
- 19 -

[

References

BB] Bolognesi, B. and Brinksma, E. Introduction to the ISO Specification Language

[

LOTOS. Computer Networks and ISDN Systems 14 (1987) 25-59.

BJ] Brand, D., and Joyner, W.H. Jr. Verification of Protocols Using Symbolic Execu-

[

tion. Computer Networks 2, 4/5, 351-360.

BSS] Brinksma, E., Scollo, G., and Steenbergen, C. LOTOS Specifications, their
l

S
Implementations, and their Tests. In: B. Sarikaya and G.v. Bochmann (eds.) Protoco

pecification, Testing, and Verification, IV. North-Holland, 1987, 349-360.

l
S
[DEM] de Meer, J. Derivation and Validation of Test Scenarios Based on the Forma

pecification Language LOTOS. In: B. Sarikaya and G.V. Bochmann (eds.) Protocol

[

Specification, Testing, and Verification, VI. North-Holland, 1987, 203-216.

EB] Eertink, E., and Brinksma, E. Implementation of a Test Derivation Algorithm.

[

Technische Hogeschool Twente, Oct. 1987 (SEDOS/C2/N82).

FL] Favreau, J.P., and Linn, J.R. Automatic Generation of Test Scenario Skeletons

(
from Protocol Specifications written in Estelle. In: B. Sarikaya and G.V. Bochmann
eds.) Protocol Specification, Testing, and Verification, VI. North-Holland, 1987,

[

191-202.

GHL] Guillemot, R., Haj-Hussein, M., and Logrippo, L. Executing Large LOTOS
l

R
Specifications. University of Ottawa, Department of Computer Science, Technica

eport 88-03 (Jan. 1988).

[ISO1] International Organisation for Standardization. Information Processing Sys-

B
tems. Open Systems Interconnection. LOTOS - A Formal Description Technique

ased on the Temporal Ordering of Observational Behavior (ISO DIS 8807), 1987.

O
8
[ISO2] International Organization for Standardization. Formal Description of IS
072 in LOTOS. (ISO/TC 97/SC 6/WG 4/N 317), 1987.

:
S
[LP] Logrippo, L. and Probert, R.L. Protocol Specification-Level Validation. In

unshine, C. (ed.) Protocol Specification, Testing, and Verification North-Holland,

[

1982, 303-304.

MY] Myers, G.J. The Art of Software Testing. Wiley, 1979.

l
S
[SBMS] Sarikaya, B., Bochmann, G.v., Maksud, M., and Serre, J.M. Forma

pecification Based Conformance Testing. In: Communications Architectures and Pro-

[

tocols, SIGCOMM ’86 Symposium, 236-240.

UR] Ural, H. A Test Derivation Method for Protocol Conformance Testing. In: H.
.

N
Rudin and C.H. West (eds.) Protocol Specification, Testing, and Verification, VII

orth-Holland, 1987, 347-358.

[URS] Ural, H., and Short, R. An Interactive Test Sequence Generator. In: Commun-

[

ications Architectures and Protocols, SIGCOMM ’86 Symposium, 241-250.

VE] Van Eijk, P. Software Tools for the Specification Language LOTOS. University
of Twente, 1988.

- 18 -

.obtaining real test specifications with values, mentioned in Section 4

Finally, while the main emphasis of this paper is on testing, it sould be noted

-

n

that trees are also interesting in verification. Therefore, application of similar tech

iques in verification appears to be possible.

Acknowledgment. The interpreter was written by J.P. Briand, M.C. Fehri, R. Guil-

,

a

lemot, and M. Haj-Hussein. We are indebted to A. Obaid for many useful discussions

nd we have also used some ideas due to H. Elgendy. This work was supported in

-

N

part by the National Science and Engineering Research Council of Canada and Bell

orthern Research.

- 17 -

.- and then constructing the expanded tree

Concerning the first step, this consists in replacing every symbolic action, con-

i

taining or not a guard, by values. The set of values that can be accepted by an action

s usually infinite.

Example:

For the LOTOS specification :

tg?x:Nat ; g?y:Nat [y gt x] ; exi

t

he SST obtained is:

1 g?Na t@1
| 1 g?Na t@2 [Na t@2 g t Na t@1]

V

| | 1 ex i t

alues for Nat@1 and Nat@2 must be chosen before this sequence can be used as a

t

test case. Possible values belong to the set of all pairs (x,y) of natural numbers such

hat x<y. Strategies for choosing such test values have been studied in the testing

5

literature and will not be discussed in this paper [MY].

. Conclusions and Future Work

The work presented in this paper is an effort towards a methodology for generat-

b

ing test suites from LOTOS specifications. We showed that useful execution trees can

e generated by using existing interpreters and some basic simplification rules. More

e

r

sophisticated heuristics could be added to the system. Similarly, other congruenc

ules could be added to the very basic list given in Section 3.2. As a further step, we

-

i

are envisaging the use of theorem-proving methods to enhance the methods for detect

ng contradictions and equivalences.

Furthermore, this method should be related to the existing theory on generating

ftest suites from LOTOS specification [EB][BSS]. And then, there is the problem o

- 16 -

Internal events could be eliminated at the source by using modified inference

rules, such as (in simplified form):

exit -exit-> stop

A >> B -a-> A’ >> B if A-a-> A’ and name(a) =/= exit

U

A >> B -a-> B’ if A -exit-> A’ and B-a-> B’

nfortunately, these rules do not work in some cases. For example, suppose that the

exit statement appears as the first action as in the following example:

process p[a,b] := exit >> a ; stop
[]
b ; stop

endproc

t

his behavior is equivalent to: i ; a ; stop [] b ; stop. By eliminating the internal event

according to the rules above, we obtain the behavior:

a ; stop [] b ; stop.

l

s

This expression is not equivalent to the previous one. The semantics of the origina

pecification give priority to b while the semantics of the second specification don’t.

e

The modified rules for the exit can only be used if constructs such as the one in the

xample do not occur in the specification, and this can be checked statically.

-

p

The question of the treatment of internal events due to enabling for testing pur

oses deserves further study.

4. Considering Values

After obtaining the simplified tree according to the procedure described above,

-

execution sequences can be derived by the following steps:

identifying, for every action in all remaining paths, all the values that can be

accepted

- 15 -

)
||

(a; exit >> b; exit

(a; exit >> b; exit)

I

f we call i1 and i2 the internal actions resulting from the first and second enable

respectively, the resulting LST shows both mutual orderings of these actions, i.e.

1 a
| 1 i 1

2
|
| | 1 i

| | 1 b
t

|
| | | | 1 ex i

2 i 2
1

|
| | 1 i

| | 1 b
t| | | | 1 ex i

yThe tree of observable actions instead is simpl

1 a
| 1 b

t

B

| | ex i

y applying the simplification rules discussed in 3.2.a) we get:

1 a
| 1 i

b
|
| | 1

| | ex i t

|
| 2 i

| 1 b
t

T

| | | ex i

his tree cannot be simplified further by the look-ahead mechanism because the

behavior expression resulting from the execution of i1 is

(b; exit) || (exit >> b; exit)

swhile the behavior expression resulting from the execution of i2 i

(exit >> b ; exit) || (b; exit)

.and unfortunately these two behavior expressions are not textually identical

The internal events will be completely eliminated by using the algorithm in

e

i

3.2.b) (and, of course, could be eliminated by the look-ahead mechanism if w

nformed it that p||q = q||p).

- 14 -

a ; b ; c ; d

b

y applying first rule 2, and then rule 1. Annex 2.2. shows an extended example.

b) Application of Congruence Rules on the Resulting Tree

The tree resulting from the simplification process described above is stored in

n

w

memory and further simplified by an algorithm that is able to detect other cases i

hich rules 1 to 3 can be applied. Consider for example the following behavior

expression:

a ; b ; (c ; d ; stop
[]
i ; c ; d ; stop)

[]
a ; b ; c ; i ; d ; stop

B

y using the "look-ahead" mechanism, the following tree will be saved:

[]
a ; b ; c ; d ; stop

a ; b ; c ; d ; stop

B

y scanning the tree according to this algorithm, it is simplified to:

a ; b ; c ; d ; stop

3

.3. The Enable Operator.

In our study of realistic examples, it soon became obvious that some method had

.

T

to be found to manage the complexity generated by internal events due to enables

his can be seen by a study of Annex 3.2. For example, consider the following

behavior expression:

- 13 -

=

i

Note that the second rule is a stronger version of the well-known congruence B[]i;B

;B. It is more useful than the latter, especially when disable is present.

e

t

The most obvious way to perform reduction by congruence rules is to generat

he whole tree, to store it in memory, and then to scan it bottom-up to find places

f

c

where congruence rules can be applied. However, memory can be saved i

ongruence rules are applied as far as possible, by using a look-ahead mechanism,

f

already while the tree is being generated. The stored tree is then scanned bottom-up to

urther simplify it.

a) Application of Congruence Rules While Building the Tree

o

t

The interpreter is unable to directly apply rules 1 to 3 above. All it can do is t

o compute sets of possible next actions with resulting behavior expressions. Situa-

m

tions where these simplifications can be applied are detected by a "look-ahead"

echanism. Consider for example rule 2. When the interpreter finds that the set of

t

b

possible "next actions" is of the form N = {a1,...,am,b1,...,bn,i}, if the set of nex

ehaviors is respectively {A1,...,Am,B1,...,Bn,D}, the set of next actions for D is com-

,

t

puted. If this set includes {b1,...,bn}, with next behaviors {B1,...,Bn} respectively

hen the tree is simplified by using only the actions in {a1,...,am,i} and their succes-

t

sors. Again, two behavior expressions are considered to be the same only if they are

he same character by character.

A corresponding criterion is used in testing for equivalence for rule 3.

nThese rules are applied recursively while possible. Therefore, an expressio

ssuch a

a ; b ; (c ; d ; stop
[]
i ; c ; d ; stop)

ois reduced t

- 12 -

3.1. Internal Events and Implementations

Internal actions introduce nondeterminism. Implementations may differ by the

s

way they reduce this nondeterminism. Thus, for a given specification, one can obtain

everal valid implementations [BSS]. For instance, consider the following process:

process Connection[ConReq,DisInd,ConConf] : exit :=
ConReq ; (ConConf ; exit

[]
i ; DisInd ; exit)

endproc

T

__

his is the connection phase of a protocol that always accepts a disconnection indica-

b

tion after a connection request, but may refuse the connection confirmation. The choice

etween these two alternatives is left to the implementation. Therefore, there are three

e

o

possible implementations for this specification. One is the specification itself. Th

ther two are:

- ConReq ; (ConConf ; exit [] DisInd ; exit)

T

- ConReq ; (DisInd ; exit)

he first alternative always offers ConConf, while the second nevers offers it.

mInternal events designating implementation choices cannot be eliminated fro

.

3

the tree

.2. Simplification by Congruence Rules

In some cases, internal events can be removed by applying congruence rules.

e

This removal does not in any way change the semantics of the specification. In this

xperiment, we implemented only the following rules:

B

*

1 a;i;B is simplified to a;

2* B [] i;(B[]C) is simplified to i;(B[]C)

3 B[]B is simplified to B

- 11 -

,

u

variable x would not be evaluated and would therefore all be considered to be true

nless they contain some contradiction independent of the value of x.

e

s

While equivalence of behavior expressions is an undecidable problem, mor

ophisticated criteria of behavior equivalence could be added to our system, also in

b

c

consideration of the needs of the application. For example obviously behavior a []

an be considered to be identical to behavior b [] a. Furthermore, it is well-known

t

c

that for testing purposes it may be appropriate to consider equivalent behaviors tha

annot be considered to be equivalent from other points of view.

b) Ignoring Some Paths

In generating behavior trees for complex systems, it is normal that the user may

r

c

wish to ignore certain paths. For example, this can happen for paths relating to erro

onditions, or for paths relating to the creation of several connections if it is wished to

l

a

consider the case of one connection only. Such paths are usually guarded by interna

ctions. Our system allows one to specify that the entire subtree following a certain

3

internal action be ignored.

. The Treatment of Internal Events

A process in LOTOS is described in terms of its actions, which can be of two

n

s

types: observable actions or internal actions. Internal actions occur in executio

equences either because they are specified explicitly (an i in the specification) or

t

s

because they result from the dynamic behavior of the system (we call this implici

pecification). This is the case for example when the enable (>>) operator is used

together with the exit statement.

Internal events, especially those due to enable operations, are a major cause of

-

s

complexity in the symbolic tree. Hence the importance of eliminating them when pos

ible.

- 10 -

2.3 Towards a Limited Tree

Trees generated by this method are usually infinite. This is the normal case

r

when recursion is involved. Two methods of dealing with infinite paths are detecting

ecursion, and ignoring some paths under user control.

a) Detecting Recursion

Recursion can be detected automatically at least in some cases. For example, a

a

t

unique identifier can be associated with an occurrence of a behavior expression in

ree. Later occurences of the same behavior expression or of an equivalent one in the

b

same path are then replaced by the identifier preceded by the word "again". This can

e done to a certain extent while building the tree, by comparing each behavior

i

obtained against the ones obtained previously. The currently used comparison criterion

s strict character-by-character identity. Although this may appear to be an overly sim-

2

ple criterion, we have found that it is useful in many cases. This is shown in Annex

.2.

Example:

process P[a,d]:exit := a ; P[a,d]
[]
d ; exit

The LST i s : wh i l e t he SST i s :

1 a
| 1 a bh0 1 a ==> aga i n bh0

|
. . . 2 d

2 d | 1 ex i t EXIT

2
| | 1 ex i t EXIT

d
| 1 ex i t EXIT

Also, according to our criterion a behavior expression such as P[a](x) is considered

P

identical to P[a](succ(x)), while P[a](0) would be considered different from

[a](succ(0)). This is because in the second case some predicates will be yielding

edifferent values for 0 and succ(0), while in the first case, predicates involving th

- 9 -

In addition, our system allows the user to establish a data base of contradictions.

E

A user-defined contradiction can involve several terms.

xample:

(in?x:Nat [x gt 3] ; out?y:Nat [y gt x] ; exit
[]

in?x:Nat [x le 3] ; out!3 ; exit)
||

(in?x:Nat; (out?y [y lt 3] ; exit

o
[]
ut?y [y eq x] ; exit))

__

A

__

ssume that the data base of contradictions contains:

(
(1) [x gt y] # [x eq y]
2) [x gt y] & [y gt z] # [x lt z]

Before simplification, the tree is:

1 i n?Na t@1 [Na t @1 g t 3]
]

|
| 1 ou t ?Na t@2 [Na t@2 g t Na t@1] [Na t@2 l t 3

| 1 ex i t EXIT
| 2 ou t ?Na t@2 [Na t@2 g t Na t@1] [Na t@2 eq Na t@1]

2
| | 1 ex i t EXIT

i n?1Na t@1 [Na t@1 l e 3]

|
| 1 ou t ! 3 [3 l t 3]

| 1 ex i t EXIT
]

|
| 2 ou t ! 3 [3 eq Na t@1

| 1 ex i t EXIT

- Branch 1.1 is pruned because of D(2) (it implies 3 < 3).

-

- Branch 1.2 is pruned because of B(1).

Branch 2.1 is pruned because of A (the predicate contains no variables and can

T

be evaluated to false).

he SST i s :

1 i n?Na t@1 [Na t@1 g t 3] DEADLOCK
2 i n?Na t@1 [Na t@1 l e 3]
| 1 ou t ! 3 [3 eq Na t@1]
| | 1 ex i t EXIT

- 8 -

value y bound at gate g must be less than value x chosen arbitrarily by the

r
environment. Since a choice is not an action, we use the symbol % and
epresent x by Nat%1.

]

T

The LST is: 1 g?y:Nat [y lt x

he SST is: 1 g?Nat@1 [Nat@1 lt Nat%1]

2.2. Feasible Symbolic Trees

One may eliminate certain paths that are not feasible, by trying to evaluate sym-

f

bolically guards and selection predicates [BJ]. Predicates that cannot be evaluated to

alse and are not in contradiction with others previously assumed to be true are

l

t

assumed to be true. Each action is associated with a list of predicates, which gives al

he constraints that must be satisfied for the action to be executed (these are the com-

a

bined selection predicates of all action offers cooperating in the action). We call these

ction predicates. It is also associated with the list of predicates that occurred ahead

of it on the same path, in guards or other predicates. We call these path predicates.

During the tree building process, an action is reduced to a stop if a contradiction

A

is detected in its path predicates. It is checked in the following order whether:

) One of the action predicates can be evaluated to false.

s

C

B) A contradiction can be detected in the action predicate

) A contradiction can be detected in the path predicates.

.D) A contradiction can be detected between path predicates and action predicates

The detection of contradictions in the general case is of course an undecidable

e

q

problem. Some heuristics are needed. Contradictions such as (q(x) and p(x)), wher

(x) = not(p(x)) appears in the list of axioms, are detected automatically. Upon

r

s

finding a predicate such as this one, the system scans the list of axioms looking fo

uch immediate contradictions. In specifications we have studied [ISO2], such cases

are frequent.

- 7 -

2

2. Obtaining a Significant Symbolic Tree

.1 Contextual Symbolic Trees

Actions specified for a process may contain variables to be bound by the

s

a

environment, values to be offered to the environment, and conditions on the variable

nd values (guards and selection predicates).

We use a symbolic representation for the variables which allows us to relate

s

several occurences of the same variable with different external names. A renaming

cheme is used. Each occurrence of a variable is replaced by an identifier (a "symbol")

-

which consists of:

the variable’s sort,

- a symbol which expresses how the value was bound, i.e. @ for a variable

-

t

bound at a gate, and % for a variable bound in a choice, an exit(any), or an ini

ial process parameter.

- an identifier that shows the depth in the tree of the variable’s first occurrence.

e- a second identifier to distinguish different variables of the same sort and th

same nesting level (if needed).

Example:

g?x:Nat ; exit(x) >> accept y:Nat in g!y ; stop

__

T

he value of variable x is exported (by means of exit and enable operators) to
e

i
become bound to variable y. By the renaming process, both variables get th
ndentifier Nat@1, which stands for variable of sort Nat bound at level 1.

:The LST i s : wh i l e t he SST i s

1 g?x :Na t 1 g?Na t@1
)

|
| 1 i (enab l e : ex i t (x)) | 1 i (enab l e : ex i t (Na t@1)

| 1 g ! y | | 1 g !Na t@1

Example:

choice x:Nat [] g? y [y lt x] ; stop

- 6 -

l

L

ing for this word. However it will usually be much more manageable than the origina

ST.

- 5 -

Our LOTOS interpreter [GHL] is able to systematically generate LSTs for a

e

e

given process up to given maximum lengths and widths. Such trees show all possibl

xecution sequences for the entity specified. When the maximum specified length

s

e

along a path is exceeded, this is indicated by closing the path with a "continue". Path

xceeding the specified width, instead, are simply ignored, but the user is informed of

,

s

this (of course, the user must be aware of the fact that, if some paths are ignored

ome of the procedures discussed in this paper may yield incorrect results). A realistic

1

example is shown in Section 2.1 of the Annex.

.3. Overview of The Method

Unfortunately, the practical usefulness of LSTs is greatly reduced by the many

e

f

unfeasible, redundant, or uninteresting paths that they contain. This is especially tru

or specifications written in the constraint-oriented style, where each action is subject

b

to a number of logical constraints originating from different processes. Heuristics can

e used in order to obtain more useful trees by detecting and eliminating some such

-

paths.

The first step is to obtain a Significant Symbolic Tree (or SST for short), where

s

n

input variable values are represented by symbols derived from the variable’

ame. Some unfeasible paths or actions are detected and removed by using

-

techniques similar to "symbolic evaluation".

Loops in behavior are identified.

.

-

- Some non-significant internal events are detected and removed

All the previous steps are executed dynamically as the tree is generated by the

e

r

interpreter. In a final step, the stored tree is scanned in order to eliminate som

emaining redundant internal events or duplicate paths.

-Needless to say, the resulting tree is by no means optimal, in any possible mean

- 4 -

LOTOS" (i.e., LOTOS without data).

The slant of our paper is more pragmatic. We deal with full LOTOS

n

e

specifications, and we obtain execution sequences from specifications by using a

xisting tool, i.e. our LOTOS interpreter.

As we shall see, the interpreter generates a great number of sequences that are

-

d

either unfeasible, in the sense that they relate to logically impossible paths, or redun

ant, in the sense that they differ the ones from the others only by the placement of

t

a

nonrelevant internal events. Of course, eliminating all impossible paths and taking ou

ll nonrelevant internal events involves unsolvable problems. Therefore, these execu-

l

f

tion sequences are simplified by using various heuristics in order to make them usefu

or testing purposes.

This technique does not constitute (yet) a methodology for the derivation of test

r

suites. Apart from the several possible improvements to be discussed later, the

emaining steps, which are the selection of test sequences and the formulation of test

m

sequences in a test specification language, must still be done by hand using ad hoc

ethods.

1.2. Labelled Symbolic Trees (LSTs)

By LOTOS semantics, given a behavior expression B one can find the set of

-

i

actions a and the set of resulting behavior expressions B’ such that: B -a-> B’ , mean

ng that process B can execute action a and transform into B’. In other words, given a

,

a

behavior expression, one can find its behavior tree. In the absence of an environment

ctions that depend on guards or selection predicates which cannot be evaluated

-

m

because this involves the knowledge of values that have to be provided by the environ

ent must be listed, together with their guards. Such trees will be called Labelled

Symbolic Trees (LSTs).

1

- 3 -

The influence of human interpretation (and interpretation errors) when producing

l

s

test suites will be reduced. While the production of test suites from informa

pecifications requires the interpretation of the informal specification, this will

h

not be needed in the proposed technique, since the interpretation will already

ave been fixed in the process of obtaining the formal specification. Test suites

j

can be systematically derived from formal specifications and the need for human

udgment will be limited to choosing what suites are the most revealing, and

2

possibly to the interpretation of the final results.

Because the proposed techniques are expected to be automated to a large extent,

t

their application can be expected to require less human effort than the applica-

ion of current manual techniques. The establishment and maintenance of large

3

libraries of test suites becomes then economically feasible.

Because all activities of test derivation will be based on automatic derivation of

b

test suites from the same formal specification, the set of test suites obtained can

e expected to be consistent. Current methodologies do not guarantee such con-

o

sistency. This applies not only to mutual consistency between test suites

btained at different times and places, but also to internal consistency within a

4

set of test suites generated together.

The automated techniques are expected to be more thorough than current ones in

5

exercising subtle behavioral aspects.

Because LOTOS has a formally defined semantics, the meaning of LOTOS test

b

suites can be more precisely determined than the meaning of test suites specified

y informal or semi-formal methods.

Several results have already been reported on generating test suites from formal

t

specifications. Some recent references are [DEM][FL][SBMS][UR][URS][BSS]. Eer-

ink and Brinksma [EB] have developed an algorithm, based on a formal theory, for

deriving "canonical testers" for a specification written in a restricted version of "pure

- 2 -

1

1. Introduction

.1. Generating Test Suites from Formal Specifications

-

t

The general framework of our work is the family of Open Systems Interconnec

ion (OSI) protocols and services. Such systems are currently being specified by infor-

s

mal methods (such as English prose), with the aid of semi-formal methods (such as

tate tables). Formal Description Techniques (FDTs), with formally specified seman-

L

tics, have also been developed. One such technique is the language LOTOS, the

anguage of Temporal Ordering Specifications, which is used in this paper

[ISO1][BB].

"Conformance testing" is an area of protocol development methodology that

t

deals with the problem of testing that an implementation of a standard "conforms" to

he standard specification. Current test methods for protocols and services usually

e

i

derive test suites manually from informal descriptions or semi-formal ones. Sinc

ncompatible sets of test suites are likely to be derived from different interpretations of

i

the standard, the test suites themselves are being standardized. Only test suites that are

ncluded in the standard are considered to reflect the "official" interpretation of the

,

s

informal specification. This solution can only be considered as a temporary remedy

ince then the test suites become the real formulation of the standard: the conformance

f

t

of the implementation to the standard is no longer judged with respect to the text o

he standard, but with respect to the test suites. In our view, it is the text of the stan-

dard that should dictate the validity of the test method, rather than vice-versa.

The methodology towards which this paper intends to be a contribution assumes

i

instead that the behavior of the entity to be tested has already been specified precisely

n LOTOS [ISO1][BB] and derives test suites automatically or semi-automatically from

this specification.

Several advantages are expected to derive from this methodology.

Derivation of Useful Execution Trees

rfrom LOTOS Specifications by Using an Interprete

Renaud Guillemot and Luigi Logrippo

C
University of Ottawa

omputer Science Department
4Ottawa, Ont., Canada K1N 9B

ABSTRACT

s
f

A contribution towards the development of formal methodologie
or testing protocol implementations is presented. We report on a sys-

-
t
tem that is able to execute the specification of a protocol or service writ
en in LOTOS and to derive an execution tree of the entity specified.

t
Several heuristics are used in order to eliminate impossible or unin-
eresting execution paths. The tree obtained can then be used as a basis

for the derivation of test suites.

1. Introduction
1.1. Generating Test Suites from Formal Specifications

1
1.2. Labelled Symbolic Trees (LSTs)
.3. Overview of the Method

e
2
2. Obtaining a Significant Symbolic Tre

.1. Contextual Symbolic Trees

2
2.2. Feasible Symbolic Trees

.3. Towards a Limited Tree
s

3
3. The Treatment of Internal Event
.1. Internal Events and Implementations

s
3
3.2. Simplification by Congruence Relation

.3. The Enable Operator

5
4. Considering Values
. Conclusions and Future Work

nANNEX. An Example: Transport Connectio

