
M
Research Institute of Ontario. We would like to thank

ike Irwin and Eugene Zywicki of Gandalf for their sup-

M
port of this project. In addition, we are indebted to

ohammed Faci, Souheil Gallouzi and Bernard Stepien
d

c
of the University of Ottawa for useful discussions an
omments on the paper.

[

References

BB] Bolognesi, B., and Brinksma, E. Introduction to the
r

N
ISO Specification Language LOTOS. Compute

etworks and ISDN Systems 14 (1987) 25-59. Also

[

reprinted in [VVD] 23-73.

BC] Bolognesi, T., and Caneve, M. Equivalence
:

[
Verification: Theory, Algorithms, and a Tool. In
VVD] 303-326.

[BO] Boehm, P., deMeer, J., and Schoo, P. PERLON
n

[
Persistency Checker for Data Type Definitions. I
VVD] 285-302.

[Br] Brinksma, E. A Theory for the Derivation of Tests.

[

In [VVD], 235-247.

Bro] Brown, R.L, Denning, P.J., and Tichy, W.F.

(
Advanced Operating Systems. Computer, Vol. 17
1984), No. 10, 173-190.

.[B1] Brinksma, E. On the Design of Extended LOTOS
PhD Thesis, Twente University (NL), 1988.

g[DH] DeNicola, R., and Hennessy, M.C.B. Testin
Equivalences for Processes. Theoretical Computer

[

Science 34, (1984), 83-133.

EM] Ehrig, B., Mahr, B. Fundamentals of Algebraic

[

Specifications. Springer-Verlag, 1985.

FLS] Faci, M., Logrippo, L., and Stepien, B. Formal

a
Specification of Telephone Systems in LOTOS. To
ppear in: Brinksma, E., Scollo, G., and Vissers, C.

V
(eds.) Protocol Specification, Testing, and

erification IX, North-Holland.

.[GHL] Guillemot, R., Haj-Hussein, M., and Logrippo, L
Executing Large LOTOS Specifications. In:

l
S
Aggarwal, S., and Sabnani, K. (eds.) Protoco

pecification, Testing, and Verification VII, North-

[

Holland, 1988, 399-410.

GL] Gueraichi, L., and Logrippo, L. Derivation of Test

a
Cases for LAP-B from a LOTOS Specification. To
ppear in the Proc. of the 2nd FORmal TEchniques

[

Symposium (Vancouver, December 1989).

Hoa] Hoare, C.A.R. Communicating Sequential

[

Processes. Prentice-Hall, 1985.

ISO] International Organization for Standardization.

I
Information Processing Systems. Open Systems
nterconnection. Basic Reference Model for Open

Systems Interconnection, 1984.

.[ISO1] International Organization for Standardization
Information Processing Systems. Open Systems

T
Interconnection. LOTOS - A Formal Description

echnique Based on the Temporal Ordering of

8
Observational Behavior (ISO International Standard

807), 1988.

[LOBF] Logrippo, L., Obaid, A., Briand, J.P., and Fehri,

L
M.C. An Interpreter for LOTOS, a Specification

anguage for Distributed Systems. Software-

[

Practice and Experience, 18 (1988) 365-385.

Led] Leduc, G.J. The Intertwining of Data Types and
t

(
Processes in LOTOS. In: H.Rudin and C.H.Wes
eds.) Protocol Specification, Testing, and

[

Verification, VII. North-Holland, 1987, 123-136.

Mil] Milner, R. A Calculus of Communicating Systems.
,

S
Lecture Notes in Computer Science, Vol. 92

pringer-Verlag, 1980.

[MM] Manas, J.A., and de Miguel-More, T. From
-

t
LOTOS to C. In: K.J.Turner (ed.) Formal Descrip
ion Techniques North-Holland, 1989, 79-84.

e[Par] Park, D. Concurrency and Automata on Infinit
Sequences, Proc. 5th GI Conference, Lecture Notes

[

in Computer Science N. 104, 167-183, 1981.

QP] Quemada, J, Pavon, S., and Fernandez, A.
.

T
Transforming LOTOS Specifications with LOLA

he Parameterised Expansion. In: K.J.Turner (ed.)
,

1
Formal Description Techniques North-Holland
989, 45-54.

[Tur] Turner, K.J. An Architectural Semantics for
-

c
LOTOS. In: H.Rudin and C.H.West (eds.) Proto
ol Specification, Testing, and Verification, VII.

[

North-Holland, 1987, 15-28.

Vis] Vissers, C.A., Scollo, G., Alderden, R.B., Schot, J.,

t
and Ferreira-Pires, L. The Architecture of Interac-
ion Systems. Lecture Notes, Twente University of

[

Technology (NL), 1989.

VSV] Vissers, C., Scollo, G., and Van Sinderen, M.

D
Architecture and Specification Style in Formal

escriptions of Distributed Systems. In Aggarwal,
,

a
S., and Sabnani, K., Protocol Specification, Testing
nd Verification, VIII, North-Holland, 1988, 189-

[

204.

VVD] van Eijk, P., Vissers, C.A., and Diaz, M. The
-

H
Formal Description Technique LOTOS. Nort

olland, 1989.

s
These processes were subsequently decomposed demon-
trating that LOTOS specifications can be developed top

.
T
down when the tools and application domain are known

hus, LOTOS more directly (and, we think, more intui-

m
tively) describes protocol behaviors than FSM based

ethodologies, which do not allow this type of decompo-

3

sition.

.3. Learning and Using LOTOS

g
t
The most difficult aspect to learning LOTOS was makin
he conceptual shift away from languages commonly used

r
p
in the Gandalf environment such as C or PLM. Anothe

roblem was the current scarcity of introductory materials

s
on the language. These problems can be expected to
low initially the acceptance of LOTOS in industrial

s
environments. However, a four-week course was
ufficient to put the two industrial participants in a posi-

r
a
tion to start using the language and the interpreter. Afte
n additional three months of independent work, they

s
were able to produce complete and useful LOTOS
pecifications.

In our experience, the difficulty of learning LOTOS can
r

"
be roughly compared to the difficulty of learning othe
unconventional" functional or logic-based languages,

t
such as LISP or Prolog. Of course, learning was facili-
ated by the fact that, unlike other specification

4

languages, LOTOS is (at least partially) executable.

. CONCLUSIONS

This project explored the applicability of LOTOS for

(
describing the architecture of a data switch "in the large"
macro system design), and also to specify fine grain

e
S
interaction "in the small" (micro system design). Th

tarmaster exhibited many of the characteristics typically
t

d
found in most modern digital systems, including mos
istributed systems, e.g. multiple processors and multiple

T

internal communications pathways.

he investigation showed LOTOS to be a powerful and
-

b
expressive language for specifying protocols and distri
uted systems. LOTOS specifications are precise and

e
l
unambiguous due to the formal semantics of th
anguage, although of course establishing the correspon-

b
dence between LOTOS events and "real-life" events can
e a problem. As well, LOTOS promotes precise reason-

-
s
ing about a specification, and can help identify incon
istencies and incompleteness in the requirements.

w
Finally, LOTOS allows specifications to be modular and

ell structured, and favors top-down development and
-

s
separation of concerns. However, no language, as well
tructured as it might be, can be a panacea. Experience

s
i
with LOTOS demonstrates that stylistic concerns are a
mportant as for traditional programming languages. It is

as possible in LOTOS as in any other language to write

obstreperous and perplexing specifications or programs.

t
t
Beyond the scope of this project, our results indicate tha
his language, which to date has been confined largely to

d
p
the specification of OSI protocols and services, coul

lay a significant role in the design of systems which
r

e
involve complex hardware/software interactions. Fo
xample, it might well find new uses in the specification

g
m
of other architectural problems, such as systems involvin

ultiple busses inside a computer system or even inside

T

a single VLSI chip.

here remain some areas of concern. Although abstract

c
specifications are beneficial in hiding implementation
oncerns, the latter must be dealt with at some point dur-

L
ing product development. The methodology for using

OTOS specifications in the implementation phase is still

f
a subject of research. Therefore, a risk remains in going
rom a specification to an implementation. LOTOS

t
w
specifications have the advantage of being more abstrac

ith respect to FSM and EFSM ones. Thus it is prob-
-

m
ably easier to introduce translation errors when imple

enting from a LOTOS specification.

f
L
An important factor towards a wider acceptance o

OTOS appears to be the creation of Abstract Data Type
-

d
libraries much larger than the one provided with the stan
ard version of the language. In addition, ADT "short-

,
a
hands" for such common concepts as record structures
rrays, etc., appear to be highly desirable. Finally, the

f
l
current LOTOS standard does not allow the creation o
ibraries of LOTOS modules. Again, this is a shortcom-

T

ing that will have to be overcome.

he result of this project within Gandalf has been a deci-

p
sion that a follow-up project be selected from currently

lanned new product development, that has a requirement

t
for specifying control interactions. LOTOS will be used
o specify the interactions, and to develop an implemen-

-
d
tation from the specification. Software design metho
ologies required for this purpose will be evaluated and

e
p
determined. As well, a designer with expertise in th

roduct’s requirements will be introduced to LOTOS, to
e

l
further evaluate the ease of acquiring skills in th
anguage. Now that some experience has been gained in

-
j
LOTOS, the potential benefits of it identified by this pro
ect can begin to be quantified. Furthermore, during this

e
second more extensive project, it should be possible to
xplore some other of the possibilities presented by the

s
language (such as formal derivation of test cases from
pecifications, formal derivation of implementations from

A

specifications, formal verification, graphic LOTOS, etc.).

cknowledgment. Work reported here was funded in
e

P
part by the University Research Incentive Fund of th

rovince of Ontario, and by the Telecommunications

b
but at the same time one or more processes actually may

e signalling its displeasure to the others. Often the
"

c
failure represents an "address out-of-range or inactive
ondition, i.e. a poll-and-failed-response combination.

e
This means that the addressed entity currently does not
xist, although it may have existed in the past or it might

,
t
exist in the future. In order for this scheme to work
here must be an active process which will act as a

r
"ghost" process. This ghost process takes part in every
elated rendezvous in order to say that the address is

-
a
non-existent. Of course, the ghost behavior must be de
ctivated when the address is considered existent, which

n
L
may be accomplished in a rich number of ways i

OTOS.

A code fragment illustrating a poll operation to a live
process follows:

(bus ?x:adr ?sp:service_primitive ?status:bool

. . .
[(x eq my_adr) implies status];

[x eq my_adr] -> ...

|
)

[bus]|
(bus !child_adr !poll ?status:bool;

.
[status] -> ...
. .

)

__

I

__

n the above example, synchronization occurs on gate bus

a
causing an exchange of three data values: an entity
ddress value, a service primitive value, and a boolean

e
a
status value. The first contributor simply insists that if th
ddress x is equal to the value of the variable my_adr

l
t
then the status value must be true, otherwise (x not equa
o my_adr) the status value is unconstrained (because this

f
t
rendezvous wasn’t really for it). The second member o
he rendezvous (there might be more) insists upon the

e
s
address being the value of the variable child_adr, and th
ervice primitive to be a poll, while leaving the status

r
e
unconstrained. After the rendezvous, the first contributo
xamines the address to see if the synchronization was

f
v
really for it and the second one examines the value o

ariable status as set in the rendezvous to see if the poll

3

succeeded or not.

.2.2. Call Management Specification

n
p
The call management specification used one process i

artial synchronization with a medium to encapsulate all

s
call behaviors. This process corresponds to the con-
traints imposed by the lowest level modules as described

-
p
above. Call management has both master and slave com
onents. Although the behavior describes interactions

between the NCL and ISIMs, the presence of the ISIM
-

l
was the significant constraint and all behavior is encapsu
ated within that process.

The top level process was composed of interleaved mas-
l

b
ter and slave processes that specified NCL and ISIM cal
ehavior respectively. A medium was used to coordinate

e
r
interactions between these components. In this way, w
epresent the fact that these components interact

t
i
indirectly, and therefore transmitted messages are no
mmediately received. Call collision handling can then

B

be specified and executed.

oth the master and slave processes follow similar struc-
l

r
tures. This is a choice of behaving as a call initiator, cal
eceiver, or being configured. The only difference in their

r
a
structure is that the latter use guards to insure that thei
llowable behavior is consistent with their configuration,

L

i.e. that they can originate or accept calls or both.

OTOS operators were found to be well suited to
a

c
describing call management interactions. For example,
all scenario can intuitively be thought of as:

d1) A connection setup phase, possibly interrupted an
aborted for some reason.

a2) A connection phase, eventually disabled by
disconnect indication.

3) A disconnection phase that verifies that new con-

T

nections may be initiated.

his scenario translated almost directly into top level

f
LOTOS processes. For example, the [simplified] LOTOS
or an incoming call originated by an ISIM (slave) is

shown below.

process SlaveCallIn[ma,sl]: noexit:=
(

ma!C_Request;
(

SlaveConnecting[ma,sl]
>> (

SlaveConnection[ma,sl]
]

)
)

)
[> SlaveNormalDisc[ma,sl

__

A

__

connect request action is offered followed sequentially
-

p
by process SlaveConnecting. When this process com
letes, it enables (>> operator) the SlaveConnection pro-

-
m
cess which in turn is disabled ([>) by process SlaveNor

alDisc.

G

3.2. The Starmaster Protocol.

andalf’s Starmaster is a distributed data PBX. Intelli-
l

a
gent Subscriber Interface Modules (ISIMs) for both loca
nd wide area network interfaces and direct subscriber

.
T
interfaces reside in Subscriber Logic Shelves (SLSs)

hey connect in a star topology to the Node Logic Shelf
.

T
(NLS) which contains the Node Control Logic (NCL)

he NCL and ISIMs have a master/slave relationship.

(
Intelligent modules, referred to as Local Assemblies
LAs), link the NLS and SLSs. Together, these modules

t
define a hierarchical architecture from the NCL at the top
o ISIMs at the bottom. A master/slave relationship

O

exists between each adjacent pair of modules.

ne document currently specifies both the system archi-

c
tecture and the protocols used by the different modules to
ommunicate. It is complex and reflects the evolution of

b
the product over a number of years. Also, it is influenced

y specific implementation choices. Elements of the sys-

b
tem architecture, the call management protocols used

etween NCL and ISIMs, and the link protocols

L
employed by LAs, were chosen to be re-specified in

OTOS. The ability of LOTOS to precisely document

c
these elements was to be considered as a significant indi-
ation of the suitability of LOTOS for use within Gan-

p
dalf. As well, these elements provided a well defined
roblem within the scope of typical Gandalf applications

f
L
and allowed the project to center on the evaluation o

OTOS rather than on defining the protocol require-

T

ments.

wo specifications were completed as part of this project:
l

m
a top level system architecture specification and a cal

anagement specification. Time did not permit comple-

a
tion of the link protocol but we do not feel that this
ffected our ability to perform the evaluation. Although

s
o
initially both specifications had been intended to be part
f the same specification, they stand well on their own.

s
Each specification is briefly explained in the following
ubsections.

3.2.1. System Architecture

As mentioned above, the Starmaster was a hierarchical

s
machine with all its major components connected in a
trict tree structure: each entity could communicate with

-
d
only one parent (except the root) but with multiple chil
ren (except the leaves). The entities on each layer were

-
t
of the same type distinctive to that layer, and most enti
ies were physical cards, but some were (or could be)

p
software processes or address-identifiers of software
rocesses. The ability to map these entities on to the

e
s
LOTOS specification proved to be the major large-scal
ystem design problem.

Fortunately, the properties of a hierarchical machine can
e

o
be mapped into those of a "protocol stack" similar to th

ne defined by the ISO Reference Model [ISO]. The

b
critical feature is that direct communication occurs only

etween adjacent layers (parent-to-child and child-to-

i
parent), and thus adjacent layers must be used to reach
ndirectly the more distant layers. This allows the adop-

-
t
tion of many protocol-related constructs which are rela
ively well-developed in LOTOS, such as service primi-

-
z
tives, service access points, upper-lower layer synchroni
ation, etc. [Tur][Vis]. It should be noted that a protocol

a
stack is even more constrained than the similar "layers of
bstraction" notion which is popular in operating systems

-
t
design because the latter permits downward communica
ion to be initiated across more than one level [Bro].

d
The main lessons learned from this exercise were the

egree to which LOTOS forced the meticulous resolution
d

e
of all ambiguities in the specification and how simulate
xecution on the interpreter led to a much greater appre-

-
p
ciation of the total interdependencies between com
onents. In a protocol stack, seemingly independent

,
a
actions can ripple ultimately outwards to all other layers
s well as be limited by converging constraints from

A

other layers.

n interesting LOTOS issue reflected the inherent ability
y

b
in LOTOS to trade off computational responsibilit
etween the data type and the control part of the

a
g
language, already mentioned above. It was found that

lobal memory process could be used, which kept track
n

b
of aggregate data structures, such as the list of childre
elonging to a given parent, or multiple LOTOS

h
o
processes could be used which would monitor eac
ther’s actions and thus behave like a distributed memory

e
s
system. The LOTOS synchronization primitives ar
ufficient to support either approach (Bernard Stepien,

O
another member of the LOTOS group at the University of

ttawa, independendently worked towards a similar con-
-

f
clusion while considering the problem of formally speci
ying a telephone switch).

In order to support a logical negation in the specification
e

a
of distributed behavior, it was found possible to simulat

"failed" rendez-vous, such as a poll action with no suc-

s
cessful response - even though LOTOS synchronization
emantics would at first appear to strictly prohibit such a

e
s
thing! In LOTOS, every process which possesses th
ynchronization tag (the "gate") must fully agree to the

t
rendezvous, including the data which must be contributed
o all parties to the rendezvous. Any failure to agree

e
a
causes the rendezvous to fail. However, one of thos
greed data values may be interpreted by convention to

r
"
be a status value which represents overall "success" o
failure" of the synchronization. Thus, synchronization

-happens because all processes agreed to exchange data

0

01 specification Max3[in1,in2,in3,out] : noexit

2 type integer is

0

03 sorts int

4 opns

05 zero : -> int

t

0

06 succ : int -> in

7 largest : int, int -> int

t

0

08 eqns forall X,Y: int ofsort in

9 largest (zero , X) = X;

;

1

10 largest (X , zero) = X

1 largest (succ(X) , succ(Y)) = succ (largest(X,Y));

1

12 endtype

3 behavior

n

1

14 hide mid i

5 (

16 Max2 [in1,in2,mid]

1

17 |[mid]|

8 Max2 [mid,in3,out]

2

19)

0 where

21 process Max2 [val1,val2,max] : noexit :=

2

22 (val1?X:int; exit(X, any int)

3 |||

24 val2?Y:int; exit(any int, Y)

2

25)

6 >> accept V: int, W: int in

p

2

27 max!largest(V, W); sto

8 endproc

29 endspec

T

he specification is to be read as follows:

d
o
Lines 2 to 12 define the type integer with its associate

peration largest. This is done according to the semantics
-

t
of [EM]. Of course, the standard LOTOS library con
ains all these definitions, so normally the user will

L

include them by invoking the library.

ines 14 to 19 describe the top structure of the
-

c
specification, which consists of two instantiations of pro
ess Max2. The latter is capable of finding the largest of

,
a
two numbers, read in any order from gates val1 and val2
nd outputting it on gate max. As the two copies of

-
t
Max2 are instantiated, their gates are relabelled respec
ively in1, in2, mid, and mid, in3, out, resulting in the

t
fact that the output value computed by one copy is fed to
he other over gate mid. Note that mid is hidden,

t
because it is meant for internal communication between
he two instances of Max2 only.

-
l
Lines 21 to 28 describe process Max2. It allows inter
eaving between the input actions on gates val1 and val2.

Both values input are then forwarded to the action on
s

i
line 27, which calculates the largest of them and input
t.

Lines 14 to 19 of this specification are an example of

s
what has been called resource-oriented specification
tyle. Lines 21 to 28 are an example of constraint-

m
oriented style. Lines 22 to 27 could also be written, in

onolithic style, as follows:

val1?X:int; val2?Y; max!largest(X,Y); stop
[]

val2?Y:int; val1?X; max!largest(X,Y); stop

a

nd the equivalence between the two specifications could
-

t
be proved easily by using the simplest rules of bisimula
ion.

3. THE GANDALF PROJECT

G

3.1. Background

andalf is a supplier of communications equipment.

t
Many of the products developed by Gandalf have archi-
ectures with one or more embedded microprocessors.

f
Standardized and proprietary protocols to coordinate and
acilitate communication, both internal and linking to

f
G
other vendor’s equipment, are an integral part o

andalf’s products. These protocols are used for a broad
,

r
spectrum of applications including link data transfer
outing, call control, network management, system coor-

m
dination. The communication media ranges from shared

emory and processor busses to various links and net-

I

works.

nformal or semi-formal methods, such as various mix-

d
tures of English text, finite state machines, message
iagrams and program code fragments have previously

s
d
been used to specify the protocols Gandalf ha

eveloped. These methods have resulted in errors, omis-
-

t
sions and ambiguities being discovered during implemen
ation and have increased the cost of integrating new pro-

a
ducts and features into existing product lines. The errors
ppeared to be due at least in part to the imprecise

,
a
semantics of the specification techniques. For example

finite state machine may be sufficiently precise for

c
many purposes, but it can be unclear what it means to
ompose two machines in parallel. The lack of abstrac-

s
tion features has also been a problem, having resulted in
pecifications difficult to understand and maintain. The

f
L
goal of this project was to evaluate the suitability o

OTOS and the University of Ottawa Toolkit within
e

p
Gandalf, with respect to their abilities to overcome thes
ast problems and provide long-term strategies for the

future.

I
LOTOS specifications of OSI protocols produced within
SO use a constraint-oriented style because it emphasizes

d
modularity and abstractness and it is well suited to

escribing open, implementation independent, protocols.

p
Other styles may be more appropriate for different pur-

oses. For example, a resource oriented style is useful

s
for incorporating known implementation issues into a
pecification. Effective decomposition of the

e
c
specification though, is more than a function of th
hosen style. Knowledge of the applications require-

-
t
ments and the skills of the specifiers are equally impor
ant.

2.4. Executability of LOTOS Specifications and

B

LOTOS Tools

ecause of the fact that LOTOS is (partially) executable,

e
a specification is effectively a "fast prototype" of the
ntity specified, thus it is possible to exercise a

.
T
specification of a complex system at the design stage

his means that design errors can be found much earlier
-

n
in the software development cycle than with other tech
iques.

The two LOTOS interpreters in existence today are
-

c
described in [LOBF][GHL][VVD]. The interpreter dis
ussed in the first two references is the one that has been

-
t
used in this project. Other tools existing in various pro
otypical form are: symbolic expanders [QP], elementary

y
c
theorem provers [BC], Abstract Data Type persistenc
heckers [BO], partial translators into C [MM]. An aim

s
t
of this international tool development effort is to progres
owards a full LOTOS-based CASE. Unlike most current

fi
CASE methodologies, a LOTOS-based CASE would be

rmly grounded on the unifying concepts of the formal

2

semantics of the language.

.5. Formal Verification in LOTOS

e
o
It is possible to carry out in LOTOS proofs such as th

nes found in [Mil][Hoa], and the proof methods are
t

d
similar to those found in these references. The bes
eveloped proof techniques involve the concept of

c
"bisimulation" [Par][B1]. Proof methods based on the
oncepts of "traces" and "refusal sets" [Hoa] are also

e
p
being considered. Unfortunately however, because of th

resence of internal actions, some of the proof methods
,

d
developed for CSP, such as fixpoint induction methods
o not seem to be immediately applicable to LOTOS.

d
v
An important open problem is to find a unifie

erification framework for both the control and the data

O

part.

f course, the challenging aspect is to be able to prove
,

c
properties of systems of realistic size. To this end
omputer-assisted verification tools are being envisioned.

2.6. A Theory of Implementation and Testing

s
b
A rich formal theory of implementation and testing i
eing developed around LOTOS [BB][Br]. This means

d
that the relation "I is an implementation of S" is formally
efined for two expressions I and S. This formalization

)
I
is given by the reduction relation, where I reduces S if: i

can only execute actions that S can execute and: ii) I
-

t
can only refuse actions that can be refused by S. Intui
ively, I can be more deterministic than S, and can con-

a
tain fewer options. In other words, in LOTOS the
bstraction of a specification with respect to the imple-

-
m
mentation is represented by a higher level of nondeter

inism.

Similarly, the relation A and B are testing equivalent

r
[DH] has been formally defined as: A reduces B and B
educes A. Roughly speaking, two specifications are test-

i
ing equivalent if their externally observable behaviors are
dentical. This corresponds to the failure equivalence of

d
Hoare [Hoa]. By using these concepts, it is possible to

erive implementations and test cases in a formal way

I

from a LOTOS specification.

t must be observed, however, that so far these concepts

l
have been fully developed for restricted forms of the
anguage only. A practically usable approach for the

,
w
derivation of test cases from LOTOS specifications

hich however unfortunately still lacks a formal basis, is

2

described in [GL].

.7. LOTOS in Practice

Specifications of real-life systems of thousands of lines
r

w
have been written in LOTOS. Some of these are on thei

ay towards becoming part of ISO International Stan-
,

T
dards. Some examples are: several OSI layers (Network

ransport, Session), specifications of telephone systems
-

b
[FLS], etc. (in addition of course to all best known "text
ook" examples such as the Alternating Bit Protocol, the

-
p
Dining Philosopher’s problem, etc.). Several such exam
les are included in [VVD]. The language is starting to

w
be used in industrial environments, especially in the UK

here British Telecom and Hewlett-Packard have sub-

2

stantial LOTOS groups.

.8. A Small LOTOS Example

S
s
The following example, adapted from [BB], is a LOTO
pecification for an entity which is able to accept three

e
l
natural numbers in any order and stops after printing th
argest of them.

b
languages in use today. Its static semantics are defined
y an attributed grammar, while its dynamic semantics

f
t
are based on algebraic concepts. LOTOS is made up o
wo components: a data type component, which is based

,
a
on the algebraic specification language ACT ONE [EM]
nd a control component, which is based on a mixture of

t
Milner’s CCS [Mil] and Hoare’s CSP [Hoa]. Most of the
heoretical framework of the control component, and

n
M
especially the concept of internal action are based o

ilner’s work. In particular, non-determinism is

a
modelled by internal actions as in [Mil] rather than by
dding special operators as in [Hoa]. The rendez-vous

-
c
semantics follow Hoare’s "multi-way rendez-vous" con
ept, by which all processes that share a gate must parti-

,
c
cipate in a rendez-vous on that gate. Actions, however
an be transformed into internal actions by hiding them.

p
In this way, further participation in the action of

rocesses outside the hide is prevented.

s
e
LOTOS dynamic semantics for the control component i
xpressed in operational terms by inference rules as in

t
i
[Mil], and the operators were chosen in such a way tha
t has been possible to prove about them a rich set of

,
t
algebraic properties, similar to those of [Mil]. Therefore
he language is at the same time "executable" (by virtue

f
t
of the operational semantics), and amenable to proo
echniques (by virtue of the algebraic properties).

e
e
The language is purely recursive in nature, without sid
ffects (except those produced by process synchroniza-

v
tion). It supports process parameterization, for both

alue and gate parameters. Following is a very brief and
o

e
informal account of the language, hopefully sufficient t
nable the reader to follow our discussion.

S
s
The basic element of the control part of a LOTO
pecification is the action offer, where a process declares

e
itself ready to synchronize with other processes and
stablish one or more values. For example, g!3 states

v
that the process is offering to synchronize on the specific

alue 3 with other processes, on gate g. g?x:integer

a
states instead that the process is ready to synchronize on
ny integer value with other processes, on gate g. Thus,

o
two processes containing these two complementary action
ffers may be able to synchronize, and if they do, the

-
t
second process gets the value 3 for the variable x. "Mul
iple" and "bidirectional" action offers are also possible,

r
such as g !3 ?x:integer, where the process declares itself
eady to simultaneously offer a value, and receive one,

t
still on gate g. Selection predicates can establish condi-
ions for the executability of an action. For example,

a
g!x:integer [x gt 3] means that the process is ready to
ccept only an x greater than 3. Similarly, an action can

s
o
be subject to a guard, e.g. [y gt 4] -> g!y means that y i

ffered only if greater than 4.

Action offers can be combined by the use of several
,

|
operators. Some of the most important are: [] (choice)
[A]| (parallel execution with synchronization via gates in

l
g
set A), || (parallel execution with synchronization on al

ates), ||| (parallel execution in interleave), hide (hiding
d

[
of gates), >> (sequential composition of processes), an
> (disable, modelling a nondeterministic interruption).

-
i
The data part supports parameterized types, type renam
ng, and conditional rules.

A "graphic" version of the language is undergoing stan-

2

dardization within ISO and CCITT.

.3. LOTOS Specification Styles.

s
d
Because of the fact that LOTOS is made up of what it
esigners viewed as the most valid parts of CCS and

t
f
CSP, the language has considerable expressive power. I
avors a highly structured specification style and top-

I

down, as well as bottom-up, design.

n principle, a LOTOS specification has the goal of speci-
r

o
fying in a precise way the externally observable behavio
f the entity being specified. Like all languages, how-

.
R
ever, LOTOS can be used in several different ways

eference [VSV] identifies four main different LOTOS
,

a
styles, called monolithic, state-oriented, resource-oriented
nd constraint-oriented. In monolithic style

,
t
specifications, the main operator is the choice operator []
he parallel composition operators are not used, and the

s
[
specification is written as a tree of alternatives. Milner’
Mil] Expansion Theorem asserts that there exists an

s
algorithm for transforming an arbitrary LOTOS
pecification into a monolithic style specification,

.
I
although the algorithm may not terminate in some cases
n state-oriented specifications, explicit state variables are

e
s
used. In resource-oriented specifications, th
pecification modules are chosen in such a way as to

d
s
identify implementation modules. In constraint-oriente
pecifications, processes identify families of constraints

s
and the parallel composition of processes specifies the
imultaneous satisfaction of all constraints. This turns

-
c
out to be a powerful way to impose "separation of con
erns". The concept of constraint-oriented specification

n
2
was already present in [Hoa]. The example of Sectio

.8 presents some of these styles. It will also show how
a

s
the different styles can be mixed together in
pecification.

Other LOTOS styles can be identified, of course. For

a
example, both the data type and control part of LOTOS
re each sufficiently powerful to describe complex sys-

u
tems [Led]. It is a decision of the specifier whether to

se more of the one or of the other. The way this tra-

s
deoff is solved can greatly influence the ease of writing a
pecification, as well as its readability.

The Algebraic Specification Language LOTOS:

L

An Industrial Experience

uigi Logrippo Tim Melanchuk Robert J. Du Wors
p

C
University of Ottawa Advanced Development Group Connected Systems Grou

omputer Science Department Gandalf Data Ltd. 61 Reaney Court
7

O
Protocols Research Group 130 Colonnade Rd. S. Kanata, Ont. Canada K2K 1W

ttawa, Ont. Canada K1N 9B4 Nepean, Ont. Canada K2E 7J5

T

Abstract

he ISO specification language LOTOS is presented,

e
together with the results of a project involving the
valuation of its usefulness in an industrial environment.

C
LOTOS is a mixture of concepts taken from CCS and

SP, along with an algebraic abstract data type formal-

f
ism. The language was used by Gandalf to develop a
ormal specification of an existing protocol, part of a dis-

s
tributed data PBX. The effort concentrated on the
pecification of two aspects of the protocol: the top level

t
i
system architecture, and the call management phase. I
s shown how the unique features of LOTOS were found

f
t
to be useful for expressing these aspects. The results o
he project were positive, and further use of LOTOS is

1

planned within Gandalf.

. INTRODUCTION AND MOTIVATION

-
c
The subject of specification languages for data communi
ations protocols and services (often called Formal

m
Description Techniques or FDTs) has been the focus of

uch recent research. The initial motivation for the
e

s
FDTs was provided by the area of protocols and servic
tandards. Because these are meant to be implemented in

t
i
compatible ways across the world, and on many differen
mplementation architectures, it was essential that they

-
i
could be specified in a precise, implementation
ndependent language. The specification must capture

r
i
those features of an implementation that are necessary fo
t to be able to communicate with other implementations.

a
However, formal and exact specifications of protocols
nd services are useful in every phase of the protocol

d
development life-cycle, even outside of the realm of stan-
ards. At the design stage, a formal specification of a

-
r
protocol or service enables a number of checks to be car
ied out regarding the soundness of the design. Logical

errors can be found well before they become buried in an

implementation. At the implementation stage, a precise
e

t
specification of the software product serves as a referenc
o the implementor and as a medium of communication

t
s
between implementors. At the testing stage, tes
cenarios can be obtained from the formal specification.

e
d
In this paper, we report on the FDT LOTOS, a languag

eveloped within the International Organization for Stan-

u
dardization (ISO), and on an industrial experience of its
se as a specification tool for an existing system, the

a
r
Gandalf Starmaster Control Protocol. LOTOS being
elatively new language, few experiences exist on its

f
t
industrial application, and (as far as we know) none o
hem is in North America.

Much additional information on LOTOS and its applica-
l

s
tions can be found in [VVD][ISO1], and in the annua
eries of proceedings Protocol Specification, Testing and

s
(
Verification, and Formal Description Technique
FORTE), both published by North Holland.

E
L
2. THE FORMAL DESCRIPTION TECHNIQU

OTOS

2.1. Background

The International Organization for Standardization (ISO)
-

i
has been developing over the years a family of standard
zed data communications protocols and services, called

-
n
OSI (Open Systems Interconnection). At the very begin

ing of this effort it was recognized that, in order for OSI

a
to be a real standard, it was necessary to provide it with
n appropriate standard FDT, in which its protocols and

e
(
services could be specified. An international committe
of which Luigi Logrippo is a member) set out to pro-

L
duce such a FDT, and, some years later, the language

OTOS has now become an International Standard
t

t
[ISO1]. Interestingly enough, the language is turning ou
o be very appropriate not only for OSI protocols and ser-

2

vices, but also for a wide family of distributed systems.

.2. LOTOS Principles

LOTOS, the Language of Temporal Ordering
dSpecifications, is one of the most precisely define

