
{ This is a revised version of the paper that appeared in the proceedings CHDL’93
April 26-26, 1993}

SPECIFYING HARDWARE SYSTEMS IN LOTOS

Mohammed Faci and Luigi Logrippo

University of Ottawa, Protocols Research Group, Dept. of Computer Science,
Ottawa, Ontario, Canada K1N 6N5, Email: mfaci{luigi}@csi.uottawa.ca

Abstract
This paper reports on some initial results in using LOTOS as a hardware

description language. LOTOS, the Language Of Temporal Ordering
Specifications, is a language that has been conceived in the framework of Open
Systems Interconnection (OSI) standardization as a tool for the formal
description of OSI services and protocols. We present some examples to show how
LOTOS can be applied to the specification of hardware systems. The resulting
specifications are obtained by mapping hardware components into LOTOS
processes and connection wires into LOTOS interaction points. Much of the
power of this mapping mechanism is based on the parallel composition operator,
which is central to the design of highly concurrent systems, across many levels of
abstraction.

Keyword Codes: D.1.3; D.2.1; D.3.1
Keywords: Concurrent Description languages, Formal Specification, LOTOS.

1. Introduction and Background

Structural hierarchy is the most widely used method for describing
highly complex and concurrent systems such as VLSI systems. In this
methodology, the designer begins by a high level description of the system’s
functionality. Then a top down approach is used to decompose the system into
several interacting subsystems. One of the advantages of such an approach is
that it allows the designer to confess ignorance about the internal structure of the
system components and postpone dealing with the details. The designer is able to
concentrate on the global view of the system and the interfaces between the
modules. The lack of appropriate languages which support the requirements of
this methodology in a natural way has motivated researchers and organizations
to develop new languages, such as CIRCAL[Miln91] and VHDL[Aylor86].

LOTOS[LFH92, BoBr87], Language Of Temporal Ordering
Specifications, is a language which has been conceived in the framework of OSI
standardization as a tool for the formal description of OSI services and protocols.
We claim, however, that the concepts of LOTOS are general enough to make the
language useful for a wide range of applications. Our research group has applied
LOTOS to a number of application areas such as distributed algorithms[HL91]
and telephone systems[FLS91]. In this paper, we address the issue of using

LOTOS for the formal specification of digital systems.
There are several advantages for using LOTOS in the domain of

hardware specifications.
• First, LOTOS has a formally defined syntax, static semantics, and dynamic

semantics which are described operationally in terms of inference rules
[BoBr87].

• Second, it is based on a set of sound mathematical theories, due mostly to
Milner [Mil80] and Hoare [Hoa85], which allow designers to prove a rich set
of algebraic equivalence properties, based on several types of equivalence
relations.

• Third, LOTOS semantics are defined operationally. This means that LOTOS
specifications can be directly simulated on an interpreter [LOBF88] as well
as, with some user supplied information, translated into an executable pro-
gram [MM89].

• Fourth, LOTOS supports many levels of abstractions and favors stepwise
decomposition of processes. By using the LOTOS parallel composition opera-
tor and the hide operator, systems can be described at many levels of
abstractions.

• Last, but not least, LOTOS offers a facility that very few hardware specifica-
tion languages offer: Multiway synchronization. Multiway synchronization
allows many processes to synchronize their actions simultaneously. This is a
very powerful tool for specifying, for example, connections between a compo-
nent which drives many other components, a very common characteristic of
hardware systems. Other languages which support the multiway synchroni-
zation include CIRCAL[Miln91], a language for hardware specification,
which predates and shares many of its concepts with CCS and CSP.

2. Formal Specifications of Small Digital Circuits

In this paper, we are interested in showing how the concepts of LOTOS
can be used in specifying small hardware modules. Therefore, we have chosen to
walk the reader through a series of simple examples, at the gate level, so that we
do not divert our attention to explaining details about the functionalities of our
examples. The simplicity of the examples also allows us to introduce relevant
LOTOS concepts as the need arises.

2.1 Specifying Combinational Circuits
In this section, we specify a full adder, using the bottom up approach, to

demonstrate that LOTOS is well suited for specifying combinational circuits. The
LOTOS constraint-oriented style[VSV88] is well suited for expressing the
constraints that each component must satisfy. This reflects the fact that, for
hardware systems, the system’s behaviour is expressed by the composed
behaviours of its sub-components. To specify the full adder shown in Fig. 1, we
begin by specifying the components at the lowest level of abstraction. This means
the specifications of the Or gate and the gates which define the half adder,
namely, And and Xor. The specification of the full adder is obtained by composing
two half adders and an Or gate.

 We represent a two-input logic gate by a LOTOS process which interacts
with its environment through three interaction points. A process in LOTOS is
defined by its name, a list of interaction points, a list of parameters, a functionality
and a behaviour expression. For example, the specification of a two-input logical
And is given in Fig. 2. It takes two inputs x and y and produces an output (x AND
y). The AND function is defined as an abstract data type which implements the
functionality of the logical And. The interleaving operator (|||) is used to express
the desired behaviour of this component, meaning that x and y can be accepted in
any order. Other logical functions such as OR, XOR, NOR, NOT, NAND are
described in a similar fashion, by replacing the abstract definition of the AND
function by the respective functions.

The next level of abstraction, bottom up, concerns the specification of the
half adder’s behaviour. It is the composed behaviours of an And gate and an Xor
gate, as shown in Fig. 3. Process AndGate has three observable interaction
points, In1, In2, and Carry. Process XorGate has three interaction points as well,
In1, In2, and Sum. Note that two inputs, In1 and In2, are shared by the two
processes. This implies that the two processes must synchronize on these two
inputs. This is expressed by using the selective parallel composition operator
|[In1, In2]|.

Fig. 1. Structure of a Full Adder

HA1 HA2

Sum

CarryOut

Carry1

Sum1

In1

In2

CarryIn

CarrySum

process AndGate [In1, In2, Out]: exit:=
 (In1 ?x: Bit; exit(x, any Bit)
 |||
 In2 ?y:Bit; exit(any Bit, y)
) >> accept x, y: Bit in (Out ! (x AND y); exit)

endproc
Fig. 2. Specification of Logic And Gate in LOTOS

The structure of a full adder, as shown in Fig. 1, is expressed in terms of
two half adders and an Or gate. While the Or gate is considered to be a basic
building block, the half adder is composed of two other basic building blocks. The
full adder’s behaviour can now be expressed by composing two half adders and an
Or gate. The result is shown in Fig. 4. Note that Sum1, Carry1, and CarrySum
are specified as hidden interaction points. These interaction points are not
observable from the environment.

The first instance of the process HalfAdder (HA1) in Fig. 1 takes In1 and
In2 as inputs and produces Carry1 and Sum1 as outputs. Sum1 is then used as
an input, along with CarryIn, to the second instance (HA2) of the half adder. This
relation between the two half adders implies that the second half adder can only
proceed when the first half adder has produced its output Sum1, even if the
CarryIn input is already present. This type of information sharing is presented
by making the two half adders synchronize on the interaction point Sum1. This
structure guarantees that the two half adders accept their inputs and produce
their outputs independent of each other except for Sum1, which is used as output
from HA1 and input to HA2. The same reasoning is also applied between the two
half adders, taken as one component, and the Or Gate. The signals on Both
Carry1 and CarrySum must be present before the Or Gate can be activated.

2.2 Specifying Sequential Circuits

In this section, we turn our attention to the more general model of
switching circuits, sequential systems. In combinational circuits, the present
value of the outputs is a function of the present values of the inputs. In sequential
circuits, the present values of the outputs are a function of both the present

process HalfAdder [In1, In2, Carry, Sum]: exit:=
 (
 AndGate[In1, In2, Carry] |[In1, In2]| XorGate[In1, In2, Sum]
)
 endproc

Fig. 3. Specification of Half Adder in LOTOS.

process FullAdder[In1, In2, CarryIn, CarryOut, Sum]: noexit:=

 hide Sum1, Carry1, CarrySum in
 (
 (HalfAdder[In1, In2, Carry1, Sum1] |[Sum1]| HalfAdder[CarryIn, Sum1, CarrySum, Sum])
 |[Carry1, CarrySum]|
 OrGate[Carry1, CarrySum, CarryOut]
)
>> FullAdder[In1, In2, CarryIn, CarryOut, Sum]
 endproc

Fig. 4. LOTOS specification of a full adder

values of the inputs as well as the values of the previous state of the system.
 Sequential circuits are classified into two categories: Synchronous

circuits and asynchronous circuits. In synchronous circuits the state of the circuit
changes only in response to a clock pulse. In asynchronous circuits, a change in
any signal may produce an immediate change in the state of the circuit. The
approach taken in specifying both categories is similar. The difference is that, for
synchronous circuits, the clock must be explicitly modelled by an extra
interaction point. Because of space restrictions, we will deal with the specification
of asynchronous circuits only.

2.2.1 Specification of a Set Reset flip flop

In this section we consider the specification of a set reset flip-flop. The
proper functionality of this flip-flop requires that the two outputs are
complements of each other. One output is labelled Qp and the other one Qb. A
pulse on the Set input drives the output Qp to 1; it sets the flip-flop. A pulse on
the Reset input drives the Qp to 0; it resets the flip-flop. The normal operation of
the flip-flop will be violated if both inputs are allowed to be set to 1.

Our task is to first capture the structure of the set reset flip flop, then
augment it with some parameters, which are necessary for expressing the
behaviour of the flip-flop. From an observational point of view, the flip flop can be
modelled by the diagram shown in Fig. 5. This diagram identifies only the

observable interaction points through which the flip flop interacts with its
environment. It does not define the order of events that are exchanged, with the
environment, at these interaction points. For example, the diagram expresses the
fact that Qp is an interaction point shared between the environment and the two
Nor gates. In other words, both Nor gates and the environment must synchronize
on Qp.

For sequential circuits, it is assumed that only one signal can change at a
time. This particular characteristic of sequential circuits has strongly influenced
our style for structuring LOTOS specifications. Where the interleaving operator
was dominant in the case of combinational circuits, the choice operator ‘[]’
becomes dominant here instead. Fig. 6 shows the representation of the flip flop in
terms of a LOTOS specification. When the process SrFlipFlop is first
instantiated, a set of initial values representing the inputs Set and Reset and the
outputs Qp and Qb are provided to it by the environment. This is represented by
the list of parameters, Ps, Pr, Pqp, Pqb: Bit, at the header of the process, meaning
that the process expects four values, of type Bit, which define its initial state. The
actual behaviour of the flip flop is expressed by the composition of two Nor gates,
line 2. The body of the Nor process, lines 4 to 13, expresses the behaviour of the
Nor gate. It shows that at any instance, a choice exists between the following
alternatives: First, change the Set signal. This is shown at line 5, where the
environment may supply a new value for the Set signal resulting in another state.

Reset SetQp Qb

Fig. 5. Flip flop interaction with environment.

NorNor

The effects of this signal, which leads to a new state, is expressed by the recursive
instantiation of the Nor process at line 6. Second, change the Reset signal. This is
similar to the previous case, except that the change affects the Reset signal and
the values which depend on it. And third, output the Nor of the current input
values and keep the present state of the flip flop unchanged.

The reader may have observed that we do not consider the restrictions
imposed on the inputs (i.e., both Set and Reset being 1 at the same time) as part of
the specification itself. This is consistent with the view that this restriction is
really a constraint which must be enforced by the environment in which the flip-
flop is expected to be used.

3. Validating the Specification

Validation of circuit designs has been the subject of much research
[CaPr88]. One of the advantages of specifying circuits in LOTOS is that the
language has well-established theories for formal verification and testing, on
which formal disciplines of circuit verification and testing can be based.

The simplest validation method is simulation. Its objective is to detect
design and functional errors. Using the simulation based approach, the designer
concentrates on specifying the behaviour of the system first. Then, once the
system is completely specified, the validation of the behaviour begins. Basically,
there are two modes of simulation: value-based simulation and symbolic
simulation. In value-based simulation, a batch of test cases is selected, based on
ad hoc methods and using the specifier’s intuition and knowledge. Then, each of
these value test cases are applied to the circuit under test. If the stimuli produce
the expected behaviour of the circuit, the test cases are recorded as a success. The
specifier iterates through this process until he/she feels that the design is robust.
In symbolic simulation, the designer uses variables to cover a complete range of
values rather than trace the control sequence of the circuit for each value.
Simulation can be automated by running the system in parallel with testing
processes, also specified in LOTOS.

1 process SrFlipFlop[S, R, Qp, Qb](Ps, Pr, Pqp, Pqb: Bit) : noexit :=
2 Nor [S, Qp, Qb](Ps, Pqp, Pqb) |[Qp, Qb]| Nor [R, Qb, Qp](Pr, Pqb, Pqp)
3 where
4 process Nor [In1, In2, Out](Pin1, Pin2, Pout: Bit) : noexit :=
5 In1 ?x: Bit;
6 Nor [In1, In2, Out](x, Pin2, Not(x Or Pin2))
7 []
8 In2 ?y: Bit;
9 Nor [In1, In2, Out](Pin1, y, Not(Pin1 Or y))
10 []
11 Out !Pout;
12 Nor [In1, In2, Out](Pin1, Pin2, Pout)
13 endproc
14 endproc

Fig. 6. LOTOS specification of the set reset flip flop.

During the past few years, we have been using a LOTOS simulator,
called ISLA (Interactive System for LOTOS Applications), designed and
developed at the University of Ottawa[LOBF88], to validate LOTOS
specifications. Among other functions, the simulator supports both value and
symbolic simulations. The reader is referred to [LOBF88] for further details
concerning the simulation of LOTOS specifications.

As mentioned earlier, the theoretical basis for LOTOS are CCS and CSP,
so CCS and CSP proof techniques can be applied (with little adaptation) to
LOTOS. However, formal verification of anything but small examples depends on
the availability of suitable software tools, and, because of the relative novelty of
the language, few tools to do this are available. CAESAR/ALDEBARAN/
CLEOPATRE [Fetal] is a complex tool for performing a number of validation
activities, such as proofs of weak bisimulation equivalence and model checking.
Garavel [Gar91] discusses an experience where, by using this system, he verified
a number of different systolic architectures to compute convolution products.
[KBG92] present a system with similar functionality.

Testing is another area where formal methodologies are being developed
for LOTOS. There exists quite a bibliography on the subject, one of the main
references being [Br88]. Because of the fact that LOTOS’s main application area
has been protocol specification, the main problem envisaged has been testing
equivalence between a protocol specification and its implementation. However,
much of the theory is general, and can be applied to other testing problems such
as testing whether a circuit implementation provides the behavior prescribed by
the specification.

4. Conclusions and Research Directions

We have shown that LOTOS, a language initially designed for the formal
description of communications protocols, is well suited for the description of
digital systems. We have given small examples of both combinational and
sequential circuits specifications.

An interesting research direction which might be a natural extension of
this work is the construction of silicon compilers for LOTOS. A silicon compiler
deals with the automatic generation of digital circuits from their behavioral
descriptions. By using a silicon compiler, the designer can produce correct circuits
because the resulting designs are correct-by-transformation. The subject of silicon
compilers has been addressed by many researchers such as Brown and
Leeser[BrLe89], and Martin[Mart89], to name just a few.

References
[Aylo86] J. H. Aylor, VHDL - Feature Description and Analysis, IEEE Design & Test of

Computers, Vol. 3, No. 2, 54-65, april 1986.
[Br88] E. Brinksma, A Theory for the Derivation of Tests. In: S. Aggarwal and K. Sabnani.

Protocol Specification, Testing, and Verification 8,. North-Holland, 1988, 63-74.
[BoBr87] B. Bolognesi and E. Brinksma, Introduction to the ISO Specification Language

LOTOS. Computer Networks and ISDN Systems 14 (1987) 25-59.
[BrLe89] G. Brown and M. Leeser, From Programs to Transistors: Verifying Hardware

Synthesis Tools, in LNCS 408, July 1989, 129-151.

[CaPr88] P. Camurati and Prinetto, Formal Verification of hardware correctness:
Introduction and Survey of Current Research, Computer, 21(7), July 1988, 8-19.

[FLS91] M. Faci, L. Logrippo and B. Stepien, Formal Specifications of Telephones Systems
in LOTOS: The Constraint-Oriented Style Approach, Computer Networks & ISDN
Systems, Vol. 21, No. 1, 1991, 53-67.

[Fetal] J. C. Fernandez, H. Garavel, L. Mournier, A. Rosse, G. Rodriguez, J. Sifakis, A
Toolbox for the Verification of LOTOS Programs, in L. A. Clarke, ed., Proc. of the
14 International Conference on Software Engineering (ICSE’14). ACM Press, New
York.

[Gar91] H. Garavel, Compilation et verification de programmes LOTOS. PhD Thesis,
University of Grenoble I, 1989.

[HL91] L. Logrippo and M. Haj-Hussein, Specifying Distributed Algorithms in LOTOS,
Technical Report TR-91-04, Computer Science, Univ. of Ottawa, May 1991.

[Hoa85] Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall, 1985.
[KBG92] G. Karjoth, K. Binding and J. Gustafsson, LOEWE: A LOTOS Engineering

Workbench. To appear in Computer Networks and ISDN Systems.
[LFH92] L. Logrippo, M. Faci and M. Haj-Hussein, An Introduction to LOTOS: Learning by

Examples, Computer Networks & ISDN Systems, Vol. 23, No. 5, 1992, 325-342.
Errata sheet in Computer Networks & ISDN Systems, Vol. 25, 1992, 99-100.

[LOBF88] L. Logrippo, A. Obaid, J.P. Briand and M.C. Fehri, An Interpreter for LOTOS, a
Specification Language for Distributed Systems. Software-Practice and
Experience, 18 (1988) 365-385.

[MM89] J. A. Mañas and T. de Miguel-More, From LOTOS to C. In: K.J.Turner (ed.)
Formal Description Techniques North-Holland, 1989, 79-84.

[Mart89] A. Martin, The Design of a Delay-Insensitive Miroprocessor: An Example of
Circuit Synthesis by Program Transformation, in LNCS 408, July 1989, 224-259.

[Miln91] G. J. Milne, The Formal Description and Verification of Hardware Timing, IEEE
Transactions on Computers, Vol. 40, No. 7, 811-826, Jul. 1991.

[Mil80] R. Milner, A Calculus of Communicating Systems. Lecture Notes in Computer
Science No.92 (Springer-Verlag) 1980.

[VSV88] C.A. Vissers, G. Scollo and M. van Sinderen, Architecture and Specification Style
in Formal Descriptions of Distributed Systems. In Aggarwal, S., and Sabnani, K.,
Protocol Specification, Testing and Verification, VIII, North-Holland, 1988, 189-
204.

	1. Introduction and Background
	2. Formal Specifications of Small Digital Circuits
	2.1 Specifying Combinational Circuits
	2.2 Specifying Sequential Circuits
	2.2.1 Specification of a Set Reset flip flop

	3. Validating the Specification
	4. Conclusions and Research Directions

