal, this means
that there is no phone with such a number at all. It will however synchronize with the
not_in_service action of theinstaller (see below).

 process detect_not_in_service[b,tn](N,C:phone_number):noexit:=

 b ! C ! not_in_service ;
 (

 tn ! N ! disind ? S:status; stop
 []
 tn ! N ! disreq ? S:status; stop
)
 endproc

As mentioned, thecontroller connects the two parties if the responder is not busy and then dies

11 May 7, 1996 7:55 pm11 May 7, 1996 7:55 pm

when the connection is terminated.

4. Specification Structure: Call Termination

The need for different termination patterns

Unfortunately, we are now obliged to complicate considerably our so far relatively straightforward
specification in order to take into consideration all possible termination patterns.

For the whole system, there are four termination patterns depending on the stage where the termi-
natingstation is in a connection. For instance, before astation places a connection request to the
controller, a termination can be performed by simply hanging up. If a connection request has been
sent, then a disconnection request has to be placed with thecontroller in order to release thecon-
troller as well. If the respondingstation was ringing, it has to stop ringing. Finally, when both
stations are connected, either one of them can become disconnected. We show all these possibilities
in Fig. 2. Boxes at the left-hand-side of the figure show the different stages of the connection. Dis-
connection sequences, leading back to the initial state, are shown on the right. For example, by
reading this diagram we see that if a call initiator hangs up after any of offhook, tone, ordial, the
system can return to the initial state without any further action. However, if a call initiator or call
responderhang up after any of answer, connect, or talk , appropriate disconnection requests or
indications have to be exchanged.

Since our system specification consists of two main components, thestation and thecontroller,
we must now specify termination sequences in LOTOS for each one of these two components.We
first discuss in detail the termination sequences for thestation. Note that so far we have considered
separately theinitiator andresponder roles. However, since termination sequences are almost the
same for the two roles, it it convenient to combine them into one specification.

The problem that presents itself at this point is how to represent in LOTOS a control structure such
as the one presented in Fig. 2. It is a situation of disable, which therefore must be represented as
S:= P [> D, where P is the normal connection sequence (on the left in the diagram), and D is a
choice construct, representing all possible termination sequences (on the right). This structure is
shown in processcall_initiator_station shown above. Which choice must be taken in D, however,
depends on where the disable occurred in P. We can think of P as consisting of a series ofstages,
each stage being a sequence of LOTOS action offers. All actions in a stage have in common the
fact that if a disable occurs after any of them, the same disconnection sequence must be used. The
disable operator, which allows transferring control from P to D at any point within P, is not capable
at the same time of transmitting knowledge of the stage where the disabling occurred. In order to
save and transmit this information , we use a “memory” process M that synchronizes with P[>D,
in the form(P [> D) || M. This structure is presented in Fig. 3, where P [> D and M are shown on
the left and right respectively. M itself is made of two parts: a state recording process R and a ter-
mination logic T, which are in alternative. The following structure results:
 (P [> D) || (R [] T).
M is recursive, it reinstantiates itself after each interaction with P. Before the disable in S, at each
reinstantiation, R is executed and the current state of P is passed as a parameter. By synchronizing
with P, R keeps track of its progress. We shall see that in order to inform R of its progress, P passes

12 May 7, 1996 7:55 pm12 May 7, 1996 7:55 pm

to R what we callprimitive values. R keeps track of the stage reached within P by generating pa-
rameter values, calledstatus values. When D takes over, it will no longer synchronize with R, rath-
er it will synchronize with T. T will pass back to D the last reached state of P. Now D and T can
synchronize to carry out the appropriate termination procedure. Thus T is also a choice between
several termination sequences. Note that T and D must keep synchronizing after the trigger action
during the termination sequence, otherwise deadlock will occur.

Station Termination

Applying this concept to processcall_ initiator_station, seen above, we obtain the following mod-
ified structure (using a process connection _behavior which will be a process of the form P[>D,
an appropriate variation of processcall_initiator_station seen above):

 process call_initiator_station[b,g,n,t,tn](N:phone_number):exit:=

 (* connection _behavior *)

 |[b,g,n,t,tn]|

 station_processor_memory[b,g,n,t,tn](N, idle, none)

 endproc

the same structure applies to thecall_responder_station.

The disabling process, corresponding to D in the discussion above, is as follows:

 process station_call_termination[t,tn](N:phone_number):exit:=

 station_terminate_set_up[t](N) (*1*)
 []
 station_terminate_during_con_req[t,tn](N) (*2*)
 []
 station_disconnect_once_connected[t,tn](N) (*2’*)
 []
 station_terminate_after_rung[tn](N) (*3*)
 []
 station_terminate_once_connected[t,tn](N) (*4*)
 []
 station_disconnect_during_con_req[t,tn](N) (*4’*)

 endproc

Following is a description of the use of each one of these termination sequences:

1. This termination sequence applies after anoff-hook, tone, ordial. Therefore, it only applies to
the initiator.

2 and 2’. These termination sequences apply after a conreq. Therefore, they apply to both initiator
and responder.

13 May 7, 1996 7:55 pm13 May 7, 1996 7:55 pm

3. This termination sequence applies to the responder only after a ring.
4. and 4’. These sequences apply to either an initiator or a responder after ananswer, connect, or

talk .

Each termination sequence is now further specified. Note that each such sequence triggers anexit
which returns to initial state.

The termination sequence in the set_up stage is very simple.

 process station_terminate_set_up[t](N:phone_number):exit:=
 t ! N ! hangup ! set_up ; exit
 endproc

The two following termination sequences reflect the possibility of collision. A collision occurs
when both partieshang_up, each before having received notification of the other’s hang_up. Col-
lision is handled by thecontroller who informs each party of the disconnection, instead of for-
warding a disconnection request from a party to another. Therefore, these sequences arecomposed
of a termination action, which acts as a trigger, followed by a choice of disconnection request or
disconnection indication.

 process station_terminate_once_connected[t,tn]
 (N:phone_number):exit:=

 t ! N ! hangup ! conctd ;
 (
 tn ! N ! disreq ? PT: phone_number ? S: status ;
 exit
 []
 tn ! N ! disind ? S: status ; exit
)

 endproc

 process station_terminate_during_con_req[t,tn]
 (N:phone_number):exit:=

 t ! N ! hangup ! recvd_req ;
 (
 tn ! N ! disreq ? PT: phone_number ? S: status ;
 exit
 []
 tn ! N ! disind ? S: status ; exit
)
 endproc

 process station_terminate_after_rung[tn]
 (N:phone_number):exit:=
 tn ! N ! stopring ! rung ; exit
 endproc

14 May 7, 1996 7:55 pm14 May 7, 1996 7:55 pm

 process station_disconnect_once_connected[t,tn]
 (N:phone_number):exit:=
 tn ! N ! disind ! conctd ;
 t ! N ! hangup ! conctd ; exit
 endproc

 process station_disconnect_during_con_req[t,tn]
 (N:phone_number):exit:=
 tn ! N ! disind ! recvd_req ;
 t ! N ! hangup ! recvd_req ; exit
 endproc

Specification of the memory process

As already mentioned, the memory process keeps track of the stage reached within thestation pro-
cess by using synchronization. The memory is represented by a formal parameter, thestatus value.

For example when anoff hook occurs:

g ! CIN ! off_hook ; station_processor_memory[b,g,n,t,tn](CIN,set_up,CRN)

the primitive valueoff_hook is passed to the memory process, which generates the status valueset
up. This is a parameter for the reinstantiation of the memory process. At the same time, the num-
bers of the initiator and responder stations are passed on.

The connection request action generates therecvd_req state in the same way:

g ! CIN ! conreq ! CRN ; station_processor_memory[b,g,n,t,tn](CIN,recvd_req,CRN)

Both thetone anddial actions are represented using the same construct.

Each of the choices that constitute the termination logic starts by an action offer that synchronizes
with one of the choices of termination actions ofstation_call_ termination. An appropriate value
offer ensures that the choice is deterministic.

For example, we can specify the proper termination sequence in theset_up state as:

t ! N ! hang_up ! set_up ; exit

which informally means that a hang up is followed by anexit (with return toidle) in the set up
stage. Thecontroller is not involved because it has not received a connection request.

15 May 7, 1996 7:55 pm15 May 7, 1996 7:55 pm

idle

offhook

call setup

conreq

ring

answer

call initiator
hangs up

call initiator hangs up

disconnect request
to controller

call initiator hangs up

disconnect request,
controller stops
ringing responder

call initiator or call
responder hang up

received conreq

rung

Figure 2: End-to-end Termination Sequences

tone
dial

connected

connect
talking send disc. req. or

receive disc. indic.

16 May 7, 1996 7:55 pm16 May 7, 1996 7:55 pm

If the connection request has been received by thecontroller, we use the following termination se-
quence:

 t ! N ! hang_up ! recvd_req ;
 tn ! N ! disreq ! C ! recvd_req ; exit

where the second action forces termination of thecontroller.These termination actions are speci-
fied in thestation_call_termination process. The processor with memory would have similar ac-
tions but with one difference, the formal parameter that acts as a memory instead of a state value.

passing
primitive value

passing
status value

synchronization
patterns memory_processor process

(status)formal parm.

record state process

primitive value determines
status value of formal
parameter of recursive
instantiation of memory process

[]

termination logic

the status value obtained
from the formal parameter
will impose the appropriate
termination sequence

process station

normal connection
process

[>

process

Fig. 3.Structure of a state memory processor

(initiator or responder)

(P)

(D)

(R)

(T)

status

(M)
(S)

||

station_call_termination

17 May 7, 1996 7:55 pm17 May 7, 1996 7:55 pm

t ! N ! hang_up ! Status ;
(

exit
[]
 tn ! N ! disreq ! C ! Status ; exit

)

where the identifier Status will contain the status information. If that value wasset_up the first ac-
tion of the processor memory would synchronize with the t ! N ! hang_up ! set_upaction in the
station_call_termination. That process would then offer anexit that would resolve the non deter-
ministic choice between theexit or thedisreq action in the memory_processor process.

At the highest level, our phone memory processor has two main functions:

• Record the stage where the system is.
• Indicate the termination pattern depending on the stage the phone process was in.

process station_processor_memory[b,g,n,t,tn]
 (N:phone_number,S: status, C:phone_number): noexit:=

 station_record_status[b,g,n,t,tn](N,Status,C)
 []
 station_indicate_termination_sequence[b,g,n,t,tn](N,Status,C)

endproc

Each sequence for recording the station’s stage starts by an action which determines a stage change.
Processstation_processor_memory is then reinstantiated with the updated stage. There are five
groups of stages for which the termination patterns differ, as indicated in the
station_record_status process.

 process station_record_status[b,g,n,t,tn]
 (N:phone_number, PT:phone_number):exit:=
 is_not_reachable[b,g,n,t,tn](N,PT)
 []
 is_in_set_up[b,g,n,t,tn](N,PT)
 []
 is_in_con_req[b,g,n,t,tn](N,PT)
 []
 has_rung[b,g,n,t,tn](N,PT)
 []
 is_fully_connected[b,g,n,t,tn](N,PT)
 endproc

Each one of these processes responds to an action that is possible in the connection phase. It records
a change of stage, and this information is then used to direct (choose?) the termination sequence.
The first group of actions deals with a non reachable phone, either because it is busy or because it
doesn’t exist.

18 May 7, 1996 7:55 pm18 May 7, 1996 7:55 pm

 process is_not_reachable[b,g,n,t,tn](N,PT:phone_number):exit:=

 b ! N ! busy ;
 station_processor_memory[b,g,n,t,tn](N,sbusy,PT)
 []
 b ! N ! not_in_service ;
 station_processor_memory[b,g,n,t,tn](N,sbusy,PT)
 endproc

We leave most of the remaining details to the reader. They are in [SL 93]. The second group of
actions are for the set up stage. They record whether anoffhook, tone, ordial, has occurred. The
third group of actions records the fact that a connection request has been performed. This means
that both a phone and acontroller process have been activated, implying that both processes will
have to be terminated in case ofhang_up.The fourth process is a single action process that records
that aring has occurred. Finally, the fifth status recorder process records the fact that a phone sta-
tion is connected. Theindicate_termination_sequence process will now be able to impose se-
quences through the value of the status that it inherits after each recursion.

There are three groups of actions corresponding to three possible terminations of a phone process.

• The user hangs up. This may lead to a straightexit if thecontroller was not involved yet (set up
stage).

• Thestation was a responder and aring had already been performed.
• Thestation has received a disconnect indication from thecontroller and the user has no other

choice but hanging up.

The following process synchronizes with processstation_call_termination given above.

process station_indicate_termination_sequence[t,tn]
(CIN:phone_number,Status:status,CRN:phone_number):exit:=

t ! CIN ! hang_up ! Status ;
(

exit
[]
 tn ! CIN ! disr eq ! CRN ! Status ; exit

)

[]

tn ! CIN ! stopring ! Status ; exit

[]

tn ! CIN ! disind ! Status ;
t ! CIN ! hang_up ! Status ; exit

endproc

This process exits to processstation shown above. In other words, we are ready to restart all over

19 May 7, 1996 7:55 pm19 May 7, 1996 7:55 pm

again. The memory and termination sequence processes are almost mirror images of thestation
andstation_call_termination processes, but they don’t indicate the temporal ordering of these ac-
tions relative to each other. Theindicate_termination_sequencegives a temporal ordering, but
without specifying where in the connection.

The formal parameters CIN and CRN mean Call Initiator Number and Call Responder Number re-
spectively. The updatedstation_call_terminationprocess would now show a status value for each
of its termination sequences.

Controller Termination

Again, the reader is referred to [SL 93] for the details ofcontroller termination. In this case, there
are only the last three termination patterns shown in Fig. 2, because thecontroller is not involved
at all in the first one. When acontroller receives a disconnection request during the connection
establishment phase, it will have to determine if it can go straight back to idle state or also act upon
the responderstation. If it is causing the responderstation to ring, it will have to stop the ringing.
If the responder has already answered the call, thecontroller should send it a disconnection indi-
cation. Thecontroller should also be able to detect cases of collision, i.e. independent disconnec-
tion from both sides.

Thecontroller will have its own memory and processor mainly to decide if after receiving a dis-
connection request from the call initiator, it should stop ringing the responder, send a disconnection
indication if the responder has answered, or merely stop if the responder has not been involved yet.
Consequently, its structure will be similar to the one ofstation. The same design applies for the
connection control processes. Eachconnection control process is in parallel with a
control_memory_processor.

5. Installing Stations

The status oriented specification style solves two well-known constraints easily: the busy number
detection and the number activation. However, there remains the problem of specifying what hap-
pens when one dials a number that has not been installed. The specification that we have shown so
far would merely deadlock.

In an old-fashioned telephone system a number not in service could be detected through some
grounding mechanism at some point of the hierarchy between exchanges. In a more computer-ori-
ented system, however, one would have a data base of numbers in service. In LOTOS we can use
abstract data types to specify such a data base. Using the standard LOTOS library data type Set, we
can build a set of installed phone stations. This set of numbers can then be used by a separate pro-
cess, which will be offered as an alternative to all instances of active numbers. The process will
offer anot_in_service action, which can be taken as an abstraction for the announcement usually
obtained whenever a dialed number is not installed.

This action will have a mirror action in thecontroller process. The latter will now be able to either
ring , get abusy signal, or a not in service announcement after receiving a connection request.

20 May 7, 1996 7:55 pm20 May 7, 1996 7:55 pm

This is the revised processinstaller:

process installer[c,b,g,n,t,tn](Prev_SetofPhones:phone_set): noexit:=

 c ? NewNumber: phone_number ;
 (

 station[b,g,n,t,tn](NewNumber)
 |||
 installer[c,b,g,n,t,tn](Insert(NewNumber,Prev_SetofPhones))

)
 []
 not_in_service[c,b,g,n,t,tn](Prev_SetofPhones)

 where

 process not_in_service[c,b,g,n,t,tn](SetofPhones:phoneset):noexit:=
 b ? CRS: phone_number ! not_in_service [CRS NotIn SetofPhones] ;
 installer[c,b,g,n,t,tn]SetofPhones)

 endproc

 endproc

At interaction pointc, the environment can provide the number of a new instance of thestation
process. The next behavior expression consists in the new instance interleaved with theinstaller
itself.

6. Conclusions

We have presented a style of LOTOS specification based on synchronization between processes to
exchange status information. This style takes full advantage of the capabilities of the control part
of LOTOS, so the importance of the data part can be reduced significantly.

It remains to be seen to what extent this style can be used to advantage in order to specify more
complex entities than the simple POTS service described in this paper. Also the significance of this
style with respect to other aspects of the LOTOS-based software development process, such as va-
lidation, testing, and implementation, is yet to be clarified.

Acknowledgment. This work was supported in part by grants and contracts of Bellcore, Bell-
Northern Research, and the Telecommunications Research Institute of Ontario.

References

[B 91] R. Boumezbeur. Design, Specification, and Validation of Telephony Systems in LOTOS.
Master of Computer Science Thesis, University of Ottawa, 1991 (Obtainable by ftp on lo-
tos.csi.uottawa.ca).

21 May 7, 1996 7:55 pm21 May 7, 1996 7:55 pm

[BL 92] R. Boumezbeur and L. Logrippo, Specifying Telephone Systems in LOTOS and the Fea-
ture Interaction Problem. International Workshop on Feature Interactions in Telecommunications
Systems (St.Petersburg, Fla., Dec. 1992), 95-108.

[BL 93] R. Boumezbeur and L. Logrippo. Specifying Telephone Systems in LOTOS. IEEE Com-
munications Magazine, August 1993, 38-45.

[CV 90] R.C. Cam and S.T. Vuong. A Formal Specification, in LOTOS, of a Simplified Cellular
Mobile Communication System. In: S.T. Vuong (ed.) Formal Description Techniques, II. North-
Holland, 1990, 485-499.

[DCB 92] L. Drayton, A. Chetwind, and G. Blair. Introduction to LOTOS through a Worked Ex-
ample. Computer Communications, 15 (1992), 2 70-85.

[EHM 93] P. Ernberg, T. Hovander, F. Monfort. Specification and Implementation of an ISDN
Telephone System Using LOTOS. In: M. Diaz, R. Groz (eds.) Formal Description Techniques, V.
North-Holland 1993, 171-186.

[FLS 90] M. Faci, L. Logrippo, and B. Stepien. Formal Specification of Telephone Systems in LO-
TOS. In: E. Brinksma, G. Scollo, and C. Vissers (eds), Protocol Specification, Testing, and Verifi-
cation, IX North-Holland, 1990, 25-34.

[FLS 91] M. Faci, L. Logrippo, and B. Stepien. Formal Specification of Telephone Systems in LO-
TOS: the Constraint-Oriented Style Approach. Computer Networks and ISDN Systems, 21 (1991),
53-67.

[Sl 93] B. Stepien and L. Logrippo. Status-Oriented Telephone Service Specification: An Exercise
in LOTOS Style. University of Ottawa, Department of Computer Science, TR-93-07 (Feb. 1993)
(Obtainable by ftp on lotos.csi.uottawa.ca).

