
 Page 1

Deriving Use Cases for Distrib uted Systems

fr om Knowledge Requirements1

Abstract

Knowledge requirements for distributed systems express desired states of affairs
concerning initial and final knowledge of the components of a system. It is
shown how use cases (i.e. sets of scenarios) can be obtained from knowledge
requirements. The technique involves the use ofevent structures that specify use
cases capable of achieving the requirements, and logical postconditions for
events. The technique allows design refinement, both in the form of architectural
refinement and in the form of event refinement. The correctness of refinements
can be checked by checking logical implications. As an example, use cases and
scenarios for a simple mobile telephony protocol, based on GPRS (the data
extension of GSM) are derived, on the basis of the corresponding knowledge
requirements. Scenarios are given in the form of Message Sequence Charts.

Keywords: use cases, scenarios, logic specifications, knowledge requirements,
event structures, distributed system design, protocol design.

1. Intr oduction

Use cases have been defined [Jac92, BuC95] as structured prose descriptions of interaction
scenarios between a system to be designed and users of the system. Thus use cases are sets of
scenarios. They have been recognized as helpful in systems design, test case generation, etc. The
formulation of use cases is often taken as the initial step in the software design process, in the
sense that use cases specify system functionalities and system requirements [ALBG99].

In this paper, we propose a somewhat more fundamental view. We start from the idea that
the function of a distributed system is to distribute knowledge. System functionalities start with a
situation where some agents know something, and aim to achieve a situation where other agents
know the same, or a related, thing. For example, when Joe knows that he has won a lottery, he
may use the telephone system to share this information with Mary. This common knowledge is
the final postcondition that Joe intends to achieve by using the telephone system. The use of this
system, as well as its internal functioning, involves a large number of intermediate knowledge
requirements. By the way telephone systems are generally conceived (which we can take as a
preexistingarchitectural constraint), the user’s requirement can be achieved by going through
an intermediate step where the user and the system share knowledge of Mary’s telephone

1. Appeared in Annals of Telecommunications 54, 11-12, 1999, 2-13

Xiao Jun Chen
School of Computer Science

University of Windsor
Windsor ON Canada

xjchen@cs.uwindsor.ca

Luigi Logrippo
School of Information Technology and

Engineering
University of Ottawa
Ottawa, ON Canada

luigi@site.uottawa.ca

 Page 2

number.This becomes an intermediate requirement or postcondition, that must be achieved in
order for the overall requirement to be achieved. This intermediate requirement must in its own
turn be decomposed, normally by first reaching a situation where the system knows that the user
is about to send the number, and the user knows that the system is ready to accept it.

 In other words, by lifting the handset, the system will know that Joe wants to talk; by
hearing the dial tone, Joe knows that he can dial; by dialing, the system will know the address of
Mary’s phone, etc., until the final requirement is reached (or not if Mary is absent or busy, two
other scenarios). The well-known use cases of basic telephone connection can be constructed in
terms of knowledge requirements, architectural constraints, and design refinements necessary to
meet the architectural constraints at increasing levels of refinement, while keeping the
preexisting knowledge requirements invariant.

According to this philosophy, a first step towards designing systems functionalities and the
corresponding use cases is determining who must know what and in what order. The physical
and engineering constraints of real-life systems will require refinements in the form of
intermediate agents and intermediate requirements. We show that use cases and scenarios can be
derived from this information by using a refinement process.

 We consider the functionalities to be implemented one by one: for each functionality, we
have a set ofknowledge requirements it is intended to achieve. We derive use cases and
scenarios that satisfy the knowledge requirements under consideration, as well as existing facts
such as system topology (which are thearchitectural constraint), and other knowledge about the
system (which we callgeneral knowledge).

To specify knowledge requirements, we use English statements. Ideally, these should be
formalizable following the theory of epistemic logic [Hin62] towards distributed systems
[Hal87,HF89], but we do not provide this formalization in the paper. We exploitevent structures
[Wi80, Wi89, BoCa89, La91] as a way of representing use cases and we show how to derive
them from knowledge requirements step by step. Event structures have been invented on the
basis of mathematical intuitions rather than design considerations. However there are intuitions
behind event structures that are basically simple and graphical in nature. In this paper, we
slightly extend this notation according to the nature of the use cases.For people leery of
anthropomorphic language,knowledge can easily be translated toavailability of information.

The method we propose is illustrated in Figure 1: (i) we assume the existence of a number
of facts, calledgeneral knowledge andarchitectural constraints; (ii) for each functionality, we
haveknowledge requirements corresponding to it; (iii) from these, we construct event structures
to represent functionalities; as we have mentioned, we take each event structure as a use case
corresponding to a functionality; (iv) from the event structure, a set of scenarios can be derived.
The most important step is (iii): we show the construction of the event structures in a stepwise
refinement method. In doing so, we introduce a set of postconditions associated to each event in

architect. constraints
general knowledge

knowledge req’ts

 event structures, scenarios

Fig. 1. Obtaining use cases and scenarios

 use cases

 Page 3

the event structure. Using preconditions (assumptions) and postconditions (consequences) to
prove the correctness of refinements with respect to a specification has been extensively studied
for sequential programs, while to deal with concurrent systems, [AL93] have discussed proving
the properties (consequences) of a composite system from the properties (assumptions) of the
relative behaviors of its parallel components. Here we show that the postconditions that we
introduce facilitate the refinement of event structures from one step to another.

As already hinted above, it should be noted that our work is not limited to the derivation of
use cases and scenarios, but also addresses the more general problem of system design. However
in order to be complete in this respect, the method should be capable of expressing iteration or
recursion, which require further study.

In Sections 3 and 4, a sizeable example of use of our method is provided. It is based on the
forthcoming standard GPRS, the data extension of GSM.

Section 2.Extended stable event structures

Event structures [Wi80, Wi89] have achieved recognition as truly concurrent models for process
theory [BoCa89, La91]. The intuitions behind event structures are basically simple and
graphical in nature, and we show here that they provide a suitable way for formal requirement
definition in distributed system designs.

Various kinds of event structures have been studied in the literature, such as prime event
structure [Wi80, Wi89], stable event structure [Wi89], flow event structure [BoCa89], bundle
event structure [La91]. In this paper, we adopt some basic notions from stable event structures,
and extend them for the definition of functionalities, use cases and scenarios.

A stable event structure consists of events and relations between events. The events model
the occurrence of actions, the fact that “something happens”. The events are labelled: each event
has a label denoting an action. Different events are represented by different circles, but they may
have the same label. We represent events by small circles. In particular, we use in our
extended version, a circle with a dot inside to denote aninitial event, and a black
circle to denote afinal event. This information will be required when we obtain scenarios, as
will be presented later.
 There are mainly three kinds of relations between events: the enabling relation, the conflict
relation, and the independence relation (in what follows denotes an arbitrary circle, which
could also be or).

(1) The enabling relation.

An enabling relation is an antisymmetric relation between a set of eventsF and another evente.
The intuition behind is that evente is enabled once all events inF have happened. We depict
this relation by drawing an arrow from each element ofF to e and connecting all the arrows by
small lines. For example, in Figure 2(1),e is enabled bya andb. In other words, in each system
run r, if e appears, then botha andb should appear inr beforee. Note that there may be more
than one set of events to enable the same event. In Figure 2(2),e can be enabled either by botha

 Page 4

andb or enabled byc only.

(2) Conflict relation.

A conflict relation is a symmetric binary relation between events. We use to
denote the conflict relation between eventa and eventb. The intuitive meaning is thata andb
will never happen together in any single system run.

(3) Independence relation.
An independent relation is a symmetric binary relation between events. We use
(the absence of enabling and conflict relation) to denote that eventa and eventb are
independent. That is, if botha andb are enabled, they can occur in any order or simultaneously,
so they neither need to happen in parallel nor to occur one before the other.

Stable event structures must satisfy consistency and stability properties as defined in [La91].
In our refinement process of deriving an event structure from knowledge requirements, an

event can be either aprimary one or acomposite one. A primary event is either an internal event
of an agent, or a message passing from one agent to another. A composite event, on the contrary,
cannot be implemented directly. It must bedecomposed according to the requirements, until all
the events are primary ones. We associate each event with a set of postconditions that are true
after the event. We use {p1,p2,...,pn} to denote the conjunction of the postconditionsp1, p2, ...,
pn.

Postconditions are introduced to facilitate the refinement process. Leta be a composite
event. Beforea is refined, some parts other thana, including events that depend ona, may need
to be refined. The postconditions ofa can then be used as the preconditions to refine the events
that depend ona. Later on, whena is refined, the postconditions ofa can be used as the scope of
a’s decomposition. The refinement of an event structure can be the decomposition of events or
the refinement of postconditions, or both of them. The fact that a postconditionp’ refines a
postconditionp means thatp’ implies p. This refinement is considered to be correct because it
does not change the possibility of enabling any events that depend onp.

Section 3. An example: the GPRS system

In this section, we providean example of how to derive extended stable event structures using
postconditions. For simplicity, such structures with postconditions will also be called event struc-
tures. We take one of the functionalities of GPRS, namely therouting update procedure. We dis-
cuss the knowledge requirements for it, and we exemplify the derivation of an event structure for
it.

This section can be described as an exercise inreverse engineering, since we are taking an
existing system and we are trying to justifya posteriori its design on the basis of our method.

Note that our example is based on ETSI documents on GPRS that are still being modified.
People active in the development of this standard may recognize our description as outdated,
however this is not important for the purpose of this paper.

e
a

b

a
b
c

e

(1) (2)
Figure 2. Examples for the enabling relation

a b

a b

 Page 5

Section 3.1 GPRS and main architectural constraints

GPRS (the General Packet Radio Service) is a packet switched service that is currently being
developed by European Telecommunications Standardization Institute (ETSI)[ETSI98]. It is
being implemented on top of the existing Global System for Mobile communication (GSM)
[MP92]. It provides data transmission services for mobile subscribers and allows users to be
involved in either Point-to-Point or Point-to-Multipoint transmissions.

Figure 3 shows a simplified GPRS architecture. Here

1. A Mobile Station (MS) is a terminal equipment that the subscriber uses to access the
services from the network; MSs find themselves incells (represented by hexagons) and
location areas (concepts developed in Section 3.2).

2. The Home Location Register (HLR) contains the subscription information such as service
profiles, identifications of MSs and the MSC areas in which the MSs are currently located.
Each subscriber is registered in only one HLR which is the one that performs the charging
and billing functions;

3. The Serving GPRS Support Node (SGSN) is the node that is serving the MS. It contains the
Routing Context for the MSs attached to it. The Routing Context holds the information of
the GGSNs (see below) that the GPRS subscribers will be using;

4. The Gateway GPRS Support Node (GGSN) is the node which is accessed by the packet
data network due to the evaluation of the Packet Data Protocol (PDP) address. It contains a
record for each attached GPRS user. Such records are used to communicate with the SGSNs
who are serving the MSs. PSPDN denotes an external packet switched public data network.
The figure shows several other protocol entities (agents) in the architecture denoted by

dashed boxes, i.e.the Base Station Transceiver (BTS), the Base Station Controller (BSC), the
Mobile Switching Center (MSC), the Authentication Center (AuC), the Visitors Location
Register (VLR), and the Equipment Identity Register (EIR). We do not introduce them since we
do not discuss them in the paper. Our example is simplified and it takes into account only the
logical links between MS, SGSN, GGSN, and HLR. Also, details related to authentication and
security checks are not discussed.

From the above architecture we know, for example, that message passing may happen
between an MS and an SGSN (provided that there is a link established between them, or in other
words, they know the address of each other), while a HLR cannot talk to a GGSN. So we have
the architectural constraints illustrated as follows (the arrows represent the connections, and the

BSC

MSC HLR

VLR EIRAuC

SGSN GGSN

PSPDNGGSN

GGSN

Other GPRS Network

MS

BTS

BTS

BTS

Figure 3. GPRS architecture

 Page 6

loop on SGSN represents the fact that several interconnected SGSNs can be instantiated, see
Fig. 6):

There is also other information related to the architecture. We review what is needed for our
example.

When a user subscribes to the GPRS system, the information related to its subscription, the
Quality of Service (QoS) for example, is stored in the HLR (i.e. it is known by it). This informa-
tion is called SubscriberData, and whenever the subscriber is connected to an SGSN or switched
to a new SGSN, such information is also stored in this (new) SGSN.

The Routing Context contains the necessary information to allow the transactions of sending
and receiving messages between an MS and an external network. It is kept in the SGSN and
updated every time the MS moves to a new location.

Among all the information that we can obtain from the GPRS system, we use the following
general knowledge:

(A1) For any network entitiesA andB, A can talk toB only if A knows the address ofB;
(A2) SGSN can only talk to MSs that are in its own location area;
(A3) All SGSNs know the address of the HLR;
(A4) The HLR knows the SubscriberData for each MS;
(A5) The SGSN in charge of an MS knows the RoutingContext of this MS;
(A6) Each MS knows the address of its SGSN.

Section 3.2 Knowledge requirements and design refinement

Mobility of subscribers makes it crucial for the network to be aware of the location of the user
when it indicates its intention to use the services provided by the network. A mechanism has to be
identified in order to keep track of the location of a Mobile Station in the network. This mecha-
nism is called “Routing Update” and it is the subject of our example: we consider the knowledge
requirements for such Routing Update procedure.

A Mobile Station moves around. At a certain point, it knows that it has changedcell. A Loca-
tion Area contains a collection of geographically connected cells. Each Location Area has only
one SGSN serving it. When the Mobile Station moves from one cell to another, its Location Area
may change, implying a change of the SGSN to serve it. Thus, when the Mobile Station knows

MS SGSN GGSN

HLR
Figure 4. Interconnections among the entities

 Page 7

that it has changed its cell, it starts an update procedure, resulting in the fact that eventually the
New SGSN will know its new cell location.

Assume then that a Mobile Station aMS has changed Location Area. Let aOldSGSN be the
SGSN that was serving the aMS before it moved, and aNewSGSN be the SGSN that is in charge
of serving the aMS after it moved. We consider the simple case where the aMS is connected to
only one GGSN and we call it aGGSN. The related HLR is called aHLR. Among these entities,
the interconnections are shown in Fig. 6.

Now we show in four steps the derivation of a possible event structure that meets thearchitectural
constraints in Figure 6, the general knowledge(A1)--(A6), and theknowledge requirements (given
below) for the Routing Update procedure.

Step (i).

When aMS moves to another Location Area, according to general knowledge(A2) and
architectural constraint (Figure 6), aNewSGSN and only aNewSGSN can be informed of this
change. So we have requirement

(C1) When aMS moves to the Location Area of aNewSGSN, it should inform aNewSGSN of its
change of Location Area;

 Receiving the information that aMS has moved to the new Location Area, aNewSGSN
knows that a routing update is required, and it can broadcast the update request to other protocol
entities.

Both aGGSN and aNewSGSN have the right to reject the routing update of the aMS. They
may reject the request if, due to the regional, national or international restrictions, aMS is not
allowed to roam into the Location Area or if the subscription check fails. If aNewSGSN rejects
the request, since aNewSGSN cannot serve aMS while it is the only possible entity to talk to

Figure 5. Routing update with change of SGSN

LA1 LA2

SGSN
Old New

SGSN

2(Old Logical Link) (New Logical Link)
1

aMS aGGSN

aOldSNSG

aNewSGSN

aHLR

Figure 6. Interconnections among the entities of the routing update example

 Page 8

aMS, then aMS should receive a negative notification (it has no logical link to aNewSGSN).
Otherwise, aMS should receive a positive notification (it has logical link to aNewSGSN), and it
should also be informed whether it has connection to aGGSN (whether it can send and receive
data by way of aGGSN). Precisely,

(C2) For each update request, aNewSGSN could either accept the update (Upd-Acc) or reject
the update request (Upd-Rej);

(C3) If aNewSGSN rejects the request, then aMS should be notified that it has no logical link to
aNewSGSN (Upd-Notify-);

(C4) If both aNewSGSN and aGGSN accept the request, then after the update is done
(Update1), aMS should be notified that it has logical link to aNewSGSN and that it has
connection to aGGSN (Upd-Notify+1);

(C5) If aNewSGSN accepts the request while aGGSN rejects it, then after the update is done
(Update0), aMS should be notified that it has logical link to aNewSGSN but (currently) it
has no connection to aGGSN (Upd-Notify+0).

Note that according to the architectural constraint, and the general knowledge, aNewSGSN is
the only entity who could notify aMS of the update result. So we can rewrite(C4) and(C5) as

(C4’) If both aNewSGSN and aGGSN accept the request, then after the update is done
(Update1), aNewSGSN should tell aMS that it has logical link to aNewSGSN and that it
has connection to aGGSN (Upd-Notify+1);

(C5’) If aNewSGSN accepts the request while aGGSN rejects it, then after the update is done
(Update0), aNewSGSN should tell aMS that it has logical link to aNewSGSN but
(currently) it has no connection to aGGSN (Upd-Notify+0).

In order to tell aMS these corresponding results, aNewSGSN itself should know them
(postconditionsnkud, nkce, nkcn) after the update. Thus, we have the event structure shown in
Figure 7. Note that for each event, we give in the figure a name of the event together with names
of each of its postconditions, whose meanings are given in the corresponding Table 1. The
dashed ellipse in the figure, as well as the events with "*" in the table, identify the composite
events that are to be refined in successive steps.

Upd-Req

Upd-Notify+0

Upd-Rej

Upd-Notify-Upd-Notify+1

Upd-Acc

Figure 7. Event structure for routing update: step (i)

Update0

Update1

{ nkr}

{ nr}

{ nkud, nkcn}

{ nkud,nkce}

{ nar}

{ mkud,mkcn} { mkud,mkce} { mkur}

 Page 9

Step (ii)

Now we go into the details about the update. To refine events Update0 and Update1 means to
realize their postconditionsnkud, nkce andnkcn. We say that

(C6) (ud) aMS has logical link to aNewSGSN
means that
(nas) aNewSGSN added the SubscriberData for aMS;
(hu) aHLR updated its Location of aMS.

(C7) (ce) aMS has the connection to aGGSN
means that
(ur) aNewSGSN added its RoutingContext of aGGSN for aMS;
(gu) aGGSN updated its record for aMS and aNewSGSN.

(C8) (cn) aMS has no connection to aNewSGSN
means that
(gd) aGGSN deleted its record for aMS and aOldSGSN.

We use to denote that from the conjunction of conditionsp1, p2, ..., pn, we

Table 1: Events and postconditions in Fig. 7

event
name

event
post
cond
name

postconditions

Upd-Req aMS tells aNewSGSN it has changed
Location Area

nkr aNewSGSN knows the update request for aMS

Upd-Acc aNewSGSN accepts the update request nar aNewSGSN accepted the update request

Upd-Rej aNewSGSN rejects the update request nr aNewSGSN rejected the update request

Update0 *GPRS does the routing update with no
connection to aGGSN established, and
notifies aNewSGSN

nkud

nkcn

aNewSGSN knows aMS has logical link to
aNewSGSN;
aNewSGSN knows aMS has no connection to
aGGSN

Update1 *GPRS does the routing update with con-
nection to aGGSN established, and noti-
fies aNewSGSN

nkud

nkce

aNewSGSN knows aMS has logical link to
aNewSGSN;
aNewSGSN knows aMS has connection to
aGGSN

Upd-
Notify+0

aNewSGSN tells aMS that it has logical
link to aNewSGSN but it has no connec-
tion to aGGSN

mkud
mkcn

aMS knows it has logical link to aNewSGSN;
aMS knows it has no connection to aGGSN

Upd-
Notify+1

aNewSGSN tells aMS that it has logical
link to aNewSGSN and it has connection
to aGGSN

mkud
mkce

aMS knows it has logical link to aNewSGSN;
aMS knows it has connection to aGGSN

Upd-
Notify-

aNewSGSN tells aMS that it has no logi-
cal link to aNewSGSN

mkur aMS knows it has no logical link to
aNewSGSN

p1, p2, ..., pn
p

 Page 10

can deduce conditionp. So requirements(C6)--(C8) are expressed as (Fig. 8)

Furthermore, letA be a protocol entity, we assume that

This implication can be easily derived from Epistemic Logic [Hin62]. Here we just use it by
intuition. So from Figure 8 we obtain

Note that above we have usedaNewSGSN added SubscriberData for aMS (nas) to substitute
aNewSGSN knows aNewSGSN added SubscriberData for aMS, since the former implies the
latter. The same substitution is used fornur. It is interesting here to note that we distinguish
between the situation where an entity knows some data and the situation where the entity knows
that it has added the data to its database.

Thus, we obtain the refined event structure (cf. Fig. 10) on this step, where the
postconditions (nkud, nkce, nkcn) of Update1 and Update0 are replaced by the conjunction of
the conditions that imply them (cf. Figure 9). For example,nkud is replaced by the conjunction
of nasand nkhu. The ellipse in the event structure singles out the events that are refined from the

nas: aNewSGSN added SubscriberData for aMS,
hu: aHLR updated the Location of aMS,

ud: aMS has logical link to aNewSGSN

ur: aNewSGSN added its RoutingContext of aGGSN for aMS,
gu: aGGSN updated its record for aMS and aNewSGSN

 ce: aMS has connection to aGGSN

gd: aGGSN deleted its record for aMS and aOldSGSN

 cn: aMS has no connection to aGGSN
Figure 8. Requirements (C6)--(C8)

p1, p2, ..., pn

p

A knows p1, A knows p2, ...,A knowspn

A knowsp
implies

nas: aNewSGSN added SubscriberData for aMS,
nkhu: aNewSGSN knows aHLR updated the Location of aMS,

 nkud: aNewSGSN knows aMS has logical link to aNewSGSN

nur: aNewSGSN added its RoutingContext of aGGSN for aMS,
nkgu: aNewSGSN knows aGGSN updated its record for aMS and aNewSGSN

 nkce: aNewSGSN knows aMS has connection to aGGSN

nkgd: aNewSGSN knows aGGSN deleted its record for aMS and aOldSGSN

 nkcn: aNewSGSN knows aMS has no connection to aGGSN

Figure 9. Refinement of the postconditions

 Page 11

previous step. Table 2 shows the meanings of the refined postconditions.

Step (iii)

Now we consider the newly obtained postconditions (nas, nkhu, nkgd, nur, nkgu) in the previous
step.

In our context, suppose we have relatione1 enables e2. As we know, this means that
postcond(e1) enablese2. Here we usepostcond(e) to denote the set of postconditions ofe.
During the refinement, we can

1. refinee1 into e3 ande4, to obtain the postconditions ofe1 by different events. I.e.

2. refine relatione1 enables e2 into e3 and e4 enable e2. As we know,e3 and e4 enable e2
means thatpostcond(e3)∪ postcond(e4) enablese2. Due to(C) above, this implies thate1

Table 2: Events and postconditions in Fig. 10

event
name

event
post
cond
name

postconditions

Update0 *GPRS does the routing update with no
connection to aGGSN established, and
notifies aNewSGSN

nas
nkhu

nkgd

aNewSGSN added SubscriberData for aMS;
aNewSGSN knows aHLR updated the Loca-
tion of aMS;
aNewSGSN knows aGGSN deleted its record
for aMS and aOldSGSN

Update1 *GPRS does the routing update with con-
nection to aGGSN established, and noti-
fies aNewSGSN

nas
nkhu
nur

nkgu

same as above;
same as above;
aNewSGSN added the RoutingContext of
aGGSN for aMS;
aNewSGSN knows aGGSN updated its record
for aMS and aNewSGSN

Figure 10. Event structure for routing update: step (ii)

Upd-Req

Upd-Notify+0

Upd-Rej

Upd-Notify-Upd-Notify+1

Upd-Acc

Update1

{ nkr}

{ nr}{ nar}

{ mkud,mkcn} { mkud,mkce} { mkur}

{ nas,nkhu,
nur,nkgu}

Update0
{ nas,nkhu,

nkgd}

postcond e3() postcond e4()∪ postcond e1()⊇ C()

 Page 12

enables e2.

Now consider relation

Update0 {nas,nkhu,nkgd} enables Upd-Notify+0 {mkud,mkcn}

in the previous step. We refineUpdate0 into Upd-O0 {nkgd}, Upd-H{nkhu}andUpd-NS {nas}.
Obviously,

postcond(Upd-O0)∪ postcond(Upd-H)∪ postcond(Upd-NS) = postcond(Update0)

and we refine relationUpdate0 enables Upd-Notify+0 into Upd-O0, Upd-H and Upd-NS enable
Upd-Notify+0:

Similarly, we refine eventUpdate1 {nas,nkhu,nur,nkgu} in the previous step into eventsUpd-O1
{nkgu}, Upd-H {nkhu}, NUG {nur} andUpd-NS {nas}. Note that we have requirement

(C9) aNewSGSN can add its RoutingContext for aMS (NUG) only after it knows aGGSN has
updated its record for aMS and aNewSGSN (nkgu).

So event NUG depends on event Upd-O1. Thus, we have

Now considering Figure 11 and Figure 12, we obtain the structure on this step as shown in
Figure 13 and Table 3 (with only explanations of the refined events). Note that eventsUpd-H

e1

e2

e3 e4

e2

Update0
{ nas,nkhu,nkgd}

Upd-Notify+0
{ mkud,mkcn}

Upd-Notify+0
{ mkud,mkcn}

Upd-O0
{ nkgd}

Upd-H
{ nkhu}

Upd-NS
{ nas}

Figure 11. Obtaining a set of postconditions from several sets of postconditions (a)

Update1
{ nas,nkhu,,nkgu,nur}

Upd-Notify+1
{ mkud,mkcd}

Upd-Notify+1
{ mkud,mkcd}

Upd-O1
{ nkgu}

Upd-H
{ nkhu}

Upd-NS
{ nas}

Figure 12. Obtaining a set of postconditions from several sets of postconditions (b)

NUG
{ nur}

 Page 13

andUpd-NS in Figure 11 and Figure 12 are the same.

Step (iv)

Finally, we go into the details of Upd-O1, Upd-O0, Upd-H and Upd-NS. Due to lack of space,
we only consider the refinement of Upd-O1. The refinements of Upd-O0, Upd-H and Upd-NS
are similar.

The postcondition (nkgu) of Upd-O1 depends on the condition thataGGSN updated its
record for aMS and aNewSGSN (gu). We use GU1 (with postconditiongu) for the event that
aGGSN updates its record for aMS and aNewSGSN.

Table 3: Events and postconditions in Fig. 13

event
name

event
post
cond
name

postconditions

Upd-O0 *aGGSN deletes its record for aMS and
aOldSGSN, and aNewSGSN is notified of
this

nkgd aNewSGSN knows aGGSN deleted its record
for aMS and aOldSGSN

Upd-O1 *aGGSN updates its record for aMS and
aNewSGSN, and aNewSGSN is notified
of this

nkgu aNewSGSN knows aGGSN updated its record
for aMS and aNewSGSN

NUG aNewSGSN adds the RoutingContext of
aGGSN for aMS

nur aNewSGSN added the RoutingContext of
aGGSN for aMS

Upd-H *aHLR updates the Location of aMS and
notifies aNewSGSN

nkhu aNewSGSN knows aHLR updated the Loca-
tion of aMS

Upd-NS *aNewSGSN adds SubscriberData for
aMS

nas aNewSGSN added SubscriberData for aMS

Figure 13. Event structure for routing update: step (iii)

Upd-NS

NUG

Upd-H
Upd-O1

Upd-O0

Upd-Req

Upd-Notify+0

Upd-Rej

Upd-Notify-Upd-Notify+1

Upd-Acc

{ nkr}

{ nr}
{ nar}

{ mkud,mkcn} { mkud,mkce} { mkur}

{ nkgd} { nkgu}

{ nur}

{ nkhu} { nas}

 Page 14

To do GU1, aGGSN should know the update request, yet aNewSGSN does not know the
address of aGGSN in order to inform it of the update request. However, by general knowledge
(A6), aMS knows the address of aOldSGSN, so we can let the update request from aMS to
aNewSGSN to include the address of aOldSGSN, and thus, aNewSGSN knows the address of
aOldSGSN. By this, together with(A1) and Figure 6, we know that aNewSGSN can talk to
aOldSGSN and tell it the update request. By(A5), on the other hand, aOldSGSN knows the
address of aGGSN, so once aOldSGSN knows the update request, it can inform aGGSN about it.
We use NTOU for the event by which aNewSGSN informs aOldSGSN of the update request,
and OTGU for the event by which aOldSGSN informs aGGSN of the update request. Thus, we
have the following events and their enabling relations:

NTOU {okr} --> OTGU {gkr} --> GU1 {gu}

Once aGGSN has updated its record for aMS and aNewSGSN, it can again ask aOldSGSN
to pass this message to aNewSGSN. We use GTOU1 (with postconditionokgu) for the event that
aGGSN tells aOldSGSN it has updated its record for aMS and aNewSGSN, and we use OTNU1
to name the event thataOldSGSN tells aNewSGSN that aGGSN has updated its record for aMS
and aNewSGSN. Thuswe have the following events and their enabling relations:

 GU1 {gu} --> GTOU1 {okgu} --> OTNU1 {nkgu}

All together, we have got the way to obtain postconditionnkgu:

 NTOU {okr} --> OTGU {gkr} --> GU1 {gu} --> GTOU1 {okgu} --> OTNU1 {nkgu}

The refinements of Upd-O0, Upd-H and Upd-NS are similar to this refinement of Upd-O1.
The final event structure is shown in Figure 14 and Table 4 gives the meanings of the events and

 Page 15

postconditions that are refined on this step.

Section 4. Use cases and scenarios in event structures
There is no agreed formal definition of use case or scenario in the literature. Hence, we propose
to take our event structures as representing use cases. We shall now deal with the derivation of
scenarios.

Let S be an event structure. Asystem run in S is any tracer of S that satisfies the following
conditions:

Table 4: Event and postconditions in Fig. 14

event
name

event
post
cond
name

postconditions

NTOU aNewSGSN tells aOldSGSN the update
request

okr aOldSGSN knows the update request

OTGU aOldSGSN tells aGGSN the update
request

gkr aGGSN knows the update request

GU0 aGGSN deletes its record for aMS and
aOldSGSN

gd aGGSN deleted its record for aMS and
aOldSGSN

GTOU0 aGGSN tells aOldSGSN it has deleted its
record for aMS and aOldSGSN

okgd aOldSGSN knows aGGSN deleted its record
for aMS and aOldSGSN

OTNU0 aOldSGSN tells aNewSGSN that
aGGSN has deleted its records for aMS
and aOldSGSN

nkgd aNewSGSN knows aGGSN has deleted its
records for aMS and aOldSGSN

GU1 aGGSN updates its record of SGSN for
aMS and aNewSGSN

gu aGGSN updated its record for aMS and
aNewSGSN

GTOU1 aGGSN tells aOldSGSN it has updated its
record for aMS and aNewSGSN

okgu aOldSGSN knows aGGSN updated its record
for aMS and aNewSGSN

OTNU1 aOldSGSN tells aNewSGSN that
aGGSN has updated its record for aMS
and aNewSGSN

nkgu aNewSGSN knows aGGSN updated its records
for aMS and aNewSGSN

NTHU aNewSGSN asks aHLR for Subscriber-
Data and asks it to update its Location for
aMS

hkns

hkr

aHLR knows aNewSGSN needs to know Sub-
scriberData of aMS;
aHLR knows the request to update its Location
for aMS

HU aHLR updates its Location for aMS hul aHLR updated its Location for aMS

HTNU aHLR tells aNewSGSN that it has
updated its Location of aMS

nkhu aNewSGSN knows aHLR updated its Location
of aMS

HTNS aHLR tells aNewSGSN the Subscriber-
Data of aMS

nks aNewSGSN knows the SubscriberData of aMS

NUS aNewSGSN adds SubscriberData for
aMS

nas aNewSGSN added SubscriberData for aMS

 Page 16

1. r starts from an initial event and ends at a final event;
2. an evente in a runr is preceded inr by all the actions in one of its enabling sets (we assume

for simplicity that an action can occur at most once in a run);
3. for any evente in r, no event in conflict withe in S appears inr.

In the previous section, we have seen how to obtain an event structureS from knowledge
requirementsR, by way of stepwise refinements. Asequence of events (scenario) satisfyingR
corresponds to a system run inS. So

1. to obtain a scenario from given knowledge requirements is equivalent to find a system run in
the event structure obtained from these requirements;

2. to verify whether a scenario satisfies the given knowledge requirements is equivalent to
verify whether it is a system run in the event structure obtained from these requirements.

Once we have obtained event structures from knowledge requirements, we can either obtain the
scenarios that satisfy the requirements, or verify whether a given scenario satisfies the
requirements.

One of the system runs derived from Figure 14 is

Upd-Req, Upd-Acc, NTHU, HTNS, NUS, HU, HTNU, NTOU, OTGU, GU1, GTOU1,
OTNU1, NUG, Upd-Notify+1

The meaning of this event sequence is illustrated in Figure 15. This figure shows the scenario

GU0

Figure 14. Event structure for routing update: step (iv)

GU1

OTNU0

OTNU1

NTOU

OTGU

GTOU0
GTOU1

NUS

HU HTNS

HTNU

NTHU

NUG

Upd-Req

Upd-Rej

Upd-Notify-Upd-Notify+1

Upd-Acc

{ nkr}

{ nr}
{ nar}

{ mkud,mkce} { mkur}

{ nur}

Upd-Notify+0
{ mkud,mkcn}

{ hkns,hkr}

{ hul}

{ nkhu}

{ nks}

{ nas}

{ okr}

{ gkr}

{ gd} { gu}

{ okgu}
{ okgd}

{ nkgu}{ nkgd}

 Page 17

where aMS moves from location area LA1 (served by a SGSN called aOLDSGSN) to LA2
(served by aNewSGSN). aNewSGSN in LA2 detects the arrival of this aMS and proceeds to the
routing update. This is expressed as the first event Upd-Req (1). aNewSGSN does the
authentication check which we assume to be successful (internal event of aNewSGSN denoted
by Upd-Acc (2)). aNewSGSN then asks aHLR for the information about this new aMS,
information that is provided (3)(4). aNewSGSN adds the information and the aHLR updates its
own information on aMS (5)(6). aHLR then informs aNewSGSN that the update has been
completed (7). aNewSGSN then informs aOLDSGSN of the fact that it is now serving aMS (8),
and this information is propagated to aGGSN, which then informs aOLDSGSN of the fact that
the update is complete (9)(10)(11). aOLDSGSN informs aNewSGSN of the fact that these
updates have been completed (12). This process ends with further updates in the aNewSGSN
(13), and concludes with the notification to aMS that the process is completed (14).

In distributed system design, often one is interested only in the communications among the
protocol entities, or agents. Internal events such asHLR updates its Location for MSare not of
interest. This means that sometimes we need to ignore the internal events. By doing so in the
above event sequence, we have the following scenario, illustrated in Figure 16 in the form of a
Message Sequence Chart:

Upd-Req, NTHU, HTNS, HTNU, NTOU, OTGU, GTOU1, OTNU1, Upd-Notify+1

aGGSN

aOLDSGSN aNewSGSN

(1) Routing update request

aHLR

(3) Give me info
(4) Here’s

(8) I am now serving aMS. Update
 the context for aMS (NTOU)

(9) New SGSN is
now serving aMS

(11) Updated
 Context

(12) aMS is at yours (OTNU1)

LA1
LA2

 about aMS
info. about

Figure 15. A routing update event sequence

(5) Adds the info
 of aMS (NUS)

(14) Updatecomplete

(7) Location updated
 to yours (HTNU)

(6) Update location
for aMS (HU)

(10) Update context
 of aMS

(2) Authentication

(13) Add RoutingContext
for aMS (NUG)

aMS

(Upd-Req)

(Upd-Acc) check O.K.

(NTHU)

(Upd-Notify+1)

(HTNS)

(OTGU)

(GTOU1)

(GU1)

aMS

 Page 18

5. Conclusions and final remarks

Starting from the idea that the function of a distributed system is to distribute knowledge, it was
shown how the knowledge requirements of a distributed system can be specified. It was then
shown how a partial system design can be developed by using these requirements, together with
other facts, such as architectural constraints and other general knowledge about the system.

Event structures, corresponding to use cases, were used to express the design. Post-
conditions were associated with events, and they must be shown to imply the desired knowledge
requirements. Event structures can be refined progressively, and the correctness of each
refinement can be verified by checking implication relations between postconditions. These
event structures (at any stage of refinement) can be used to generate scenarios, which in turn can
be used to check whether a design provides the desired system behavior, as further guidance to
implementors, or as a basis for the generation of test cases. The method was demonstrated by
using as example a mobile packet switching protocol.

This paper illustrates a way of designing distributed systems that is natural and intuitively
used, but has not been developed in the literature. In a theoretical setting, it appears to be an
application of theproof searching concept that is advocated by many authors as a method for
generating correct programs from requirements.

There are several topics for further research, one of them being the formalization of the
method. The reader will have noticed that we have used many English expressions that could be
translated to precise statements in logic, but at the cost of many definitions. Further, the results
of our method are not complete designs, because at this point we do not specify recursion or
iteration.

Use Case Maps (UCMs) [BuC95, ALBG99] are a use case notation that is gaining rapid
acceptance in industry. It includes concepts of pre- and post-conditions. We are planning to
adapt the ideas of this paper to the UCM notation.

We are also at the early stages of developing a tool to support this design approach. This

Upd-Req

 NTHU

 HTNU

HTNS

aMS aNewSGSN aHLR aOldSGSN aGGSN

RoutingUpdateReq(MS-Id,OldSGSN)

UpdateLocationReq(MS-Id,NewSGSN)

UpdateLocationRes(MS-Id)

SubscriberData

ProvideContextReq

GGSNUpdateReq(MS-Id,NewSGSN)

GGSNUpdateRes

ProvideContextRes(MS-Id,RoutingContext)

RoutingUpdateAcc

Figure 16. Routing update use case

NTOU

OTGU

GTOU1

OTNU1

Upd-Notify+1

(1)

(3)

(4)

(7)

(8)

(9)

(11)

(12)

(14)

 Page 19

tool (being implemented in Java) has the goal of helping in the routine tasks of generating event
structures, preconditions, and postconditions. So far, it takes postconditions as they are written,
without analyzing them. Eventually, it would help in formalizing requirements from statements
written in a stylized form of English, as well as checking consistency of refinements.

A further topic of interest is the development of a testing theory based on the satisfaction of
logic requirements. In our example, one may wish to test an implementation for being able to
establish a logical link to aNewSGSN. By tracing scenarios leading to this postcondition,
appropriate test cases can be derived.

Acknowledgments.This research was completed while the first author was at the University
of Ottawa under a postdoctoral fellowship. It was funded in part by grants from Motorola
Canada (Advanced Radiodata Research Center), and the Natural Science and Engineering
Research Council of Canada. We thank Brahim Ghribi for the information he provided about
GPRS, and for many useful discussions. Rossana de Castro Andrade provided a number of
useful comments.

References

[AL93] M. Abadi, L. Lamport. Composing Specifications. ACM Transactions on
Programming Languages and Systems, 15(1):73--132, 1993.

[ALBG99]Amyot, D., Logrippo, L., Buhr, R.J.A., Gray, T. Use Case Maps for the Capture and
Validation of Distributed Systems Requirements. Fourth IEEE International
Symposium on Requirements Engineering (RE'99). Limerick (Ireland), 1999, 44-53.

[BoCa89] G. Boudol, I. Castellani. Flow Models of Distributed Computations: Event Structures
and Nets. Technical Reports INRIA, Sophia Antipolis, 1991.

[BuC95] R. J. A. Buhr, R.S. Casselman. A Use Case Map Approach to High Level Design of
Object Oriented Systems. Prentice-Hall, 1996.

[ETSI98] General Packet Radio Service (Draft). European Telecommunications Standards
Institute, 1998.

[Hal87] J.Y. Halpern. Using Reasoning about Knowledge to Analyze Distributed Systems.
Ann. Rev. Comp. Sci., No. 2, pp. 37--68, 1987.

[HF89] J.Y. Halpern, R. Fagin. Modeling Knowledge and Action in Distributed Systems.
Distributed Computing, 3:159--177, 1989.

[Hin62] J. Hintikka.Knowledge and Belief. Cornell University Press, 1962.
[Jac92] I. Jacobson et al. Object-Oriented Software Engineering: A Use Case Driven

Approach. Addison-Wesley, 1992.
[La91] R. Langerak. Bundle Event Structures: A Non-Interleaving Semantics for LOTOS.

In: M. Diaz and R. Groz (Eds.)Formal Description Techniques, V. North Holland.
331-346, 1991.

[MP92] M. Mouly, M. P. Pautet. The GSM System for Mobile Communications. Publishedby
the authors, 1992.

[Wi80] G. Winskel. Events in Computation. PhD Thesis, CST-10-80, University of
Edinburgh, 1980.

[Wi89] G. Winskel. An Introduction to Event Structures. LNCS 354, pp. 364- 397, Springer-
Verlag, 1989.

	from Knowledge Requirements
	Abstract
	Knowledge requirements for distributed systems exp...
	Keywords: use cases, scenarios, logic specificatio...
	1. Introduction
	Section 2. Extended stable event structures
	Section 3. An example: the GPRS system
	1. A Mobile Station (MS) is a terminal equipment t...
	2. The Home Location Register (HLR) contains the s...
	3. The Serving GPRS Support Node (SGSN) is the nod...
	4. The Gateway GPRS Support Node (GGSN) is the nod...
	Table 1: Events and postconditions in Fig. 7
	Table 2: Events and postconditions in Fig. 10
	1. refine e1 into e3 and e4, to obtain the postcon...
	2. refine relation e1 enables e2 into e3 and e4 en...

	Table 3: Events and postconditions in Fig. 13
	Table 4: Event and postconditions in Fig. 14
	1. r starts from an initial event and ends at a fi...
	2. an event e in a run r is preceded in r by all t...
	3. for any event e in r, no event in conflict with...
	1. to obtain a scenario from given knowledge requi...
	2. to verify whether a scenario satisfies the give...

