A Hoare-style Proof System for LOTOS

S. Gallouzi?, L. Logrippo?, A. Obaid®

“University of Ottawa, Protocols Research Group, Department of Computer Science, Ot-

tawa, Ontario, Canada, KIN 6N5

*Université du Québec & Hull, Département d’informatique, Case postale 1250, succursale

B, Hull, Québec, Canada, J8X 3X7

Abstract

A Hoare-style proof system for LOTOS, defined in terms of proof rules based on the
structure of processes, is presented. Hoare’s satisfaction relation is used to define these
rules. This system is based on the failures model. It is shown to be adequate to allow
proofs of correctness of compound processes to be constructed from proofs of correctness
of its parts. An example, consisting of the proof of a property of the failure set of a
two-slot buffer is presented.

1 INTRODUCTION

The established method for proving properties of LOTOS processes is bisimulation. This
method, well-known in process algebras (see among others [Par81, Mil80, Mil89]) has been
extended to LOTOS in a number of papers [BC89], among which one of the most complete
is the PhD thesis of Brinksma [Bri88a]. By using bisimulation, one can prove a LOTOS
process equivalent to another LOTOS process. An example of this way of proceeding is
presented in papers by [Naj87] and by Shiratori et al. [SKTN90], where service processes
are shown to be equivalent to the composition of protocol processes with the underlying
service provider.

While the equivalence of processes is an important practical issue in the design of
distributed systems, many properties of interest cannot be formulated or proven in this
form. For example, one would like to be able to verify invariant properties of processes
such as: “if there have been as many inputs as outputs, then a further input is possible”.
Of course, one could think of transforming in some way such a property into an equivalence
property of processes, however it does not appear that this would be the most natural
way of proceeding.

Assertions such as the one above correspond to a well-established way of thinking
about concurrent processes. For example, in a well-known paper, Hailpern and Owicki

[HO83] introduce the concept of histories, i.e. sequences of actions of processes, and
show how properties of histories can be formalized in temporal logic. Closer to LOTOS,
Hoare et al. [BHR84, Hoa85] formalize the concepts of traces and refusals of processes
and develop methods for proving properties of traces and refusals. Hoare’s method is
much more precise than the one of [HO83], since it is based on a complete formalization
of the properties of his language. Furthermore, while the method of [HOS83] is based
on assertions on histories, [BHR84] adds to this concept the concept of refusal, which
describes the fact that a certain event may be refused after a given sequence of events.

Another advantage of proof methods based on the idea of invariant properties is the
compositionality they exhibit. Both [HO83] and [Hoa85] provide rules for proving prop-
erties of a process on the basis of the properties of its component processes. Composi-
tionality is a very valuable characteristic of proof methods, especially to help formalizing
the design process, by allowing the simultaneous construction of processes and proofs.

Finally, concepts of traces, refusals, and failures have been shown to be important for
the development of a testing theory for LOTOS. [Bri88b] uses these concepts based on
an operational model and without developing a semantic theory for them. Our paper is
a contribution towards a logical and denotational model for these concepts.

A first attempt to use the failures model as an alternative semantic model for LOTOS
is reported in [Wes86]. A more recent attempt to define semantic models based on traces,
refusals, and failures for LOTOS can be found in [Gal89]. Furthermore, extensions of
the failures model and some of its applications to LOTOS proof theory can be found
in [Bri88b, Led90]. The latter work was developed at the same time as our work but
independently. It proposes an extension of the failure model that distinguishes a behavior
expression that cannot initially engage into an internal action from one that fails in exactly
the same circumstances and can engage into an internal action. [Led90] does not, however,
propose a complete logical proof system for LOTOS based on his extension of the failure
model.

One problem with these methods is that they are intrinsically more complex than
bisimulation methods. In the latter, the universe of discourse is limited to behavior
expressions, and equivalence relations between them, nothing else needs to be mentioned.
In methods based on the concept of traces and refusals, one needs to introduce the concepts
of traces and refusals, operators on traces and refusals, and properties of traces and
refusals. This requires the use of some type of predicate calculus and some arithmetic.

A problem specific to LOTOS is presented by the fact that no generally usable fixpoint
induction principle for reasoning about failures has been formulated for this language yet.
Although LOTOS is partially based on CSP, the failure fixpoint induction principle of
CSP cannot be extended to LOTOS because of the presence of the internal action in
LOTOS. While the use of fixpoints appears to be highly desirable, we show in this paper
that some interesting types of proofs can be carried out without fixpoints.

2 BASIC DEFINITIONS AND NOTATIONS

2.1 Operators on traces

A trace is a finite-length sequence of symbols. Symbols are denoted by identifiers and
may represent events in a process, often referred to as actions. Each trace may then be
interpreted as a sequence of (atomic) interactions that may take place between a process
and its environment. A trace will be denoted as follows

e () is the empty trace containing no symbols

e (a,b,...) is a trace containing a sequence of symbols where a is followed by b.

Every trace is associated with some alphabet, a finite set of symbols. For each alphabet
A, A* denotes the set of all traces, including the empty trace (), which are formed from
symbols in A. We will need to handle a special symbol denoted by 6, which is used in
LOTOS to indicate the successful termination of a process which engages in it, via the
exit process. Therefore this symbol can appear only at the end of a trace. We will thus
let As be the alphabet AU {6} and Aj be the set of all traces of symbols of As, where &
may only occur at the end of a trace.

Next, we introduce several operators on traces that will serve as a basis to develop
our proof system. For a full treatment of these operators the reader can refer to [Gal89].

e (| A denotes the projection of a trace ¢ on a set of actions A, which can be obtained
from ¢ by omitting all symbols outside A.

e |t| denotes the length of a trace t. The number of occurrences of symbols from A
in a trace ¢, denoted ¢ | A, can then be counted by [t|A|. If A contains a single
symbol a, the number of its occurrences in the trace ¢ is denoted ¢ | a (instead of

t]{a}).

e The concatenation operator, denoted by “~7

, constructs a trace by putting two
traces, u and v, together in this order.

e We introduce three partial orderings on traces whose least element is ().

1. We write u < v, to denote that u is an initial segment of v, often called prefiz.

2. We write u tn v to express the fact that a trace u is a contiguous subsequence
of a trace v (not necessarily initial).

3. If u is a subsequence of v, not necessarily a contiguous one, we write u C v.

e If the successful termination symbol § does not occur at the end of a trace u (in
which case it does not occur in u at all), the sequential composition of u and v,
denoted u > v, is u. If 6 does occur at the end of u, it is removed and the result is
concatenated to v.

e The sequential composition uses é as a glue which sticks two traces u and v together.
We define another composition function, called disruption, that does not need the
glue to stick a prefix of u and v together, and if the glue occurs, v cannot stick. It
is denoted by u[> v, and can be defined as follows

u>v={t ~ st Lun(if ~((6) int) then s =velse s =())}

e Let F' be a function mapping symbols in an alphabet A to symbols in an alphabet
B such that F(a) = 6 iff a = 6. We define the postfixed renaming operation over
traces, as follows

L Q=0
2. ((a) ~ O)[F] = (F(a)) ~ (1[F])

We shall use convenient abbreviations in writing renamings explicitly. Thus

bl/al,...,bn/an

(where ay, ..., a, are distinct symbols) stands for the renaming

F:day,...;a,} — {b,...,b,}
given by

1. F(az):bz ifaie{al,...,an}
2. Fla)=aifa ¢ {a1,...,a,}

o We define a composition function, called merging, to describe the parallel composi-
tion of two or more processes. This includes their mutual communication embodied
by the common actions specified in their “synchronization alphabet” and the suc-
cessful termination action. Each communication requires the participation of both
processes. The reader will recall that two LOTOS processes P and) composed by
means of the parallel composition operator |[S]|, where S is a sequence of actions
will

1. mutually interleave for actions not in 5.

2. mutually synchronize for the actions in S. This means that if P offers action
a € {5}, so must @, and the result of their synchronization is a single offer of
a.

3. mutually synchronize on the “exit” action é.

If at any point a required synchronization is not possible, a deadlock occurs. This
leads to the following definition. Let

./M(Ul,A,UQ) = {t|vi E t A UZ'LA(g = tLAg A |t| = Z |v]-| — (vi l Ag)}
J

where 7,7 = 1,2. Furthermore, for a set of traces T', trace ¢t € T is said to be longest
in T"if |t/| < |t| for any t' € T'. The merging of two traces u; and wug in the order
imposed by a synchronization alphabet A, denoted by uq|Auy, is the set of longest
traces t such that there exists two prefixes v; and vy of uy and uy, respectively, for
which t € M(v1, A, v2). For example,

(a,b,a)|{b}|(b,c) = {(a,b,a,c),{a,b,c,a)}
(a,b,6)|{}|(c,8) = {(a,b,¢,8),{a,c,b,6),(c,a,b,)}
(a,0,¢)[{b,d}[(d, e) = {{a)}

2.2 Traces and failures of processes

A process definition in LOTOS describes the behavior pattern of a process, by defining
the sequences of observable actions that may occur (be observed), over a finite set of
actions. The latter is the process alphabet, denoted a(P) for a given process P. The
main component of a process definition is the behavior expression which is built from the
constants and operators of LOTOS. A behavior expression B can perform an action z
and then behave like B’ (another behavior expression). What we derive here are labeled
transitions denoted B % B’. We shall write B -2 B’, where s denote a sequence of
actions (not necessarily observable) z1 ...z, (n > 0), to mean that for some B; (0 < ¢ < n)

B:BogBlngﬁ)Bn:B/

In order to abstract from the invisible actions that are derived by the transition relation
when applied to a behavior expression, we define the trace relation “=—" as follows

Definition 1 Let t denote a trace (ay,as,...,a,) then we have B =L B’ whenever there
exists a sequence 1™ ayi*1ay*? .. a,i*™ (k; > 0), denoted by s, such that B —— B', where

i* denotes a sequence of k internal aclions.

This implies that B Yy B whenever B -2 B! (k > 0), and that, for any B, B Ny
(in this case k = 0).

We can now define the trace set and refusal set of a behavior expression B by means
of the trace relation.

Definition 2 Lel S be a set of behavior expressions
traces(B) = {t{|3B.B == B’}
traces(S) = Upes traces(B)

Note that the trace set of every process is prefiz-closed.

Definition 3 Let a(FE) be the alphabet of an environment E in which B is placed and S
is a set of behavior expressions
refusals(B) = {X C a(E)3B'- B =% B' A X ninitials(B') = {}}
refusals(S) = Upesrefusals(B)
where initials(B) = {a € o(B)|3B'- B 2% B}
The concept of refusals was first introduced in [BHR84] where the failures model is in-

troduced. The latter takes into account what a process may refuse after engaging in an
arbitrary trace of its behavior.

Definition 4 Let B be a behavior expression. We define
farlures(B) = {(t, X)|t € traces(B) N X € refusals(B/t)}
where B/t = {B'|B == B'}.
In what follows we will use A and {A} to denote a sequence of actions and a set of actions
formed by the elements of A, respectively.

3 FAILURES SEMANTICS

In this section we present a set of rules and axioms that define the failures of compound
processes in terms of the failures of their components. The result is a failures semantics
for LOTOS, restricted to non-divergent behaviors, since failure sets describe all observable
aspects of the behavior of a process, and the following axioms and rules provide a means
for interpreting LOTOS text as a failure set.

We say that B is i-prefired, and write i-prefized(B), If 3B".B - B’. Obviously,
the processes stop, exit, and any expression prefixed by an observable action are not
i-prefixed. However,

1. i-prefized(i; B) = true

2. i-prefized(hide Ain B) = (initials(B) N {A} # {}) V i-prefized(B)
3. i-prefized(By > By) = i-prefized(By) V 6§ € initials(By)

4. i-prefized(By * By) = i-prefized(By)Vi-pre fized(Bs)

where * stands for [], |[A4]|, and [>. Note that a process instantiation is i-prefixed if the
behavior expression defining that process is i-prefixed. If P is recursive and not guarded
then i-prefized(P) is undefined. i-prefized(B) is also undefined whenever it is undefined
for any of the component expressions of B.

Let K denote the environment which interacts with any of the indicated processes.

F 1 failures(stop) = {((), X)|X C a(E)}
F 2 failures(exit) = {((), X)|X C (a(E) - {6})} U {({8), X)|X € o(E))

F 3 failures(a; B) = {({), X)|X C (a(E) - {a})}U{((a) ~ ¢, X)|(t, X) € failures(B)}
F 4 failures(i; B) = failures(B) if B does not diverge.

F 5 faiulures(hide Ain B) = {(t|(a(B) — {A}), X)|(t, X U{A}) € failures(B)}
if Vi € traces(B) - ~diverges(B/t, {A})

where diverges(B,S) = (Vn -3t € traces(B) N S*-|t| > n) and S is a set of behavior
expressions. Note that in the latter definition B can denote a set of behavior expressions.

F 6 If “process P [a),....a']| := B, endproc” is a process definition
1 y Yn P p
i) ! , ,
and F is a renaming given by ai/a’y, ..., a,/a’,

then failures(P [a1,...,a,)) = {(t[F], F(X))|(t, X) € farlures(B,)}

F 7 Ifi-prefized(B;) (7 = 1,2), and —i-prefized(By) (k = 3,4)
then a) failures(Bi[|Bs2) = failures(By) U failures(Bs)
b) failures(Bs[|Bs) = fatlures(Bs]] Bz)
= {(t, X)|(t, X) € failures(By)V
(t# ()N, X) € farlures(By) U fatlures(Bs))}
¢) failures(Bs[|Bs)
= {(t, X)|(t, X) € (failures(Bs) N failures(B4))V
(t# ()N, X) € farlures(Bs) U failures(By))}

6

F 8 failures(B|[A]|B2)
= {(t, X Way, Y)|u,v-t € ul{A}fv
Au, X) € failures(Bi) A (v,Y) € failures(Bs)}

where X WgY = (X NY)U((XUY)NS)and S is a set of actions.

F 9 failures(Bl||Bs)
= {6, X U5y Y)|Fu,v - £ € ul{}|v
Au, X) € failures(Bi) A (v,Y) € failures(Bs)}

F 10 failures(B||Bs)
={(t, X UY)|Fu,v.t € ula(By1) U a(By)lv
Au, X) € failures(By) A (v,Y) € failures(By)}

F 11 failures(By > Bz) = {(t, X)|(t, X U {6}) € failures(By)}
U{(u —~ v, X)|u —~ (6) € traces(Bi)A
(v, X) € failures(Bs)}
if By does not diverge.

F 12 failures(Bi[> By) = {(¢t, X)|3u,v -1 € u[> vA
(if v=/{) then (u, X) € failures(By)
else u € traces(By)) A (v, X) € failures(Bz)}
if —i-prefized(Bs)
= {(¢t, X)|Fu,v -t € u[>vA
u € traces(By) A (v, X) € failures(Bs)}

otherwise.

Note that contrary to CSP, the failures C-ordering is not monotonic for all LOTOS
operators (i.e. [] is not monotonic for this ordering). Therefore, the general fixpoint
theory, which implies in the case of a complete partial order (for which all operators
are continuous) that any fixpoint equation has a unique minimal and maximal solution,
cannot be applied in LOTOS by means of the failures C-ordering. This is also the case
for CCS, because no complete partial order, that is continuous for all its operators, can
be found. The implications of this fact is that failures of recursive behavior expressions
cannot be computed, at least not by what appears to be the immediately obvious method
of fixpoint induction.

However, a new preorder on processes, denoted by C, can be defined which is based
on the failures C-ordering but is preserved by all LOTOS operators. Such preorder is
defined as follows

B; C By iff for every LOTOS context C[] we have failures(C[Bi]) C failures(C[Bs])
A direct characterization of this preorder can be given

By C By iff failures(By) C failures(Bs)A i-prefized(By) implies i-pre fized(Bs)

The failures C-ordering and the preorder defined above coincide with some of the relations
in [DH84] in the case of non-divergent processes.

Alternately, one can develop an adequate version of LOTOS which does not use the
internal action combinator. Instead we replace the choice and disable operators by two
new choice and two new disable operators respectively, where each pair of operators
represents internal and external nondeterminism. The failures semantics of the resulting
language would be much simpler and the failures C-ordering would be preserved by the
new version of LOTOS operators. This point remains, however, to be elaborated. A
similar approach was taken by [DH87] to develop Testing CCS (i.e. CCS without 7’s).

4 PROOF SYSTEM

The required behavior of a process can be described in terms of some observable aspects
of its behavior. The most relevant observations, that we have mentioned, are the trace of
actions that occur at some moment in time and the sets of actions that might be refused
(i.e. refusals) at that moment in time. This description is then a predicate containing two
free variables ¢ and r, that stand for an arbitrary trace and refusal set, respectively, of
the process being defined, together with, possibly, some other variables.

A behavior requirement describes the characteristics of a process’s failure set. There-
fore, there is a need for a notion of a process P satisfying its behavior requirements 5.
In this context, P can be viewed as an implementation of S, since it gives a behavioral
description of the system specified in S.

4.1 Satisfaction relation

The fact that a process P meets a behavior requirement S, can be modeled as a binary
“E”. We write = in an infix manner and P = S may be read “P salisfies
S”, which means that S is a property that is true for every possible observation of the

relation

behavior of P; or, more formally
Vi, r-t € traces(P) A r € refusals(P/t) = S(t,r)

In other words, S is true if its variables ¢ and r take values observed from the process
P. Following Hoare, we will sometimes write S(t) or S(¢,r) to indicate that a behav-
ior requirement S contains a free variable ¢, or two free variables ¢ and r, respectively,
whenever there is a need to show how ¢ or r, or both, may be substituted by some more
elaborated expression.

The satisfaction relation = is defined by means of the same rules governing Hoare’s
sat relation [Hoa85]. These rules provide the most general properties of the satisfaction
relation. They apply to all kinds of processes and all kinds of specifications, and are
based on the structure of the specification. Our objective is to design a framework for
the verification of statements about the behavior of LOTOS processes, which requires
additional rules based on their structure. Such rules should permit proof of the correctness
of a compound process to be constructed from a proof of correctness of its parts. We shall
give these rules in the next section and refer to them as the proof rules. This leads to a
Hoare-style proof system for LOTOS.

4.2 Proof rules

The proof rules permit the use of formal reasoning to ensure that a LOTOS behavior
expression B meets its specification S. They also provide other means of characterizing
processes, in that the behavior of a process can be modeled by logical assertions on its
traces and refusals, and possibly some other aspects of that.

The reader should beware that, in the list of rules given below, different occurrences of
the symbols ¢ and r in the same rule may refer to different traces and refusals, respectively.
Also recall that, as stated at the beginning of section 4.1, the variables ¢ and r are always
supposed to be universally quantified in such a context. This shorthand is due to Hoare
[Hoa85].

A behavior requirement will be written as S, S(t), or S(¢,r), according to the context.
Sometimes, we will use a single underline character (i.e. S(¢,_)) to denote a variable that
is not relevant to the context.

The process stop is completely inactive, and so the only possible observation of its
behavior is the empty trace since it refuses everything, including every subset of the
alphabet of the environment in which this process is placed. Therefore, every refusal of
stop is a subset of this alphabet. This is consistent with the fact that every process
refuses every subset of actions that is not in its alphabet, and the alphabet of stop is
empty.

S1stopEt={()ArCalk)

The process exit refuses every set not containing the successful termination action 6,
after which it behaves like stop

S2exitE(t=00A8&r)V(t=(0)ArCalFE)))

Every trace of the expression (a; B) is either empty, or has a as its head and its tail
is a possible trace of B. Therefore, the behavior requirements of B must describe its tail.
Initially, when ¢ = (), the (observable) action a cannot be refused

S 3 If B |= S(t)
then (a; B) | ((t= () Aagr)V(L={(a) ~t'"AS()))

All rules below assume that the behavior expressions involved in the following prop-
erties do not diverge; they do not engage in an unbounded sequence of internal actions.

The behavior requirements of B must describe every trace and refusal of (i; B), since
the i-action is not observable

S4 fB]S
then (i; B) = S

A behavior expression involving hiding can only interact with its environment when it
reaches a state in which it cannot engage in any further hidden actions. The proof rule
for hiding is restricted to the case where the behavior expression B does not diverge
immediately on hiding actions in a set A

S 5 If B | (~diverges(B,A)A S(t,r))
then (hide Ain B) = (Ju-t = u|(a(B) — A) A S(u,r U A))

Every trace and refusal set of a process instantiation is the result of renaming a trace
and a refusal set, respectively, described by the behavior requirements of the behavior
expression defining that process

S 6 Let “process P [df,...,al] := B, endproc” be a process definition
and F' be a renaming given by a1/al, ..., a,/a’,
If By |= S(t,r)

then P [ay,...,a,] E (Ju € traces(B,) -t = u[F|A
3X € refusals(B,/u)-r = F(X) A S(u, X))

Any observation of the behavior (B[] Bz) must be a possible observation of either B;
or By, and so it must be described by at least one of their behavior requirements. If
both operands are i-prefixed, every possible observation of the behavior of (B;[|Bs) will
be a possible observation for By or B,. However, if only Bj is i-prefixed, initially, when
t = (), (B1[] B2) cannot refuse a set of actions X unless it is refused by B;. Furthermore,
if neither By nor By is i-prefixed, (B[] Bz) cannot refuse X unless it is refused by both
By and Bs, whenever ¢ = (). Therefore

S 7 Ifi-prefized(B;) (7 =1,2), and —i-prefized(By) (k= 3,4)
and B; E S; and By |E Sk
then a) (B[] B;) E (S1V S2)

b) (B[] Bs) if t = () then Sy else (S V S3))

¢) (Bs[]Ba) if t = () then (S3 A Sy) else (S3V S4))

Note that the right-hand-side of rule b) applies also to (Bs[|Bz).
The following describes the proof rules associated with the parallel composition, se-
quential composition, and disruption. This description is based on the fact that every

= (
= (

trace and refusal of such compound processes can be described as equations between the
traces and refusals , respectively of their components

S 8 If By E Si(t,r)
and By |= Sy(t,r)
then (B1|[A]|B2) = (Fu,v, X, Y -t € ulAJvA
r=XW, Y ASi(u, X) A Sy(v,Y))

S 9 If By E Si(t,r)
and By = Sy(t,r)
then (By > Bs) = (Ju,v-t =u>> v A (¢ef (8) in uthen (Si(u, -)A
Sy(v, 1)) else (S1(u,rs) A Se(v,-))))

The rule for [> needs to distinguish two cases. If its second operand is not i-prefixed, then
every refusal of the compound expression is either a possible refusal of both operands or a
possible refusal of the second operand if the first one was already interrupted. Otherwise,
every refusal of the compound expression is a refusal of the second operand before or after
disruption. Therefore

10

S 10 If By = Si(t,r)
and By = Sy(t,r)
then (B1[> Bs) E (Ju,v-t € u[>v A (of v =) then Si(u,r)
else Si(u,-)) A Sa(v,r))
if —i-prefized(Bs)
= (Bu,v-t €ul>vA Si(u,_) A Sy(v,r))
otherwise.

5 EXAMPLE

Consider the definition of a Two Slot Buffer (7'S B) using two one slot simplex buffers (as
defined in [ISO88]-tutorial), which can accept up to two inputs at a time, and perform
one or two outputs depending on what was input. Its behavior can formally be described
as

process T'SB [input, oulput] :=
hide m:d in
SB [input, mid]
[mid)|
SB [mid, output]
endproc

where the one slot simplex buffer (SB) is defined as follows

process SB [input, output] :=
input; oultput; SB [inpul, output]
endproc

We wish to prove that
TS Binput, output] = S(t,r)
where

S(t,r) =(0 <t | input —t | output <2)
A(if t | input =t | output
then input & r
else output & r)

In other words: at any given time there can be at most two undelivered messages; also,
if there have been as many inputs as outputs, a further input is possible, else a further
output is possible.

We first prove that the one slot buffer S B satisfies its behavior requirements.
Lemma

SBinput, output] = (0 <t | input —t | output < 1)
A(if t | input =t | output
then input & r
else output & r)

11

Proof. By induction on the length of ¢ using S 3 and S 6.
Let

Reyt,r)=0<t]z—t]y<1)
ANiftlxz=t]y
then = & r
else y € r)

where x and y denote variables that are bound to some actions. Also let
A = {input, oulput}
B' = SB[input, mid]|[mud]|S B[mid, output|
B = hide mid in B’

Note that a(B’) = {input, output, mid}

Proof. First Note that by S 6 and lemma above, we have
S Blinput, mid) = Riinput,mid) (L, 7)
since the renaming is one-to-one. Similarly, we can show that
SB[mlda OUtpuﬂ |: R[mid,output](tv T)
By S 8 it follows that
B’ |= Ju,v -t € ul[{mid}v A Riinput,mia)(t, W) A Rimid outpus] (0, 2)
Ar =w &J{mid}é 4

Note that
L € uq|Sluy = Fv1, v - v; T u; At € v1|S|vg such that
a) t l S = (% l S

byt S"=v1 S +vy]S —wv | (SN
where S and S denote sets of actions. It follows that
B'E Ju,v-t € ul{muid}|v
A0 < (u | input —u | mid+v | mid —v | output) < 2
NLA=(u] A+v | A)A({t | mid=u | mid=v | mud)
A Rinput,mid) (s W) A Rimidoutpur) (0, 2) AT = W Winiay, 2
Also note that
if t | anput =t | output
then u | tnput = u | med Av | mid =v | output
else u | tnput # v | mid Vv | mid # v | output
and u | output = v | input = 0. Therefore
B'"E0<(t]input —t | output) <2
A (if t | input =1t | output then input & r
else (tnput & r A output € r)V mid & rV output & r)
= [by S 5, since clearly traces(B’) N {mid}* = {{)} and mid € r U {mid}]
BEJu-t=ulAN0< (u | itnput —u | output) < 2
A (if w | input = u | output then input & r U {mid}
else output & r U {mid})
Note now that this last property is almost identical to S(¢,r).
To see that it can be reduced to S(¢,r), note that
(ulA) la=ulaifac A

is also true and that

12

rgSUS' =x¢gSs
Therefore, {mid} can be removed yielding S(¢,r). Hence
B E S(t,r) O

6 CONCLUSION

The work presented in this paper is closely related to CSP, and favors a proof theory for
LOTOS based on failure equivalences, since two failure equivalent processes satisfy the
same behavior requirements. It provides a useful mathematical framework for the analysis
of LOTOS specifications and for developing logical systems to prove their properties. This
is illustrated by the proof rules that permit a proof of correctness of a compound process
to be constructed from a proof of the correctness of its parts.

Our proof system is restricted to strongly convergent processes. This is not regarded
as a serious limitation, since divergence is never an intentional result in the attempted
definition of a process. Also, the absence of some types of divergence (such as divergence
caused by hiding) can be proven by using the method itself. It remains, however, to
extend our system to cope with value expressions in LOTOS specifications.

Acknowledgment

This work was supported by the Natural Science Research Council of Canada, The
Telecommunication Research Institute of Ontario, the Tunisian government, and the
Canadian International Development Agency.

References

[BC89] Tommaso Bolognesi and Maurizio Caneve. Equivalence verification: Theory,
algorithms and a tool. In P.H.J. van Eijk, C.A. Vissers, and M. Diaz, editors,
The Formal Description Technique LOTOS. North-Holland, 1989.

[BHR84] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating
sequential. JACM, 31(3):560-599, 1984.

[Bri88a] E. Brinksma. On the Design of Extended LOTOS. PhD thesis, University of
Twente, The Netherlands, 1988.

[Bri88b] E. Brinksma. A theory for the derivation of tests. In S. Aggarwal and K. Sab-
nani, editors, Protocol Specification, Testing, and Verification VIII, pages 63—
74. North-Holland, 1988.

[DH84] R. DeNicola and M. Hennessy. Testing equivalences for processes. T'CS, 34:83—
133, 1984.

[DH8T] R. DeNicola and M. Hennesy. CCS without 7’s. In Proceedings of the Inter-
national Joint Conference on Theory and Practice of Software Development.

LNCS volume 249, Springer-Verlag, 1987.

13

[Gal89]

[HOS3]

[Hoa85]

[1SO88]

[Led90]

[Mil80]

[Mil89]

[Naj87]

[Par81]

[SKTN90]

[Wes86]

Souheil Gallouzi. Trace analysis of LOTOS behaviours. Master’s thesis, Uni-
versity of Ottawa, Canada, 1989.

Brent T. Hailpern and Susan S. Owicki. Modular verification of computer
communication protocols. [EFKE Transactions on Communications, COM-

31(1):56-68, 1983.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall Interna-

tional, 1985.

ISO, IS 8807. Information processing systems - Open systems interconnection
- LOTOS - A formal description technique based on the temporal ordering of
observational behaviour, May 1988.

Guy Leduc. On the Role of Implementation Relalions in the Design of Dis-
tributed Systems using LOTOS. PhD thesis, Université de Liege, 1990.

Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Compuler Science. Sringer-Verlag, 1980.

Robin Milner. Communication and Concurrency. Prentice-Hall International,

1989.

E. Najm. A verification oriented specification in LOTOS of the transport
protocol. In H. Rudin and C.H. West, editors, Protocol Specification, Testing,
and Verification VII, pages 181-203. North-Holland, 1987.

David Park. Concurrency and automata on infinite sequences. In Peter
Deussen, editor, Theoretical Computer Science, 5th GI-Conference. LNCS vol-
ume 104, Springer-Verlag, 1981.

N. Shiratori, H. Kaminaga, K. Takahashi, and S. Noguchi. A verification
method for LOTOS specifications and its application. In E. Brinksma,

G. Scollo, and C. Vissers, editors, Protocol Specification, Testing, and Veri-
fication IX. North-Holland, 1990. To appear.

A.J.G. Wester. CSP as an alternative model for LOTOS. Technical Report
SEDOS/C2/, Technical University of Twente, The Netherlands, 1986.

14

