
An Algebraic Framework for the
Feature Interaction Problem1

Mohammed Faci and Luigi Logrippo
University of Ottawa,
Telecommunications Software Engineering Research Group,
School of Information Technology and Engineering
E-mail: luigi@site.uottawa.ca

1 Motivation and Background
The problem of augmenting the functionality of a telephone system with new features,
without causing unwanted interactions between the features, has received much attention
during the last few years [BDCG89]. In industrial practice, detection is done not only by
analyzing possible conflicts at the design stage, but also by running extensive libraries of
test cases against the new system to see that it still behaves properly. Interestingly, the
method we propose in this paper is similar to the one just described. However, being
formal, our method allows precise reasoning, leading to precise criteria for choosing the set
of test cases and analyzing the test results. Also, by relating the feature interaction
problem to the well-known conformance testing problem, our approach makes available in
this new area a wealth of well-established results.

Because of space considerations, we consider only features that are defined
independently and do not “build” on each other, meaning that these features make no
assumptions about the behaviours of other features in the system. Also, we consider only
single element features [CGLN94]. In this context, the main idea of our method is that in a
system integrating features, the behavior of each feature (which is characterized as the
sequences of observable actions generated by the feature) should be the same as its behavior
in a system where all features are allowed to execute independently. The fact that this is
not always the case is one of the main reasons of interactions in practice. In this framework,
feature interactions can be detected at the specification stage by using test cases obtained

1. Appeared in Proc. of the 3rd AMAST Workshop on Real-Time Systems,Salt Lake City, 1996, 280-294.

2 An Algebraic Framework for the Feature Interaction Problem

from a specification which describes the behavior of a ‘reference’ system where each feature
is able to execute independently.

2 Basic Concepts and Notation
We use the algebraic specification language LOTOS [BoBr87][LoFH92] for feature specifi-
cation [FaLS97]. LOTOS semantics are based on the concept of labeled transition systems
(LTSs). LTSs are a generalization of finite state machines and provide a convenient way
for expressing the step-by-step operational semantics of processes. Processes evolve by exe-
cuting one action at a time, selected from their alphabet set. Formally,

Definition 1: Labeled Transition System

A labeled transition system (LTS is a 4-tuple LTS = <S, s0, L, T> where

• S is non-empty set of states;

• s0 in S is the initial state;

• L is a (finite) set of observable actions; and
• T = {—a→ ⊆ S Χ Sa ∈ L’, where L’ = L ∪ {i}}, the

transitions, is a L’-indexed family of binary relations
on S. So if s1 —a→ s2 such that s1, s2 ∈ S then <s1, s2>
∈ —a→.

LTSs are usually represented by labeled transition trees, or simply trees, for the
obvious pictorial advantage. On the right is an example of a behaviour B represented by a
tree.

In addition to the basic definition, the following notations and definitions are widely
used for interpreting LTSs [BrSS87], [Ledu92].

• L = {a, b, c, ...} is the alphabet of observable actions and i is the hidden action;

• B − a → B’ means that after executing the observable action a, the behaviour
expression B is transformed into another behaviour expression B’;

• B − ik → B’ means that after executing a sequence of k hidden actions, the
behaviour expression B is transformed into another behaviour expression B’;

• B − ab → B’ means that ∃ B’’ such that: B − a → B’’ and B’’ − b → B’;

• B =a � B’ means that B is transformed into another behaviour expression B’ by
executing zero or more internal actions, followed by the observable action a, then
zero or more internal actions. Formally, ∃ k0, k1 ∈ N, such that B − ik0 a ik1→ B’;

• B =a � means that B may accept the action a. Formally, ∃ B’: B =a � B’;

• B ≠ a � B’ means not(B = a � B’), i.e., B must refuse the action a;

•

•

•

•

• ••

B =
a

b

c

a d
b

s0

s1 s2

s6 s4 s5 s3

An Algebraic Framework for the Feature Interaction Problem 3

• B = σ � B’ means that B is transformed into another behaviour expression B’ by
executing a sequence of observable actions. Formally, if σ = a1...an then ∃ k0, ...,
kn ∈ N: B − ik0 a1 ik1 a2 … an ikn → B’;

• B = σ � means that ∃ B’: B = σ � B’;

• B after σ = {B’ | B = σ � B’}, i.e., the set of all behaviour expressions reachable
from B after executing the sequence σ;

• A trace is a sequence of actions; t t’ expresses the fact that t is a, not
necessarily contiguous, subtrace of t’.

• The trace set of B is defined as: Trace(B) = {σ | B = σ �}. Note that Trace(B) ⊆
L*;

• Refuses (B, σ) is the refusal set of B after executing the sequence σ. Formally,
Refuses (B, σ) = {X | ∃ B’ ∈ B after σ such that B’ ≠ a �, ∀ a ∈ X}. A set X ⊆ L
belongs to Refuses (B, σ) iff B may engage in the trace σ and, after doing so,
refuse every event of the set X.

Although we try to avoid the use of LOTOS notation in this paper, for the sake of
clear and concise presentations, we make use of the following constructs:

|[a1, ..., an]| is the parallel composition operator with synchronization on gates
a1...an;

|| is the parallel composition operator with synchronization on all gates;
[] is the (exclusive) choice operator between two behaviour expressions;
δ is the successful termination action.

3 A Method for Analyzing and Detecting Feature
Interactions
The steps of the method, shown in Fig. 1, are as follows [Faci95]:
❶ Specify each feature independently, within the context of the existing system, using

the notion of constraints[FaLS91][FaLS97][VSVB91].

❷ Compose the features into a single specification so that they are able to synchronize
on their common interaction points with the system and interleave on the rest of
their actions. Consider the results of this composition as a specification with
respect to the integration obtained in ❸ below.

❸ Integrate the features into a single specification so that each feature is able to
perform its function when other features are disabled. Consider the resulting
behaviour as an implementation of the features.

4 An Algebraic Framework for the Feature Interaction Problem

❹ Derive a set of test cases, using the theory of the derivation of tests for LOTOS
processes, from the specification obtained in ❷ above.

➎ Simulate the system obtained in step ❸ against the test cases obtained in step ❹,
and check for deadlocks.

❻ Interpret the results in the following way. A deadlock in ❺ implies that the way the
features are integrated in the system does not allow for their simultaneous
activation.

The justification of the method follows.

3.1 Specification of Features in the Context of a System (step ❶)

Figure 2 (a) shows the POTS (Plain Old Telephone Service, denoting a basic featureless
telephone system) model defined in [FaLS91] for the specification of basic call processing.
The model is based on the concept of constraints which is used to structure the
specification [FaLS91][FaLS97]. A specification is expressed as a set of communicating
processes representing three types of constraints: local constraints, end-to-end constraints,
and global constraints: Local constraints are used to enforce the appropriate sequences of
events at each user’s interaction point; they are different according to whether the
interaction point connects to a Caller telephone or a Called telephone. End-to-End
constraints are related to each connection; they enforce the appropriate sequence of actions
between the interaction points for each telephone connection. Finally, global constraints
involve action sequencing between connections.

This model was generalized to support the specification of
features [FaLo94][Faci95][FaLS97] as shown in Figure 2 (b). To do this, we first decide on
the role of a feature. In general, each feature can be classified as acting on behalf of either
the caller process or the called process (or both). Once that decision is made, the integration
of the feature’s behaviour into the system is accomplished by integrating the feature, using
local constraints, into the process on whose behalf the feature acts. This can be done by
specifying the feature as a constraint (operator |[A]|, see below), with respect to this
process. Of course, a modification of the end-to-end constraints expressed by the controller
of POTS is also required. In the above figure, C’ is obtained by modifying C in order to
support the functionality of the new feature. We refer to the resulting specification of

integrating fi into POTS as the behaviour of fi in the context of POTS. Formally,
 Fig. 2 Extending the POTS model to support features

☎ ☎A B
C

f
☎ ☎A

B C’

(a) (b)

An Algebraic Framework for the Feature Interaction Problem 5

Definition 2: System Context

We say that a feature fi is specified in the context of a system Pots, expressed as
Pots[fi], iff the following condition holds: ∀ t ∈ Trace(fi), ∃ t’ ∈ Trace(Pots[fi]) such that t

 t’.
In other words, a feature is said to be specified in the context of a system if every

trace of the feature is a sub-trace of some other trace in the resulting system. For example,
suppose that we have specified a POTS system which allows a caller A to establish a talking
session with a called B. Figure 3 (b) shows a portion (obviously very simplified) of the
specification. It describes the following sequence, starting from the state where B has
received a ring signal from A. User B answers A; the two users engage in a talking session;
A hangs up; and finally the system exits as shown by δ, the LOTOS successful termination.

Suppose now that we wish to integrate Call Waiting (Cw) and Three Way
Calling (Twc) into the system, independently of each other. In the context of POTS, Cw

❹ Derive test cases

Integration
Pots[f1*f2] is an‘ implementation’ of Specification

Pots[f1 |[]| f2]

Verdict = {fail, pass}

❷ Compose ❸ Integrate

❺ Test Test cases

❻

 Fig. 1 Methodology for detecting feature interactions

❶ Pots[f1], Pots[f2], ..., Pots[fj], Pots[fk], ..., Pots[fn]

6 An Algebraic Framework for the Feature Interaction Problem

allows user A to respond to another user C while still talking to B. Starting from a state
where A is talking to B and C’s controller has just sent a Call Waiting Tone signal to A, A
may send a flashhookcw signal to accomplish two things: (1) to put B on hold, and (2) to
establish a talking session with C, as shown in Figure 3 (d).

We can also integrate Twc into POTS without taking the behaviour of Cw into
consideration. Twc is a feature which allows A to suspend B and establish another talking
session with another user (D for example) by sending a flashhooktwc signal to the
controller, and after reaching a talking state with D, A sends another flashhooktwc signal
to bring B back to the connection, thereby establishing a talking session between A, B, and
D. Figure 3 (e) shows the integration of Twc in the context of POTS, but note that only the
first action of Twc is shown. The LTSs of Figure 3 can be represented by the following
expressions, using a slightly abused LOTOS syntax, where also the talk loops have been
ignored for simplicity.

(a) Cw := flashhookcw(A); exit1

(b) Pots := answer (A); hangup (A); exit
(c) Twc := flashhooktwc(A); exit
(d) Pots[Cw] := answer (A); (flashhookcw(A); exit [] hangup (A); exit)

1. In proper LOTOS, we represent this as: flashhookcw!A; exit where flashhookcw is a gate
and A is an offer.

•

•

•

talk (A, B)

hangup (A)

(b)

Pots •

•

•

 flashhooktwc(A)

(c)

Twc

(d) (e)

•

•

answer(B, A)

hangup (A)
 flashhooktwc(A)

Pots[Twc]

δ

•
δ

•

•

•

answer(B, A)

•

flashhookcw (A)

Pots[Cw]

 Fig. 3 Integrating a feature into a system.
•

δ

•
δ

•
δ

•
δ

answer(B, A)

talk (A, B)

hangup (A)

talk (A, B)

talk (C, A)

•

talk (C, A)

•

•

•

flashhookcw (A)

(a)

Cw

δ

hold (A, B)
•

hold (A, B)

An Algebraic Framework for the Feature Interaction Problem 7

(e) Pots[Twc] := answer (A); (flashhooktwc(A); exit [] hangup (A); exit)

It is easy to verify that both Cw and Twc are specified according to definition 2 by
checking their traces.

• Trace(Cw) = {<>, <flashhookcw(A)>, <flashhookcw(A); δ>}
 = {t1, t2, t3}

• Trace(Pots[Cw]) = {<>, <answer(B, A)>, <answer(B,A); flashhookcw(A)>,
<answer(B,A); hangup (A)>, <answer(B,A); flashhookcw
(A); δ>, <answer(B,A); hangup (A); δ>}

 = {t1’, t2’, t3’, t4’, t5’, t6’};

Since t1 t1’ ∈ Trace(Pots[Cw]), and

t2 t3’ ∈ Trace(Pots[Cw]), and

t3 t5’ ∈ Trace(Pots[Cw])
Then it is the case that Pots[Cw], meaning that Cw is specified in the context POTS.

Using similar deductions we can show that the same holds for Pots[Twc], as shown in
Figure 3 (c) and (e).

3.2 Composition Vs. Integration of Features (steps ❷ and ❸)

Our primary objective, as we have already mentioned, is to answer the following question:
is there interaction between features Cw and Twc when they are integrated into an
existing system? To answer this question, one must define a reference point against which
the answer can be evaluated. Let us first introduce the intuition which motivated the
formalism. Our starting point is the notion of simultaneous execution. For practical
purposes, this notion is interpreted in the context of interleaved semantics. Saying that
two features can execute simultaneously is equivalent to saying that both features will
reach their terminal states and that their actions are allowed to interleave. In many cases,
however, when specifiers produce specifications which integrate the functionalities of
several features, their primary concern is to include the functionality of each feature, one
at time, in the resulting specification. For each feature that is being integrated, the
specifier gives no consideration to what effects this will have on other features in the
system. The basic idea is explained by way of Figure 4. Parts (a) and (b) express the
integration of each of the two features in the context of POTS. Parts (c) and (d) express the
composition and the integration of these two specifications, respectively.

Note at this point that, while the approach is applicable for n features, for
illustration purposes we are using two features only. As mentioned, the composition of
features, which reflects the interleaving of the independent actions of Cw and Twc while
synchronising on their common actions with POTS, turns out to be conveniently expressed
using the LOTOS composition operator |[apots]|, where apots are the gates that are common

8 An Algebraic Framework for the Feature Interaction Problem

to Pots[Cw] and Pots[Twc]. In our example, answer is a common gate between Pots, Cw, and
Twc. From now on, we will refer to this composition by the following concise notation
(Pots[Cw |[]| Twc]). Note that this is simply a notation, shorthand for a LOTOS expression,
and does not introduce an operator. A question that comes up at this point is: can deadlocks

be introduced when doing the composition? This question is worth of further research, and
the answer is probably that if such deadlocks come up, this is another symptom of a design
problem, which could be a feature interaction. However, we did not encounter such
deadlocks in the several features we have specified and composed.

On the other hand, the requirements imposed on the system designer to integrate
the two features into the specification, which we will write as Pots[Cw*Twc], are as follows:

• Trace(Pots[Cw]) ⊆ Trace(Pots[Cw*Twc]) (r1)

• Trace(Pots[Twc]) ⊆ Trace(Pots[Cw*Twc]) (r2)

meaning that the functionalities of both features must be preserved in the final integration
of Cw and Twc in the context of POTS. However, the integration of Cw and Twc in the
context of POTS leaves open the question of whether or not Cw can execute all its traces to
completion, even when both features are active at the same time. The same holds for Twc
with respect to Cw.

It should be noted that, while composition is formally defined in terms of the LOTOS
interleave operator, integration is not. This is because of the fact that integration depends
on the way the abstract features are implemented. In other words, composition is a
specification-level concept, while integration is an implementation-level concept. The first
is formal, the second is not. If the integration is done in such a way that the features cannot
exhibit their interleaved behavior, then either the features themselves, or the way they are

•

•

•

answer(B, A)

hangup (A)
•

flashhooktwc (A)

Pots[Twc]
•

•

•

answer(B, A)

hangup (A)
•

flashhookcw (A)

Pots[Cw]

•
δ

•
δ

•
δ

•
δ

Composition Integration •

•

•

answer(B, A)

hangup (A)

•
δ

•

flashhooktwc (A)

δ
•

•
δ
•

flashhookcw (A)

•

•

•

answer(B, A)

hangup (A)

•
δ

•

flashhooktwc (A)

•
δ

•
flashhookcw (A)

•

flashhookcw (A)

•
δ
•

flashhooktwc (A)

(c) (d)

(a) (b)

 Fig. 4 Integration Vs. Composition of Features

An Algebraic Framework for the Feature Interaction Problem 9

integrated, should be modified. For example, we shall see below that both features Twc and
Cw need a user action to become activated. If, in the integration, both these actions are
mapped on the same signal flashhook, an interaction arises.

It is possible to see if the traces of the composition are also in the integration by
applying to the integration testers obtained from the composition. Thus the following
section deals with the problem of testing that the interleaved behavior is realized in the
integration.

3.3 Derivation of Test Cases to Detect Interactions (step ❹)

Conformance Testing and the Detection of Feature Interactions

In this section we briefly review the results reported in [BrSS87], [Brin88], [BALL90] and
show how the notion of conformance testing has a direct application in the domain of
detecting feature interactions. But first, let us define some concepts which are needed for
conformance testing.

Definition 3: Deadlocks in Terms of Refusals

Let L be the set of observable events, L* be the set of traces. Then, for I a labelled
transition system, A ⊆ L, σ ∈ L* :

• I Refuses (σ, A) is defined as: ∃ I’ : (I = σ � I’ and ∀a ∈ A: I’ ≠ a �)

• I Deadlocks(σ) is defined as: I Refuses(σ, L)

The first part of the definition says that I may execute the trace σ, and after doing
so, refuse every event in the set A. Similarly, the second part of the definition says that I
reaches a deadlock if it refuses every observable event, after executing σ.

Conformance allows one to reason about an implementation and a specification
using a single formalism. In this context, an implementation is taken to be an abstract
representation of a physical realization. ‘I is a valid implementation of S’ can be defined as
follows [Brin88].

Definition 4: Conformance

Let S and I be processes. We say that :
I conf S ⇔ ∀ σ ∈ Trace(S), ∀ A ⊆ L,

if I Refuses (σ, A) then S Refuses (σ, A).

Informally, I conforms to S if, and only if, testing the implementation I against the
traces of the specification S does not lead to deadlocks that would not occur while testing S
against those same tests. In other words, testing the implementation does not reveal
deadlocks that would not be revealed while testing the specification.

10 An Algebraic Framework for the Feature Interaction Problem

In section 3.2 we discussed the relation between composition and integration of
features. Using these two notions and the formal definition of conformance, we can now
provide our formal definition of the feature interaction problem.

Definition 5: Formalization of Feature Interactions: Int

Let f1, f2, ..., fn be features,
Let A be the alphabet of POTS and Ai the alphabet of fi such that:

∀ i, j: Ai ∩ Aj = Ø and A ∩ Ai ≠ Ø, for 1 ≤ i ≤ n, 1 ≤ j ≤ n.
Let S and I be processes, such that:

S := Pots[f1 |[]| f2 |[]| ... |[]| fn] and I := Pots[f1*f2*...*fn],
We say that : int(f1, f2, ..., fn) ⇔ ¬(I conf S), meaning that an interaction exists

between the n features if, and only if, the integration of the features does not conform to
their composition.

Note that in the definition we assume that Ai ∩ Aj = Ø. This is consistent with our
intuitive view that features are defined independently, in terms of their interactions only
with respect to POTS. However, as already mentioned, it is possible that actions of different
features are mapped onto the same element in the integration, and this may cause
interactions, which can be detected by our method.

Definition 5 is the link that allows us to exploit the conformance and testing theory
of Brinksma et al.

Derivation of Tests

The theory of deriving tests [Brin88] from a LOTOS specification assumes that processes
have only successful terminations, meaning that whenever a process reaches a deadlock, it
must have done so via the successful termination exit. The theory also asserts that there
exists a canonical tester Ts that can discriminate those implementations which conform to
the specification and those which do not. For an implementation I and a canonical tester
Ts, this discrimination is accomplished according to the following passes relation.

Definition 6: passes relation

Let I and Ts be processes, then
I passes Ts iff ∀ σ ∈ L*: If (I || Ts) after σ deadlocks

Then Ts after σ deadlocks
For a specification S, a canonical tester Ts is defined as follows:

• Trace (Ts) = Trace (S), and

• ∀ I: I conf S iff I passes Ts

An Algebraic Framework for the Feature Interaction Problem 11

In addition, each Ts can be expressed as a set of testing processes called the
irreducible reductions (IRs) of Ts. Formally,

IRs =def {T | T red Ts, ∀ T’: T’ red T � T’ = T }, where

B1 red B2 iff B1 conf B2 and Trace(B1) ⊆ Trace(B2).
The following figure captures the intuition behind these definitions.

Note that, although we use here a nonconstructive definition of Ts, methods for
constructing it are known [Weze90].

The integration of two features in a system is driven by the functionalities of both
the features and the existing system. Since it is not possible to define the semantics of a
general model for the integration of any two given features, we give an example to show
that, depending on the results of the integration, an interaction may or may not occur. In
either case, our methodology succeeds in reaching the correct verdict. It is important,
however, to keep in mind that the passes verdict simply means that more testing is
required, whereas a fails verdict means that an interaction is detected.

According to our definition int of feature interactions, an interaction exists between
Cw and Twc if, and only if, I does not conform to S. So, in order to derive the canonical
testing process from the composition and execute it against the integration, let us express
the trees of Figure 4 (c) and (d) as LOTOS expressions:

I := Pots[Cw*Twc] = answer(B, A);
(flashhookcw(A);exit[]hangup(A);exit[]flashhooktwc(A); exit)

and
S := Pots[Cw |[]| Twc] = answer(B, A);

(flashhookcw(A); flashhooktwc(A); exit
[] hangup (A); exit
[] flashhooktwc(A); flashhookcw(A); exit

)
Following [Brin88], we now express the canonical tester Ts of S in the following way:
Ts = T(Pots[Cw |[]| Twc])

= answer(B, A);

S Ts

T1

T2

Tn
red

red

derive

C
on

f

I

. . . Passes

Fails Ti (I ||)

12 An Algebraic Framework for the Feature Interaction Problem

(i; flashhookcw(A); flashhooktwc(A); exit
[] i; hangup (A); exit
[] i; flashhooktwc(A); flashhookcw(A); exit

)
The final result is shown in Figure 5 (b).

The next step is to express Ts as a set of irreducible test cases, from which a set of
useful test cases are selected[BrTV91]. Some such test cases are:

T1 = answer(B, A); flashhookcw(A); flashhooktwc(A); exit
T2 = answer(B, A);hangup (A); exit
T3 = answer(B, A); flashhooktwc(A); flashhookcw(A); exit
T4 = answer(B, A);

(flashhookcw(A); flashhooktwc(A); exit
[] hangup (A); exit
[] flashhooktwc(A); flashhookcw(A); exit)

Although in this very simplified example we have assumed finite behavior trees, the
presence of loops is not a problem [Jao92][DAV93].

3.4 Executing the System and Analysing the Results (step ❺
and ❻)

The final two steps of the methodology are to execute the specification against a selected
subset [BrTV91] of the derived test suite in order to check for deadlocks. For our purposes,
the set {T1, T2, T3} is sufficient to test our integration because every trace of T4 is a
member of another test suite in the selected set. An example of testing the integration with
T1 is shown below. Testing with T2 and T3 is similar. The verdicts for the three tests are
{fails, passes, fails}. Since the integration fails at least one of the tests, we conclude that
an interaction exists between Cw and Twc. The reason is that once the flashhook is
executed, only the feature which participates in its execution is allowed to continue with

•

Ts = T(Pots[Cw |[]| Twc])
•

answer(B, A)

•

•

•

•

•
•

•
 δ

•

•
•

• •

i i
i

flashhookcw (A)

flashhooktwc (A)

flashhooktwc (A)

flashhookcw (A)

δδ

•

S := Pots[Cw |[]| Twc]
•

answer(B, A)

•
•

•

•
 δ

•

•

• •

flashhookcw (A)

flashhooktwc (A)

flashhooktwc (A)

flashhookcw (A)

δ
δ

 Fig. 5 A specification and its canonical testing

(a) (b)

hangup (A)
hangup (A)

An Algebraic Framework for the Feature Interaction Problem 13

its behaviour, thereby preventing the other one from exhibiting its behaviour in the overall
system.

Testing with T1:
Pots[Cw*Twc] || T1 = (answer(B, A);

(flashhookcw(A); exit
[] hangup (A); exit
[] flashhooktwc(A); exit

)
)
|| answer(B, A); flashhookcw(A); flashhooktwc(A); exit

= answer(B, A); flashhookcw(A); stop
� test fails because it did not reach its exit.

4 Conclusions and Research Directions
We have proposed a formal algebraic framework for analyzing and detecting certain types
of feature interactions in telephone systems at the design level. We used to advantage the
characteristics of process algebras: its formal properties allowed us to establish a
theoretical framework for the problem; while its executability allowed us to define a
testing framework for actually detecting interactions. In [Faci95], the method is applied on
nine examples of feature interactions, mostly very different from the one presented above.
Features considered are: Call Waiting, Call Forward on Busy, Call Forward Always,
Automatic Recall, Automatic Callback, Originating and Terminating Call Screening,
Distinctive Ringing, Calling Number Delivery, Unlisted Numbers.

Of course, many questions remain open. Is the ‘conformance’ relation the one that
best captures the intuition behind detecting feature interaction (it is well-known that this
relation has limitations in the area of protocol conformance testing)? Is it possible to better
use the concept of ‘refusal’ for the characterization of features (in our framework, features
are characterized by traces and not by refusals)? How can one find appropriate test cases
for different types of interactions [BrTV91]? How can the method be extended to cover other
cases of feature interaction? Our contribution sets the stage for further research on these
and other related problems.

Needless to say, the method could be reformulated in terms of other languages using
labelled transition models.

Acknowledgment. Funding sources for our work include the Natural Sciences and
Engineering Research Council of Canada, the Telecommunications Research Institute of
Ontario, Bellcore, Bell-Northern Research, and the National Institute of Standards and
Technology. We like to acknowledge the many fruitful discussions that we have had with
members of our LOTOS group.

14 An Algebraic Framework for the Feature Interaction Problem

5 Bibliography
[BALL90] E. Brinksma, R. Alderden, R. Langerak, J. van de Lagemaat, and J. Tretmans.

A Formal Approach to Conformance Testing. Second International Workshop
on Protocol Test Systems, eds. J. de Meer, L. Mackert, and W. Effelsberg. North
Holland 1990, 349-363.

[BDCG89] T.F. Bowen, F.S. Dworak, C.H. Chow, N. Griffeth, G.E. Herman, and Y-J. Lin.
The Feature Interaction Problem in Telecommunications Systems, 7th
International Conference on Software Engineering for Telecommunication
Switching Systems, July 1989, 59-62.

[BoBr87] T. Bolognesi, and E. Brinksma. Introduction to the ISO Specification Language
LOTOS. Computer Networks and ISDN Systems 14 (1987) 25-59.

[BrSS87] E. Brinksma, G. Scollo, and C. Steenbergen. LOTOS Specifications, ther
Implementations and their Tests. Protocol Specification, Testing, and
Verification, VI. Eds. G.V. Bochmann, B. Sarikaya, North Holland 1987, 349-
360.

[BrTV91] E. Brinksma, J. Tretmans, L. Verhaard. A Framework for Test Selection,
Protocol Specification, Testing, and Verification, XI. Eds. B. Jonsson, J.
Parrow, and B. Pehrson, North Holland 1991, 233-248.

[Brin88] E. Brinksma. A Theory for the Derivation of Tests. In: Aggarwal, S., and
Sabnani, K., (Eds.) Protocol Specification, Testing, and Verification, VIII,
North-Holland, 1988, 63-74.

[CGLN94] E. J. Cameron, N. Griffeth, Y. Lin, M. E. Nilson, W. K. Schnure, H. Velthuijsen.
A Feature Interaction Benchmark for IN and Beyond, Second International
Workshop on Feature Interactions in Telecommunications Systems, eds. L.G.
Bouma and H. Velthuijsen, IOS Press, 1994,1-23. Also in IEEE
Communications, vol. 31, No. 3, 64-69, March 1993.

[DAV93] K. Drira, P. Azema, F. Vernadat. Refusal Graphs for Conformance Tester
Generation and Simplification: a Computational Framework. In: Protocol
Specification, Testing, and Verification, XIII, Eds. A Danthine, G. Leduc, P.
Wolper, North-Holland, 1993, 257-272.

[Faci95] M. Faci. Detecting Feature Interactions in Telecommunications Systems
Designs, PhD Thesis, University of Ottawa, 1995 (obtainable by ftp on
lotos.csi.uottawa.ca).

[FaLS91] M. Faci, L. Logrippo and B. Stepien. Formal Specifications of Telephone
Systems in LOTOS: The Constraint-Oriented Style Approach, Computer
Networks and ISDN Systems, 21, 52- 67, North Holland, 1991.

An Algebraic Framework for the Feature Interaction Problem 15

[FaLS97] M. Faci, L. Logrippo, and B. Stepien. Structural Models for Specifying
Telephone Systems. Computer Networks and ISDN Systems 29 (1997) 501-
528.

[FaLo94] M. Faci and L. Logrippo. Specifying Features and Analysing Their Interactions
in a LOTOS Environment, Second International Workshop on Feature
Interactions in Telecommunications Systems, eds. L.G. Bouma and H.
Velthuijsen, IOS Press, 1994, 136-151.

[Jao92] Rafik Jaouani. LOTOS Based Conformance Testing. The theory and a tool.
Master thesis, University of Ottawa, 1992 (obtainable by ftp on
lotos.csi.uottawa.ca).

[Ledu92] G. Leduc. A Framework based on the Implementation relations for
Implementing LOTOS Specifications, Computer Networks and ISDN Systems,
25, 23-41, North Holland, 1992.

[LoFH92] L. Logrippo, M. Faci and M. Haj-Hussein. An Introduction to LOTOS: Learning
by Examples, Computer Networks & ISDN Systems, Vol. 23, No. 5, 1992, 325-
342.

[VSVB91] C.A. Vissers, G. Scollo, M. van Sinderen, E. Brinksma. Specification Styles in
Distributed Systems Design and Verification, Theoretical Computer Science
89, 1991, 179-206.

[Weze90] C. Wezeman. The CO-OP Method for Compositional Derivation of
Conformance Testers. In: Protocol Specification, Testing, and Verification, IX,
eds. E. Brinksma, G. Scollo, and C.A. Vissers, North Holland, 1990, 145-158.

	1 Motivation and Background
	2 Basic Concepts and Notation
	Definition 1: Labeled Transition System

	3 A Method for Analyzing and Detecting Feature Interactions
	3.1 Specification of Features in the Context of a System (step ¶)
	Fig. 1 Methodology for detecting feature interactions
	Fig. 2 Extending the POTS model to support features
	Definition 2: System Context
	Fig. 3 Integrating a feature into a system.

	3.2 Composition Vs. Integration of Features (steps · and ¸)
	Fig. 4 Integration Vs. Composition of Features

	3.3 Derivation of Test Cases to Detect Interactions (step ¹)
	Conformance Testing and the Detection of Feature Interactions
	Definition 3: Deadlocks in Terms of Refusals
	Definition 4: Conformance
	Definition 5: Formalization of Feature Interactions: Int

	Derivation of Tests
	Definition 6: passes relation
	Fig. 5 A specification and its canonical testing process

	3.4 Executing the System and Analysing the Results (step º and ª)

	4 Conclusions and Research Directions
	5 Bibliography

