
 1

Specifying Distr ibuted Algor ithms in LOTOS

Mazen Haj-Hussein and Luigi Logrippo
Protocols and Software Engineer ing Research Group
University of Ottawa, Computer  Science Department
Ottawa, Ont., Canada K1N 9B4
E-mail: lmlsl@acadvm1.uottawa.ca

ABSTRACT. LOTOS is a formal description technique that was conceived for the specification 
of the services and protocols of the Open Systems Interconnection (OSI). It has, however, a much 
more general scope of application. In this paper, we present a framework for the specification of a 
wide class of distributed algorithms in LOTOS. In particular, we provide a general method for 
specifying network topologies.  We illustrate our method with two examples: an election algorithm 
in a distributed network, and a single-initiator spanning tree construction algorithm. Finally, we 
show how such specifications can be validated by using a “random walk” technique, with the help 
of an interpreter.

1. INTRODUCTION

A quick scan of papers written in the area of distributed algorithms will show that no uniform pre-
sentation of such algorithms has been adopted in the literature. A number of formalisms, quasi-for-
malisms, and non-formalisms are used by different authors. Among the most common are: 
common English, mathematical notations, programming language notations, and variants of CSP. 
In some cases these notations are adequate. For complex algorithms, however, it might not be com-
pletely clear exactly how the algorithm functions. Lack of precision and formalism can be supple-
mented to some extent by redundancy, at the expense of somewhat wordy descriptions. In spite of 
this redundancy, some ambiguities may persist. In any case, if it is desired to have a running model 
of the algorithm, it is necessary to program it in some programming language.

LOTOS is a formal description technique that was conceived for the specification of the services 
and protocols of the Open Systems Interconnection (OSI)[ISO]. It is an ISO standard, IS 8807 
[ISO1]. Soon after its introduction, other uses were found for LOTOS: among others, the specifi-
cation of telephone systems [FLS]. In this paper, we show how LOTOS can be used for the speci-
fication of a large class of distributed algorithms. Because LOTOS is executable (at least under 
certain conditions), execution and testing of the algorithm are possible. Because LOTOS has a for-
mal basis, a framework for verification also exists. 

In order to prove our point, in this paper we show how to specify in LOTOS two classical distrib-
uted algorithms: electing a leader in a unidirectional ring where any number of nodes may inde-
pendently start the algorithm, and constructing a single initiator spanning tree in a strongly 
connected network with bidirectional (full duplex) links. As we illustrate these examples, we also 
develop some principles showing how other algorithms of the same type can be specified in 
LOTOS. We show how to specify the network (i.e. the nodes and the links) and the algorithm, i.e. 
the whole environment. We conclude by presenting a technique by which an algorithm specified 



 2

in LOTOS can be validated by using an interpreter. 

This paper intends to have a tutorial component. Researchers in the area of distributed algorithms 
should be able to specify their algorithms in LOTOS after studying a general LOTOS tutorial, and 
this paper.

2. LOTOS AND LOTOS TOOLS.

We do not intend to provide a tutorial on the language LOTOS in this paper. At least two tutorials 
have been or are being published in journals [BBr][LFH], and several other tutorials have enjoyed 
some degree of distribution. A tutorial is also included in [ISO1]. Strictly speaking, this paper is 
directed towards people who already have acquired some knowledge of the language. However, 
since the concepts of the language are in part well-known, we provide a brief introduction below 
to allow readers who have previously studied similar languages to understand the main points of 
this paper.

LOTOS, the Language of Temporal Ordering Specifications, is one of the most precisely defined 
languages in use today. Its static semantics are defined by an attributed grammar, while its dynamic 
semantics are based on algebraic concepts. LOTOS is made up of two components: a data type 
component, which is based on the algebraic specification language ACT ONE [EM], and a control 
component, which is based on a mixture of Milner’s CCS [Mil] and Hoare’s CSP [Hoa]. Most of 
the theoretical framework of the control component, and especially the concept of internal action 
are based on Milner’s work. In particular, non-determinism is modelled by internal actions 
(denoted by the letter i) as in [Mil], rather than by adding special operators as in [Hoa]. The rendez-
vous semantics follow Hoare’s “multi-way synchronization” concept, by which all processes that 
share a gate which is in a common synchronization set must participate in synchronization on that 
gate. Actions, however, can be transformed into internal actions by hiding them. In this way, fur-
ther participation in the action of processes outside the hide is prevented. 

LOTOS dynamic semantics for the control component are expressed in operational terms by infer-
ence rules as in [Mil], and the operators were chosen in such a way that they enjoy a rich set of 
algebraic properties, similar to those of [Mil]. Therefore, the language is at the same time “execut-
able” (at least to a certain extent, by virtue of the operational semantics), and amenable to proof 
techniques (by virtue of the algebraic properties).

The language is purely recursive in nature. Side effects are only those that are produced by process 
synchronization. It supports process parameterization, for both value and gate parameters. The 
basic element of the control part of a LOTOS specification is the action offer, where a process 
declares itself ready to synchronize with other processes and establish one or more values. For 
example, g!3 states that the process is offering to synchronize on the specific value 3 with other 
processes, on gate g. g?x:integer states instead that the process is ready to synchronize on any inte-
ger value with other processes, on gate g. Thus, two processes containing these two complementary 
action offers may be able to synchronize, and if they do, the second process gets the value 3 for the 
variable x. “Multiple” and “bidirectional” action offers are also possible, such as g !3 ?x:integer, 
where the process declares itself ready to simultaneously synchronize on 3 and any integer, still on 
gate g. Such a process would be able to synchronize with another process offering at the same time 



 3

actions such as g !3 !4 or g ?x:integer !4 or even g ?y:integer ?z:integer (in the latter case, the value 
for x and z respectively in the first and second process would have to be determined by another 
process participating in the same synchronization; this process could be the environment). Selec-
tion predicates can establish conditions for the executability of an action. For example, g ?x:inte-
ger [x gt 3] means that the process is ready to accept only an x greater than 3. Similarly, an action 
can be subject to a guard, e.g. [y gt 4] -> g!y means that the guarded action is offered only if y is 
greater than 4. Action offers can be combined by the use of several operators. The most important 
are: ; (prefixing a process or an action by another action), [] (choice), |[A]| (parallel execution with 
synchronization on gates in set A), || (parallel execution with synchronization on all gates, or 
dependent parallel composition), ||| (parallel execution in interleave, or independent parallel com-
position), hide (hiding of gates), >> (sequential composition of processes), and [> (disable, mod-
elling an interruption).

The data part (ACT ONE) supports parameterized types, type renaming, and conditional rules. The 
reader will note that this part of the language does not enjoy an elegant notation, nor does it have 
a sufficient number of useful shorthands or built-in types. This fact is currently being addressed, 
and enhancements to the standard are being planned. 

A “graphic” version of the language is in advanced stage of standardization within ISO and CCITT.

Because of the fact that LOTOS is (partially) executable, a specification is effectively a “fast pro-
totype” of the entity specified, thus it is possible to exercise a specification of a complex system at 
the design stage. The two LOTOS interpreters in existence today are described in [LOBF] 
[GHL][VVD]. Other tools existing in various prototypical form are: symbolic expanders [QP] and 
translators into C [MM]. In this paper, we insist on an executable LOTOS style, to take full advan-
tage of our interpreter, which is the tool discussed in [GHL].

It is possible to carry out in LOTOS proofs of correctness such as the ones found in [Mil] [Hoa], 
and the proof methods are similar to those found in these references. For the data part, the proof 
techniques developed in the area of abstract data types [EM] are applicable. Of course, the chal-
lenging aspect is to be able to prove properties of systems of realistic size. To this end, computer-
assisted verification tools are being envisaged. Some such tools appropriate for small specifica-
tions are documented in [BC] [GS].

3. SPECIFICATION OF NETWORK TOPOLOGY

3.1 Conceptual Model and Assumptions

The network model that we have used in our examples is a point-to-point model where the under-
lying communication network is composed solely of directed communication links.

A distributed system is constructed from a set of named nodes that are interconnected by a set of 
unidirectional links. Formally, the network is viewed as a strongly-connected digraph G=(N,L ) 
where

N is the set of nodes, each representing an entity in the distributed system, and



 4

L  is the set of directed edges or links, each representing a directed communication channel between 
two nodes.
 
Nodes are the active elements in our distributed system model. A node is a concurrent entity that 
communicates with other nodes by message passing. The set of nodes in the system implements 
the distributed algorithm. Note that although the term process is often used as a synonym for node 
in the literature on distributed algorithms, we reserve it to designate LOTOS processes. As we shall 
soon see, there are processes associated with nodes, there are others associated with links, etc. The 
links are represented by pairs (ni,nj) where ni is the source node and nj is the destination node (Fig. 
1). If (ni,nj) ∈ L, nj is said to be an out-neighbour of ni, and ni is said to be an in-neighbour of nj. 
If one of (ni,nj) or (nj,ni) is a link, ni and nj are said to be neighbours. 
 

The following assumptions form the basis of the model that we have used in our examples.

• A1 [Local Or ientation] : A node can distinguish between its (in- and out-) neighbours, and can 
detect from which in-neighbours a received message was sent. But a node has no knowledge of the 
other nodes’ links (i.e. no global knowledge about the network ).

• A2 [Lossless Communication] : A message sent is eventually received. Note that this assump-
tion does not imply the existence of any bound on the transmission delay; it only states that a mes-
sage will arrive after finite delay without corruption.

• A3 [One-Place L inks] : All links between nodes are one-slot queues; that is to say, a node cannot 
send a message through a link where there is still a message to be received.

• A4 [Local non-shared memory] : Each node has a local non-shared memory, which is assumed 
to be of unbounded capacity.

• A5 [Unique Identifiers] : Each node ni ∈N has a unique key key(ni) and a unique node identifier 
name(ni).

For simplicity, we do not include link or node failure in our examples. Also we consider only asyn-
chronous systems, i.e. where nodes communicate by links and there is no central clock.

 ni nj

link

recvsend

Figure 1



 5

3.2 Specification of Network Configuration in the Data Part

The network configuration is defined in the data part of the LOTOS specification as a sort called 
Network. In this section we describe all the sorts and operations that are needed to specify arbitrary 
networks.

Name: Is the sort that distinguishes node identifiers (e.g. n1, n2, etc.).

Key: Is the sort for node keys.These are integers, represented in a notation defined by us in the data 
part in order to simplify the standard LOTOS notation for integers. For example: pos(3,2,4,2) rep-
resents +3242, while neg(0,1,5,4) represents -154. 

LinkL ist: The sort of a list of elements of sort Name. It is used to identify the out-neighbours of a 
node. Values of this sort have the form:

NIL2 for an empty list
Name ++ LinkList for a nonempty list

Example: n1 ++ (n2 ++ (n3 ++ NIL2))

Node: The sort for the local knowledge of the nodes. It contains the node name, node key, and out-
neighbours. Values of this sort have the form:

node(Name, LinkList, Key)

Example: node(n1, n2 ++ (n3 ++ (n4 ++ NIL2)), pos(3,2,4,2))

means that n1 has n2, n3, and n4 as out-neighbours and has the key 3242. 

Network: Is the sort for a network configuration, that is a list of the nodes in the network with their 
local knowledge (i.e. list of elements of sort Node). Values of this sort have the form:

 NIL3 for an empty network
 Node ++ Network for a nonempty network

For example the network configuration of figure 2 can be specified as:

 node(n1, n2 ++ NIL2, pos(2,0,5)) ++
(node(n2, n3 ++ NIL2, pos(1,0,0,5)) ++
(node(n3, n1 ++ NIL2, neg(5)) ++
NIL3))

and the network configuration of figure 3 can be specified as:

 node(n1, n2 ++ (n3 ++ NIL2), pos(6) ) ++



 6

(node(n2, n1 ++ (n3 ++ (n4 ++ NIL2)), pos(5) ) ++
(node(n3, n1 ++ (n2 ++ (n4 ++ NIL2)), pos(8) ) ++
(node(n4, n2 ++ (n3 ++ NIL2), pos(2) ) ++
 NIL3 ) ) )

 Several common list (set) operations have also been defined, to be used on LinkList and Network 
sorts, such as: 

head(List) returns the first element in List
tail(List) returns the tail of List (excluding the first element)
is_null(List) returns true if List is empty (i.e. if List equal NIL)
List \ Elt removes the first occurrence of Elt from List

n1

n2

key(n1) = 205

key(n2) = 1005

Figure 2

n3 key(n3) = -5

n1

n2
n3

n4

key(n1) = 6

key(n3) = 8

key(n4) = 2

key(n2) = 5

Figure 3



 7

List v List gives the union of two lists
List ^ List gives the intersection of two lists
List + List gives the concatenation of two lists

Other important operators are:

name(Node): returns the name identifier of Node
key(Node): returns the key of Node
out(Node): returns the out-neighbours of Node

Examples:

name(node(n2, n1 ++ (n3 ++ (n4 ++ NIL2)), pos(5)) ) = n2
key(node(n2, n1 ++ (n3 ++ (n4 ++ NIL2)), pos(5)) ) = pos(5)
out(node(n2, n1 ++ (n3 ++ (n4 ++ NIL2)), pos(5))) ) = n1 ++ (n3 ++ (n4 ++ NIL2))

3.3 Network Composition in LOTOS

A node can send a message to an out-neighbour node through the link between them by synchro-
nizing on gate send. Similarly a node can receive a message from an in-neighbour through the link 
between them by synchronizing on gate recv.

We assume that a node identifier ni of sort Name has been defined in the data part of the specifica-
tion for each node in the distributed system. The local knowledge of ni will be passed as a param-
eter when a process is instantiated to represent the associated node. As an example, in the network 
of Figure 2, ni can send a message M to an out-neighbour node nj using the following LOTOS 
action:

send !ni !nj !M

and nj can receive message M from the in-neighbour ni using the action:

recv !ni !nj ?Msg: Message

in other words, both sending and receiving nodes must agree on the link on which they communi-
cate, which is identified by the nodes’ names. 

Here are some interesting examples of use of these actions:

send !ni ?n:Name !M [is_member(n, out(Ninfoi)\nj)]

where Ninfoi is a variable of sort Node containing the local knowledge of node ni. Node ni sends 
the message M to any out-neighbour node, except nj (the selection predicate in square brackets 
establishes a condition on the n that can be accepted). 



 8

recv ?n:Name !nj ?Msg:Message
 
Node nj is ready to receive any message from any in-neighbour node

recv ?n:Name !nj !M

Node nj is ready to synchronize on a specific message M with any in-neighbour node.

If a message needs to be broadcast to a set of out-neighbours, the following LOTOS process can 
be used:

process broadcast[send](n:Name, Msg:Message, Neighbours:LinkList): exit:=
[not(is_null(Neighbours))] ->
 (
 send !n !head(Neighbours) !Msg; exit

|||
 broadcast[send](n, Msg, tail(Neighbours))

 )
[]
[is_null(Neighbours)] -> exit

endproc

The following example enables Node 3 to broadcast the message M to all its out-neighbours, then 
behave as B:

broadcast[send](n3, M, out(Ninfo3)) >> B

Figure1 can be described in LOTOS as:

((Nd[send, recv](Ninfoi)
|||

Nd[send, recv](Ninfoj))
|| 

link[send,recv](name(Ninfoi), name(Ninfoj))

Where Nd[send,recv](Ninfok) is the behaviour of nk, and process link has the following form:

process link[send,recv](ni, nj: Name) : noexit
send !ni !nj ?Mes:Message;
recv !ni !nj !Mes;
link[send,recv]

endproc

link will transfer every message sent by ni to nj. As mentioned above, a link cannot accept any mes-
sages from its in-node if there is a message that was not yet received by the out-node.



 9

To specify composition of nodes of a network with all the necessary links, we can use the following 
LOTOS process, showing the set of nodes in dependent composition with the set of links:

choice Nt:Network []
(

Nodes[send,recv](Nt)
||

all_links[send,recv](Nt)
)

where:

Nt is the network configuration, Nodes[send,recv](Nt) is the interleaved compositions of all nodes 
in Nt, and all_links[send,recv](Nt) is the interleaved compositions of all possible links specified in 
Nt. The choice statement chooses a network configuration among all possible ones.

To specify the composition of the nodes and links in the network, we proceed as follows. First of 
all, we use recursion to create an instance of process Nd for each node.

process Nodes[send,recv](Nt: Network): noexit:=
[not(is_null(Nt))] ->
(

Nd[send,recv] (head(Nt))
||| 
Nodes[send,recv] (tail(Nt))

)
endproc

Next, we must create an instance of process link for each link. This is done in two steps. First, we 
iterate over all nodes.

process all_links[send,recv](Nt: Network): noexit :=
[not(is_null(Nt)) -> 
(node_links [send,recv] (name(head(Nt)), out(head(Nt)))
|||
 all_links[send,recv](tail(Nt))
)

endproc

(note that this intermediate process could be avoided at the price of some extra functionality in the 
data part: this is left as an exercise for the reader). Then we iterate over each node to create 
instances of process link for each outgoing link of the node



 10

process node_links [send,recv](Nname:Name, Neighbours:LinkList): noexit:=
[not(is_null(neighbours))] ->

(
link [send,recv](Nname,head(Neighbours))
|||
node_links [send,recv](Nname,tail(Neighbours))

)
endproc 

We have already seen process link:

process link[send,recv](From,To:Name): noexit:=
send !From !To ?Msg:Message;
recv !From !To !Msg;
link[send,recv](From,To)

endproc

Each node in the network executes the same algorithm:

process Nd[send,recv](Ninfo:Node): exit(Result):=
Algorithm[send,recv](Ninfo, <List of Local non-shared Variables>)

endproc

The initial values of local non-shared variables for a node have to be passed as process parameters 
<List of Local non-shared Variables> , initially when executing the Algorithm process, or when 
another state process is called.

One of our assumptions is that the network is strongly connected. We can ensure that this is true 
by using the following construct:

choice Nt:Network []
[is_strongly_connected(Nt)] ->
(

Nodes[send,recv](Nt)
||
all_links[send,recv](Nt)
)

This behavior expression selects a strongly connected network and then sets up a process structure 
for it.The boolean operation is_strongly_connected should be defined in the data part of the spec-
ification.

4. EXAMPLE: ELECTION ALGORITHM IN UNIDIRECTIONAL RING

Sections 3.2 and 3.3 show how a network configuration can be specified in LOTOS. The specifi-



 11

cation method is general and applies to any algorithm based on a model similar to the one described 
in Section 3.1. The examples given in this section and in the next use this specification method.

One of the basic problems in distributed computing is the election of a leader: initially, all nodes 
are in the same state (say, available); an algorithm is wanted which, once executed, will move 
exactly one node in a specified state (say, leader) and all others in a different one (say, processor). 
Any number of nodes may independently start the process of electing a leader. Note that there is 
no a priori restriction on which node should become the leader. Since every node has a unique key, 
thus the general idea adopted for such algorithms is that the node with the highest key value 
become the leader.

We now consider the problem of electing a leader in a unidirectional ring where every node in the 
network has exactly one out-neighbour and one in-neighbour in the form of a ring. We specify in 
LOTOS the version of the algorithm presented in [CR] . Other election algorithms can be found in 
[AG][GM][KRS].

4.1 Informal Descr iption of the Algor ithm

The possible states of a node while executing the algorithm are: initiator, available, candidate, 
processor, or leader.

We want to elect a leader, which must be the node with the highest key value. An initiator sends 
its key to its out-neighbour and becomes a candidate for leadership. Any available node wakes up 
upon receiving a message (a key value, say k) from its in-neighbour. If k is less than its own key 
then the node becomes a candidate and sends its own key forward. If k is greater than its own key 
then obviously the node is not a good candidate for leadership. In this case the node becomes a pro-
cessor for the candidate with the key k and passes forward the key k. 

A processor P for a candidate with key m, when it receives a key k from its in-neighbour, it com-
pares k with m. If k is greater than m then P passes forward k and becomes a processor for the can-
didate with the key k. If k is less than m then it is ignored. If k is equal to m then P knows that the 
candidate with the key m (or k) is the leader and terminates the execution.

A candidate C, with a key n, when it receives a key k from its in-neighbour also compares it with 
n. If k is greater than n then C passes forward k and becomes a processor for the candidate with key 
k. If k is less than n then it is ignored. If k is equal to n then C has the largest key in the network, 
so C passes forward n to its out-neighbour and becomes a leader.

A leader has to wait until it receives its key back, that is, it terminates after all nodes have termi-
nated their execution.

4.2 Formal Descr iption of the Algor ithm

The formal description of the algorithm in LOTOS is given below. It must be included within the 
description of the system configuration, given in Section 3. In this example, every state in the algo-



 12

rithm is represented as a LOTOS process.

(* Initially a node can be an initiator or available. A node can become an initiator by executing an 
internal decision, represented by the internal action i *)

process Algorithm[send,recv](N:Node):noexit:=
i; initiator[send,recv](N)

 []
available[send,recv](N) 

endproc

(* If initiator then send own key and become a candidate *)

process initiator[send,recv](N:Node):noexit:=
send !name(N) !head(out(N)) !key(N);
candidate[send,recv](N)

endproc

(* Available: receive key and, if smaller than own key, propagate own key and become candidate,
else propagate received key and become processor *)

process available[send,recv](N:Node): noexit:=
recv ?Right_node:Name !name(N) ?Key_value:Key;
(
[key(N) > Key_value] ->

send !name(N) !head(out(N)) !key(N);
candidate[send,recv](N)

[]
[key(N) < Key_value] ->

 send !name(N) !head(out(N)) !Key_value;
 processor[send,recv](N,Key_value)

)
endproc

(* Processor: accept key and, if greater than current key, propagate received key and remain pro-
cessor; if smaller than current key, do nothing; if equal to current key, propagate received key and 
stop *)



 13

process processor[send,recv](N:Node, Current_Key:Key): noexit:=
recv ?Right_node:Name !name(N) ?Key_value:Key;
(
[Key_value > Current_Key] ->

send !name(N) !head(out(N)) !Key_value;
processor[send,recv](N,Key_value)

[]
[Key_value < Current_Key] ->

processor[send,recv](N,Current_Key)
[]
[Key_value == Current_Key] ->

send !name(N) !head(out(N)) !Key_value;
stop

)
endproc

(* Candidate: receive key and, if greater than own key, propagate received key and become pro-
cessor; if smaller than own key, do nothing; if equal to own key, propagate received key and 
become leader *).

process candidate[send,recv](N:Node): noexit :=
recv ?Left_proc:Name !name(N) ?Key_value:Key;
(
[Key_value > key(N)] ->

send !name(N) !head(out(N)) !Key_value;
processor[send,recv](N,Key_value)

[]
[Key_value < key(N)] ->

candidate[send,recv](N)
[]
[Key_value == key(N)] ->

send !name(N) !head(out(N)) !Key_value;
leader[recv](N,Key_value)

)
endproc

(* Leader: receive expected key and stop *)

process leader[recv](N:Node, Key_value:Key) : noexit:=
recv ?Right_node:Name !name(N) !Key_value;
stop

endproc

5. EXAMPLE: SINGLE INITIATOR SPANNING TREE CONSTRUCTION

Consider the problem of constructing a spanning tree T of a graph G. In a distributed environment, 



 14

the fact that T has been constructed means that every node knows which of its neighbours in G are 
also neighbours in T.

The following algorithm has a single initiator and works for any connected network with bidirec-
tional full-duplex links. This single initiator can be the elected leader from executing an election 
algorithm. Other, more sophisticated, algorithms can be found in [GHS][Hum][Se].

5.1 Informal Descr iption of the Algor ithm

This algorithm has the following main states: initiator (only one node can be in this state), avail-
able, parent, shutting_down, and terminated.

Initially all nodes are in available state, except the initiator. The initiator will be the root of the 
resulting spanning tree, initially it broadcasts a request for all its neighbours to be its children 
(are_you_my_child), and becomes a parent.

An available node awakens upon receiving a request for becoming a child. It replies with an accep-
tance (yes), it requests to the remaining neighbours to be its children (are_you_my_child), and 
becomes a parent.

A parent node will reply no to all requests of becoming a child. It waits for a response from all the 
neighbours. Its children will be the nodes that reply yes to its request. It then becomes a 
shutting_down node, where it waits for all its children to terminate their construction of their sub-
spanning trees. When a child has completed the construction of its own tree, it sends a message to 
its parent that it is terminating. That is to say, all nodes terminate the algorithm before their parent 
and the initiator terminates last.

5.2 Formal Descr iption of the Algor ithm

Since we have a single initiator, then the overall composition of nodes will be slightly different 
with respect to the previous example because initially all nodes except the initiator should be in 
available state.

Here is one way of doing it:

choice Nt:Network , Initiator:Name []
(

Nodes[send,recv](Nt, Initiator)
||

all_links[send,recv](Nt)
)

The all_links process that sets up all the links in the network is the process defined in section 3.3. 



 15

The Nodes process has an extra parameter, the name of the initiator

process Nodes[send,recv](Nt: Network, Initiator:Name): noexit:=
[not(is_null(Nt))] ->
(

Nd[send,recv] (head(Nt), Initiator)
||| 
Nodes[send,recv] (tail(Nt), Initiator)

)
endproc

Every node will be in available state except the initiator:

process Nd[send,recv](Ninfo:Node, Initiator:Name): noexit(Result):=
([name(Ninfo) == Initiator] ->

Algorithm[send,recv](initiator,name(Ninfo),true,root,NIL2,out(Ninfo),out(Ninfo)))
[]
([name(Ninfo<> Initiator] ->
 Algorithm[send,recv](available,name(Ninfo),false,root,NIL2,out(Ninfo),out(Ninfo)))

endproc

The local variables of a node are:

S:State: The state of the node
Nname:Name: The node name
My_start:Bool: true for initiator, and false for non-initiator node
My_parent:Name: Name of the parent node in the spanning tree; the initiator’s 

  parent is a special node that we have called root
Term_set:LinkList The set of children that have terminated
My_children:LinkList: The set of neighbours that have agreed on being children or  

 have not yet replied 
Expected_res:LinkList: The set of neighbours that have not yet replied

In the previous example we have used different processes for different states. In this example we 
use only one process Algorithm that behaves depending on the state S (this is a classical example 
of state-oriented specification as defined in [VSV]). The Algorithm process is recursive; when a 
node changes its state, it calls Algorithm with the new state and the modified local variables. This 
process has the following format:

process Algorithm[send, recv](<local non-shared memory>): noexit:=

[S == initiator] -> B1
[]
[S == available] -> B2
[]
..



 16

..
[]
[S == shutting_down] -> Bn

endproc

Here we show the top level only of the algorithm. An important process, which is not shown below, 
is process_child_list. The function of this process is to determine the next state of the caller node. 
If Expected_res is empty and there are still children that have not yet terminated then the next state 
is shutting_down, however if Expected_res is empty and all children nodes have terminated then 
the node terminates by notifying its parent. If Expected_res is nonempty and the caller is a parent 
then it stays a parent otherwise if the caller is available then it becomes a parent after broadcasting 
the request to all its neighbours, except its parent node. 

process Algorithm[send,recv](
S:State,
Nname:Name,
My_start:Bool,
My_parent:Name,
Term_set:LinkList,
My_children:LinkList,
Expected_res:LinkList): noexit:=

(* An initiator broadcasts and becomes a parent, then repeats the algorithm *)

[S == initiator] ->
(
broadcast[send](Nname,are_you_my_child,My_children)

>>
Algorithm[send,recv](

parent,
Nname,
My_start,
My_parent,
Term_set,
My_children,
Expected_res)
)

(* An available node receives a request to become a child, answers positively, and proceeds to find 
its own children. Before doing this, it takes note of the name of its father and it removes it from the 
list of children and the list of nodes from which an answer is expected. It will change state by exe-
cuting process_child_list *)

[]
[S == available] ->
(



 17

recv ?From:Name !Nname !are_you_my_child;
send !Nname !From !yes;
process_child_list[send,recv](

available,
Nname,
My_start,
From,
Term_set,
My_children \ From,
Expected_res \ From)

)

(* A parent node will answer negatively a request to be a child, and repeats the algorithm *)

[]
[S == parent] ->
(

recv ?From:Name !Nname ?Mes:Message;
(
[Mes == are_you_my_child] -> (

send !Nname !From !no; 
Algorithm[send,recv](
parent,
Nname,
My_start,
My_parent,
Term_set,
My_children,
Expected_res)
)

(* A parent node that has received a yes will execute process_child_list, after removing the node 
from which the reply was received from the list of nodes from which a reply was expected *)

[]
[Mes == yes] -> (

process_child_list[send,recv](
parent,
Nname,
My_start,
My_parent,
Term_set,
My_children,
Expected_res \ From)
)



 18

(* A parent node that has received a no will execute process_child_list, after removing the node 
from which the answer was received from the list of children nodes, and from the list of nodes from 
which an answer was expected *)

[]
[Mes == no] -> (

process_child_list[send,recv](
parent,
Nname,
My_start,
My_parent,
Term_set,
My_children \ From,
Expected_res \ From)
)

(* A parent node that hears that one of its children is terminating adds the name of this child to the 
list of children that have terminated. It will itself terminate when all its children have terminated 
(this is not shown) *)

[]
[Mes == terminating] -> (

Algorithm[send,recv](
parent,
Nname,
My_start,
My_parent,
(From ++ NIL2) v Term_set,
My_children,
Expected_res)
)

)
)

(* A shutting_down node waits for all its children to terminate the construction of their sub-span-
ning trees, and then terminates *)

[]
[S == shutting_down] ->

. . .

. . .
)

endproc



 19

6. TESTING DISTRIBUTED ALGORITHMS SPECIFIED IN LOTOS

As mentioned earlier, one of the features of LOTOS is the (partial) executability of the language. 
LOTOS specifications can be written to be executable like programs, and the specifications given 
above were written in this way. Therefore, such specifications can be tested for design errors by 
using strategies similar to the ones familiar for conventional programs. Using tools such as the Uni-
versity of Ottawa LOTOS interpreter [GHL], this can be done in several ways:

a. Step by step execution: the user plays the role of the environment; non-determinism and choice 
of values are resolved by the user. At each step, the interpreter provides the user with a menu of 
possible next actions, and requests the values needed.

b. Random walk execution: the system randomly resolves the non-determinism and proceeds auto-
matically as far as possible in a randomly chosen execution path, but the user still has to choose 
values when required [LOBF]. Random walk is a technique studied by C. West for testing pro-
tocol specifications[W][W1]. It was shown in these papers that random walk can allow satisfac-
tory coverage of a large global state space, impossible to explore exhaustively. 

c. Symbolic execution tree [GHL] or symbolic expansion [QP]: in this case the tree of all possible 
behaviours of the specification is computed. Symbolic values are used instead of user-provided 
values. This type of execution provides the most complete information about the behavior of a 
specification, however unfortunately for most specifications execution trees grow very quickly. 

Many distributed algorithms have little or no interaction with the environment. Apart from some 
parameters provided at the beginning, the system evolves independently until a solution is 
obtained. This can be shown in the specification by hiding all message exchanges from the envi-
ronment, e.g.

hide send, recv in 
Algorithm[send,recv]

It can be seen that for this class of algorithms the random walk mode of execution becomes the 
most efficient way for testing the specification, once the initial bugs are removed.

A random walk execution trace for the election algorithm using the network of Figure 2 is given in 
Fig. 4.

 choice(N:Network = $net1) network configuration is provided
 i (specified explicitly) n1 initiates
 send !n1:Name !n2:Name !pos(0,2,0,5):Key n1 sends own key to n2, becoming candidate
 i (specified explicitly) n2 initiates (before receiving key)
 i (specified explicitly) n3 initiates
 send !n2:Name !n3:Name !pos(1,0,0,5):Key n2 sends own key to n3, becoming candidate
 recv !n1:Name !n2:Name !pos(0,2,0,5):Key n2 receives key from n1, remains candidate
 send !n3:Name !n1:Name !neg(0,0,0,5):Key n3 sends own key to n1, becoming candidate
 recv !n3:Name !n1:Name !neg(0,0,0,5):Key n1 receives from n3, remains candidate
 recv !n2:Name !n3:Name !pos(1,0,0,5):Key n3 receives from n2, becomes processor for n2
 send !n3:Name !n1:Name !pos(1,0,0,5):Key n3 forwards n2’s key to n1
 recv !n3:Name !n1:Name !pos(1,0,0,5):Key n1 receives from n3, becomes processor for n2
 send !n1:Name !n2:Name !pos(1,0,0,5):Key n1 forwards n2’s key to n2
 recv !n1:Name !n2:Name !pos(1,0,0,5):Key n2 receives own key from n1, becomes leader



 20

 send !n2:Name !n3:Name !pos(1,0,0,5):Key n2 sends own key to n3
 recv !n2:Name !n3:Name !pos(1,0,0,5):Key n3 receives n2’s key 
 send !n3:Name !n1:Name !pos(1,0,0,5):Key n3 forwards n2’s key to n1 and stops
 recv !n3:Name !n1:Name !pos(1,0,0,5):Key n1 receives n2’s key from n3
 send !n1:Name !n2:Name !pos(1,0,0,5):Key n1 forwards n2’s key to n2 and stops
 recv !n1:Name !n2:Name !pos(1,0,0,5):Key n2 receives again own key and stops

 >>>>> DEADLOCK <<<<< all processes stopped

Figure 4: execution trace for  the election algor ithm

The only value provided by the user is $net1, which denotes the system configuration shown in 
Fig. 2. This configuration was defined previously by the user and stored in a data base of constants. 

 Fig.5 shows an execution trace for the spanning tree algorithm using the network of figure 3 and 
having n1 as initiator. 

choice(N:Network = $net2:, Initiator:Name =n1) network config. and initiator (n1) are provided
 send !n1:Name !n2:Name !are_you_my_child:Message n1 sends a request to all its neighbours (n2 and n3)
 send !n1:Name !n3:Name !are_you_my_child:Message
 i (enable: exit) and becomes a parent
recv !n1:Name !n2:Name !are_you_my_child:Message n2 receives the request from n1
 send !n2:Name !n1:Name !yes:Message n2 replies yes
 send !n2:Name !n3:Name !are_you_my_child:Message n2 sends the same request to all its neighbours
 send !n2:Name !n4:Name !are_you_my_child:Message except n1 (i.e. n3 and n4)
 i(enable: exit) and becomes a parent
recv !n2:Name !n1:Name !yes:Message n1 receives yes from n2
 recv !n2:Name !n3:Name !are_you_my_child:Message n3 receives a request from n2 before receiving the

request from n1
 send !n3:Name !n2:Name !yes:Message n3 replies yes to n2 
 recv !n2:Name !n4:Name !are_you_my_child:Message n4 receives the request from n2
 send !n4:Name !n2:Name !yes:Message and replies yes
 recv !n4:Name !n2:Name !yes:Message n2 receives yes from n4
 recv !n3:Name !n2:Name !yes:Message n2 also receives yes from n3 and becomes shutting_down
 send !n3:Name !n1:Name !are_you_my_child:Message n3 broadcasts a request to all its neigbours except n2
 send !n3:Name !n4:Name !are_you_my_child:Message
 i (enable: exit) n3 becomes a parent
 send !n4:Name !n3:Name !are_you_my_child:Message n4 broadcasts a request to all its neighbours except n2
 i (enable: exit) and becomes a parent
(* at this stage all nodes are in parent state and waiting for a complete reply from neighbours *)
recv !n3:Name !n1:Name !are_you_my_child:Message n1 receives a request from n3 and
recv !n1:Name !n3:Name !are_you_my_child:Message n3 receives a request from n1
 send !n1:Name !n3:Name !no:Message n1 replies no to n3 and stays in state parent
 send !n3:Name !n1:Name !no:Message n3 replies no to n1 and stays in state parent
 recv !n1:Name !n3:Name !no:Message n3 receives no from n1
 recv !n3:Name !n1:Name !no:Message n1 receives no from n3 and becomes shutting_down
 recv !n4:Name !n3:Name !are_you_my_child:Message n3 receives a request from n4
 recv !n3:Name !n4:Name !are_you_my_child:Message and vice versa
 send !n3:Name !n4:Name !no:Message they reply no to each other and they stay in parent state
 send !n4:Name !n3:Name !no:Message
 recv !n4:Name !n3:Name !no:Message n3 receives no from the last expected neighbour n4
 send !n3:Name !n2:Name !terminating:Message and sends a terminating signal to its parent n2
 recv !n3:Name !n2:Name !terminating:Message n2 receives the terminating signal from n3
 recv !n3:Name !n4:Name !no:Message n4 receives no from the only expected neghbour n3
 send !n4:Name !n2:Name !terminating:Message and sends a terminating signal to its parent n2



 21

 recv !n4:Name !n2:Name !terminating:Message n2 receives the terminating signal from n4
 send !n2:Name !n1:Name !terminating:Message and sends a terminating signal to its parent n1
 recv !n2:Name !n1:Name !terminating:Message n1 receives a terminating signal from the only

expected neighbour n2
 i (explicit: send !node(n1, root, ++(n2,NIL2)): Node ) n1 knows that it is the root and its child is n2
 i (explicit: send !node(n2, n1, ++(n4,++(n3,NIL2))): Node ) n2 has n1 as parent and n4 and n3 as children
 i (explicit: send !node(n3, n2, NIL2): Node ) n3 has n2 as parent and has no children
 i (explicit: send !node(n4, n2, NIL2): Node ) n4 has n2 as parent and has no children

 >>>>> DEADLOCK <<<<< all processes stopped

Figure 5: Execution trace for  the Spanning Tree construction algor ithm

The last four actions show the parent process and the children of every process in the constructed 
spanning tree after their termination. This corresponds to the tree of Fig. 6.

6. CONCLUSION

We have shown how a wide class of distributed algorithms can be specified in LOTOS. First of all, 
we have shown how a general network with unidirectional or bidirectional links can be specified. 
Further, we have specified two algorithms for: (1) leader election in a unidirectional ring (2) single-
initiator spanning tree construction. Finally, we have shown how the algorithms so specified can 
be tested for design errors by using random-walk execution. Readers who might have become wor-
ried by the excessive length of traces such as the one of Fig. 5, will be relieved to hear that auto-
mated trace-checking tools are available [BBe]. And so are model-checking tools able to perform 

n1

n2

n3
n4

Figure 6

root



 22

automatic verification of temporal logic properties [GS]. 

The complete LOTOS specifications for the two examples given here are available from the 
authors.

Algorithms such as the one presented in this article are sometimes presented in a synchronous 
form, where processes communicate directly without links. This can also be done in LOTOS, and 
is left as an exercise for the reader. An advantage of this solution is that execution traces are about 
half as long. 

It should be mentioned at this point that considerable theoretical and practical developments are 
taking place within the realm of LOTOS research on such items as LOTOS specification styles, 
LOTOS test methods, and other topics related to the topic of this paper. We have chosen a prag-
matic and tutorial approach, however readers wanting to become users of the language should 
become acquainted with this literature, to understand the methodology associated with the lan-
guage.

Acknowledgment. This research was supported in part by the Telecommunications Research 
Institute of Ontario, by the Natural Sciences and Engineering Research Council of Canada, and by 
Bell-Northern Research.

References

[AG] Afek, Y., and Gafni, E. Election and Traversal in Unidirectional Networks, Proc. 3rd ACM 
Symp. on Principles of Distributed Computing, Vancouver, Aug. 1984, 190-198.

[BBe] Bochmann, G.v., and Bellal, O. Test Result Analysis in Respect to Formal Specifications, 
Proc. 2nd Int. Workshop on Protocol Test Systems, Berlin, Oct. 1989, pp.272-294.

[BBr] Bolognesi, T., and Brinksma, E. Introduction to the ISO Specification Language LOTOS. 
Computer Networks and ISDN Systems 14 (1987) 25-59. Also reprinted in [VVD] 23-73.

[BC] Bolognesi, T., and Caneve, M. Equivalence Verification: Theory, Algorithms, and a Tool. In: 
[VVD] 303-326.

[CR] Chang, E., and Roberts, R. An Improved Algorithm for Decentralized Extrema-Finding in 
Circular Configuration of Processes. Comm. ACM 22, 5 (May 79), 281-283.

[EM] Ehrig, H., Mahr, B., Fundamentals of Algebraic Specification 1, SpringerVerlag,Ber-
lin,1985.

[FLS] Faci, M., Logrippo, L., and Stepien, B. Formal Specification of Telephone Systems in 
LOTOS: The Constraint-Oriented Approach. To appear in Computer Networks and ISDN 
Systems.

[GHS] Gallager, R.G., Humblet, P.A. and Spira, P.M. A Distributed Algorithm for Minimum-
weight Spanning Trees, ACM Transactions on Programming Languages and Systems 5, 1, 
Jan. 1983, 66-77.

[GLO] Gallouzi, S., Logrippo, L., and Obaid, A. A Hoare-Style Proof System for LOTOS. To 



 23

appear in: Quemada, J., Manas, J., and Vazquez, E. (eds.) Formal Description Techniques. 
North-Holland, 1991.

[GS] Garavel, H., and Sifakis, J.  Compilation and Verification of LOTOS Specifications. In: 
Logrippo, L., Probert, R.L., and Ural, H. (eds.) Protocol Specification, Testing, and Verifi-
cation, X. North-Holland, 1990, 379-394.

[GM] Garcia-Molina, H. Elections in Distributed Computing Systems, IEEE Transactions on 
Computers C31, 1, Jan. 1982, 48-59. 

[GHL] Guillemot, R., Haj-Hussein, M., and Logrippo, L. Executing Large LOTOS Specifications. 
In: Aggarwal, S., and Sabnani, K. (eds.) Protocol Specification, Testing, and Verification 
VII. North-Holland, 1988, 399-410.

[Hoa] Hoare, C.A.R. Communicating Sequential Processes. Prentice-Hall, 1985.

[Hum] Humblet, P.A. A Distributed Algorithm for Minimum Weight Directed Spanning Trees, 
IEEE Trans. on Communication Comm-31, 6, June 1983, 756-762.

[ISO] International Organization for Standardization. Information Processing Systems. Open Sys-
tems Interconnection. Basic Reference Model for Open Systems Interconnection (ISO Inter-
national Standard 7498), 1984. 

[ISO1] International Organization for Standardization. Information Processing Systems. Open 
Systems Interconnection. LOTOS - A Formal Description Technique Based on the Temporal 
Ordering of Observational Behaviour (ISO International Standard 8807), 1988. 

[KRS] Korach, E., Rotem, D., and Santoro, N. Distributed election in a circle without a global 
sense of orientation, Int. J. of Computer Mathematics 16, 1984, 115-124.

[Kut] Kutten, S. A unified approach to the efficienr construction of distributed leader-finding algo-
rithms, Proc. IEEE COnf. on Communication and Energy, Montreal, Oct. 1984.

[LFH] Logrippo, L., Faci, M., and Haj-Hussein, M. An Introduction to LOTOS: Learning by 
Examples. To appear in Computer Networks and ISDN Systems.

[LOBF] Logrippo, L., Obaid, A., Briand, J.P., and Fehri, M.C. An Interpreter for LOTOS, a Spec-
ification Language for Distributed Systems. Software-Practice and Experience, 18 (1988) 
365-385. 

[MM] Mañas, J.A., and de Miguel-More, T. From LOTOS to C. In: K.J.Turner (ed.) Formal 
Description Techniques. North-Holland, 1989, 79-84.

[Mil] Milner, R. Communication and Concurrency. Prentice-Hall, 1989.

[Par] Park, D. Concurrency and Automata on Infinite Sequences, Proc. 5th GI Conference, Lecture 
Notes in Computer Science 104,167-183, 1981.

[QP] Quemada, J, Pavon, S., and Fernandez, A. Transforming LOTOS Specifications with LOLA. 
The Parameterised Expansion. In: K.J.Turner (ed.) Formal Description Techniques. North-
Holland, 1989, 45-54. 

[Se] Segall, A. Distributed Network Protocols. IEEE Trans. on Information Theory IT-29,1,1983, 



 24

23-35.

[VSV] Vissers, C., Scollo, G., and Van Sinderen, M. Architecture and Specification Style in For-
mal Descriptions of Distributed Systems. In Aggarwal, S., and Sabnani, K., (eds.) Protocol 
Specification, Testing, and Verification, VIII, North-Holland, 1988, 189-204

[VVD] van Eijk, P., Vissers, C.A., and Diaz, M.The Formal Description Technique LOTOS. 
NorthHolland, 1989.

[W] West, C. Protocol Validation by Random State Exploration. Protocol Specification, Testing, 
and Verification, VI. North-Holland, Amsterdam, 1986, 233-242.

[W1] West, C. Protocol Validation in Complex Systems. SIGCOMM’89 Computer Communica-
tions Review, Vol. 19, no. 4, Sept. 89, 303-312.

 


