Deriving Use Casesdr Distrib uted Systems
from Knowledge Requiements

Xiao Jun Chen Luigi Logrippo
School of Computer Science School of Information Technology and
University of Windsor Engineering
Windsor ON Canada University of Ottawa
xjchen@cs.uwindsor.ca Ottawa, ON Canada

luigi@site.uottawa.ca

Abstract

Knowledg requirementdor distrituted systemsxpress desired states ofaifs
concerning initial and final kmdedge of the components of a system. It is
shavn howv use casegi.e. sets of scenarios) can be obtained fromvierge
requirements. The techniquevatves the use advent structuesthat specify use
cases capable of achieg the requirements, and logical postconditions for
events. The technique alle design refinement, both in the form of architectural
refinement and in the form of/ent refinement. The correctness of refinements
can be cheatd by checking logical implications. As axaenple, use cases and
scenarios for a simple mobile teleploprotocol, based on GPRS (the data
extension of GSM) are deed, on the basis of the correspondingidedge
requirements. Scenarios areagi in the form of Message Sequence Charts.

Keywords: use cases, scenarios, logic specificationswleuge requirements,
event structures, distrilted system design, protocol design.

1. Intr oduction

Use caseshave been defined [Jac92, BuC95] as structured prose descriptions of interaction
scenariosbetween a system to be designed and users of the system. Thus use cases are sets of
scenarios. They have been recognized as helpful in systems design, test case generation, etc. The
formulation of use cases is often taken as the initial step in the software design process, in the
sense that use cases specify system functionalities and system requirements [ALBG99].

In this paper, we propose a somewhat more fundamental view. We start from the idea that
the function of a distributed system is to distribute knowleBgstem functionalities start with a
situation where some agents know something, and aim to achieve a situation where other agents
know the same, or a related, thing. For example, when Joe knows that he has won a lottery, he
may use the telephone system to share this information with Mary. This common knowledge is
the final postcondition that Joe intends to achieve by using the telephone system. The use of this
system, as well as its internal functioning, involves a large number of intermediate knowledge
requirements. By the way telephone systems are generally conceived (which we can take as a
preexistingarchitectural constraint the user’'s requirement can be achieved by going through
an intermediate step where the user and the system share knowledge of Mary’'s telephone

1. Appeared in Annals of@lecommunications 54, 11-12, 1999, 2-13

Page 1

number.This becomes an intermediate requirement or postcondition, that must be achieved in
order for the overall requirement to be achieved. This intermediate requirement must in its own
turn be decomposed, normally by first reaching a situation where the system knows that the user
is about to send the number, and the user knows that the system is ready to accept it.

In other words, by lifting the handset, the system will know that Joe wants to talk; by
hearing the dial tone, Joe knows that he can dial; by dialing, the system will know the address of
Mary’s phone, etc., until the final requirement is reached (or not if Mary is absent or busy, two
other scenarios). The well-known use cases of basic telephone connection can be constructed in
terms of knowledge requirements, architectural constraints, and design refinements necessary to
meet the architectural constraints at increasing levels of refinement, while keeping the
preexisting knowledge requirements invariant.

According to this philosophy, a first step towards designing systems functionalities and the
corresponding use cases is determining who must know what and in what order. The physical
and engineering constraints of real-life systems will require refinements in the form of
intermediate agents and intermediate requirements. We show that use cases and scenarios can be
derived from this information by using a refinement process.

We consider the functionalities to be implemented one by one: for each functionality, we
have a set oknowledge requirements is intended to achieve. We derive use cases and
scenarios that satisfy the knowledge requirements under consideration, as well as existing facts
such as system topology (which are @nehitectural constraint and other knowledge about the
system (which we cafieneral knowledge

To specify knowledge requirements, we use English statements. Ideally, these should be
formalizable following the theory of epistemic logic [Hin62] towards distributed systems
[Hal87,HF89], but we do not provide this formalization in the paper. We exeirit structures
[Wi80, Wi89, BoCa89, La9l] as a way of representing use cases and we show how to derive
them from knowledge requirements step by step. Event structures have been invented on the
basis of mathematical intuitions rather than design considerations. However there are intuitions
behind event structures that are basically simple and graphical in nature. In this paper, we
slightly extend this notation according to the nature of the use cases.For people leery of
anthropomorphic languagkenowledgecan easily be translateddwailability of information

architect. constraints
general knwledge

&ent structures, scenarios
use cases

knowledge redfs

Fig. 1. Obtaining use cases and scenarios

The method we propose is illustrated in Figure 1: (i) we assume the existence of a number
of facts, calledgeneral knowledgandarchitectural constraints(ii) for each functionality, we
haveknowledge requirementorresponding to it; (iif) from these, we construct event structures
to represent functionalities; as we have mentioned, we take each event structure as a use case
corresponding to a functionality; (iv) from the event structure, a set of scenarios can be derived.
The most important step is (iii): we show the construction of the event structures in a stepwise
refinement method. In doing so, we introduce a set of postconditions associated to each event in

Page 2

the event structure. Using preconditions (assumptions) and postconditions (consequences) to
prove the correctness of refinements with respect to a specification has been extensively studied
for sequential programs, while to deal with concurrent systems, [AL93] have discussed proving
the properties (consequences) of a composite system from the properties (assumptions) of the
relative behaviors of its parallel components. Here we show that the postconditions that we
introduce facilitate the refinement of event structures from one step to another.

As already hinted above, it should be noted that our work is not limited to the derivation of
use cases and scenarios, but also addresses the more general problem of system design. However
in order to be complete in this respect, the method should be capable of expressing iteration or
recursion, which require further study.

In Sections 3 and 4, a sizeable example of use of our method is provided. It is based on the
forthcoming standard GPRS, the data extension of GSM.

Section 2.Extended stable event structures

Event structures [Wi80, Wi89] have achieved recognition as truly concurrent models for process
theory [BoCa89, La9l]. The intuitions behind event structures are basically simple and
graphical in nature, and we show here that they provide a suitable way for formal requirement
definition in distributed system designs.

Various kinds of event structures have been studied in the literature, such as prime event
structure [Wi80, Wi89], stable event structure [Wi89], flow event structure [BoCa89], bundle
event structure [La91]. In this paper, we adopt some basic notions from stable event structures,
and extend them for the definition of functionalities, use cases and scenarios.

A stable event structureonsists of events and relations between events. The events model
the occurrence of actions, the fact that “something happens”. The events are labelled: each event
has a label denoting an action. Different events are represented by different circles, but they may

have the same label. We represent events by small circledn particular, we use in our
extended version, a circte with a dot inside to denote amitial event, and a black
circle @ to denote dinal event This information will be required when we obtain scenarios, as
will be presented later.

There are mainly three kinds of relations between events: the enabling relation, the conflict
relation, and the independence relation (in what follawsdenotes an arbitrary circle, which
could also bes) or @).

(1) The enabling relation

An enabling relation is an antisymmetric relation between a set of dvamis another evet
The intuition behind is that evestis enabled once all events kfhhave happened. We depict
this relation by drawing an arrow from each elemerf ¢ e and connecting all the arrows by
small lines. For example, in Figure 2(&)is enabled by andb. In other words, in each system
runr, if e appears, then bothandb should appear in beforee. Note that there may be more
than one set of events to enable the same event. In Figure 22) be enabled either by bath

Page 3

andb or enabled by only.

ao ao

)oe bo— TEoe

bo CO/
1) 2

Figure 2. Examples for the enabling relation

(2) Conflict relation.

A conflict relation is a symmetric binary relation between events. Weause— — -ob to
denote the conflict relation between evardnd evenb. The intuitive meaning is that andb
will never happen together in any single system run.

(3) Independence relation

An independent relation is a symmetric binary relation between events. Waase 0 b

(the absence of enabling and conflict relation) to denote that eveartd eventb are
independent. That is, if botnandb are enabled, they can occur in any order or simultaneously,
so they neither need to happen in parallel nor to occur one before the other.

Stable event structures must satisfy consistency and stability properties as defined in [La91].

In our refinement process of deriving an event structure from knowledge requirements, an
event can be either@imary one or acompositeone. A primary event is either an internal event
of an agent, or a message passing from one agent to another. A composite event, on the contrary,
cannot be implemented directly. It mustdecomposedccording to the requirements, until all
the events are primary ones. We associate each event with a set of postconditions that are true
after the event. We us@i,p2,...,phto denote the conjunction of the postconditiqgis p2, ...,
pn.

Postconditions are introduced to facilitate the refinement processa bet a composite
event. Befora is refined, some parts other thanncluding events that depend anmay need
to be refined. The postconditions atan then be used as the preconditions to refine the events
that depend oa. Later on, whem is refined, the postconditions afcan be used as the scope of
a’'s decomposition. The refinement of an event structure can be the decomposition of events or
the refinement of postconditions, or both of them. The fact that a postcongliti@fines a
postconditionp means thap’ impliesp. This refinement is considered to be correct because it
does not change the possibility of enabling any events that depgnd on

Section 3. An example: the GPRS system

In this section, we prade an example of how to derive extended stable event structures using
postconditions. For simplicity, such structures with postconditions will also be called event struc-
tures. We tale one of the functionalities of GPRS, namelyrihating updatgrocedure. W dis-
cuss the kneledge requirements for it, and weeenplify the dewation of an gent structure for
it.

This section can be described as ger@se inreverse engineeringsince we are taking an
existing system and we are trying to justifyposterioriits design on the basis of our method.

Note that our xample is based on ETSI documents on GPRS that are still being modified.
People actie in the deelopment of this standard may recognize our description as outdated,
however this is not important for the purpose of this paper

Page 4

Section 3.1 GPRS and main architectural constraints

GPRS (the GeneralaBket Radio Service) is a paskswitched service that is currently being
developed by Europeanelecommunications Standardization Institute (ETSI)[ETSIO8]. It is
being implemented on top of theigting Global System for Mobile communication (GSM)
[MP92]. It provides data transmission services for mobile subscribers anglsalisers to be
involved in either Point-to-Point or Point-to-Multipoint transmissions.

|
[sosn——{cesN

| HR| [cesN

Other GPRS Netur!

Figure 3. GPRS architecture

Figure 3 shws a simplified GPRS architecture. Here

1. A Mobile Station (MS) is a terminal equipment that the subscriber uses to access the
services from the network; MSs find themselvescélls (represented by hexagons) and
location areagconcepts developed in Section 3.2).

2. The Home Location Register (HLR) contains the subscription information such as service
profiles, identifications of MSs and the MSC areas in which the MSs are currently located.
Each subscriber is registered in only one HLR which is the one that performs the charging
and billing functions;

3. The Serving GPRS Support Node (SGSN) is the node that is serving the MS. It contains the
Routing Context for the MSs attached to it. The Routing Context holds the information of
the GGSNs (see below) that the GPRS subscribers will be using;

4. The Gateway GPRS Support Node (GGSN) is the node which is accessed by the packet
data network due to the evaluation of the Packet Data Protocol (PDP) address. It contains a
record for each attached GPRS user. Such records are used to communicate with the SGSNs
who are serving the MSs. PSPDN denotes an external packet switched public data network.
The figure shas seeral other protocol entities (agents) in the architecture denoted by

dashed boas, i.e.the Base Station Transceiver (BTS), the Base Station Controller (BSC), the

Mobile Switching Center (MSC), the Authentication Center (AuC), the Visitors Location

Register (VLR), and the Equipment Identity Register (EIR). We do not introduce them since we

do not discuss them in the paper. Our example is simplified and it takes into account only the

logical links between MS, SGSN, GGSN, and HLR. Also, details related to authentication and
security checks are not discussed.

From the abee architecture we kmg for example, that message passing may happen
between an MS and an SGSN (pded that there is a link established between them, or in other
words, thg know the address of each other), while a HLR cannot talk to a GGSN. Sovere ha
the architectural constrainifustrated as follows (the arrows represent the connections, and the

Page 5

loop on SGSN represents the fact that several interconnected SGSNs can be instantiated, see
Fig. 6):

MS < SGSNZ—" GGSN

'

HLR
Figure 4. Interconnections among the entities

There is also other information related to the architectuserddew what is needed for our
example.

When a user subscribes to the GPRS system, the information related to its subscription, the
Quality of Service (QoS) for@mple, is stored in the HLR (i.e. it is kmo by it). This informa-
tion is called SubscriberData, and whesrethe subscriber is connected to an SGSN or switched
to a nev SGSN, such information is also stored in thisyn8GSN.

The Routing Contd contains the necessary information towllbe transactions of sending
and recaiing messages between an MS and xderaal netwrk. It is kept in the SGSN and
updated eery time the MS mees to a ne location.

Among all the information that we can obtain from the GPRS system, we use theénigllo
genenl knowledg:

(Al) For ary network entitiesA andB, A can talk taB only if A knows the address @;
(A2) SGSN can only talk to MSs that are in igndocation area;

(A3) All SGSNs knav the address of the HLR;

(A4) The HLR knaevs the SubscriberData for each MS;

(A5) The SGSN in chge of an MS knas the RoutingConi of this MS;

(A6) Each MS knuars the address of its SGSN.

Section 3.2 Knavledge requirements and designefinement

Mobility of subscribers mads it crucial for the netark to be svare of the location of the user
when it indicates its intention to use the servicesigea by the netark. A mechanism has to be
identified in order to &ep track of the location of a Mobile Station in the rekw This mecha-
nism is called Routing Updatéand it is the subject of ouxample: we consider the kwtedge
requirements for such Routing Update procedure.

A Mobile Station mees around. At a certain point, it kme that it has changexll. A Loca-
tion Area contains a collection of geographically connected cells. Each Location Area has only
one SGSN serving it. When the Mobile Stationve®from one cell to anothets Location Area
may change, implying a change of the SGSN toesérnThus, when the Mobile Station kn®

Page 6

that it has changed its cell, it starts an update procedure, resulting actlieat gentually the
New SGSN will knav its nev cell location.

old New
SGSN SGSN
(Old Logical Lm\k)\@ @ (New Logical Link)

LAl

Figure 5. Routing update with change of SGSN

Assume then that a Mobile Station aMS has changed Location Area. Let aOIdSGSN be the
SGSN that was serving the aMS before it weml, and aN@SGSN be the SGSN that is in opar
of serving the aMS after it med. W& consider the simple case where the aMS is connected to
only one GGSN and we call it aGGSN. The related HLR is called aHLR. Among these entities,
the interconnections are st in Fig. 6.

ams aHLR A/aGGSN
\ aNevSGSN /

Figure 6. Interconnections among the entities of the routing update example

Now we shaev in four steps the desation of a possiblevent structure that meets tahitectusal
constaintsin Figure 6, the general kmtedge(Al)--(A6) and theknowledg requirementggiven
below) for the Routing Update procedure.

Step (i).
When aMS moves to another Location Area, according to general knowladyeand

architectural constraint (Figure 6), aNewSGSN and only aNewSGSN can be informed of this
change. So we have requirement

(C1) When aMS moves to the Location Area of aNewSGSN, it should inform aNewSGSN of its
change of Location Area;

Receiving the information that aMS has moved to the new Location Area, aNewSGSN
knows that a routing update is required, and it can broadcast the update request to other protocol
entities.

Both aGGSN and aNewSGSN have the right to reject the routing update of the aMS. They
may reject the request if, due to the regional, national or international restrictions, aMS is not
allowed to roam into the Location Area or if the subscription check fails. If aNewSGSN rejects
the request, since aNewSGSN cannot serve aMS while it is the only possible entity to talk to

Page 7

aMS, then aMS should receive a negative notification (it has no logical link to aNewSGSN).
Otherwise, aMS should receive a positive notification (it has logical link to aNewSGSN), and it
should also be informed whether it has connection to aGGSN (whether it can send and receive
data by way of aGGSN). Precisely,

(C2) For each update request, aNewSGSN could either accept the update (Upd-Acc) or reject
the update request (Upd-Rej);

(C3) If aNewSGSN rejects the request, then aMS should be notified that it has no logical link to
aNewSGSN (Upd-Notify-);

(C4) If both aNewSGSN and aGGSN accept the request, then after the update is done
(Updatel), aMS should be notified that it has logical link to aNewSGSN and that it has
connection to aGGSN (Upd-Notify+1);

(C5) If aNewSGSN accepts the request while aGGSN rejects it, then after the update is done
(Update0), aMS should be notified that it has logical link to aNewSGSN but (currently) it
has no connection to aGGSN (Upd-Notify+0).

Note that according to the architectural constraint, and the general knowledge, aNewSGSN is
the only entity who could notify aMS of the update result. So we can ré@W)eand(C5) as

(C4) If both aNewSGSN and aGGSN accept the request, then after the update is done
(Updatel), aNewSGSN should tell aMS that it has logical link to aNewSGSN and that it
has connection to aGGSN (Upd-Notify+1);

(C5) If aNewSGSN accepts the request while aGGSN rejects it, then after the update is done
(Update0), aNewSGSN should tell aMS that it has logical link to aNewSGSN but
(currently) it has no connection to aGGSN (Upd-Notify+0).

In order to tell aMS these corresponding results, aNewSGSN itself should know them
(postconditionskud, nkce, nkgnafter the update. Thus, we have the event structure shown in
Figure 7. Note that for each event, we give in the figure a name of the event together with names
of each of its postconditions, whose meanings are given in the corresponding Table 1. The
dashed ellipse in the figure, as well as the events with "*" in the table, identify the composite
events that are to be refined in successive steps.

Upd-Redq nkr}

Upd-Acc{nar} \ Upd-Rej{nr}

~ 7 Update0 /\ N

({nkud, nkchO- — _Up_da?elg \
N {nkud,nkck

~ —
—
—_ I

[
Upd-Notify+0 Upd-Notify+1 Upd-Notify-
{mkud,mkch { mkud,mkck {mku#

Figure 7. Eent structure for routing update: step (i)

Page 8

Table 1: Ewents and postconditions in Fig7

event post
event cond postconditions
name
name
Upd-Req | aMS tells aN&SGSN it has changednkr aNevSGSN knavs the update request for aMS
Location Area
Upd-Acc | aNevSGSN accepts the update request nar aNewvSGSN accepted the update request
Upd-Rej | aNevSGSN rejects the update request | nr aNevSGSN rejected the update request
UpdateO | *GPRS does the routing update with hakud | aNevSGSN knavs aMS has logical link tg
connection to aGGSN established, and aNevSGSN;
notifies aNe&vSGSN nkcn | aNevSGSN knavs aMS has no connection fo
aGGSN
Updatel | *GPRS does the routing update with cqnakud | aNevSGSN knavs aMS has logical link tg
nection to aGGSN established, and noti- aNevSGSN;
fies aN&vSGSN nkce | aNevSGSN knawvs aMS has connection to
aGGSN
Upd- aNevSGSN tells aMS that it has logicalmkud | aMS knavs it has logical link to aNeSGSN;
Notify+0 | link to aNevSGSN it it has no connecr mkcn | aMS knavs it has no connection to aGGSN
tion to aGGSN
Upd- aNevSGSN tells aMS that it has logicalmkud | aMS knavs it has logical link to aNeSGSN;
Notify+1 | link to aNevSGSN and it has connectignmkce | aMS knavs it has connection to aGGSN
to aGGSN
Upd- aNevSGSN tells aMS that it has no logi-mkur | aMS knavs it has no logical link tg
Notify- cal link to aN&vySGSN aNevSGSN
Step (i)

Now we go into the details about the update. To refine events UpdateO and Updatel means to
realize their postconditiontkud, nkceandnkcn We say that

(C6) (ud) aMS has logical link to aNewSGSN
means that
aNewSGSN added the SubscriberData for aMS;

(nag
(hu)

aHLR updated its Location of

aMsS.

(C7) (ce aMS has the connection to aGGSN
means that

aNewSGSN added its RoutingContext of aGGSN for aMS;

aGGSN updated its record for aMS and aNewSGSN.

(C8) (cn) aMS has no connection to aNewSGSN
means that

aGGSN deleted its record for aMS and aOldSGSN.

(ur)
(u)

(9d)

We use

pl, p2, ..., pn
p

to denote that from the conjunction of conditigris p2, ..., pnwe

Page 9

can deduce conditign So requirement&6)--(C8)are expressed as (Fig. 8)

nas aNewSGSN added SubscriberData for aMS,
hu: aHLR updated the Location of aMS,

ud: aMsS has logical link to aNewSGSN

ur: aNewSGSN added its RoutingContext of aGGSN for aMS,
gu: aGGSN updated its record for aMS and aNewSGSN

ce aMS has connection to aGGSN

gd: aGGSN deleted its record for aMS and aOlIdSGSN
cn aMS has no connection to aGGSN
Figure 8. Requiremen{£6)--(C8)

Furthermore, lef\ be a protocol entity, we assume that

pl, p2, ..., pn o A knowspl, A knowsp2, ...,A knowspn
implies
p A knowsp

This implication can be easily derived from Epistemic Logic [Hin62]. Here we just use it by
intuition. So from Figure 8 we obtain

nas aNewSGSN added SubscriberData for aMS,
nkhu aNewSGSN knows aHLR updated the Location of aMS,

nkud: aNewSGSN knows aMS has logical link to aNewSGSN

nur. aNewSGSN added its RoutingContext of aGGSN for aMS,
nkgu aNewSGSN knows aGGSN updated its record for aMS and aNewSGSN

nkce aNewSGSN knows aMS has connection to aGGSN

nkgd aNewSGSN knows aGGSN deleted its record for aMS and aOldSGSN
nkcn aNewSGSN knows aMS has no connection to aGGSN
Figure 9. Refinement of the postconditions

Note that above we have usallewSGSN added SubscriberData for ai&9 to substitute
aNewSGSN knows aNewSGSN added SubscriberData far saM® the former implies the

latter. The same substitution is used for. It is interesting here to note that we distinguish
between the situation where an entity knows some data and the situation where the entity knows
that it has added the data to its database.

Thus, we obtain the refined event structure (cf. Fig. 10) on this step, where the
postconditions rikud, nkce, nkgnof Updatel and UpdateO are replaced by the conjunction of
the conditions that imply them (cf. Figure 9). For examplkeidis replaced by the conjunction
of nasandnkhu The ellipse in the event structure singles out the events that are refined from the

Page 10

previous step. Table 2 shows the meanings of the refined postconditions.

(@) Upd-Red nkr}

Upd-Acc{nar} &~ A Upd-Rej{nr}
Updatel ~ <
{nasnkhy Y~ T T T 7 O {nasnkhy
~ nkgd nur,nkgy -
o o ®
Upd-Notify+0 Upd-Notify+1 Upd-Notify-
{mkudmken} {mkudmkcé {mku

Figure 10. Eent structure for routing update: step (ii)

Table 2: Events and postconditions in Fig10

L

d

event post .
event cond postconditions
name
name
UpdateO | *GPRS does the routing update with hmas aNevSGSN added SubscriberData for aMS;
connection to aGGSN established, andkhu | aNevSGSN knavs aHLR updated the Locg
notifies aNe&vSGSN tion of aMS;
nkgd | aNevSGSN knavs aGGSN deleted its reco
for aMS and aOldSGSN
Updatel | *GPRS does the routing update with cqnras same as ahe;
nection to aGGSN established, and notiakhu | same as alve;
fies aN&vSGSN nur aNevSGSN added the RoutingCoxte of
aGGSN for aMS;
nkgu | aNevSGSN knavs aGGSN updated its reco
for aMS and aNe@SGSN
Step (iii)

Now we consider the newly obtained postconditiores(nkhu, nkgd, nur, nkpin the previous

step.

In our context, suppose we have relateh enables e2As we know, this means that
postcond(el)enablese2 Here we usgostcond(e)to denote the set of postconditions eof
During the refinement, we can

1. refineelinto e3ande4 to obtain the postconditions et by different events. l.e.

postcond(e3) [J postcond(e4) 1 postcond(el)

(C)

2. refine relationel enables etto e3 and e4 enable eAs we know,e3 and e4 enable e2
means thapostcond(e3)] postcond(e4knables2 Due to(C) above, this implies thatl

Page 11

enables e2

el e3 ed
i O\j
[)

ez ;2

Now consider relation
UpdateO {nas,nkhu,nkgd} enables Upd-Notify+0 {mkud,mkcn}

in the previous step. We refiidpdateOinto Upd-OO0 {nkgd}, Upd-H{nkhuhndUpd-NS {nas}
Obviously,

postcond(Upd-O0)] postcond(Upd-H)] postcond(Upd-NS) = postcond(Update0)

and we refine relatiodpdateO enables Upd-Notify+@to Upd-O0, Upd-H and Upd-NS enable
Upd-Notify+Q

Update0 Upd-O0 Upd-H Upd-NS
{nas,nkhunkgd {nkgd {nkhg {nasg
o [
Upd-Notify+0 Upd-Notify+0
{mkud,mkch {mkud,mkch

Figure 11. Obtaining a set of postconditions from several sets of postconditions (a)

Similarly, we refine evenpdatel {nas,nkhu,nur,nkgin} the previous step into everdpd-O1
{nkgu}, Upd-H {nkhu}, NUG {nuraindUpd-NS {nas}Note that we have requirement

(C9) aNewSGSN can add its RoutingContext for aMS (NUG) only after it knows aGGSN has
updated its record for aMS and aNewSG8&kj().

So event NUG depends on event Upd-O1. Thus, we have

Upd-O1
{nkgu
{ Upkdhatekl } Upd-H Upd-NS
nas,nkhinkgu,nu nkh na
NUG ¢ 4 tnas
j {nur}
o o
Upd-Notify+1 Upd-Notify+1
{mkud,mkc} {mkud,mkcH

Figure 12. Obtaining a set of postconditions from several sets of postconditions (b)

Now considering Figure 11 and Figure 12, we obtain the structure on this step as shown in
Figure 13 and Table 3 (with only explanations of the refined events). Note that Epelks

Page 12

andUpd-NSin Figure 11 and Figure 12 are the same.

Upd-Red nkr}

Upd-Acc{nar}

_________ O Upd-Rej{nr}

o
Upd-Notify+0 Upd-Notify+1 Upd-Notify-
{mkud,mkch {mkud,mkecg {mkug

Figure 13. Eent structure for routing update: step (iii)

Table 3: Ewvents and postconditions in Fig13

event post
event cond postconditions
name
name
Upd-O0 | *aGGSN deletes its record for aMS apakgd | aNevSGSN knavs aGGSN deleted its record
aOIldSGSN, and aNeSGSN is notified of for aMS and aOldSGSN
this
Upd-O1 | *aGGSN updates its record for aMS andkgu | aNevSGSN knavs aGGSN updated its recofd
aNewvSGSN, and aNeSGSN is notified for aMS and aN8SGSN
of this
NUG aNevSGSN adds the RoutingCorteof | nur aNewvSGSN added the RoutingCoxte of
aGGSN for aMS aGGSN for aMS
Upd-H *aHLR updates the Location of aMS anchkhu | aNevSGSN knavs aHLR updated the Loca-
notifies aN&vSGSN tion of aMS
Upd-NS | *aNewSGSN adds SubscriberData fpinas aNewSGSN added SubscriberData for aMS
aMS
Step (iv)

Finally, we go into the details of Upd-O1, Upd-O0, Upd-H and Upd-NS. Due to lack of space,
we only consider the refinement of Upd-O1. The refinements of Upd-O0, Upd-H and Upd-NS

are similar

The postconditionnkgy of Upd-Ol1 depends on the condition tle@BGSN updated its
recod for aMS and aNeSGSN (gu)We use GU1 (with postconditiogu) for the @ent that
aGGSN updates itecod for aMS and aNeSGSN

Page 13

To do GU1, aGGSN should kwothe update request, yet al@GSN does not kmo the
address of aGGSN in order to inform it of the update requesiatég by geneal knowledg
(A6), aMS knavs the address of aOldSGSN, so we can let the update request from aMS to
aNevSGSN to include the address of aOIdSGSN, and thusy@&S8N knavs the address of
aOldSGSN. By this, together witfAl) and Figure 6, we ko that aN&'SGSN can talk to
aOIdSGSN and tell it the update request. (B%), on the other hand, aOldSGSN #sothe
address of aGGSN, so once aOldSGSNnisthe update request, it can inform aGGSN about it.
We use NDU for the @ent by which aN&SGSN informs aOldSGSN of the update request,
and O'GU for the gent by which aOIdSGSN informs aGGSN of the update request. Thus, we
have the follaving events and their enabling relations:

NTOU {okr} --> OTGU {gkr} --> GU1 {gu}

Once aGGSN has updated its record for aMS anav8R&SN, it can agn ask aOIdSGSN
to pass this message to alNBGSN. V& use GDUL (with postconditiorokgy for the eent that
aGGSN tells aOIdSGSN it has updated ésord for aMS and aNeSGSNand we use TNU1
to name theent thataOIdSGSN tells aNeSGSNhat aGGSN has updated its record for aMS
and aNewSGSN huswe have the follaving events and their enabling relations

GU1 {gu} --> GTOUL1 {okgy --> OTNU1 {nkgu
All together we have got the way to obtain postconditidgu
NTOU {okr} --> OTGU {gkr} --> GU1 {gu} --> GTOU1 {okgu --> OTNU1 {nkgy

The refinements of Upd-O0, Upd-H and Upd-NS are similar to this refinement of Upd-O1.
The final @ent structure is shan in Figure 14 anddble 4 gves the meanings of theents and

Page 14

postconditions that are refined on this step.

Table 4: Event and postconditions in Fig 14

post
event .
event cond postconditions
name
name

NTOU aNevSGSN tells aOldSGSN the updatekr aOIldSGSN knes the update request

request

OoTGU aOldSGSN tells aGGSN the updategkr aGGSN knwvs the update request
request

GuUo aGGSN deletes its record for aMS andd aGGSN deleted its record for aMS and
aOldSGSN aOldSGSN

GTOUO | aGGSN tells aOIdSGSN it has deleted|itekgd | aOldSGSN knas aGGSN deleted its record
record for aMS and aOldSGSN for aMS and aOIdSGSN

OTNUO | aOldSGSN tells aNeSGSN that| nkgd | aNevSGSN knavs aGGSN has deleted ifs
aGGSN has deleted its records for aMS records for aMS and aOldSGSN
and aOldSGSN

GU1 aGGSN updates its record of SGSN fogu aGGSN updated its record for aMS and
aMS and aN@SGSN aNevSGSN

GTOU1l | aGGSN tells aOIdSGSN it has updated|itskgu | aOldSGSN knas aGGSN updated its record
record for aMS and aMe&SGSN for aMS and aN&SGSN

OTNU1 | aOldSGSN tells aNeSGSN that| nkgu | aNevSGSN knavs aGGSN updated its recorgs
aGGSN has updated its record for aMS for aMS and aN8SGSN
and aN&vSGSN

NTHU aNavSGSN asks aHLR for Subscribgrhkns | aHLR knavs aNevSGSN needs to kmo Sub-

Data and asks it to update its Location for scriberData of aMS;
aMs hkr aHLR knaws the request to update its Locatipn
for aMS

HU aHLR updates its Location for aMS hul aHLR updated its Location for aMS

HTNU aHLR tells aN&SGSN that it hag nkhu | aNevSGSN knavs aHLR updated its Locatioh
updated its Location of aMS of aMS

HTNS aHLR tells aN&SGSN the Subscriber- nks aNevSGSN knavs the SubscriberData of aMS
Data of aMS

NUS aNevSGSN adds SubscriberData fomnas aNevSGSN added SubscriberData for aMS
aMS

Section 4. Use cases and scenarios in event structures

There is no agreed formal definition of use case or scenario in the literature. Hence, we propose
to take our event structures as representing use cases. We shall now deal with the derivation of
scenarios.

Let S be an event structure. gystem runn S is any trace of S that satisfies the following
conditions:

Page 15

Upd-Red nkr}

Upd-Acc{nar}

/O{Jfrghkr}

HU{hul} THTNS
————— Q {nkg

Upd-Rej{nr}

NTOU{okr} O

OTGU{gkr} ()

Upd-Notify+0 Upd-Notify+1 Upd-Notify-
{mkudmkcr} {mkudmkcé {mkug
Figure 14. Eent structure for routing update: steyp (i
1. r starts from an initial event and ends at a final event;
2. anevenein arunr is preceded in by all the actions in one of its enabling sets (we assume
for simplicity that an action can occur at most once in a run);
3. for any evenkinr, no event in conflict witke in Sappears im.

In the previous section, we have seen how to obtain an event str8drora knowledge
requirement®R, by way of stepwise refinements. sequence of evenfscenarig satisfyingR
corresponds to a system ruranSo

1. to obtain a scenario from given knowledge requirements is equivalent to find a system run in
the event structure obtained from these requirements;

2. to verify whether a scenario satisfies the given knowledge requirements is equivalent to
verify whether it is a system run in the event structure obtained from these requirements.

Once we have obtained event structures from knowledge requirements, we can either obtain the
scenarios that satisfy the requirements, or verify whether a given scenario satisfies the
requirements.
One of the system runs derived from Figure 14 is
Upd-Req, Upd-Acc, NTHU, HTNS, NUS, HU, HTNU, NTOU, OTGU, GU1, GTOUL1,
OTNU1, NUG, Upd-Notify+1

The meaning of this event sequence is illustrated in Figure 15. This figure shows the scenario

Page 16

where aMS moves from location area LAl (served by a SGSN called aOLDSGSN) to LA2
(served by aNewSGSN). aNewSGSN in LA2 detects the arrival of this aMS and proceeds to the
routing update. This is expressed as the first event Upd-Req (1). aNewSGSN does the
authentication check which we assume to be successful (internal event of aNewSGSN denoted
by Upd-Acc (2)). aNewSGSN then asks aHLR for the information about this new aMS,
information that is provided (3)(4). aNewSGSN adds the information and the aHLR updates its
own information on aMS (5)(6). aHLR then informs aNewSGSN that the update has been
completed (7). aNewSGSN then informs aOLDSGSN of the fact that it is now serving aMS (8),
and this information is propagated to aGGSN, which then informs aOLDSGSN of the fact that
the update is complete (9)(10)(11). aOLDSGSN informs aNewSGSN of the fact that these
updates have been completed (12). This process ends with further updates in the aNewSGSN
(13), and concludes with the notification to aMS that the process is completed (14).

(8)\ am nav serving aMS. Update (2) Authentication
the\contet for aMS (NTOU) check O.K(Upd-Acc,
aoLDSGS| ™ \ aNevSGSN |(5) Adds the info

of aMS (NUS)
A(13) Add RoutingContd

is at yours (CNU1)

A for aMS (NUG)
(11) Updated
Contat
(GTOU1) ¢
(Upd-No_t|fy+l) | (42 Heres LA2
LAl (3) Give me info

about aMS
(NTHU)

info. about
aMS
(HTNS)

(7) Location updated
to yours (HTNU)

(9) New SGSN is
now serving aMS
(OTGU)

L ——
aGGSN (6) Update locatign —
for aMS (HU)

(10) Update conte
of aMS

(GU1) Figure 15. A routing updaterent sequence

In distributed system design, often one is interested only in the communications among the
protocol entities, or agents. Internal events sucHLd® updates its Location for M&e not of
interest. This means that sometimes we need to ignore the internal events. By doing so in the
above event sequence, we have the following scenario, illustrated in Figure 16 in the form of a
Message Sequence Chart:

Upd-Req, NTHU, HTNS, HTNU, NTOU, OTGU, GTOU1, OTNU1, Upd-Notify+1

Page 17

aMS aNevSGSN aHLR aOldSGSN aGGSN

ML NTHU (1) RoutingUpdateReq(MS-1d,OIdSGSN)
(3) UpdateLocationReq(MS-Id,Me&SGSN)
<« TNS | (4) SubscriberData
SELILLE (7) UpdateLocationRes(MS-Id)
NTOU > (8) ProvideContatReq
_OTCU o | (9) GGSNUpdateReq(MS-1d, NeSGSN)
<Y (11)GGSNUpdateRes
Upd_Notify+]< OTNUL (12) ProvideContetRes(MS-1d,RoutingConie)
-« (14) RoutingUpdateAcc

Figure 16. Routing update use case

5. Conclusions and final remarks

Starting from the idea that the function of a distributed system is to distribute knowledge, it was
shown how the knowledge requirements of a distributed system can be specified. It was then
shown how a partial system design can be developed by using these requirements, together with
other facts, such as architectural constraints and other general knowledge about the system.

Event structures, corresponding to use cases, were used to express the design. Post-
conditions were associated with events, and they must be shown to imply the desired knowledge
requirements. Event structures can be refined progressively, and the correctness of each
refinement can be verified by checking implication relations between postconditions. These
event structures (at any stage of refinement) can be used to generate scenarios, which in turn can
be used to check whether a design provides the desired system behavior, as further guidance to
implementors, or as a basis for the generation of test cases. The method was demonstrated by
using as example a mobile packet switching protocol.

This paper illustrates a way of designing distributed systems that is natural and intuitively
used, but has not been developed in the literature. In a theoretical setting, it appears to be an
application of thgoroof searchingconcept that is advocated by many authors as a method for
generating correct programs from requirements.

There are several topics for further research, one of them being the formalization of the
method. The reader will have noticed that we have used many English expressions that could be
translated to precise statements in logic, but at the cost of many definitions. Further, the results
of our method are not complete designs, because at this point we do not specify recursion or
iteration.

Use Case Maps (UCMs) [BuC95, ALBG99] are a use case notation that is gaining rapid
acceptance in industry. It includes concepts of pre- and post-conditions. We are planning to
adapt the ideas of this paper to the UCM notation.

We are also at the early stages of developing a tool to support this design approach. This

Page 18

tool (being implemented in Java) has the goal of helping in the routine tasks of generating event
structures, preconditions, and postconditions. So far, it takes postconditions as they are written,
without analyzing them. Eventually, it would help in formalizing requirements from statements
written in a stylized form of English, as well as checking consistency of refinements.

A further topic of interest is the development of a testing theory based on the satisfaction of
logic requirements. In our example, one may wish to test an implementation for being able to
establish a logical link to aNewSGSN. By tracing scenarios leading to this postcondition,
appropriate test cases can be derived.

Acknowledgments.This research was completed while the first author was at the University

of Ottawa under a postdoctoral fellowship. It was funded in part by grants from Motorola
Canada (Advanced Radiodata Research Center), and the Natural Science and Engineering
Research Council of Canada. We thank Brahim Ghribi for the information he provided about
GPRS, and for many useful discussions. Rossana de Castro Andrade provided a number of
useful comments.

References

[AL93] M. Abadi, L. Lamport. Composing Specifications. ACM Transactions on
Programming Languages and Systems, 15(1):73--132, 1993.

[ALBG99]Amyot, D., Logrippo, L., Buhr, R.J.A., Gray, T. Use Case Maps for the Capture and
Validation of Distributed Systems Requirements. Fourth IEEE International
Symposium on Requirements Engineering (RE'99). Limerick (Ireland), 1999, 44-53.

[BoCa89] G. Boudol, I. Castellani. Flow Models of Distributed Computations: Event Structures
and Nets. Technical Reports INRIA, Sophia Antipolis, 1991.

[BuC95] R. J. A. Buhr, R.S. Casselman. A Use Case Map Approach to High Level Design of
Object Oriented SystemdPrentice-Hall, 1996.

[ETSI98] General Packet Radio Service (Draft). European Telecommunications Standards
Institute, 1998.

[Hal87] J.Y. Halpern. Using Reasoning about Knowledge to Analyze Distributed Systems.
Ann. Rev. Comp. Sci., No. 2, pp. 37--68, 1987.

[HF89] J.Y. Halpern, R. Fagin. Modeling Knowledge and Action in Distributed Systems.
Distributed Computing, 3:159--177, 1989.

[Hin62] J. Hintikka.Knowledge and BelieCornell University Press, 1962.

[Jac92] |. Jacobson et al. Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley, 1992.

[La91] R. Langerak. Bundle Event Structures: A Non-Interleaving Semantics for LOTOS.
In: M. Diaz and R. Groz (EdsHormal Description Techniques, Worth Holland.
331-346, 1991.

[MP92] M. Mouly, M. P. Pautet. The GSM System for Mobile Communications. Publshed
the authors, 1992.

[Wi80] G. Winskel. Events in Computation. PhD Thesis, CST-10-80, University of
Edinburgh, 1980.

[Wi89] G. Winskel. An Introduction to Event Structures. LNCS 354, pp. 364- 397, Springer-
Verlag, 1989.

Page 19

	from Knowledge Requirements
	Abstract
	Knowledge requirements for distributed systems exp...
	Keywords: use cases, scenarios, logic specificatio...
	1. Introduction
	Section 2. Extended stable event structures
	Section 3. An example: the GPRS system
	1. A Mobile Station (MS) is a terminal equipment t...
	2. The Home Location Register (HLR) contains the s...
	3. The Serving GPRS Support Node (SGSN) is the nod...
	4. The Gateway GPRS Support Node (GGSN) is the nod...
	Table 1: Events and postconditions in Fig. 7
	Table 2: Events and postconditions in Fig. 10
	1. refine e1 into e3 and e4, to obtain the postcon...
	2. refine relation e1 enables e2 into e3 and e4 en...

	Table 3: Events and postconditions in Fig. 13
	Table 4: Event and postconditions in Fig. 14
	1. r starts from an initial event and ends at a fi...
	2. an event e in a run r is preceded in r by all t...
	3. for any event e in r, no event in conflict with...
	1. to obtain a scenario from given knowledge requi...
	2. to verify whether a scenario satisfies the give...

