
3.2 (Part of) the Feasible Symbolic Tree

* 1 [Cal l ingRole=Cal l ingRole] t ?TAddress@1 ?TSP@1
]

[
[and(IsTCONreq(TSP@1) , IsCal l ingOf(TAddress@1,TSP@1))
IsTReq(TSP@1)] [730,744,766]

]
*
* | 1 i (enable: exi t !TSP@1) [744

| | 1 [Cal l ingRole=Cal l ingRole] i (enable: exi t !TAddress@1) [786]
]bh1 * | | | 1 [NonEmpty(TSP@1)] [IsIndicat ionOf(TSP%4,TSP@1)] i (specified expl ici t ly) [798

* | | | | 1 [Cal l ingRole=Cal l ingRole] i (enable: exi t !TAddress@1) [786]
2* | | | | | 1 [Cal ledRole=Cal ledRole] [Cal ledRole=Cal ledRole] t ?TAddress@6 !TSP%4.

[and(IsTCONind(TSP%4) , IsCal ledOf(TAddress@6,TSP%4))]

[
[IsTInd(TSP%4)]
ne(TAddress@6,TAddress@1)] [730,746,783,788,798]

*
* | | | | | | 1 i (enable: exi t !TSP%4) [746]

| | | | | | | 1 i (enable: exi t !TAddress@6) [788]

*
* | | | | | | | | 1 i (enable: exi t !NoTReqs) [798]

| | | | | | | | | 1 [Empty(NoTReqs)] t !TAddress@6 ?TSP@10

[
[IsVal idTCON2For (TSP@10,TSP%4)]
IsTReq(TSP@10)]

[IsTReq(TSP@10)] [733,749,779,733,800]
]

*
* | | | | | | | | | | 1 [IsTEXOpt ionOf(TEXOpt ion%11,TSP@10)] i (enable: exi t !TEXOpt ion%11) [751

| | | | | | | | | | | 1 i (enable: exi t !TSP@10) [800]
]* | | | | | | | | | | | | 1 [NonEmpty(TSP@10)] [IsIndicat ionOf(TSP%13,TSP@10)

i (specified expl ici t ly) [798]
* | | | | | | | | | | | | | 1 t !TAddress@1 !TSP%13

[IsVal idTCON2For (TSP%13,TSP@1)]
]

*
[IsTInd(TSP%13)] [733,749,783,733,798

| | | | | | | | | | | | | | 1 [IsTEXOpt ionOf(TEXOpt ion%15,TSP%13)]
]

*
i (enable: exi t !TEXOpt ion%15) [751

| | | | | | | | | | | | | | | 1 i (enable: exi t !NoTReqs) [798]
7* | | | | | | | | | | | | | | | | 1 [Empty(NoTReqs)] t !TAddress@1 ?TSP@1

[IsTDT(TSP@17)]
[IsTReq(TSP@17)] [IsTReq(TSP@17)] [733,758,779,733,800]

*
* | | | | | | | | | | | | | | | | | 1 i (enable: exi t !TSP@17) [800]

| | | | | | | | | | | | | | | | | | 1 [NonEmpty(TSP@17)] [IsIndicat ionOf(TSP%19,TSP@17)]
i (specified expl ici t ly) [798]

9* | | | | | | | | | | | | | | | | | | | 1 t !TAddress@1 !TSP%1
[IsTDT(TSP%19)]
[IsTInd(TSP%19)] [733,758,783,733,798] ==> cont inue

*

.

| | | 2 [Cal l ingRole=Cal l ingRole] i (enable: exi t !TAddress@1) [786] ==> cont inue

*
* | | 2 [NonEmpty(TSP@1)] [IsIndicat ionOf(TSP%3,TSP@1)] i (specified expl ici t ly) [798] ==> cont inue

| | 3 [Cal l ingRole=Cal l ingRole] i (enable: exi t !TAddress@1) [786]
ebh2 * | | | 1 [Cal l ingRole=Cal l ingRole] i (enable: exi t !TAddress@1) [786] ==> cont inu

* | | | 2 [NonEmpty(TSP@1)] [IsIndicat ionOf(TSP%4,TSP@1)] i (specified expl ici t ly) [798] ==> cont inue

*
* | 2 [Cal l ingRole=Cal l ingRole] i (enable: exi t !TAddress@1) [786]

| | 1 i (enable: exi t !TSP@1) [744] ==> again bh1

*
* | | 2 [NonEmpty(TSP@1)] [IsIndicat ionOf(TSP%3,TSP@1)] i (specified expl ici t ly) [798] ==> cont inue

| | 3 [Cal l ingRole=Cal l ingRole] i (enable: exi t !TAddress@1) [786]
ebh3 * | | | 1 i (enable: exi t !TSP@1) [744] ==> cont inu

* | | | 2 [NonEmpty(TSP@1)] [IsIndicat ionOf(TSP%4,TSP@1)] i (specified expl ici t ly) [798] ==> cont inue
e

*
* | 3 [NonEmpty(TSP@1)] [IsIndicat ionOf(TSP%2,TSP@1)] i (specified expl ici t ly) [798] ==> cont inu

| 4 [Cal l ingRole=Cal l ingRole] i (enable: exi t !TAddress@1) [786]
2

*
* | | 1 i (enable: exi t !TSP@1) [744] ==> again bh

| | 2 [Cal l ingRole=Cal l ingRole] i (enable: exi t !TAddress@1) [786] ==> again bh3

T

* | | 3 [NonEmpty(TSP@1)] [IsIndicat ionOf(TSP%3,TSP@1)] i (specified expl ici t ly) [798] ==> cont inue

he las t par t shows the complexi ty int roduced by enables , s ince there are as many branches as there are
e

b
poss ible permutat ions of success ive enables . Note for example that [1.1.1] and [1.2.1] lead to the sam
ehaviour label led bh1.

Node [1.1.1.1.1.1] cor responds to node [1.1.1.1.1.9] in the t ree of Annex 3.1. I t s subt ree was not
explored there .

3

3 Process TConnection

.0 Data Base of contradictions

(
(1) IsTReq(@1) # IsTInd(@1)
2) IsTReq(@1) # IsTCONind(@1)

)
(
(3) IsTReq(@1) # IsIndicat ionOf(@2,@1
4) IsVal idTCON2For (@2,@1) & IsTReq(@1) # IsTReq(@2)

)
(
(5) IsVal idTCON2For (@2,@1) & IsTInd(@1) # IsTInd(@2
6) IsIndicat ionOf(@2,@1) & IsTDIS(@1) # IsTDT(@2)

T

3.1 (Part of) the Contextual Symbolic Tree
he appl icable rules of sect ion 2.2 are shown af ter reaching node [1.1.1.1] .

1 [Cal l ingRole=Cal l ingRole] t ?TAddress@1 ?TSP@1
[and(IsTCONreq(TSP@1) , IsCal l ingOf(TAddress@1,TSP@1))]

|
[IsTReq(TSP@1)] [730,744,766]
1 i (enable: exi t !TSP@1) [744]

| | 1 [Cal l ingRole=Cal l ingRole] i (enable: exi t !TAddress@1) [786]
]

|
| | | 1 [NonEmpty(TSP@1)] [IsIndicat ionOf(TSP%4,TSP@1)] i (specified expl ici t ly) [798

| | | 1 [Cal l ingRole=Cal l ingRole] i (enable: exi t !TAddress@1) [786]
| | | | 2 t !TAddress@1 !TSP%4

[IsVal idTCON2For (TSP%4,TSP@1)]
[IsTReq(TSP%4)] [733,750,779,733,798] ** rule C(4) **

| | | | 3 [Cal ledRole=Cal ledRole] t !TAddress@1 !TSP%4
[IsVal idTCON2For (TSP%4,TSP@1)]

[
[IsTInd(TSP%4)]
ne(TAddress@1,TAddress@1)] [733,750,783,788,798] ** rule A **

| | | | 4 [Cal ledRole=Cal ledRole] [Empty(NoTReqs)] t !TAddress@1 ?TSP@5
[IsVal idTCON2For (TSP@5,TSP@1)]

[
[IsTReq(TSP@5)]
ne(TAddress@1,TAddress@1)]

[IsTReq(TSP@5)] [733,750,779,788,800] ** rule A **
| | | | 5 t !TAddress@1 !TSP%4

[IsTDIS(TSP%4)]
[IsTReq(TSP%4)] [733,764,779,733,798] ** rule C(3) **

| | | | 6 [Cal ledRole=Cal ledRole] t !TAddress@1 !TSP%4
[IsTDIS(TSP%4)]

]
[
[IsTInd(TSP%4)
ne(TAddress@1,TAddress@1)] [733,764,783,788,798] ** rule A **

| | | | 7 [Cal ledRole=Cal ledRole] [Empty(NoTReqs)] t !TAddress@1 ?TSP@5
[IsTDIS(TSP@5)]

]
[
[IsTReq(TSP@5)
ne(TAddress@1,TAddress@1)]

[IsTReq(TSP@5)] [733,764,779,788,800] ** rule A **
| | | | 8 [Cal ledRole=Cal ledRole] t !TAddress@1 !TSP%4

[and(IsTCONind(TSP%4) , IsCal ledOf(TAddress@1,TSP%4))]
*

|
[IsTReq(TSP%4)] [730,746,779,733,798] ** rule B(2) *

| | | 9 [Cal ledRole=Cal ledRole] [Cal ledRole=Cal ledRole] t ?TAddress@5 !TSP%4

[
[and(IsTCONind(TSP%4) , IsCal ledOf(TAddress@5,TSP%4))]
IsTInd(TSP%4)]

[ne(TAddress@5,TAddress@1)] [730,746,783,788,798] ==> cont inue
| | | | 10 [Cal ledRole=Cal ledRole] [Cal ledRole=Cal ledRole] [Empty(NoTReqs)] t ?TAddress@5 ?TSP@5

[and(IsTCONind(TSP@5) , IsCal ledOf(TAddress@5,TSP@5))]

[
[IsTReq(TSP@5)]
ne(TAddress@5,TAddress@1)]

[IsTReq(TSP@5)] [730,746,779,788,800] ** rule B(2) **

Local ordering of primitives at a calling endpoint

2

2. Process TCEPSPOrdering (role: User Role):

.1 Labelled Symbolic Tree (depth = 7)
]1 [role=Cal l ingRole] t ?ta ?tcr [and(IsTCONreq(tcr) , IsCal l ingOf(ta , tcr))] [744

| 1 i (enable: exi t ! tcr) [744]
]

|
| | 1 t ?ta ?tc2 [IsVal idTCON2For (tc2, tc1)] [750

| | 1 [IsTEXOpt ionOf(x, tc2)] i (enable: exi t !x:TEXOpt ion) [751]

|
| | | | 1 t ?ta ?t sp [IsTDT(t sp)] [758]

| | | | 1 t ?ta ?t sp [IsTDT(t sp)] [758]
e

|
| | | | | | 1 t ?ta ?t sp [IsTDT(t sp)] [758] ==> cont inu

| | | | | 2 [x=UseTEX] t ?ta ?t sp [IsTEX(t sp)] [761] ==> cont inue

|
| | | | | | 3 t ?ta ?t sp [IsTDIS(t sp)] [764] ==> cont inue

| | | | 2 [x=UseTEX] t ?ta ?t sp [IsTEX(t sp)] [761]
e

|
| | | | | | 1 t ?ta ?t sp [IsTDT(t sp)] [758] ==> cont inu

| | | | | 2 t ?ta ?t sp [IsTEX(t sp)] [761] ==> cont inue
e

|
| | | | | | 3 t ?ta ?t sp [IsTDIS(t sp)] [764] ==> cont inu

| | | | 3 t ?ta ?t sp [IsTDIS(t sp)] [764]
]

|
| | | | | | 1 exi t ** EXIT SUCCEED ** [764

| | | 2 [x=UseTEX] t ?ta ?t sp [IsTEX(t sp)] [761]

|
| | | | | 1 t ?ta ?t sp [IsTDT(t sp)] [758]

| | | | | 1 t ?ta ?t sp [IsTDT(t sp)] [758] ==> cont inue
e

|
| | | | | | 2 t ?ta ?t sp [IsTEX(t sp)] [761] ==> cont inu

| | | | | 3 t ?ta ?t sp [IsTDIS(t sp)] [764] ==> cont inue

|
| | | | | 2 t ?ta ?t sp [IsTEX(t sp)] [761]

| | | | | 1 t ?ta ?t sp [IsTDT(t sp)] [758] ==> cont inue
e

|
| | | | | | 2 t ?ta ?t sp [IsTEX(t sp)] [761] ==> cont inu

| | | | | 3 t ?ta ?t sp [IsTDIS(t sp)] [764] ==> cont inue

|
| | | | | 3 t ?ta ?t sp [IsTDIS(t sp)] [764]

| | | | | 1 exi t ** EXIT SUCCEED ** [764]

|
| | | | 3 t ?ta ?t sp [IsTDIS(t sp)] [764]

| | | | 1 exi t ** EXIT SUCCEED ** [764]

|
| | | 2 t ?ta ?t sp [IsTDIS(t sp)] [764]

| | | 1 exi t ** EXIT SUCCEED ** [764]

|
| | 2 t ?ta ?t sp [IsTDIS(t sp)] [764]

| | 1 exi t ** EXIT SUCCEED ** [764]
]

2

| | 3 [role=Cal ledRole] exi t ** EXIT SUCCEED ** [740

.2 Simplified Symbolic Tree
This is the resulting tree after the simplification rules discussed in the paper are applied.

Congruence rule 1 was appl ied twice , whi le rule 2 was appl ied once .

bh0 * 1 [Cal l ingRole=Cal l ingRole] t ?ta ?tcr [and(IsTCONreq(tcr) , IsCal l ingOf(ta , tcr))] [744]

b
bh1 * | 1 t ?TAddress@0 ?TSP@0[IsVal idTCON2For (TSP@0, [])] [750]
h2 * | | 1 [IsTEXOpt ionOf(TEXOpt ion%2,TSP@0)] t ?TAddress@1 ?TSP@1[IsTDT(TSP@1)] [758]

bh3 * | | | 1 t ?TAddress@2 ?TSP@2[IsTDT(TSP@2)] [758] ==> again bh3
* | | | 2 [TEXOpt ion%2=UseTEX] t ?TAddress@2 ?TSP@2[IsTEX(TSP@2)] [761]

bh4 * | | | | 1 t ?TAddress@3 ?TSP@3[IsTDT(TSP@3)] [758] ==> again bh4
* | | | | 2 t ?TAddress@3 ?TSP@3[IsTEX(TSP@3)] [761] ==> again bh4

b
* | | | | 3 t ?TAddress@3 ?TSP@3[IsTDIS(TSP@3)] [764]

h5 * | | | | | 1 exi t ** EXIT SUCCEED ** [764]
]

*
* | | | 3 t ?TAddress@2 ?TSP@2[IsTDIS(TSP@2)] [764

| | | | 1 exi t ** EXIT SUCCEED **
]* | | 2 [IsTEXOpt ionOf(TEXOpt ion%2,TSP@0)] [TEXOpt ion%2=UseTEX

t?TAddress@1?TSP@1[IsTEX(TSP@1)] [761] ==> again bh4
]

*
* | | 3 [IsTEXOpt ionOf(TEXOpt ion%2,TSP@0)] t ?TAddress@1 ?TSP@1[IsTDIS(TSP@1)] [764

| | | | 1 exi t ** EXIT SUCCEED **
]

*
* | 2 t ?TAddress@0 ?TSP@0[IsTDIS(TSP@0)] [764

| | | 1 exi t ** EXIT SUCCEED **

7
776
77 process TCEPReq[t] (ta:TAddress , role:TSUserRole) :noexi t := TReq[t] | |GetCal ledTId[t] (ta , role) endproc

7
778
79 process TReq[t] :noexi t := t?ta:TAddress? t sp:TSP[IsTReq(t sp)] ; TReq[t] endproc

7
780
81 process TCEPInd[t] (ta:TAddress , role:TSUserRole) :noexi t := TInd[t] | |GetCal ledTId[t] (ta , role) endproc

7
782
83 process TInd[t] :noexi t := t?ta:TAddress? t sp:TSP [IsTInd(t sp)] ; TInd[t] endproc

7
784
85 process GetCal ledTId[t] (ta:TAddress , role:TSUserRole) :noexi t :=

7
786 ([role = Cal l ingRole] -> exi t (ta)
87 []

788 [role = Cal ledRole] -> t?ta1:TAddress? t sp:TSP [ta1 ne ta] ; exi t (ta1)

7
789) >> accept ta:TAddress in Cons tantTA[t] (ta)
90 endproc

7
791
92 process TCReqToInd[t] (rh:TSP) :noexi t :=

)
7
793 TSPEvent [t] (rh) >> accept rh1:TSP in TCReqToInd[t] (rh1
94 endproc

7
795
96 process TSPEvent [t] (rh:TSP) :exi t (TSP) :=

7
797 [NonEmpty(rh)] ->
98 (choice t spi :TSP [] [t spi IsIndicat ionOf rh] -> i ; t?ta:TAddress! t spi ;exi t (NoTReqs))

8
799 []
00 [Empty(rh)] -> t ?ta:TAddress? t sp:TSP [IsTReq(t sp)] ; exi t (t sp)

8
801 endproc
02

803 endspec (* Simpl ifiedTranspor tService *)

.

T

The numbers on the lef t -hand s ide are l ine numbers

hese numbers appear in the fol lowing t rees between square bracket s to indicate the act ion offers which
cooperate to yield the act ions shown.

The specification is a simplified formal description of the OSI Transport Service, based on [ISO2].

The simplifications relate to the end-to-end constraints:

- only one connection is provided,

- queues of requests, lost requests and provider-generated indications are not specified.

2 specificat ion Simpl ifiedTranspor tService [t] : noexi t

(* data par t *)

]
7
721 behaviour TConnect ion[t
22 where

7
723
24 process TConnect ion[t] :noexi t := TCEPs[t] | | TCEPAssociat ion[t] endproc

7
725
26 process TCEPs[t] :exi t := TCEP[t] (Cal l ingRole) | | | TCEP[t] (Cal ledRole) endproc

7
727
28 process TCEP[t] (role:TSUserRole) :exi t := TCEPAddress[t] | |TCEPSPOrder ing[t] (role) endproc

7
729
30 process TCEPAddress[t] :exi t := t?ta:TAddress? t sp:TSP ; Cons tantTA[t] (ta)

7
731 [> exi t endproc
32

733 process Cons tantTA[t] (ta:TAddress) :noexi t := t ! ta?t sp:TSP; Cons tantTA[t] (ta) endproc

7
734
35 process TCEPSPOrder ing[t] (role:TSUserRole) :exi t :=

7
736 TCEPConnect1[t] (role) >> accept t sp:TSP in
37 ((TCEPConnect2[t] (t sp) >> accept x:TEXOpt ion in TCEPDataTransfer [t] (x)

7
738) [> TCEPRelease[t])
39 []

740 [role = Cal ledRole] -> exi t

7
741 endproc
42

743 process TCEPConnect1[t] (role:TSUserRole) :exi t (TSP) :=
)

7
744 [role=Cal l ingRole] -> t?ta:TAddress? tcr :TSP[IsTCONreq(tcr) and (ta IsCal l ingOf tcr)] ; exi t (tcr
45 []

746 [role=Cal ledRole] -> t?ta:TAddress? tci :TSP[IsTCONind(tci) and (ta IsCal ledOf tci)] ; exi t (tci)

7
747 endproc
48

749 process TCEPConnect2[t] (tc1:TSP) :exi t (TEXOpt ion) :=
;

7
750 t ?ta:TAddress ?tc2:TSP [tc2 IsVal idTCON2For tc1]
51 (choice x:TEXOpt ion [] [x IsTEXOpt ionOf tc2] -> exi t (x))

7
752 endproc
53

754 process TCEPDataTransfer [t] (x:TEXOpt ion) :noexi t :=
]

7
755 TCEPNormalDataTransfer [t] | | | [x = UseTEX] -> TCEPExpedi tedDataTransfer [t
56 endproc

757 process TCEPNormalDataTransfer [t] :noexi t :=
c

7
758 t ?ta:TAddress ?t sp:TSP [IsTDT(t sp)] ; TCEPNormalDataTransfer [t] endpro
59

760 process TCEPExpedi tedDataTransfer [t] :noexi t :=
]

7
761 t ?ta:TAddress ?t sp:TSP [IsTEX(t sp)] ; TCEPExpedi tedDataTransfer [t
62 endproc

7
763
64 process TCEPRelease[t] :exi t := t?ta:TAddress? t sp:TSP[IsTDIS(t sp)] ; exi t endproc

7
765
66 process TCEPAssociat ion[t] :noexi t :=

;
7
767 t ?ta:TAddress ?t sp:TSP [IsTReq(t sp)]
68 (TAssoc1[t] (ta ,Cal l ingRole ,Cal ledRole , t sp)

7
769 | | |
70 TAssoc1[t] (ta ,Cal ledRole ,Cal l ingRole ,NoTReqs))

7
771 endproc
72

773 process TAssoc1[t] (ta:TAddress , f rom, to:TSUserRole , rh:TSP) :noexi t :=
)

7
774 (TCEPReq[t] (ta , f rom) | | | TCEPInd[t] (ta , to)) | | TCReqToInd[t] (rh
75 endproc

References

[BB] Bolognesi, B. and Brinksma, E. Introduction to the ISO Specification Language

[

LOTOS. Computer Networks and ISDN Systems 14 (1987) 25-59.

BJ] Brand, D., and Joyner, W.H. Jr. Verification of Protocols Using Symbolic Execution.

[

Computer Networks 2, 4/5, 351-360.

BSS] Brinksma, E., Scollo, G., and Steenbergen, C. LOTOS Specifications, their Implemen-
,

T
tations, and their Tests. In: B. Sarikaya and G.v. Bochmann (eds.) Protocol Specification

esting, and Verification, IV. North-Holland, 1987, 349-360.

l
S
[DEM] de Meer, J. Derivation and Validation of Test Scenarios Based on the Forma

pecification Language LOTOS. In: B. Sarikaya and G.V. Bochmann (eds.) Protocol

[

Specification, Testing, and Verification, VI. North-Holland, 1987, 203-216.

EB] Eertink, E., and Brinksma, E. Implementation of a Test Derivation Algorithm. Tech-

[

nische Hogeschool Twente, Oct. 1987 (SEDOS/C2/N82).

FL] Favreau, J.P., and Linn, J.R. Automatic Generation of Test Scenario Skeletons from
l

S
Protocol Specifications written in Estelle. In: B. Sarikaya and G.V. Bochmann (eds.) Protoco

pecification, Testing, and Verification, VI. North-Holland, 1987, 191-202.

S
S
[GHL] Guillemot, R., Haj-Hussein, M., and Logrippo, L. Executing Large LOTO

pecifications. University of Ottawa, Department of Computer Science, Technical Report 88-

[

03 (Jan. 1988).

ISO1] International Organisation for Standardization. Information Processing Systems. Open
l

O
Systems Interconnection. LOTOS - A Formal Description Technique Based on the Tempora

rdering of Observational Behavior (ISO DIS 8807), 1987.

n
L
[ISO2] International Organization for Standardization. Formal Description of ISO 8072 i

OTOS. (ISO/TC 97/SC 6/WG 4/N 317), 1987.

,
C
[LP] Logrippo, L. and Probert, R.L. Protocol Specification-Level Validation. In: Sunshine

. (ed.) Protocol Specification, Testing, and Verification North-Holland, 1982, 303-304.

[

[MY] Myers, G.J. The Art of Software Testing. Wiley, 1979.

SBMS] Sarikaya, B., Bochmann, G.v., Maksud, M., and Serre, J.M. Formal Specification

’
Based Conformance Testing. In: Communications Architectures and Protocols, SIGCOMM
86 Symposium, 236-240.

[UR] Ural, H. A Test Derivation Method for Protocol Conformance Testing. In: H. Rudin
,

1
and C.H. West (eds.) Protocol Specification, Testing, and Verification, VII. North-Holland

987, 347-358.

[URS] Ural, H., and Short, R. An Interactive Test Sequence Generator. In: Communications

[

Architectures and Protocols, SIGCOMM ’86 Symposium, 241-250.

VE] Van Eijk, P. Software Tools for the Specification Language LOTOS. University of
Twente, 1988.

ANNEX. An Example: Transport Connection

s
o
We give an extended example showing some aspects of our method. Because of the length of the tree
btained, only certain sample sections may be shown.

1. Specification

5. Conclusions and Future Work
The work presented in this paper is an effort towards a methodology for generating

-
e
test suites from LOTOS specifications. We showed that useful execution trees can be gen
rated by using existing interpreters and some basic simplification rules. More sophisticated

o
t
heuristics could be added to the system. Similarly, other congruence rules could be added t
he very basic list given in Section 3.2. As a further step, we are envisaging the use of

e
theorem-proving methods to enhance the methods for detecting contradictions and
quivalences.

Furthermore, this method should be related to the existing theory on generating test
l

t
suites from LOTOS specification [EB][BSS]. And then, there is the problem of obtaining rea
est specifications with values, mentioned in Section 4.

t
t

Finally, while the main emphasis of this paper is on testing, it sould be noted tha
rees are also interesting in verification. Therefore, application of similar techniques in

A

verification appears to be possible.

cknowledgment. The interpreter was written by J.P. Briand, M.C. Fehri, R. Guillemot, and
o

u
M. Haj-Hussein. We are indebted to A. Obaid for many useful discussions, and we have als
sed some ideas due to H. Elgendy. This work was supported in part by the National Science

and Engineering Research Council of Canada and Bell-Northern Research.

= q||p).
Internal events could be eliminated at the source by using modified inference rules,

such as (in simplified form):

exit -exit-> stop

A >> B -a-> A’ >> B if A-a-> A’ and name(a) =/= exit

U

A >> B -a-> B’ if A -exit-> A’ and B-a-> B’

nfortunately, these rules do not work in some cases. For example, suppose that the exit
statement appears as the first action as in the following example:

process p[a,b] := exit >> a ; stop
[]
b ; stop

endproc

t

his behavior is equivalent to: i ; a ; stop [] b ; stop. By eliminating the internal event
according to the rules above, we obtain the behavior:

a ; stop [] b ; stop.
l

s
This expression is not equivalent to the previous one. The semantics of the origina
pecification give priority to b while the semantics of the second specification don’t. The

n
modified rules for the exit can only be used if constructs such as the one in the example do
ot occur in the specification, and this can be checked statically.

-
p

The question of the treatment of internal events due to enabling for testing pur
oses deserves further study.

4. Considering Values
After obtaining the simplified tree according to the procedure described above, exe-

-
cution sequences can be derived by the following steps:

identifying, for every action in all remaining paths, all the values that can be

-
accepted
and then constructing the expanded tree.
Concerning the first step, this consists in replacing every symbolic action, contain-

i
ing or not a guard, by values. The set of values that can be accepted by an action is usually
nfinite.

:Example
For the LOTOS specification :

tg?x:Nat ; g?y:Nat [y gt x] ; exi

:the SST obtained is

1 g?Na t@1
| 1 g?Na t@2 [Na t@2 g t Na t@1]

V

| | 1 ex i t

alues for Nat@1 and Nat@2 must be chosen before this sequence can be used as a test case.

f
Possible values belong to the set of all pairs (x,y) of natural numbers such that x<y. Strategies
or choosing such test values have been studied in the testing literature and will not be dis-

cussed in this paper [MY].

[]
a ; b ; c ; d ; stop

a ; b ; c ; d ; stop

B

y scanning the tree according to this algorithm, it is simplified to:

a ; b ; c ; d ; stop

3

.3. The Enable Operator.
In our study of realistic examples, it soon became obvious that some method had

n
b
to be found to manage the complexity generated by internal events due to enables. This ca

e seen by a study of Annex 3.2. For example, consider the following behavior expression:

||
(a; exit >> b; exit)

(a; exit >> b; exit)

I

f we call i1 and i2 the internal actions resulting from the first and second enable respectively,
the resulting LST shows both mutual orderings of these actions, i.e.

1 a
| 1 i 1

2
|
| | 1 i

| | 1 b
t

|
| | | | 1 ex i

2 i 2
1

|
| | 1 i

| | 1 b
t

T

| | | | 1 ex i

he tree of observable actions instead is simply

1 a
| 1 b

t

B

| | ex i

y applying the simplification rules discussed in 3.2.a) we get:

1 a
| 1 i

b
|
| | 1

| | ex i t

|
| 2 i

| 1 b
t

T

| | | ex i

his tree cannot be simplified further by the look-ahead mechanism because the behavior
expression resulting from the execution of i1 is

(b; exit) || (exit >> b; exit)
swhile the behavior expression resulting from the execution of i2 i

(exit >> b ; exit) || (b; exit)
.and unfortunately these two behavior expressions are not textually identical

The internal events will be completely eliminated by using the algorithm in 3.2.b)
(and, of course, could be eliminated by the look-ahead mechanism if we informed it that p||q

)
*
2 B [] i;(B[]C) is simplified to i;(B[]C
3* B[]B is simplified to B

t
i
Note that the second rule is a stronger version of the well-known congruence B[]i;B = i;B. I
s more useful than the latter, especially when disable is present.

e
w

The most obvious way to perform reduction by congruence rules is to generate th
hole tree, to store it in memory, and then to scan it bottom-up to find places where

e
a
congruence rules can be applied. However, memory can be saved if congruence rules ar
pplied as far as possible, by using a look-ahead mechanism, already while the tree is being

a

generated. The stored tree is then scanned bottom-up to further simplify it.

) Application of Congruence Rules While Building the Tree
o

c
The interpreter is unable to directly apply rules 1 to 3 above. All it can do is to t

ompute sets of possible next actions with resulting behavior expressions. Situations where
r

e
these simplifications can be applied are detected by a "look-ahead" mechanism. Consider fo
xample rule 2. When the interpreter finds that the set of possible "next actions" is of the

{
form N = {a1,...,am,b1,...,bn,i}, if the set of next behaviors is respectively
A1,...,Am,B1,...,Bn,D}, the set of next actions for D is computed. If this set includes

o
{b1,...,bn}, with next behaviors {B1,...,Bn} respectively, then the tree is simplified by using

nly the actions in {a1,...,am,i} and their successors. Again, two behavior expressions are
considered to be the same only if they are the same character by character.

A corresponding criterion is used in testing for equivalence for rule 3.
h

as
These rules are applied recursively while possible. Therefore, an expression suc

a ; b ; (c ; d ; stop
[]
i ; c ; d ; stop)

is reduced to

a ; b ; c ; d

b

y applying first rule 2, and then rule 1. Annex 2.2. shows an extended example.

b) Application of Congruence Rules on the Resulting Tree
The tree resulting from the simplification process described above is stored in

s
1
memory and further simplified by an algorithm that is able to detect other cases in which rule

to 3 can be applied. Consider for example the following behavior expression:

a ; b ; (c ; d ; stop
[]
i ; c ; d ; stop)

[]
a ; b ; c ; i ; d ; stop

B

y using the "look-ahead" mechanism, the following tree will be saved:

t
while in the first case, predicates involving the variable x would not be evaluated and would
herefore all be considered to be true, unless they contain some contradiction independent of

the value of x.
While equivalence of behavior expressions is an undecidable problem, more

-
t
sophisticated criteria of behavior equivalence could be added to our system, also in considera
ion of the needs of the application. For example obviously behavior a [] b can be considered

t
m
to be identical to behavior b [] a. Furthermore, it is well-known that for testing purposes i

ay be appropriate to consider equivalent behaviors that cannot be considered to be

b

equivalent from other points of view.

) Ignoring Some Paths
In generating behavior trees for complex systems, it is normal that the user may

-
t
wish to ignore certain paths. For example, this can happen for paths relating to error condi
ions, or for paths relating to the creation of several connections if it is wished to consider the

a
case of one connection only. Such paths are usually guarded by internal actions. Our system
llows one to specify that the entire subtree following a certain internal action be ignored.

3. The Treatment of Internal Events
A process in LOTOS is described in terms of its actions, which can be of two

s
e
types: observable actions or internal actions. Internal actions occur in execution sequence
ither because they are specified explicitly (an i in the specification) or because they result

f
from the dynamic behavior of the system (we call this implicit specification). This is the case
or example when the enable (>>) operator is used together with the exit statement.

f
c

Internal events, especially those due to enable operations, are a major cause o
omplexity in the symbolic tree. Hence the importance of eliminating them when possible.

3.1. Internal Events and Implementations
Internal actions introduce nondeterminism. Implementations may differ by the way

d
i
they reduce this nondeterminism. Thus, for a given specification, one can obtain several vali
mplementations [BSS]. For instance, consider the following process:

process Connection[ConReq,DisInd,ConConf] : exit :=
ConReq ; (ConConf ; exit

[]
i ; DisInd ; exit)

endproc

T

his is the connection phase of a protocol that always accepts a disconnection indication after

t
a connection request, but may refuse the connection confirmation. The choice between these
wo alternatives is left to the implementation. Therefore, there are three possible implementa-

tions for this specification. One is the specification itself. The other two are:
- ConReq ; (ConConf ; exit [] DisInd ; exit)

T
- ConReq ; (DisInd ; exit)

he first alternative always offers ConConf, while the second nevers offers it.
e

3

tree.
Internal events designating implementation choices cannot be eliminated from th

.2. Simplification by Congruence Rules
In some cases, internal events can be removed by applying congruence rules. This

,
w
removal does not in any way change the semantics of the specification. In this experiment

e implemented only the following rules:
1 a;i;B is simplified to a;B

1 i n?Na t@1 [Na t @1 g t 3]
]

|
| 1 ou t ?Na t@2 [Na t@2 g t Na t@1] [Na t@2 l t 3

| 1 ex i t EXIT
| 2 ou t ?Na t@2 [Na t@2 g t Na t@1] [Na t@2 eq Na t@1]

2
| | 1 ex i t EXIT

i n?1Na t@1 [Na t@1 l e 3]

|
| 1 ou t ! 3 [3 l t 3]

| 1 ex i t EXIT
]

|
| 2 ou t ! 3 [3 eq Na t@1

| 1 ex i t EXIT

.
-
- Branch 1.1 is pruned because of D(2) (it implies 3 < 3)

Branch 1.2 is pruned because of B(1).
e- Branch 2.1 is pruned because of A (the predicate contains no variables and can b

evaluated to false).
The SST is:

1 i n?Na t@1 [Na t@1 g t 3] DEADLOCK
2 i n?Na t@1 [Na t@1 l e 3]
| 1 ou t ! 3 [3 eq Na t@1]

2

| | 1 ex i t EXIT

.3 Towards a Limited Tree
Trees generated by this method are usually infinite. This is the normal case when

d
i
recursion is involved. Two methods of dealing with infinite paths are detecting recursion, an
gnoring some paths under user control.

a) Detecting Recursion
Recursion can be detected automatically at least in some cases. For example, a

.
L
unique identifier can be associated with an occurrence of a behavior expression in a tree

ater occurences of the same behavior expression or of an equivalent one in the same path are

e
then replaced by the identifier preceded by the word "again". This can be done to a certain
xtent while building the tree, by comparing each behavior obtained against the ones obtained

.
A
previously. The currently used comparison criterion is strict character-by-character identity

lthough this may appear to be an overly simple criterion, we have found that it is useful in

E

many cases. This is shown in Annex 2.2.

xample:

process P[a,d]:exit := a ; P[a,d]
[]
d ; exit

T

he LST i s : wh i l e t he SST i s :

1 a
| 1 a bh0 1 a ==> aga i n bh0

|
. . . 2 d

2 d | 1 ex i t EXIT

2
| | 1 ex i t EXIT

d
| 1 ex i t EXIT

Also, according to our criterion a behavior expression such as P[a](x) is considered identical

b
to P[a](succ(x)), while P[a](0) would be considered different from P[a](succ(0)). This is
ecause in the second case some predicates will be yielding different values for 0 and succ(0),

The LST i s : wh i l e t he SST i s :

1 g?x :Na t 1 g?Na t@1
)

|
| 1 i (enab l e : ex i t (x)) | 1 i (enab l e : ex i t (Na t@1)

| 1 g ! y | | 1 g !Na t@1

Example:

choice x:Nat [] g? y [y lt x] ; stop

V

alue y bound at gate g must be less than value x chosen arbitrarily by the
t

x
environment. Since a choice is not an action, we use the symbol % and represen

by Nat%1.

The LST is: 1 g?y:Nat [y lt x]

]

2

The SST is: 1 g?Nat@1 [Nat@1 lt Nat%1

.2. Feasible Symbolic Trees
One may eliminate certain paths that are not feasible, by trying to evaluate symbol-

a
ically guards and selection predicates [BJ]. Predicates that cannot be evaluated to false and
re not in contradiction with others previously assumed to be true are assumed to be true.

s
Each action is associated with a list of predicates, which gives all the constraints that must be
atisfied for the action to be executed (these are the combined selection predicates of all

w
action offers cooperating in the action). We call these action predicates. It is also associated

ith the list of predicates that occurred ahead of it on the same path, in guards or other predi-
cates. We call these path predicates.

During the tree building process, an action is reduced to a stop if a contradiction is

A
detected in its path predicates. It is checked in the following order whether:

) One of the action predicates can be evaluated to false.
s

C
B) A contradiction can be detected in the action predicate

) A contradiction can be detected in the path predicates.
.D) A contradiction can be detected between path predicates and action predicates

The detection of contradictions in the general case is of course an undecidable

n
problem. Some heuristics are needed. Contradictions such as (q(x) and p(x)), where q(x) =
ot(p(x)) appears in the list of axioms, are detected automatically. Upon finding a predicate

-
t
such as this one, the system scans the list of axioms looking for such immediate contradic
ions. In specifications we have studied [ISO2], such cases are frequent.

.
A

In addition, our system allows the user to establish a data base of contradictions
user-defined contradiction can involve several terms.

Example:

(in?x:Nat [x gt 3] ; out?y:Nat [y gt x] ; exit
[]

in?x:Nat [x le 3] ; out!3 ; exit)
||

(in?x:Nat; (out?y [y lt 3] ; exit
[]
out?y [y eq x] ; exit))

A

ssume that the data base of contradictions contains:

(
(1) [x gt y] # [x eq y]
2) [x gt y] & [y gt z] # [x lt z]

Before simplification, the tree is:

t
d
expression, one can find its behavior tree. In the absence of an environment, actions tha
epend on guards or selection predicates which cannot be evaluated because this involves the

r
w
knowledge of values that have to be provided by the environment must be listed, togethe

ith their guards. Such trees will be called Labelled Symbolic Trees (LSTs).
n

p
Our LOTOS interpreter [GHL] is able to systematically generate LSTs for a give

rocess up to given maximum lengths and widths. Such trees show all possible execution
s

e
sequences for the entity specified. When the maximum specified length along a path i
xceeded, this is indicated by closing the path with a "continue". Paths exceeding the

e
u
specified width, instead, are simply ignored, but the user is informed of this (of course, th

ser must be aware of the fact that, if some paths are ignored, some of the procedures dis-

o
cussed in this paper may yield incorrect results). A realistic example is shown in Section 2.1
f the Annex.

1.3. Overview of The Method
Unfortunately, the practical usefulness of LSTs is greatly reduced by the many

r
s
unfeasible, redundant, or uninteresting paths that they contain. This is especially true fo
pecifications written in the constraint-oriented style, where each action is subject to a number

o
of logical constraints originating from different processes. Heuristics can be used in order to
btain more useful trees by detecting and eliminating some such paths.

e- The first step is to obtain a Significant Symbolic Tree (or SST for short), wher
input variable values are represented by symbols derived from the variable’s name.

s
Some unfeasible paths or actions are detected and removed by using techniques
imilar to "symbolic evaluation".

-
- Loops in behavior are identified.

Some non-significant internal events are detected and removed.
e- All the previous steps are executed dynamically as the tree is generated by th

interpreter. In a final step, the stored tree is scanned in order to eliminate some

N
remaining redundant internal events or duplicate paths.

eedless to say, the resulting tree is by no means optimal, in any possible meaning

2

for this word. However it will usually be much more manageable than the original LST.

. Obtaining a Significant Symbolic Tree

2.1 Contextual Symbolic Trees
Actions specified for a process may contain variables to be bound by the environ-

(
ment, values to be offered to the environment, and conditions on the variables and values
guards and selection predicates).

We use a symbolic representation for the variables which allows us to relate
s

u
several occurences of the same variable with different external names. A renaming scheme i
sed. Each occurrence of a variable is replaced by an identifier (a "symbol") which consists

-
of:

the variable’s sort,
- a symbol which expresses how the value was bound, i.e. @ for a variable bound

s
p
at a gate, and % for a variable bound in a choice, an exit(any), or an initial proces
arameter.

- an identifier that shows the depth in the tree of the variable’s first occurrence.
e- a second identifier to distinguish different variables of the same sort and the sam

nesting level (if needed).
Example:

g?x:Nat ; exit(x) >> accept y:Nat in g!y ; stop

T

he value of variable x is exported (by means of exit and enable operators) to
e

i
become bound to variable y. By the renaming process, both variables get th
ndentifier Nat@1, which stands for variable of sort Nat bound at level 1.

Derivation of Useful Execution Trees

r

R

from LOTOS Specifications by Using an Interprete

enaud Guillemot and Luigi Logrippo

P
University of Ottawa

rotocols Research Group
t

O
Computer Science Departmen

ttawa, Ont., Canada K1N 9B4
T

A

e-mail: LMLSL@UOTTAWA.BITNE

contribution towards the development of formal methodologies for testing proto-

t
col implementations is presented. We report on a system that is able to execute
he specification of a protocol or service written in LOTOS and to derive an execu-

i
tion tree of the entity specified. Several heuristics are used in order to eliminate
mpossible or uninteresting execution paths. The tree obtained can then be used as

a basis for the derivation of test suites.

n

1

1. Introductio

.1. Generating Test Suites from Formal Specifications
y

f
Current test methods for protocols and services usually derive test suites manuall

rom informal descriptions or semi-formal ones. The methodology towards which this paper

a
intends to be a contribution assumes instead that the behavior of the entity to be tested has
lready been specified precisely in LOTOS [ISO1][BB] and derives test suites automatically

or semi-automatically from this specification.
Several results have already been reported on generating test suites from formal

B
specifications. Some recent references are [DEM][FL][SBMS][UR][URS][BSS]. Eertink and

rinksma [EB] have developed an algorithm, based on a formal theory, for deriving "canoni-

w
cal testers" for a specification written in a restricted version of "pure LOTOS" (i.e., LOTOS

ithout data). The slant of our paper is more pragmatic. We deal with full LOTOS
g

t
specifications, and we obtain execution sequences from specifications by using an existin
ool, i.e. our LOTOS interpreter. As we shall see, the interpreter generates a great number of

,
o
sequences that are either unfeasible, in the sense that they relate to logically impossible paths
r redundant, in the sense that they differ the ones from the others only by the placement of

l
n
nonrelevant internal events. Of course, eliminating all impossible paths and taking out al

onrelevant internal events involves unsolvable problems. Therefore, these execution
g

p
sequences are simplified by using various heuristics in order to make them useful for testin
urposes.

This technique does not constitute (yet) a methodology for the derivation of test

s
suites. Apart from the several possible improvements to be discussed later, the remaining
teps, which are the selection of test sequences and the formulation of test sequences in a test

1

specification language, must still be done by hand using ad hoc methods.

.2. Labelled Symbolic Trees (LSTs)
By LOTOS semantics, given a behavior expression B one can find the set of

t
p
actions a and the set of resulting behavior expressions B’ such that: B -a-> B’ , meaning tha
rocess B can execute action a and transform into B’. In other words, given a behavior

