
1

FORMAL METHODS FOR MOBILITY ST ANDARDS

Daniel Amyot, Rossana Andrade, Luigi Logrippo, Jacques Sincennes, Zhimey Yi

TSERG, School of Information Technology and Engineering, University of Ottawa
150 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5

e-mail: {damyot | randrade | luigi | jack | zyi}@site.uottawa.ca

Abstract - Precise specification and exacting verification
and validation of protocol standards are essential for their
successful development and implementation. Currently,
several languages (called FDTs for Formal Description
Techniques) are available to address this issue. FDTs have
reached various degrees of acceptance, but their use in
standard development in North America has been limited.
This paper represents an attempt towards divulging the
knowledge of what exists and how it can be used effec-
tively based on the methods that were found most useful in
our work on mobility protocols. The FDTs considered are,
in alphabetical order: theAbstract Syntax Notation 1
(ASN.1), theLanguage of Temporal Ordering Specifica-
tions (LOTOS), Message Sequence Charts (MSCs), the
Specification and Description Language (SDL) and the
Tree and Tabular Combined Notation (TTCN). Also con-
sidered is a new, emerging non-formal technique, called
Use Case Maps (UCMs).

Keywords: Mobility Standards, Formal Methods, Valida-
tion and Verification, Wireless Intelligent Network

I. STANDARDIZA TION CHALLENGES

Numerous industries and standardization bodies (ITU,
ISO, ANSI, ETSI, TIA, etc.) are constantly at work to
design new telecommunications products and new stan-
dards for such products, involving increasingly complex
functionalities. These services also require increasingly
complex architectures and protocols, especially in a con-
text of mobile communication. In the early stages of these
processes, many features, services, and functionalities are
described using informal operational descriptions, tables
and visual notations such asMessage Sequence Charts
(MSCs) (16). As these descriptions evolve, they quickly
become error-prone and difficult to manage. The need of
precisely documenting all stages of the design process,
which is very important in the industrial environment,
becomes critical in the standardization process, where
there is an international scrutiny process for which the
stages are formalized and must undergo formal review and
approval.

Inadequate descriptions are likely to hide ambiguities,
inconsistencies or undesirable interactions inside or

between services, or between levels of abstraction of a
given service. These remain difficult to detect with con-
ventional inspection methods, and often remain hidden
until errors are discovered after implementation, at which
point corrections can be very costly. A related issue is the
one of interoperability of implementations. Unless stan-
dard documentation is very precise and stringently vali-
dated, chances that it may be interpreted differently by
different implementors are high.

Following the practice in several standard groups, the
development of each phase of a telecommunication stan-
dard is divided in threestages: 1) service descriptions,
2) functional entities and message sequence information,
and 3)protocol and procedure specification.

Development of Formal Techniques

Several of the techniques discussed in this document have
become known as Formal Description Techniques (FDTs)
because they were formally defined, and in turn they allow
to formally define distributed systems. This is the case for
ASN.1, LOTOS, SDL, and TTCN.

These techniques have different histories. ASN.1, LOTOS,
and TTCN were developed in relation to the standardiza-
tion effort, within CCITT and ISO, of the Open Systems
Interconnection (OSI) protocols and services. At the
beginning, the OSI community resolved that formal meth-
ods were needed: they would be developed quickly and
used in the standardization work. History unfolded differ-
ently. First, the development of the FDTs turned out to be
a complex project that lasted longer than expected. The
languages became available only in the late eighties, when
much of OSI standardization had been completed. Second,
several languages were developed while only one had been
planned. Third, when people started looking at the lan-
guages, they found them falling short of their initial opti-
mistic expectations. Notably, the languages and the
associated tools and methodologies were incomplete,
experimental, hard to learn and insufficiently documented.
Implicitly, standards developers and industry questioned
the wisdom of investing in something unproven (8).

2

Nevertheless, these languages have shown notable resil-
iency. They are still in use nowadays and are the subject of
research and development. New tools have been developed
for them and applied in areas at times quite remote from
the ones envisaged by their initial designers.

FDTs still have their legitimate place in the standardiza-
tion process, especially to provide precise descriptions that
improve the likelihood of interoperability in a heteroge-
neous telecommunications environment.

In this context, the use of appropriate specification tech-
niques for describing standards would have a profound
positive impact on the overall consistency and validity of
these documents, and on the effort required to draft and
maintain them.

II. EVALUATION CRITERIA

Criteria were selected on the basis of our own experiences
with specification techniques and requirements engineer-
ing, and on existing surveys (3)(9)(20). Thirteen criteria
were grouped in four categories: usability, validation and
verification, tool support, and training.

Usability

• Readability: descriptions need to be readable by domain
experts (and not only by description technique experts).

• Modularity: composition operators are needed to allow
large descriptions to be decomposed into smaller parts.

• Abstraction: is concerned with the level of detail that
needs to be addressed, and with separation of concerns.

• Scalability: complex and simple systems should be
describable in a similar way.

• Maintenance and Evolution: relates to reuse, modifica-
tion of existing parts, and addition of new details.

• Looseness: when few details are available (early stages),
description techniques should permit some level of
incompleteness and non-determinism in a description.

• Maturity: a technique has a high level of maturity if it
has reached a level of wide acceptance and application.

Validation and Verification (V&V)

• Completeness and Consistency: techniques should offer
ways of checking completeness and consistency of par-
tial functionalities, scenarios and levels of abstraction.

• Testing and Simulation: V&V is improved when
descriptions can be executed, animated, simulated and
tested.

• Verifiability and Correctness: verification of a model
against requirement properties. Verification approaches
are usually stronger than testing and simulation, but they

are also harder and more costly to perform.

Tool Support

The techniques should be supported by tools for the cap-
ture, documentation, maintenance, animation, testing and
verification of descriptions; with a special interest in
multi-platform, industrial-strength and quality tools,
where support and training are available.

Training

• Learning Curve: how quickly a new user can learn the
concepts, theories, techniques, and tools to make useful
application of the description technique.

• Tutorials and Documentation: good tutorials and docu-
mentation are necessary for a good training. Courses,
case studies, and other technology transfer activities are
important as well.

III. SELECTED FORMAL TECHNIQ UES
AND EVALUATION

In this section, a short overview of six specification tech-
niques (UCM, LOTOS, MSC, ASN.1, SDL, and TTCN)
particularly relevant to the documentation of telecommu-
nication standards is given. Each of the six selected tech-
niques is evaluated according to the criteria defined in
Section II.

Other well-known specification techniques are not dis-
cussed in this document. Although many of them have
reached good levels of recognition in different areas and
have been standardized in some cases, it seems that at
present they have limited potential for application in the
North American telecommunications environment.

Use Case Maps (UCMs)

UCM is a visual notation developed at Carleton University
(Ottawa) and utilized for capturing the requirements of
reactive systems (6)(7). Unlike all other languages dis-
cussed in this report, this notation is not an FDT, although
research has been done to map it into several formalisms
(2). UCMs describe scenarios in terms ofcausal relation-
ships betweenresponsibilities. They can have internal
activities as well as external ones. Usually, UCMs are
abstract and include multiple traces. Scenarios are
expressed above the level of messages exchanged between
components; hence they are not necessarily bound to a
specific structure. A causal relationship can be refined in
many ways in terms of exchanges of messages, depending
on the components structure, the available communication

3

channels and on the chosen protocols. UCMs suggest a
concept ofarchitecting behaviour instead of specifying
behaviour as in most FDTs. UCMs have a precise graphi-
cal grammar, but the semantics is not formally defined.

Usability: UCMs are based on a graphical and intuitive
notation which is highlyreadable. One characteristic of
UCMs is to allow to specify systems at different levels of
abstraction. For example, UCMs allow the designer to
work with the amount of detail available, hencelooseness
is high. In many real-life examples that have been speci-
fied by UCMs,scalability appears to be excellent, espe-
cially when using the stub/plug-in mechanism for
recursive definitions. Given its relative novelty and contin-
uous evolution, this technique is stillnotmature.

V&V: Because of the notation’s informality and looseness,
completeness and consistency checking, as well asverifi-
ability, become difficult issues and are hard to support.
V&V of UCMs is possible by the intermediary of other
techniques. For example, UCMs translate into LOTOS, so
V&V can be done by using LOTOS tools (1)(2).

Tool support: Only one prototype editing tool is available
for UCMs. Although further developments are planned,
current support is still weak.

Training: Because of UCM’s intuitive nature, thelearning
curve is excellent and the technique is easily accepted by
many practitioners. It is possible to use the notation at dif-
ferent levels of competence. A book (6) and some tutorials
are available (7).

Language Of Temporal Ordering Specifica-
tions (LOTOS)

LOTOS is an algebraic specification language and a FDT
standardized by ISO for the formal specification of open
distributed systems (10).It has formally defined syntax,
static semantics, and dynamic semantics. Using LOTOS,
the specifier describes a system by defining the temporal
relations along the interactions that constitute the system’s
externally observable behaviour.

A LOTOS specification consists of behavior expressions
and abstract data types. LOTOS behavior expressions con-
sist of actions and processes combined by means of a
number of operators. LOTOS is capable of describing and
prototyping communicating systems at many levels of
abstraction through the use ofprocesses, hiding, parallel
composition, multiway and nondeterministicsynchroniza-
tion. LOTOS is executable, and LOTOS models allow the
use of a number of validation and verification techniques
such as step-by-step execution (simulation), random

walks, testing, expansion, model checking, and goal-ori-
ented execution (4). Several tools can be utilized for the
automation of these techniques, and several development
cycles based on scenarios and stepwise refinement are
available (1)(4).

Usability: The specification style in LOTOS can adapt
itself to different expressive needs and LOTOS can be
used at many differentabstraction levels.

LOTOS specifications have been written for very complex
systems. There is a record of over ten years of using this
standardized language in many different application areas,
and a forthcoming Enhanced LOTOS is currently under
study (18). Thus, the language ismature.

LOTOS requires precision and each action sequences
should be specified exactly. Although several nondeter-
ministic alternatives can be specified,looseness is low.

V&V: LOTOS was designed for V&V and, by using it,
many types of design errors can be detected. Many incon-
sistency and incompleteness problems have to be resolved
at the time the LOTOS specification is written.

Testing and simulation are well supported within LOTOS
methodology, since LOTOS is an executable language.
Many techniques exist for verification and correctness
checking in LOTOS. One of the most successful is model
checking. There is plenty of experience in using them in
specifications of real-life systems.

An additional asset of LOTOS is thealgebraic transfor-
mations, leading to better implementations. Obtaining test
cases from specifications leads to more accurate testing
and LOTOS’ full formal semantics enables a theory of ver-
ification.

Tool support: A number of software tools have been
developed for supporting the V&V of LOTOS specifica-
tions, for example, LOLA (4), TOPO (4), ELUDO (devel-
oped at the University of Ottawa) and CADP, the Caesar/
Aldebaran Development Package. These tools are rou-
tinely used in research environments, so they are fairly
robust, although they are not industrially supported.

Training: LOTOS and its related methodology are very
well documented in many books, tutorials, and papers (4).
The language is not easy tolearn, although its order of dif-
ficulty does not exceed the one of many ‘unconventional’
programming languages.

Message Sequence Charts (MSCs)

MSC, standardized by ITU-T (16), is a graphical and tex-

4

tual language for the description and specification of the
interaction scenarios between system components. Its
main area of application is as an overview specification of
the communication behaviour of real-time systems, in par-
ticular telecommunication switching systems. MSCs may
be used for requirement specification, simulation and vali-
dation, test-case specification and documentation.

MSCs focus on the communication behaviour between
system components and their environment by means of
message exchange. The main focus of MSCs is on the
specification of special system properties or functions. For
example, a set of MSCs usually covers only a partial sys-
tem behaviour since each MSC represents one scenario.

MSCs complement SDL and can be used for the automatic
generation of test cases. The MSC language has graphical
(MSC/GR) and textual (MSC/PR) syntax forms. A recent
enhancement, High-level MSCs, includes control struc-
tures that can combine several MSCs.

Usability: Being simple and intuitive in nature, MSCs are
a very readable notation. Because of the fact that MSCs
basically provide disjoint scenarios,modularity, abstrac-
tion, scalability, maintenance and evolution, are all fairly
weak. This has been improved somewhat by the introduc-
tion of High-level MSCs. Although their formal definition
is recent, MSCs have been in wide use in various forms for
decades, hence they are a verymature notation.

V&V: MSCs present disjoint scenarios that are not execut-
able, they are poor forcompleteness and consistency
checking,testing, simulation, verifiabilityand correctness,
yet widely used to represent the results of V&V activities.

Tool support: Various MSC-based tools have been imple-
mented. Some of them are available commercially.

Training: MSCs are natural and easy to learn; thelearning
curve is excellent. Goodtutorials and documentation are
available.

Abstract Syntax Notation One (ASN.1)

ASN.1 is a language for describing structured information,
typically, information intended to be conveyed across
some interface or communication medium. In its essence,
it is an extension of the well-known Backus Normal Form.
ASN.1 is an ISO standard (13).

ASN.1 is widely used in the specification of communica-
tion protocols, cryptography, and electronic commerce, In
particular, it is employed in virtually all of the emerging
standards for the application layer of OSI (19).

Usability: Since ASN.1 is a notation for specifying pre-
cisely data structures and encodings, its place is at a very
low level of abstraction, andlooseness is very low. This is
a very well established andmature technique, often used
in combination with SDL(15), MSCs, and TTCN.

V&V: Because of the declarative nature of ASN.1, V&V
activities do not particularly apply to it. ASN.1 tools
include facilities for checking the syntax and consistency
of the expressions.

Tool support: ASN.1 is well supported.

Training: Although not difficult, ASN.1 needslearning.
There is at least one good book on ASN.1 (19).Tutorial
materials are included in the supporting tools.

Specification and Description Language
(SDL)

SDL (14) is another FDT designed for reactive, concur-
rent, real-time, distributed, and heterogeneous systems.
The basic SDL model consists of extended finite state
machines communicating by means of queues. Notions of
types and inheritance make SDL an object-oriented lan-
guage. In this context, SDL is suitable for international
standards in the telecommunication area, for systems in
development, and for verification and validation of the
system behaviour. In short, SDL is a language to support
human understanding of system descriptions, formal anal-
ysis and comparison of behaviors, in an implementation
independent way.

SDL has two concrete syntaxes: the graphic representation
called SDL/GR and the textual representation called SDL/
PR. The graphic form is more intuitive and displays rela-
tionships more clearly than the textual form.

Usability: Concerning modularity, SDL includes now
object-orientation, although some tools do not support it.
Like all comparable techniques, SDL demands full preci-
sion and, thus, does not supportlooseness. SDL is very
mature, since it has been in industrial use and regularly
enhanced since the early 70s.

V&V: Completeness and consistency checks, testing and
simulation, verifiability and correctness are all very well
supported by the SDL tools. There is very considerable
experience on using these V&V techniques with SDL.

Tool support: Well-known SDL toolsets include Telel-
ogic’s SDT and Verilog’s (Object) Geode. Both offer inte-
grated tools for editing, analyzing, and compiling SDL
specifications and for report generation. Most tools also
include facilities for editing, managing and generating

5

related descriptions in MSC, ASN.1, and TTCN. Exten-
sive support for syntactical and semantic analysis, simula-
tion and formal verification (usually based on state space
exploration) are also provided for most of these tools. In
addition, most of them generate code that will work in dif-
ferent target environments without modification. The code
generation together with the high-level nature of SDL
make development using SDL very cost efficient in all sit-
uations where the communicating, extended finite state
machine paradigm fits the application.

Training: To learn and use SDL effectively, books, papers,
technical reports, and a number of courses as well as com-
mercial toolsets are available (5).

Tree and Tabular Combined Notation
(TTCN)

The third part of ISO/IEC 9646 (11) has defined a test
notation, called TTCN (12), for use in the specification of
OSI abstract conformance test suites. In short, in con-
structing a standardized abstract test suite, a test notation
is used to describe abstract test cases. Thus, the notation is
independent of test methods. It is informal but with clearly
defined semantics.

Two forms of the notation are provided: a human-readable
tabular form, called TTCN.GR, for use in OSI conform-
ance test suite standards, and a machine processable form,
called TTCN.MP, for use in representing TTCN in a
canonical form within computer systems or when transfer-
ring TTCN test cases between computer systems.

Usability: TTCN is a very clear andreadable notation,
mainly because of its graphical representation, and it also
includes goodmodularity features for creating complex
test suites from elementary test cases. This technique has
been used for real systems, hence it is quitescalable.
Since TTCN has been designed to describe precise test
scenarios, it isnot loose. TTCN is a very well-established
and widely used technique, hence it is verymature.

Tool support: TTCN is supported by a number of excel-
lent tools.

Training: TTCN is a natural technique to use for telecom-
munications specialists. Thus, the learning curve is very
good and tutorial materials exist (17).

IV. CONCLUSIONS

Summary of the Evaluation

Table1 summarizes the strengths and weaknesses of the

specification techniques discussed in the previous section,
according to the evaluation criteria of Section II.

Legend: +:Strength; 0:Adequate; –:Weakness; NA: Not Applicable

Combined Use of Formal Methods

UCM is an intuitive notation. Its low learning curve, high
level of abstraction and readability make it especially
appropriate for stage 1 of the standardization process.
UCMs offer an excellent medium for the initial exposures
and discussions of features, services and functionalities.
They can be used loosely and at several levels of detail. As
such, they efficiently support the development and refine-
ment process, while facilitating communication among
teams.

MSCs are used to define stage 2 message sequences
between system components. Since they can be generated
from UCMs, and can guide the prototyping of LOTOS,
SDL and TTCN specifications, they provide a transition
between the different stages.

The purpose of ASN.1 is to accurately define data struc-
tures. Its use becomes beneficial as early as the need for
detailed specification of data values, parameters and
encodings emerges.

LOTOS’ capability of specifying at high levels of abstrac-
tion brings it into play early in stage 2. The generation of
LOTOS specifications can be guided by UCMs. LOTOS
being also capable of specifying details, its use can carry
on to the final stage. MSCs can be used to guide the gener-
ation of LOTOS specifications, as well as their validation
and verification.

Table 1:Evaluation of the Selected Techniques

Technique /
Criteria U

C
M

LO
T

O
S

M
S

C

A
S

N
.1

S
D

L

T
T

C
N

Readability + 0 + 0 0 +

Modularity 0 0 – 0 + +

Abstraction + + – – 0 0

Scalability + + – 0 0 +

Maint. & Ev ol. 0 0 – 0 0 0

Looseness + – 0 – – –

Maturity – + + + + +

Comp. & Consis. – + – 0 + 0

Testing & Simul. – + – NA + +

Verif . & Corr ect. – + – NA + +

Tool Support – 0 + + + +

Learning Curve + – + 0 0 +

Tutorials & Doc. 0 0 + + + +

6

SDL requires precise identification of each state and
knowledge of the underlying architecture. It is more
implementation-oriented than LOTOS and hence comes
into play at a later time, at the end of stage 2 and into stage
3. A SDL specification can be designed in conformance to
UCMs, MSCs, ASN.1 and LOTOS specifications.

TTCN, being a test notation, comes into play when the
design of the system is finalized. Tests cases for imple-
mentations can be derived from UCMs, MSCs, LOTOS
and SDL specifications.

The top part of Table2 presents the relevance of each eval-
uation criterion in the three stages of standard develop-
ment. In general, most criteria are relevant for the three
stages and this is especially true for scalability, maturity,
tool support, learning curve, and documentation. Modular-
ity, maintenance & evolution and V&V criteria are consid-
ered to be merely useful for stage 1, where only a general
description of a service is required. Abstraction and loose-
ness become less necessary for stage 2, and perhaps even
less for stage 3 where detail and precision are required.
Readability in stage 3 is less of an issue as readable but
less detailed descriptions are available for stages 1 and 2.

Since none of the techniques discussed can cover all stages
effectively, this table can help weighting their overall rele-
vance in terms of stages. The bottom part of Table2 pre-
sents the perceived relevance of each specification
technique in each stage.

Suggestions on the Standard Lifecycle

The top part of Figure1 details our conclusions on the use
of specification techniques in the three stages of the stan-
dard development process.

These techniques should be introduced in phases in the
standard development process. All phases shall be defined
and completed prior to presentation to potential users.

UCMs are not as mature as the other techniques, and ade-
quate tool support will not be available until the end of this
summer. Nonetheless, they are the most likely candidate
for a first contact with new specification techniques. Their
graphical and loose nature provides the best chance of
acceptance in a large group of people with heterogeneous
background.

MSCs are already well introduced to the target commu-
nity. The next step might be to introduce SDL or LOTOS
concepts at the appropriate stages and in the appropriate
roles. For example, one could first experiment with the use
of UCMs, LOTOS, and MSCs. A LOTOS specification
can be generated and tested via UCMs, possibly refined as
MSCs. Then, more illustrative and automatically validated
message-oriented scenarios (MSCs) can be generated from
the specification.

Although each technique has a role, not everyone would
need to learn them all. As in most engineering areas, vari-
ous specialized teams can come into play. Figure1 pre-
sents such a scenario where different teams on the operator
side and on the vendor side are involved in the three devel-
opment stages.Legend: +:Necessary; 0:Useful; –:Not Needed; X:Relevant

Table 2:Relevance of Criteria and Techniques

Stages 1 2 3

E
va

lu
at

io
n

C
ri

te
ri

a

Readability + + 0

Modularity 0 + +

Abstraction + 0 –

Scalability + + +

Maintenance&Evolution 0 + +

Looseness + 0 –

Maturity + + +

Completeness&Consistency 0 + +

Testing&Simulation 0 + +

Verification&Corr ectness 0 + +

Tool Support + + +

Learning Curve + + +

Tutorials&Documentation + + +

Te
ch

ni
qu

es

UCM X X

LOTOS X X

MSC X

ASN.1 X X

SDL X X

TTCN X

Stage 1
Requrements
& Services

Stage 2
Message

Sequence Info.

Stage 3
Protocols

& Procedures

UCM
MSC

LOTOS
ASN.1

SDL
TTCN

Te
ch

ni
qu

es

Marketing &
Customers

Engineers

System Engineers
Designers

Testers

O
pe

ra
to

r
Ve

nd
or

Figure 1:Relevant Methods and Teams Involved for the
Three Drafting Stages.

7

The great complexity of distributed systems makes it
advisable to analyze them with several complementary
techniques. It is unfortunate that most teams specialize in a
technique only. Much can be learned by competitive and
complementary use of the various techniques, and this
process deserves further study and experimentation.

Acknowledgment. The authors are grateful to
Nortel, CITO and NSERC for their support of this
research project. John Visser and Jim Hodges of Nortel
provided many valuable insights in the nature and con-
straints of the standardization process.

REFERENCES

(1) Amyot, D., Hart, N., Logrippo, L., and Forhan, P.,
“Formal Specification and Validation using a Sce-
nario-Based Approach: The GPRS Group-Call Exam-
ple”. In: ObjecTime Workshop on Research in OO
Real-Time Modeling, Ottawa, January 1998.
http://www.csi.uottawa.ca/~damyot/wrroom98/
wrroom98.pdf

(2) Amyot, D., Buhr, R.J.A., Gray, T., and Logrippo, L.,
“Use Case Maps for the Capture and Validation of
Distributed Systems Requirements”. In:Fourth Inter-
national Symposium on Requirements Engineering,
Limerick, Ireland, June 1999.

(3) Ardis, M.A., Chaves, J.A., Jagadeesan, L.J., Mataga,
P., Puchol, C., Staskauskas, M.G., and Olnhausen,
J.V., “A Framework for Evaluating Specification
Methods for Reactive Systems — Experience
Report”. In: IEEE Transactions on Software Engi-
neering, 22 (6), 1996, 378-389

(4) Bolognesi, T., van de Lagemaat, J., and Vissers, C.,
LOTOSphere: Software Development withLOTOS. Klu-
wer Academic Publishers, The Netherlands, 1995.

(5) Braek, R., “SDL Basics”. In:Computer Networks and
ISDN Systems, 28, 1996, 1585-1602.

(6) Buhr, R.J.A. and Casselman, R.S.,Use Case Maps for
Object-Oriented Systems, Prentice-Hall, USA, 1995.
http://www.UseCaseMaps.org/UseCaseMaps/pub/
UCM_book95.pdf

(7) Buhr, R.J.A. (1997) “Use Case Maps as Architectural
Entities for Complex Systems”. In:Transactions on
Software Engineering, Special Issue on Scenario
Management, 24 (12), December 1998.
http://www.UseCaseMaps.org/UseCaseMaps/pub/
tse98final.pdf

(8) Courtiat, J.-P., Dembinski, P., Holzmann, G.,
Logrippo, L., Rudin, H., and Zave, P., “Formal meth-
ods after 15 years: Status and trends — A paper based
on contributions of the panelists at the FORmal Tech-
nique ‘95 Conference, Montreal, October 1995”. In:
Computer Networks and ISDN Systems, 28, 1996,
1845-1855.

(9) Craigen, D., Gerhart, S., and Ralston, T., Industrial
applications of formal methods to model, design, and
analyze computer systems: an international survey.
Noyes Data Corporation, USA, 1994.

(10)ISO, Information Processing Systems, Open Systems
Interconnection, “LOTOS — A Formal Description
Technique Based on the Temporal Ordering of Obser-
vational Behaviour”, IS 8807, Geneva, 1989.

(11)ISO/EIC, Information Technology, Open Systems
Interconnection, “Conformance Testing Methodol-
ogy and Framework (CTMF)”, IS 9646, Geneva,
1991. Also: CCITT X.290-X.294.

(12)ISO/EIC, “OSI CTMF Part 3: The Tree and Tabular
Combined Notation”, IS 9646-3: 1992, Geneva.

(13)ITU, “Recommendation X.680-683, Abstract Syntax
Notation One (ASN.1)”. Geneva, 1994.

(14)ITU, “Recommendation Z.100, Specification and
Description Language (SDL)”. Geneva, 1994.

(15)ITU, “Recommendation Z.105, SDL Combined with
ASN.1 (SDL/ASN.1)”. Geneva, 1995.

(16)ITU, “Recommendation Z. 120: Message Sequence
Chart (MSC)”. Geneva, 1996.

(17)Probert, R.L. and Monkewich, O., “TTCN: the inter-
national notation for specifying tests of communica-
tions systems”. In:Computer Networks and ISDN
Systems, 23 (05), 1992, 417-438.

(18)Quemada, J.,Working Draft on Enhancements to
LOTOS. ISO/IEC JTC1/SC21/WG1, “Enhancement to
LOTOS” (1.21.20.2.3), January 1997.

(19)Steedman, D,Abstract Syntax Notation One ASN.1:
The Tutorial & Reference. Technology Appraisals,
Twickenham, UK, 1990.

(20)Weidenhaupt, K., Pohl, K., Jarke, Matthias, and
Haumer, P., “Scenarios in System Development: Cur-
rent Practice”. In:IEEE Software, March/April 1998,
34-45.

	I. Standardization Challenges
	Development of Formal Techniques

	II. Evaluation Criteria
	Usability
	Validation and Verification (V&V)
	Tool Support
	Training

	III. Selected Formal Techniques AND EVALUATION
	Use Case Maps (UCMs)
	Language Of Temporal Ordering Specifications (LOTO...
	Message Sequence Charts (MSCs)
	Abstract Syntax Notation One (ASN.1)
	Specification and Description Language (SDL)
	Tree and Tabular Combined Notation (TTCN)

	IV. Conclusions
	Summary of the Evaluation
	Combined Use of Formal Methods
	Suggestions on the Standard Lifecycle
	Acknowledgment. The authors are grateful to Nortel...

	References

