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Abstract. We propose Use Case Maps (UCMs) as a notation for describing fea-
tures. UCMs capture functional requirements in terms of causal scenarios bound
to underlying abstract components. This particular view proved very useful in the
description of a wide range of reactive and telecommunications systems. This pa-
per presents some of the most interesting constructs and benefits of the notation
in relation to a question on a User Requirements Notation recently approved by
ITU-T Study Group 10, which will lead to a new Recommendation by 2003. Tool
support, current research on UCMs, and related notations are also discussed.

1 Introduction

The modeling of reactive systems requires an early emphasis on behavioral
aspects such as interactions between the system and the external world (in-
cluding the users), on the cause-to-effect relationships among these interac-
tions, and on intermediate activities performed by the system. Scenarios are
particularly good at representing such aspects so that various stakeholders
can understand them.

Owing to their distributed and critical nature, telecommunications sys-
tems are representative of complex reactive systems. Emerging telecommu-
nications services and features require industries and standardization bodies
(ANSI, ETSI, ISO, ITU, TIA, IETF, etc.) to describe and design increas-
ingly complex functionalities, architectures, and protocols. This is especially
true of wireless systems, where the mobility of users brings an additional di-
mension of complexity. Recent and upcoming technologies based on agents,
XML, and IP, which involve complex and sometimes unpredictable policy-
driven negotiations between communicating entities, also raise new modeling
issues as protocols and entities become more dynamic in nature and evolve
at run time.

The design and standardization of telecommunication systems and fea-
tures results from a design process frequently comprised of three major stages,
shown in Figure 1. At stage 1, features are first described from the user’s point
of view in prose form, with use cases, and with tables. The focus of the second
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Fig. 1. Three-stage methodology

stage is on control flows between the different entities involved, represented
using sequence diagrams or Message Sequence Charts (MSCs [22]). Finally,
stage 3 aims to provide (informal) specifications of protocols and procedures.
Formal specifications are sometimes provided (e.g. in SDL [21]), but overall
they still suffer from a low penetration [10,17], especially in North-America
[2,18]. ITU-T developed this three-stage methodology two decades ago to
describe services and protocols for ISDN. Naturally, such descriptions em-
phasize the reactive and behavioral nature of telecommunications systems.
In this methodology, scenarios are often used as a means to model system
functionalities and interactions between the entities such that different stake-
holders may understand their general intent as well as technical details.

Due to the inherent complexity and scale of emerging telecommunica-
tions features, special attention has to be brought to the early stages of the
design process. The focus should be on system and functional views rather
than on details belonging to a lower level of abstraction, or to later stages
in this process. Many ITU-T members recognize the need to improve such
three-stage process in order to cope with the new realities cited above. In
particular, Study Group 10, which is responsible for the evolution of stan-
dards such as MSC, SDL, and TTCN, recently approved a question for study
during the next ITU-T Study Period to develop a User Requirements Nota-
tion (URN) based on scenarios. The objective of the question is to develop a
new Recommendation by the year 2003 [25].

This question focuses on what notation may be developed to complement
MSCs, SDL and UML in capturing user requirements in the early stages of
design when very little design detail is available. Such notation should be able
to describe features as user requirement scenarios without any reference to
states, messages or system components. Reusability of scenarios across a wide
range of architectures is needed with allocation of scenario responsibilities to
architectural components. The notation should enable simpler modeling of
dynamic systems, early performance analysis at the requirements level, and
early detection of undesirable interactions among features or scenarios.

While UML activity diagrams provide some capability in this area [27],
a requirements notation with dynamic refinement capability and better allo-
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Fig. 2. Simple Use Case Map

cation of scenario responsibilities to architectural components is required [7].
The Use Case Map notation offers such capabilities. The basics of this no-
tation and its main benefits are illustrated in Section 2. Section 3 presents
various domains of application of UCMs as a feature description notation
followed by an overview of current tool support, research directions, related
notations, and formalization issues. A brief conclusion follows in Section 4.

2 Use Case Maps

2.1 Basic Notational Elements

The Use Case Map (UCM) notation [13,14] is used for describing causal
relationships between responsibilities, which may potentially be bound to
underlying organizational structures of abstract components (see Figure 2).
Responsibilities are generic and can represent actions, activities, operations,
tasks to perform, and so on. Components are also generic and can represent
software entities (objects, processes, databases, servers, functional entities,
network entities, etc.) as well as non-software entities (e.g. users, actors, pro-
cessors). The relationships are said to be causal because they involve concur-
rency and partial orderings of activities and because they link causes (e.g.,
preconditions and triggering events) to effects (e.g. postconditions and result-
ing events). In a way, UCMs show related use cases in a map-like diagram.

The scenario in Figure 2 represents a simplified call connection initiated
by user A on req. The system first checks whether the call should be allowed
(chk) and then verifies whether the called party is busy or idle (vrfy). In both
cases here, we assume that the call request goes through. Then, the system
status is updated (upd) and a resulting ringing event occurs at B’s side (ring).
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2.2 UCMs, Architectures and Messages

UCM paths and their responsibilities are useful for describing features at an
early stage in the design cycle (e.g. at stage 1), even when no component is
involved (e.g. Figure 5). It is then possible to bind UCM paths to a suitable
structure of components, which leads to a visual integration of scenarios and
architecture in a single view. UCM scenario paths possess a high degree of
reusability and they lead to behavioral patterns that can be utilized across
a wide range of applications. For instance, the UCM path from Figure 2 can
be bound to alternative architectures therefore enabling early architectural
reasoning. Figure 3(a) uses an agent-based architecture whereas Figure 3(b)
uses a more conventional architecture based on Intelligent Networks (IN).

UCM paths are also more likely to survive evolutions and other modifica-
tions to the underlying architecture than scenarios described in terms of mes-
sage exchanges or interactions between components. For instance, Figure 3(c)
is an MSC capturing the scenario from Figure 3(a) in terms of message ex-
changes. This is a straightforward interpretation with artificial messages (in
italic characters). In this system, each user can communicate with its agent
only, and agents can communicate with other agents. Other such MSCs could
possibly be derived from the same scenario path.
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Figure 3(d) is a potential MSC extracted from the same scenario path,
but this time bound to an IN-based architecture. Complex protocols or ne-
gotiation mechanisms could be involved between the switch and the service
node, hence resulting in multiple messages. Communication constraints (not
shown here) could also prevent users from communicating directly with ser-
vice nodes; therefore the switch needs to be involved as a relay to refine the
causal relationship between req and chk.

When extracting MSC-like scenarios from informal requirements, as it is
often done in the three-stage methodology shown in Figure 1, many design
decisions become buried in the details of the scenarios. For instance, the
Wireless Intelligent Network (WIN) standard attempts to use the IN refer-
ence model but, due to legacy descriptions of former versions of the ANSI-41
North-American wireless standard, it only provides MSC scenarios where the
components represent network elements belonging to the physical plane [9].
Design decisions such as the allocation to UCM responsibilities to functional
entities (the logical components in the distributed functional plane) and the
allocation of functional entities to network entities are lost [3]. Since this stan-
dard does not impose a specific mapping of functional entities to network enti-
ties, different vendors who build network entities may use different mappings
(and this is actually happening). Designers must reverse-engineer information
and scenarios that would be explicit in a UCM view where responsibilities
and other constructs are bound to functional entities. This delays the design
and implementation phases and leads to multiple interoperability problems.
Such problems are unfortunately common in standards.

By using a UCM view, many issues related to messages, protocols, com-
munication constraints, and structural evolutions (e.g. from one version of the
structure to the next) can be abstracted from, and the focus can be put on
intended functionalities and on reusable causal scenarios in their structural
context.

2.3 UCMs and Scenario Integration

UCMs can also help structuring and integrating scenarios in various ways,
e.g. sequentially, as alternatives (with OR-forks/joins) or concurrently (with
AND-forks/joins). However, one of the most interesting constructs for sce-
nario integration is certainly the dynamic stub, shown as a dashed diamond
in Figure 4.

While static stubs (not shown here) contain only one sub-map (called
plug-in), dynamic stubs may contain multiple sub-maps whose selection can
be determined at run-time according to a selection policy. Such a policy
can make use of preconditions, assertions, run-time information, composition
operators, etc. in order to select the plug-in(s) to use. Selection policies are
described with a (formal or informal) language suitable for the context where
they are used. The plug-in maps are sub-maps that describe locally how a
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feature modifies the basic behavior. Multiple levels of stubs and plug-ins can
be used.

Figure 5 shows four UCMs. The top-level UCM is the Basic Call of Fig-
ure 4, which contains two dynamic stubs. Each of these stubs includes a De-
fault plug-in (which happens to be the same in both cases) that represents
how the basic call reacts in the absence of other features.

The Originating stub has two plug-ins:

• Originating Call Screening (OCS), which checks whether the call should
be denied or allowed (chk). When denied, an appropriate event is pre-
pared (pd) and signaled (sig). Its binding relationship, which connects
the input/output segments of a stub to the start/end points of its plug-
in, is {〈IN1, in1〉, 〈OUT1, out1〉, 〈OUT2, out2〉}.

• TeenLine, which denies the call provided that the request is made during
a specific time interval and that the personal identification number (PIN)
provided is invalid or not entered in a timely manner. The zigzag path
leaving the timer represents a timeout path. The binding relationship for
this feature is also {〈IN1, in1〉, 〈OUT1, out1〉, 〈OUT2, out2〉}.

The Display stub contains only one feature:

• Call Number Delivery (CND), which displays the number of the originat-
ing party (disp) concurrently with the rest of the scenario (update and
ringing). The binding relationship is {〈IN1, in1〉, 〈OUT1, out1〉}.

Adding features to such UCM collections is often achieved by creating new
plug-ins for the existing stubs, or by adding new stubs containing either new
plug-ins or instances of existing plug-ins. In all cases, the selection policies
need to be updated appropriately.

Stubs and selection policies tend to localize the places on scenarios where
undesirable feature interactions can occur [4,6,26], hence simplifying the anal-
ysis. They can also be used to specify priorities of some features over others.
For instance, TeenLine could be given a sequential priority over OCS in
the Originating stub. Many spurious interactions between features are hence
avoided by structuring and integrating the scenarios in the proper context.
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2.4 Performance and Agent-Oriented Annotations

The UCM core notation has been extended over the years to cover differ-
ent fields of applications such as performance analysis at the requirements
level (with timestamps) [30,31] and agent-oriented design (with goal tags).
These areas are also recognized by ITU-T Study Group 10 as relevant to the
description of features.

Timestamps are located on UCM paths in order to identify various per-
formance constraints and response time requirements. For example, Figure 6
shows two timestamps attached to a UCM. Response time requirements (ex-
pected response time, probability, etc.) can be defined between pairs of times-
tamps (e.g., T1 and T2) at the scenario path level. In order to generate useful
performance simulation models, other notation elements can be annotated,
for instance start points with arrival characteristics (exponential, determin-
istic, uniform, Erlang, etc.) and responsibilities (associated data store, per-
formed service requests, etc.).

Goal tags are used to associate high-level goals and intentions to UCM
scenario paths. This is particularly relevant to the description of agent sys-
tems, where distributed goals are intended to be achieved by collaborating
agents. Figure 7 shows the symbol used to represent goal tags. Similar to

Agent:A Agent:B User:B

ring
vrfy updchk

User:A

req

T1

Timestamp

T2

Fig. 6. Performance annotations with timestamps
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Fig. 7. Agent-oriented goal annotations with goal tags

timestamps, these tags can be coupled in pairs to describe goals and their
pre/post-conditions.

2.5 Additional Notation Elements

The UCM notation contains many additional elements, including:

• Component types and attributes: types can be used to visually distin-
guish active components (e.g. processes), passive components, contain-
ers, agents, etc. A component may also possess several attributes (e.g.
replication factor and mutual exclusion).

• Dynamic components and dynamic responsibilities: dynamic stubs show
how behavior patterns can evolve at run time. A structure of component
can also evolve at run time through the use of dynamic components, which
represent, in a static way, roles that can be filled by actual instances
of components at different times. Dynamic responsibilities are used to
create, delete, store, retrieve, or move dynamic components.

• Path interactions: UCM paths can also be combined through the use
of synchronous or asynchronous path interactions, which often involve a
special point on a path called waiting place.

• Aborts: a scenario path can abort the evolution of another path through
this construct. This can also be used to model exceptions.

• Failure points: failure points represent explicit places on a UCM path
where a scenario could stop before reaching its end point. This is useful
when robustness needs to be addressed at a high level of abstraction.

Although these advanced constructs are often useful for the description of
features, they will not be discussed further in this paper. The interested reader
can however consult the UCM Quick Reference Guide (Appendix A) and the
UCM virtual library of the UCM User Group for more information [34].



Use Case Maps as a Feature Description Notation 9

3 UCMs as a Feature Description Notation

Use Case Maps have a number of properties that satisfy many of the re-
quirements described in Section 1: scenarios can be mapped to different ar-
chitectures, variations of run-time behavior and structures can be expressed,
and scenarios can be structured and integrated incrementally in a way that
facilitates the early detection of undesirable interactions and the early evalu-
ation of performance. Performance becomes a property of paths, rather than
just a non-functional property of a whole system, as it is often considered
to be [14,30,31]. Macroscopic behavior patterns are described independently
of details belonging to connections between components (e.g. messages), and
large-scale dynamic situations and issues can be made visible at a glance.

The UCM notation is currently applicable to a wide range of areas, it is
already supported by a tool, and it is the topic of several research projects. It
also possess interesting characteristics that are difficult to find all at once in
other notations for describing features. This will be discussed briefly in the
following sections.

3.1 Areas of Application

Use Case Maps are well suited for describing requirements and high-level
designs of reactive (event-driven) and distributed systems and their fea-
tures. UCMs have a history of applications to the description of features and
telecommunications systems of different natures (e.g. [3–6,8]), to the avoid-
ance and detection of undesirable interactions between scenarios or features
(e.g. [4,6,15,26]) and to early performance analysis (e.g. [30,31]).

UCMs are however not restricted to telecommunications systems. They
are also being used to describe systems and features from various domains
such as (in no particular order) airline reservation applications, elevators, rail-
way control systems, agent systems, network management applications, Web
applications, graphical user interfaces, drawing packages, multimedia appli-
cations, banking applications, object-oriented frameworks, “work patterns”
of software engineers, and many others [34].

3.2 UCM Navigator Tool

The UCM notation is also supported by a tool: the UCM Navigator [24].
This tool has been developed at Carleton University (Ottawa) in order to help
drawing correct UCMs. Among other features, this tool supports the path and
component notations found in Appendix A, and it maintains various bind-
ings (plug-ins to stubs, responsibilities to components, sub-components to
components, etc.). Also, it allows users to navigate much like a Web browser,
and to visit and edit the plug-ins related to stubs of all levels (Figure 8).

The UCM Navigator is transformation-based and it ensures that UCMs
are syntactically correct by construction. The tool saves, loads, exports and
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Fig. 8. UCM Navigator screen shot

imports UCM as XML files, which are valid according to a UCM Document
Type Definition (DTD) [34]. This DTD describes the current formal defi-
nition of UCMs, which is based on hypergraphs, and the UCM Navigator
ensures that static semantic rules and other constraints are satisfied. No for-
mal dynamic semantics currently exists for the UCM notation. The tool can
also export UCM figures in three formats: Encapsulated PostScript (EPS),
Maker Interchange Format (MIF), and Computer Graphics Metafile (CGM).
Flexible reports can be generated as PostScript files ready to be transformed
into hyperlinked and indexed PDF files. Multiple platforms are currently sup-
ported: Solaris, Linux (Intel and Sparc), HP/UX, and Windows (95, 98, 2000
and NT).

3.3 Current UCM Research

Many researchers are developing links between Use Case Maps and other
notations and languages, something that is necessary in order to produce
concrete implementations and products from features and other functional
requirements captured as UCMs. Among others, UCMs are currently being
mapped to:

• (H)MSCs or UML sequence diagrams (e.g. Figure 3) [6,12]. This gener-
ation is in the process of being formalized and automated in the UCM
Navigator tool.
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• Hierarchical state machines such as UML statechart diagrams or ROOM-
charts [12].

• Lotos models, which enable formal validation, verification, and detection
of undesirable interactions [4–6,8].

• SDL models, which also enable formal validation [29].
• UML and UML-RT models [7,12].
• Other research projects include the generation of performance models

(e.g. in Layered Queuing Networks-LQNs), of abstract test cases for func-
tional testing (e.g. in the Tree and Tabular Combined Notation-TTCN),
and of programs in agent-oriented languages.

The notation is also evolving under the guidance of a newly created UCM
Working Group composed of members from industry and universities. In par-
ticular, this group intends to present a contribution to ITU-T proposing Use
Case Maps as an appropriate notation to capture functional requirements (a
companion notation such as the one in the NFR framework [16] would have
to capture non-functional requirements). UCMs would hence represent part
of the answer to the User Requirements Notation (URN) question.

The multiple connections between UCMs and other languages enable the
creation of many design trajectories relevant to telecommunications systems,
as suggested in the introduction. In particular, we envision the following tra-
jectory, inspired from [2,3,12,18]: requirements capture and architectural rea-
soning is done with UCM/URN (stage 1), which are first transformed into
MSCs or interaction diagrams (stage 2), then into state machines in SDL
or UML-RT statechart diagrams (stage 3), and finally into concrete imple-
mentations (possibly through semi-automated code generation). Inspection,
validation, verification, performance analysis, interaction detection, and test
generation can be performed to various degrees at all stages.

3.4 UCMs and Other Notations for Describing Features

Features can be described in a number of ways, for instance with goals, logi-
cal properties, and scenarios. These approaches are not necessarily mutually
exclusive (e.g. goals can be associated to UCM scenarios, as seen in Sec-
tion 2.4). Goals and properties are usually large-grained, declarative, and
cover more situations than scenarios, which are more operational and which
capture partial and non-exhaustive views of the system. However, the discov-
ery and structuring of goals and properties is not an easy task, whereas the
construction of scenarios is often simpler [28]. Scenarios are also more in line
with current practices in ITU-T and other standardization bodies. According
to many people in such organizations, it is better to find a practical notation
that will improve the current situation and that will be used than to aim for
the best theoretical solution, which is unlikely to be used at all [18].

Scenarios can also be textual rather than graphical (e.g. Jacobson’s use
cases [23]). Although textual scenarios can adequately describe requirements
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in many situations, especially when appropriate construction guidelines are
provided [11], these scenarios are still very much linear in nature. Graphical
notations such as UCMs enable the description of scenarios in two dimensions
as well as the compact representation of multiple scenarios.

Still, many graphical scenario notations could be considered as good can-
didates for URN in the context of feature descriptions. Here is a brief compar-
ison between UCMs and four such notations, namely MSCs, Chisel diagrams,
Petri Nets, and UML activity diagrams:

• Message Sequence Charts (MSCs): as shown in Section 2, MSCs and simi-
lar interaction diagrams suffer from a premature commitment to messages
and components. This is not always appropriate for the early stages of fea-
ture definitions because details irrelevant to the requirements level must
be considered, and this in turn hides the original intent of the feature.
UCMs abstract from messages and improve the reusability of scenarios
across component architectures.

• Chisel diagrams: Aho et al. have performed empirical studies with telecom-
munication engineers to create the Chisel notation [1]. Chisel diagrams
are trees whose branches represent sequences of (synchronous) events
taking place on component interfaces. Nodes describe these events (mul-
tiple concurrent events can take place in one node) and arcs, which can
be guarded by conditions, link the events in causal sequences. Chisel di-
agrams describe multiple abstract scenarios, but like MSCs they focus
on inter-component interactions even if the components are hidden from
this particular view. UCMs can abstract from these events, and UCMs
also support advanced concepts such as dynamic stubs, which have no
equivalent in the Chisel notation. Note that similar to the UCM-Lotos
translation mentioned in Section 3.3, a Chisel-Lotos mapping has been
defined and automated by Turner [33].

• Petri Nets (PNs): these are abstract machines used to describe system
behaviour visually with a directed graph containing two types of nodes:
places and transitions. Basic PNs suffer from a state explosion problem
when complex problems are addressed. Various extensions for data types
and modules, which help to cope with this problem, are currently being
standardized as High-Level Petri Nets [20]. The main benefits of PNs
over UCMs are their formality and executability. However, their use as
a requirements notation for features (if such thing exists) is still remote
from the current ITU-T practice, and PNs also lack concepts such as
dynamic stubs and a view that combines visually behavioral scenarios
and component architectures. PNs could however represent a candidate
language for formalizing the UCM dynamic semantics.

• UML activity diagrams: probably the next best alternative to UCMs for
URN, activity diagrams share many characteristics with UCMs [27]: fo-
cus on sequences of actions, guarded alternatives, and concurrency; start
and end points from each notation have a similar purpose; and complex
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activities can be refined. However, activity diagrams are usually unrelated
to components (swimlanes, which could be seen as enabling bindings of
activities to components, provide functional grouping only), and their
sub-diagrams are less flexible and less powerful than UCM stubs. Activ-
ity diagrams could however be evolved to support these attractive UCM
concepts [7], which would then help satisfy ITU-T’s goal of linking URN
to MSC, SDL, and UML.

3.5 On the Formalization of UCMs

The UCM notation enjoys an enthusiastic community of users and it has
been used successfully as a feature description notation in the domains of
telecommunications and other reactive systems. Several users however com-
plain about the lack of formal foundations behind the notation, and work
is being done to address this situation (e.g. [7]). We like to think of UCMs
as a back-of-envelope notation that offers an attractive level of abstraction
for describing feature requirements at early stages, without getting dragged
into low-level details. An unfortunate consequence is that UCMs are open
to misinterpretation as much as any other non-formal notation. Conventions,
standard styles, and patterns can help to cope with this issue to some ex-
tent, but formalization is required as well. However, finding the appropriate
degree of formalization, which would not sacrifice the appealing and semi-
formal characteristics of UCMs, remains an issue. The URN effort represents
a great opportunity for finding a practical solution to this problem. Formal-
ization could also be done by integrating UCMs to UML, for instance by
adapting and improving the activity diagrams notation and semantics. High-
level Petri Nets could also be used as a semantic model. In any case, UCMs
possess several attractive constructs and concepts that should be seriously
considered in any full-fledged feature description language.

4 Conclusion

Scenarios are a popular and practical approach to the design of reactive
systems. The UCM notation enables the early description of features in terms
of causal scenarios bound to underlying abstract components. This paper
illustrates the core constructs of the notation, its main benefits, and its place
in common design trajectories. It also shows that the UCM notation satisfies
many of the needs expressed in ITU-T’s question for study about a User
Requirements Notation.

The UCM notation is evolving and is the target of many research and
development projects. Industrial partners appreciate this notation because
it allows for senior designers, system architects and product managers, who
possess good knowledge of the domain and of existing systems, to “work
again”, i.e. they can communicate their knowledge efficiently to junior de-
signers, who then take care of the specifics. Senior people do not need to
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know all the details surrounding recent or emerging technologies to describe
desired features in a way that design teams can understand and refine. We
are hence very confident in the usefulness of the notation and of the level of
abstraction it addresses.
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A UCM Quick Reference Guide

Imagine tracing a path through a system of objects to explain a causal
sequence, leaving behind a visual signature. Use Case Maps capture
such sequences. They are composed of: 

• start points (filled circles representing preconditions and/
or triggering causes)

• causal chains of responsibilities (crosses, representing 
actions, tasks, or functions to be performed)

• and end points (bars representing postconditions and/or 
resulting effects). 

The responsibilities can be bound to components, which are the enti-
ties or objects composing the system. 

Start
Point End

Point

Components

Responsibilities

A1. Basic notation and interpretation

A2. Shared routes and OR-forks/joins.

(a) OR-join

(c) Permissible routes
assumed identified

Indicate routes that share 
common causal segments. 
Alternatives may be identified 
by labels or by conditions 
([guards])

(b) OR-fork

A3. Path interactions.

A4. Concurrent routes with AND-forks/joins .

A5. Variations on AND-forks/joins.

[yes]

[no]

A6. Stubs and plug-ins.

(a) Static stubs have only one plug-in (sub-UCM)

(b) Dynamic stubs may have multiple plug-ins

A7. Timers, aborts, failures, and shared responsibilities.

Interacting paths. 

Effect is of one longer path

R1 R2 

R1 R2 

with the constituent segments
joined end to end. 

(a) Synchronous interaction

Interacting paths. 

Effect is similar to one path

R1 R3 

R1 R2 

splitting into two concurrent
segments. 

(b) Asynchronous interaction

R3 

R2 

(c) Ground symbols indicate possible path failure points

timeout path

waiting path

clearing path

continuation

(a) Timers may be set, reset, and timed-out

R1 

R2 

(b) Top path aborts bottom path after R1

R R 

(d) R is a shared responsibility

N:1

(b) AND-join

1:N

(a) AND-fork

N:M

(c) Generic version

..
. ..
.

... ...

Fork-join

1:N N:1

1:N

Fork along a 

1:N N:1

Rendezvous Synchronize

N:1 1:N N:N

single path
Fork-join along a 

single path

N:1

Join along a 
single path

... ... ... ... ...
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(a) Team: generic container

A8. Component types.

(b) Object: passive component

(d) ISR: Interrupt Service Request

(e) Agent: for agent systems

(f) Pool: container for dynamic components
as data

(c) Process: active component

A9. Component attributes.

(a) Stack: multiple instances

(b) Protected: for mutual exclusion

(c) Slot: placeholder for dynamic components 
as operational units

(d) Anchored: in a plug-in, refers to a compo-
nent defined in another map

+

_

+

_

+

_

move

move-stay

create

destroy

copy

+

–

+

create DC in path

delete DC out of path

move DC out of slot

move DC into slot

get DC from pool

put DC in pool

create DC in pool

delete DC from pool

create DC in slot

delete DC from slot

A10. Movement notation for dynamic components (DCs).

(a) Movement of DCs as data b) Directly into or out of paths

(c) Into or out of slots (d) Into or out of pools

A11. Notation extensions

(a) Goal tags are start and end points

GT

for goals in agent systems 

(b) Timestamps are start and end points

TS

for response time requirements 

(c) Direction arrows can be used when

Stub

path direction is ambiguous 


