
1

VIEWPOINT TRANSFORMATION

Kazi Farooqui, Luigi Logrippo
Department of Computer Science,

University of Ottawa, Ottawa K1N6N5
Canada.

Internet: farooqui@csi.uottawa.ca, luigi@csi.uottawa.ca

ABSTRACT

The ODP Systems are specified from five abstractions: Enterprise Viewpoint,
Information Viewpoint, Computational Viewpoint, Engineering Viewpoint, and
Technology Viewpoint. The major gap in the ODP Reference Model is felt to be in
the area of “viewpoints”; in particular the question of how to ensure consistency
between descriptions of the same system in different viewpoints remains open, as
a challenge to researchers in this area. In this paper we discuss a viewpoint transfor-
mation approach to ODP system design which ensures consistency between com-
putational and engineering viewpoints. The viewpoint transformation process is
considered in the framework of a formal design process, starting from an abstract
description of the distributed application (computational specification) and end-
ing with the specification of the actual realised system (engineering specification).
One possible approach: the correctness preserving transformation supported by FDT
LOTOS is explored for achieving computational to engineering viewpoint trans-
formation.

1.0 INTRODUCTION:
The purpose of the Open Distributed Processing (ODP) framework of abstraction is to
partition the concerns to be addressed in the design of distributed systems. To deal with
the complexity of distributed systems, the framework of abstractions considers the sys-
tem from a set of interrelated viewpoints, where each viewpoint represents a different
abstraction of the original system. A viewpoint leads to a representation of the system
with emphasis on specific set of concerns, and the resulting representation is an abstrac-
tion of the system, that is, a description which recognizes some distinctions (those rele-
vant to the concern) and ignores others (those not relevant to the concern). Different
viewpoints address different concerns, but there will be a common ground between
them. The viewpoints must treat this common ground consistently, in order to relate
viewpoint models and to make it possible to assert correspondences between the repre-
sentations of the system in different viewpoints [1]. The ODP viewpoints can be used to
structure the specification of a distributed system, and can be related to a design meth-
odology. Design of the system can be regarded as a process that may be subdivided into
phases related to different viewpoints. In this paper we explore viewpoint transformation
approach to ODP system design which ensures consistency between computational and
engineering viewpoints.

This paper is organized as follows: Section 2 identifies the relationship or the map-
ping between computational and engineering viewpoints. The concept of viewpoint
transformation along with the issue of language support for attempting the viewpoint
transformation is presented in Section 3. Interface is an important architectural concept

2

in ODP. Computational interface template [5] forms the basis of viewpoint transforma-
tion. Section 4 discusses the relevance of the interface concept in ODP and the rationale
behind formal specification of interfaces. The issues in modelling the computational
interface template in LOTOS and possible solutions are outlined in section 5. A simplistic
mapping between computational and engineering viewpoint is illustrated in section 6.
In section 7 we explore the applicability of LOTOS correctness preserving transformations
(CPT) techniques [3] for achieving computational to engineering viewpoint transforma-
tion. Section 8 lists some benefits of viewpoint transformation approach to ODP system
design. Directions for future work are mentioned in section 9. Conclusions are drawn in
section 10.

Quite clearly this is an area of future research and ideas are presented to provide
motivation and discussion.

2.0 Relationship between Computational and Engineering Viewpoint:
This section identifies the relationship that exist between ODP Computational and Engi-
neering model. The different aspects of Computational and Engineering model are
explored. By identifying the correspondence between computational and engineering
models, the true nature of transformations that could be applicable become apparent.

These two models play a key role in an architectural approach, as they allow to
express some fundamental properties of the ODP architecture. Both models are trade-
offs between different types of requirements and various solutions that may be envis-
aged.

To be able to benefit from these models, it is necessary to establish a firm link
between them, and also between the models and the real world. This means for instance
being able to map computational concepts onto the engineering viewpoint, or to identify
engineering modules in a real world implementation. These links play a critical part in
the architectural approach to system design. The interest of the computational model is
directly related to the existence of a mapping enabling it to relate it to engineering con-
cerns [9].

The ODP computational model is fully generic and can be applied across a wide
range of application domains (from office information systems to computer integrated
manufacturing and telecoms), and to any type of distributed application (in particular,
with or without real-time requirements) [6]. The computational viewpoint provides a
service-oriented view of the system.

The ODP engineering model provides an infrastructure or a distributed platform
for the support of the computational model. The engineering model also provides
generic services and mechanisms capable of supporting distributed applications speci-
fied in the computational model. The engineering viewpoint is centered around the
ways the application may be engineered onto the system.

The computation model is object based: applications are collections of interacting
objects. In this model, objects are the units of distribution, encapsulation, and failure.
Interaction between objects takes the form of operations at (named) interfaces.The only
way to access the state of an object is to invoke some operation on an interface of the
object.

The engineering model is also object based: the set of basic services, identified in
this model, can be viewed as a collection of interacting objects which together provide

3

support for the realization of interactions between distributed application components.
The computation model describes the coarse-grained structure of an application,

i.e., the application components and their interaction at an abstract, system independent
level. Each coarse-grained entity of a distributed application is represented by an object,
called computational object, with a (set of) well defined interface(s), called computational
interface. The computational modelling activity comprises the specification of computa-
tional interfaces and the application-level communication between the (interfaces of)
computational objects, referred to as computational interactions. Remote (computational)
interactions are expressed at a high level in terms of application-level operations rather
than in terms of physical messages.

For application-level processing, a distributed object based engineering environ-
ment is offered. It supports location independent object invocations and object mobility
and provides high level of distribution transparency1. The engineering model is con-
cerned with mapping of an application to a concrete distributed system. Concrete appli-
cation configurations and support infrastructure issues such as component placement,
distribution, and performance are addressed here. The application-driven issues of con-
figuring transparency mechanisms and communication (protocol) objects are relevant
here. The selection of transparency and protocol objects, among many other support
mechanisms, tailored to application needs, forms an important task [7].

The computation model can be viewed as a (language, operating system, and
machine-independent) framework for structuring and designing distributed applica-
tions, and identifying the interactions between distributed application components. The
computation model represents a distributed system as seen by application designers and
programmers. From this viewpoint, an ODP system appears as a (large) programming
support environment capable of building and executing distributed applications. This is
equivalent to the specification of an abstract machine, whose (abstract) realization is the purpose
of an engineering model [8]. The engineering model provides a machine-independent exe-
cution environment for distributed applications. The computational model hides from
the application programmer details of the realization of the underlying abstract machine
that supports it.

The ODP computational model defines the programming features and system com-
ponents that should be available to distributed application programmers. Maximum
engineering flexibility is obtained if all computational statements are expressed declara-
tively, i.e., state what is required (computation), not how it is to be provided (engineer-
ing). This permits the application of tools to automatically generate the engineering support code
necessary to meet specific requirements (computational) in specific environments (engineering).
Such tools perform a mapping from the ‘idealistic’ computational requirements,i.e., the
world as seen by application programmers, onto a ‘realistic’ engineering solution, i.e., a
world as seen by operating system/communication system designers [10].

The computational model provides application designers/programmers with a
generic set of tools for building distributed applications, independent of the underlying
engineering issues. Hence, distributed applications constructed using languages and

1. The distribution transparencies proposed for ODP Engineering Model are: access transparency, location
transparency, migration transparency, concurrency (transaction) transparency, replication transparency, fail-
ure transparency, and resource transparency.

4

environments conforming to the ODP computational model will be portable to other
environments that also support this model [10]. It is the job of the engineering model to
prescribe solutions to the requirements asked in the computational model.

In ODP, the notion of computational model provides the equivalent of a program-
ming language environment, for use on top of an abstract machine realized by an ODP
engineering infrastructure [8]. Such a computational model should contain program-
ming language features commonly found in advanced object-based distributed plat-
forms. As such, the computational model (viewed as an application programming
environment) could be defined as:
1. An abstract language for building distributed applications.
2. A library of system calls.
3. An abstract machine. This being the most general.

To distribute applications, the engineering model specifies how separated applica-
tion components can interact and communicate with each other, providing transparency
guarantees offered in the application programming environment. The mechanisms of the
engineering infrastructure are logically hidden from the operation invocation abstrac-
tions of the computational model.

The engineering model identifies the functionality of the basic system components
that must be present, in some form or other, in order to support the computational envi-
ronment described in the computational view. Hypothetically, there may be several engi-
neering models for a particular computational environment, reflecting the use of
different system components and mechanisms to achieve the same end. The issue in the
computational viewpoint is what (objects, interfaces, interactions, environment con-
straints); the engineering viewpoint prescribes the solution as to how to realize these
computational objects and interactions such as to satisfy their environment constraints.

The computational viewpoint is primarily intended for providing the concepts
needed to explain how services can be programmed in a form suitable for distribution.
The computational model may thus be characterized as focussing on the organization of
applications in architecturally conformant ways rather than on mechanisms used to dis-
tribute, or more generally, support them in the system (which is visible in the engineer-
ing viewpoint) [9]. This model should thus provide the application designer with tools
that facilitate in observing what support is available from engineering infrastructure.
The computational model should allow to express in conformant ways architectural fea-
tures such as interaction and sharing of common sub-applications. Since the computa-
tional model is object-oriented, it is quite convenient to express these types of relations:
for instance, inheritance trees allow to express reuse of components between applica-
tions; message-passing helps to enforce interaction models able to express for instance
conformance in infrastructure usage as well as inter-application interfaces; similarly the
encapsulation principle is very useful to allow a smooth coexistence of several applica-
tions in a system.

In order to build portable applications that can run on several ODP engineering
platforms, an “implementation specification” of the application described in terms of the
computational model must be available. If a more abstract specification of the applica-
tion exists, then a refinement mapping between both specifications must be available.
More generally, one can envisage to follow, for ODP applications, a design approach
combining top-down refinement and reusability of components [8]. The support of a

5

design trajectory as suggested in [15] is thus needed for ODP application development.
From a distributed software engineering point of view, the computation and engi-

neering viewpoints are most important; they reflect the software structure of an applica-
tion most closely and constitute an ODP support environment.

3.0 VIEWPOINT TRANSFORMATION:
At the heart of the separation between ODP computational and engineering model is the
idea of a tool-driven transformation between the abstract computational description of a distrib-
uted application and its mechanization in terms of the engineering model.The engineering
model animates the computational model [11].

In passing from the computational viewpoint to engineering viewpoint, concerns
shifts from the specification of computational structures(e.g. computational objects, com-
putational interface templates, etc.) and statements of necessary properties of interac-
tions between object interfaces (e.g. transparency requirements) to engineering
mechanisms capable of realizing these properties [12].
3.1 Motivation:
The computational viewpoint is the starting point of a distributed application design.
The division of a distributed application into computational objects is based on the dis-
tribution properties of the application.Once the distribution of application function is
done, it results in a set of computational objects; these objects may be specified in some for-
mal languages. This specification constitutes computational object template. A computa-
tional interface is a projection of computational object’s behavior, seen only in terms of a
specified set of observable actions. The computational interface template is a specification of
named operations (with their arguments) supported at the interface together with the
ordering and concurrency constraints between operations(behavior). The operations are
qualified by QOS/transparency attributes (or constraints).

The computational view is that of an “object world” populated by a set of concur-
rent interacting objects which may support multiple interfaces as service provision
points.The engineering model provides an infrastructure (a virtual machine) for the sup-
port of distribution transparent interactions at the interfaces of computational objects.
Computational environments must have:
1.Language support for building/executing applications.
2.Language compilers for transforming computational level interactions into engineering

support mechanisms.
Computational objects represent distributed application components which inter-

act with one another in a distribution transparent abstraction.Whereas the focus of the
computational model is on (computational) object interfaces and the interactions that
occur at these interfaces, the engineering model provides the structures which realize
these computational interactions.

Viewpoint transformation is a mapping from an abstract computational view of
“object interactions” to a realization of an engineering solution comprising of basic engi-
neering objects (BEOs), transparency objects, stubs, nucleus (communication support)
objects, etc. Service and transparency requirements specified at a high level in the com-
putational model have to be mapped to adequate engineering subsystem services. The
type of service required from the engineering subsystem may be specified explicitly or
be derived from the application interaction structure, and should be mapped, as far as

6

possible, automatically to required engineering subsystem functionalities.
3.2 Formal Methods in ODP Viewpoints:
FDTs are a meta-technology that is not directly usable within products like ODP systems.
Instead this technology is used for the specification and design of parts which in turn can
be used in products. The application of FDTs in the formal design trajectory of open dis-
tributed systems has been proposed earlier in [8], [15] and [29].

The issue is what language is to be used for describing computational view of a dis-
tributed application. It should be programming language independent and capable of
expressing computational structures and interactions in a system-independent abstrac-
tion. Formal languages like LOTOS [4] seem to be likely candidates for this purpose.The
benefit of using such languages is that they are based on formal mathematical semantics
and hence amenable to correctness preserving transformations and conformance check-
ing (the derived engineering solution conforms to more abstract computational specifi-
cation).

We view computational viewpoint as an “abstract specification of interactions, at
interfaces, of distributed objects of a distributed application”. And engineering view-
point as a “realization of computational interactions in terms of engineering structures
(such as BEOs, composition of transparency objects, nucleus etc.).

Furthermore, we view a computational specification as akin to service specification
[13] (in OSI terms) and engineering structures akin to protocol entities [13] (in OSI terms)
which together support (and must conform to the service specified in) the computational
specification.

We are planning to specify computational interface template (and hence computa-
tional interactions) in LOTOS. And we intend to transform the computational specifica-
tion into a less abstract realization of engineering structures (in engineering viewpoint).
At present we are approaching this kind of “viewpoint transformation” using correctness
preserving transformations [3], decomposition of functionality [14], incremental specification
[16], and techniques similar to those used for transforming a service specification into
the specification of protocol entities [17], [18].

However, in the more traditional service to protocol transformations, called protocol
synthesis, there are usually two protocol entities synthesized from a given service specifi-
cation. Whereas a computational specification of (distributed) object interactions is real-
ized in the engineering model by (much) more than two engineering structures (e.g.,
BEOs one for each computational interface, a number of transparency and stub objects
etc.). It appears that the synthesis of engineering model from the computational specifi-
cation is a generalization of protocol synthesis problem and techniques more general
than those proposed for protocol synthesis may be necessary.
3.3 Starting with Interface Templates:
A computational interface template identifies all the operations supported at the inter-
face together with their application-level interaction semantics. The information perti-
nent to the transformation exercise, such as distribution transparency, quality of service,
and other environment attributes [5] associated with the operations and their ordering
and concurrency constraints, is available in an interface template. Furthermore an inter-
face template is a specification of projection of object’s behavior (seen only in terms of a
specified set of observable actions).

We think the computational interface template would be the starting point to get an

7

engineering solution from an abstract computational specification. A computational
specification is a composition2 of concurrent computational interfaces supported by
computational objects which represent distributed application components.

Computational interfaces can support distribution, concurrency, and synchroniza-
tion. Interface specifications can be used for the generation of stubs that implement dis-
tribution transparency, concurrency and synchronization aspects of the computational
model.

An important issue is how to specify the constraints/attributes, e.g., transparency,
QOS, and environment constraints, of operations and their ordering and concurrency
constraints in LOTOS, such as to make the specification more amenable to automated
transformation. The criteria that should apply to decide what to put in and what ought
to be left aside in computational interface template are: efficient compilation, i.e., auto-
matic transformation into infrastructure objects and efficient static type checking.
3.4 What is to be transformed:
In the computational model the issue is how to specify a distributed application in terms
of interacting application components, their interfaces, transparency and communica-
tion requirements of computational operations, etc. and the issue in the engineering
model is how to realize the computational specification.

The constraints/attributes in the computational specification of a distributed sys-
tem that are to be transformed into engineering objects which support these attributes
are:
1. Distribution transparency attributes.
2. Quality of service attributes (both service and communication QOS).
3. Ordering and concurrency constraints.
4. Other environment attributes (from enterprise and information viewpoints).

In an interface type description, a large set of QOS constraints can be specified: vol-
ume, cost, quality of perception, criticality, dependability, survivability, security, etc.
There is a priori no bound on what quality of service parameters could be explicitly
included in interface type descriptions. Even behavioral information is possible (some is
already in).
The following activities are involved in viewpoint transformation:
1.The modelling of interfaces and interactions (at the interfaces) of the computational

objects. This constitutes a high level computational specification of distributed applica-
tion interaction semantics.

2.Derivation of the transparency, QOS, and other environment attributes/constraints
from the computational interface specification. Each of the operations included in the
interface template may specify its own transparency requirement and other environ-
ment constraints. The engineering infrastructure must provide the composition of cor-
responding transparency and support mechanisms when the operation is invoked.

3.A series of transformation steps resulting in the identification and specification of engi-
neering infrastructure modules to support the application interaction specified in the
computational viewpoint. This constitutes the engineering solution.

It involves techniques for describing the dependency of objects at one level of abstraction
on those at another level.

2. This composition is expressed by the rich set of LOTOS composition operators.

8

3.5 Consistency Constraints: As specified in [5], an engineering specification S2 is con-
sistent with a computational specification S1 if
1.S1 is a configuration of sub-objects, or a single object, and
2.S1 can be transformed into a configuration of basic engineering objects, a set of stub

objects, binding objects, protocol objects and a nucleus object, or a set of replicated such
configurations, S1’, such that

3.S1’ is behaviorally compatible with S2, and
4.each interface of S1 corresponds to an interface in S1’, and
5.in case of a set of replicated configurations, the basic engineering objects are configured

as replica groups.

4.0 INTERFACE CONCEPT IN ODP:
ODP is a fairly typical distributed computing system, consisting of a number of interact-
ing components which form a complex web of interaction and dependency. ODP
objects/components are described in terms of their behavior and information exchange
at their interfaces.

An interface description of an object describes how the environment can interact
with the object and vice versa. An interface is a first class entity in ODP, that consists of a
set of operations and of behavioral and environmental constraints on their invocation.

The objective of ODP is to enable distributed system components to interwork
seamlessly, despite heterogeneity in equipment, operating systems, networks, lan-
guages, data base models or management authorities.

In order to achieve these ambitious goals, the ODP must accomplish two things[19]:
1.An ODP system must supply the distribution transparency mechanisms to mask the

underlying heterogeneity from users and applications.The realized set of components
that provide these transparencies (together with the nucleus and communication sup-
port) constitute the ODP engineering infrastructure. Distributed application compo-
nents will then inter-operate through ODP engineering infrastructure. The ODP
infrastructure is the platform that will make the network computing a reality.

2.ODP must provide a technique for the specification of interfaces.The ODP infrastruc-
ture will allow client application components to access the server no matter:

a.where the clients and server are located in the network.
b.what programming languages were used for the clients or server.
c.what local operating systems are involved.

4.1 Basic ODP concept:
The objective of ODP is inextricably related to the problem of interface definition. The
components of a distributed system might be developed in different environments using
different technology. It is therefore essential for the developers of a client component to
have a precise specification of server’s interface; the specification must be unambiguous
and implementation independent. At run-time, the interface specification is the vehicle
for ensuring that the interface expected by the client is compatible with the one offered
by the server, so that the infrastructure can effect a type-checked binding [19].

An interface description, called interface template, describes an ODP object’s role as a
server, but in addition the interface description may also describe the object’s role as a cli-
ent.

In general, interfaces are boundaries between architectural elements which have

9

been identified as being of some significance for specification or design purposes. Each
architectural element in the system is considered as an object. Basic building blocks at the
computational level are:
1.Objects, and
2.(Abstract) Interfaces.

Objects are the units of structure. They encapsulate functions and data which are
only accessible through well defined interfaces. A distributed application is then seen as
a collection of interacting and synchronizing objects; interaction and synchronization tak-
ing place at interfaces between objects [20].

An interface has a type, which characterizes the interactions that can take place at
this interface. An object can have several interfaces, which need not be of the same type.
In a system, an interface can be provided by several objects.

The distinction between object and interface is the distinction between the function-
provider and the function. It is the core of the client-server approach, where certain
objects (servers) are responsible for offering certain functions to others (clients). Servers
are responsible for providing certain interfaces; clients are responsible for invoking func-
tions that are accessible through the offered interfaces [20].
4.2 Formal Interface Specification: Why
In the design of distributed applications, it is often necessary to put together parts writ-
ten in different languages and developed independently. A language-independent speci-
fication of component interfaces makes this possible: language-independent
specification helps ensure that representation of the interface in different languages have
consistent semantics. The use of more than one programming language is unavoidable.
The existing software components can be encapsulated inside new interfaces.

Formal languages can be used as the ODP computational languages. It should be
possible to define interface types and behavior in a manner independent of actual local-
ization of interfaces and of programming languages.

The interface specification can be used as an input to the transformation tools for
the generation of engineering level code.

5.0 MODELLING COMPUTATIONAL INTERFACES IN LOTOS:
The problem of interface definition is central to ODP. In the ODP computational model,
the interactions at the interfaces of computational objects are specified in terms of opera-
tional and non-operational interfaces. The specification of non-operational interfaces
does not include the statement of a set of operations which can be performed at the inter-
faces. This ability to omit the operations is included to allow the specification of continu-
ous media such as audio or video. This section describes the modelling of operational
interfaces.

In LOTOS we can model an interface as a gate at which a number of constraints act
to impose allowable signature/behavior and information content on all events occurring
at that interface. A LOTOS event then denotes an interaction of some nature (e.g. com-
munication of message) between the object and its environment. The architecture of
interacting objects may then be captured in LOTOS by combining the involved objects’
interface description in an appropriate parallel composition.

The specification of computational interface template comprises:
1. Operation specification

10

2. Property specification
3. Behavior specification
4. Role indication

5.1 Operation specification: The definition of operations that this interface supports.
Operation specification includes:
a. Operation name: Each operation has a local name within an interface template.
Data Specification:
b. The number, sequence, and type of arguments that may be passed in each operation.
c. The number, sequence, and type of results that may be returned from each operation
invocation.

This specification can be done using LOTOS ADT expressions. This constitutes the
operation signature. Both operation names and arguments can be represented as abstract
data types. Operation invocations are event (or experiment) offers on gates which model
computational interfaces.
5.2 Property specification: The property specification in the computational interface
template defines the following:
a. distribution transparency requirement on operation invocation.
b. quality of service (including communication quality of service) attributes associated

with the operations.
c. other environment constraints (e.g., those arising from enterprise and information

viewpoints) on operations.
These attributes may be associated with individual operations or the entire inter-

face. Property specification in the computational interface template has direct relation-
ship to the realised engineering structures and mechanisms.

Property specification constitutes an important component of computational inter-
face template. There seems to be number of approaches for specifying distribution trans-
parency, QOS, and other environment attributes in LOTOS. Transparency attributes and
quality of service requirements may be represented in LOTOS as another abstract data
types (like operation arguments) or they may be specified as guards or selection predi-
cates (constraints) so that appropriate transparency objects and other support mecha-
nisms can be obtained as a result of transformation process. This problem is both
important and difficult. Currently, there is a lack of clear understanding about the prop-
erty specification in the computational interface template. We plan to concentrate on this
issue.
5.3 Behavior specification: Defines the behavior exhibited at the interface3. All possible
ordering of operation invocations at or from this interface are specified. This includes
ordering and concurrency constraints between operations as well as sequential and dis-
abling (interrupt) type operations. All these constraints can be specified using a combi-
nation of rich set of LOTOS composition operators4. In particular the following generic
interface characteristics can be specified in LOTOS:
1.Usually interactions occurring at an interface take the form of request-confirm pair, in an

3. In the current RM-ODP standard, interface type definitions do not adequately cover the notion of
 behavior.
4. This includes sequential, parallel, enabling, and disabling composition operators.

11

asynchronous communication model. These are referred to as interrogation type opera-
tions in ODP.

2.An interface (service-provider) can support a number of concurrent (request-confirm
type) interactions.

3.Often the previous history of interactions at the object interface affects information
content and behavior of all subsequent interactions at that interface. This can be
achieved by synchronising every invocation by history constraints (state information).

4.Execution of an operation may be interrupted (or disabled) by the invocation of
another operation.

5.In the case of transaction (or ACID) operations, there is a need to specify conflict and
commutativity rules which are elements of behavioral specification.

Specification of ordering and concurrency constraints using path expressions has
been done in ANSA [21].

An important issue is to explore if behavior has any impact on the configuration of
transparency support objects in the engineering model.
5.4 Role indication: Often an object assumes the roles of either client (invoking services
encapsulated by other objects) or server (providing services to other objects). All interac-
tions of an object, both as a client and as a server, between it and its environment5 occur
at object interfaces. Until now, an interface is represented by a single LOTOS gate, but it
is sometimes convenient to partition the complete interface of an object into a number of
more limited interfaces (also represented as LOTOS gates). This allows us to explicitly
partition server role interaction concerns from client role interaction concerns, and to
explicitly reflect compositional architecture in terms of interactions with other objects. If
gates cannot be used, roles can be represented by constants exchanged in interactions.

6.ILLUSTRATION:
This section illustrates a simplistic mapping from computational to engineering view of
object interactions. In passing from computational viewpoint to the engineering view-
point, concerns shifts from the specification computational structures and statements of
necessary properties of interactions6 between objects to engineering mechanisms capable
of ensuring these properties [12].

The computational model defines the semantics of computation in terms of interac-
tions between computational objects. The engineering model specifies the structures for
implementing the abstract computational model (for e.g., mapping of interactions onto
local versus remote calls, mapping of requirements onto support mechanisms, etc.).

As shown in figure 1, what is required is a refinement or decomposition of computa-
tional interactions (at the interfaces of computational objects) into a composition of
transparency and communication support mechanisms which regulate and enable distri-
bution in the engineering model. The computational model contains few objects but
ascribes properties to their interactions; while in the engineering model the issue is how
to realize the computational interactions by means of supporting engineering objects
such as to construct the required properties by their interaction.

The synthesis of engineering model implies the introduction of several engineering

5. A computational environment is a population of interacting computational objects.
6. for e.g., distribution transparency requirements, specific communication requirements, etc.

12

objects and interfaces through which the computational interfaces interact.
Quality of service requirements, distribution transparency requirements, and other

environment constraints are specified individually for each operation or for the entire
interface in the computational interface template. What is required is a translation of
constraints in interface type description to insertion of appropriate mechanisms in the
engineering model.

Basic engineering objects (BEOs), shown in figure 1, are the run time representa-
tions of corresponding computational objects. A BEO is a corresponding computational
object enriched with extra state and interfaces (operations) to enable it to cooperate with
the transparency stack and protocols.

Figure 1 Viewpoint Transformation
An important issue is deciding whether a computational object can be decomposed

into multiple engineering objects, or a group of computational objects can be mapped
onto a single engineering object. A computational object with multiple interfaces could

Computational
Interaction

INTERACTION PATH

Refinement of this interaction path into :
1.Transparency Support Mechanisms +
2.Communication Support Mechanism +
3.Assignment to Basic Processing + Storage

C1 C2

B1 B2

B1 B2TS TSN N

T1

T2 T3

T4
T5

T6

.....

Computational
Interface Template ≡
Set of Operations (Qualified with
Transparency+QOS+Environment attributes)
+
Behavior observable at Interface.

Composition of
Transparencies

C1,C2: Computational Objects
B1,B2: Basic Engineering Objects
TS : Transparency Support
T1...T6: Transparency Objects
N : NUCLEUS (Communication +
Processing + Storage).Nucleus is
refined into Protocol Objects

C
om

pu
ta

tio
na

l
V

ie
w

En
gi

ne
er

in
g

V
ie

w

13

be decomposed into several engineering objects. The only constraint is that interfaces
should be preserved in the transformation. A computational interface becomes a single
(but perhaps replicated) engineering interface. Objects can be split (or merged) but not
the interface.

Computationally, an object’s environment is everything the object can interact with.
In the engineering model the environment can be considered as being composed of two
parts:
1.the “remote” basic engineering object(s) with which this object interacts (indirectly).
2.the channels between this object and the remote objects.

The channels themselves can be broken into three parts:
1.the “local” environment: the cluster/capsule/nucleus/node [5] in which this object is
located (e.g. an object with certain security requirements cannot be placed in an unse-
cured node).
2.the “remote” environment of the interacting object.
3.the communication path between them.

So to satisfy the object’ environmental constraints:
1.it must be placed in an appropriate local environment.
2.the remote interacting objects (or BEOs) must be selected which are both appropriate in
themselves and located in an environment suitable for binding to appropriate channels.
3.adequate channels be constructed using communication objects.

Thus, environment attributes would appear to get mapped into:
1.local environment constraints.
2.remote object constraints.
3.remote environment constraints.
4.binding constraints.

7.0 CPT APPROACH TO VIEWPOINT TRANSFORMATION:
The viewpoint transformation process is considered in the framework of a formal design
process[2], starting from the abstract description of the system (computational specifica-
tion) and ending with the actual realised system (engineering specification). LOTOS
allows the formalization of the design process, where the design step can be seen as a
transformation of the specification produced in the previous step into a new, more
refined, one. The designer must decide which transformations will be applied in each
step (semi-automatic), so that initial requirements/constraints will be maintained during
all the design process.

Correctness preserving transformations (CPT) [3] can help the designer along the
design trajectory. These transformations preserve the correctness of each new refine-
ment, as they maintain some equivalence relation with the previous refinement. This sec-
tion explores the possibility of applying CPTs during viewpoint transformation process.

The existence of a computational model in ODP, taken as a basic implementation
level necessary to ensure portability of applications, requires the formal support of a full
design trajectory [8].

From an architectural point of view the issue is to define in broad terms the nature
of transformations which can operate on the computational specification of distributed
applications.
7.1 Structuring of computational specification: The first step in the computational mod-

14

elling of distributed application is the structuring (or decomposition) of the application
into application components, referred to as computational objects, identification of inter-
faces (interaction points between application components) and interactions that occur at
these interfaces. Generally, functionality decomposition is a way to achieve militariza-
tion of design. Militarization serves several architectural purposes, like separation of
concerns, identification of independent system components, reflecting the physical dis-
tribution of systems, etc.

The splitting process transformation [3] or decomposition of functionality [14] can be
used to split a computational LOTOS specification of a distributed application into
application components, called computational objects. The observable behavior of the
resulting interacting processes is the same as the observable behavior of the original pro-
cess. However as specified in [3], the input to this transformation must be in action pre-
fix [4] form.

Once the computational interfaces have been identified, the interactions that occur
between these interfaces must be specified. The computational interaction specification is
then qualified with distribution transparency, QOS, and other environment attributes. It
is this specification of computational interactions that forms the basis for viewpoint
transformation.
7.2 Identification of Concurrency: The computational view is that of an object world
populated by concurrent interacting objects. These objects can be obtained from the
monolithic specification [22] of a distributed application by exploring the potential par-
allelism inherent in the specification. In the design of systems by step-wise refinement, it
is highly desirable to have some means of decomposing a behavior into several parallel
sub-behaviors. The inverse expansion transformation described in [23] helps the designer
in this task. The main interest of this transformation is that it makes explicit the parallel-
ism of the original computational description.
7.3 Functionality composition: The need for composing the functionality (components)
based upon the offered interfaces arises in both computational and engineering model-
ling of distributed applications.

In the early steps of computational modelling, concurrent computational objects are
used to capture the elements of functionality of the distributed application, possibly
viewed as conceptually independent constraints on the behavior of the latter (constraint-
oriented specification [22]), or components of an abstract architecture. At this stage of
computational modelling the concurrent computational objects may be regrouped (i.e.,
the composition and synchronization relation between the objects may be altered) for
exploring new representation of the specified functionality/architecture, that may turn
out to be more natural, or logical for the distributed application under consideration.
This kind of transformation may be attempted using the LOTOS regrouping parallel pro-
cess transformation [3].

At the subsequent stage of engineering modelling, process regrouping may be used
for letting the specification reflect the structure of a concrete architecture. Possibly, some
constraints are imposed on the concrete (engineering) specification by the need to take
into consideration pre-defined components (such as transparency support objects).
Every computational interaction, may require the support of a specific set (and configu-
ration) of transparency objects. With regrouping parallel process transformation, it is
possible to specify the desired interconnection pattern between transparency objects,

15

and hence to configure a standardized interconnection of transparency objects into the
configuration required for the support of the given computational interaction.

Furthermore, regrouping can be used for achieving predefined interconnection pat-
terns or for optimizing communication costs.
7.4 Interface Design: Where the designer has freedom to compose computational (or
engineering) interfaces, it is meaningful to establish binding between interfaces based on
certain criteria, or in order to achieve some optimization.

In the process of transformation from computational to engineering realisation of a
distributed application, computational (or engineering) interfaces may be split or merged.
There are different motivations for this transformation at different steps of design trajec-
tory.

During computational modelling, architectural considerations may suggest the
splitting of computational interfaces on the basis of its mapping into the interfaces of
cooperating parts of the system (i.e., on the basis of type in terms of object-oriented para-
digm); such a mapping could be necessary because in the computational modelling it is
desired to refrain from the details of the communication (which lie hidden in the engi-
neering viewpoint). In other words, in such a transformation step a meaning and struc-
ture is being attached to interaction points7. Also, separation of concerns criteria may
induce that different communication constraints be represented by different interfaces in
an abstract computational specification, whereas the communication itself will take
place at a single communication channel (in the engineering infrastructure). On the con-
trary all the interfaces that have the same communication constraints or transparency
requirements may be merged into a single interface. (This may be necessary because in
the engineering realisation, computational objects may be split or merged but not the
interface).

This kind of transformation, called interaction point rearrangement [3], is achievable
in LOTOS, where the gates model the interface concept. An input LOTOS specification P
consisting of a set of gates is transformed into another LOTOS specification Q consisting
of a set of gates which is different from that of the input specification such that P and Q
are behaviorally equivalent8. The gates of Q can be obtained from those of P in several
ways. For instance, a certain gate g in P can be split into different gates g1,....,gk in Q.
Alternatively, several gates h1,.......,hn of P can be merged or integrated into a single gate h
of Q. For each event occurring in gi in Q, there will be a uniquely determined event of P
occurring in g, which can be recognized by interaction parameters. Also when an event
occurs at gate h, it must be possible to uniquely find out the gate hi of P at which the cor-
responding event should have occurred. Thus, no information in P is lost in Q.

At the later stages of design refinement, this transformation can be used in order to
make a computational specification closer to target engineering model structures and
objects. For instance, it can be used to split the interfaces of engineering objects (which are
the run time representation of computational objects) so as to map onto the interfaces of
transparency objects, stubs, nucleus objects.

In general gate splitting or merging can be applied in order to make sure that all
values (data types) exchanged through different occurrences of a certain gate within a

7. The terms interaction point and interface are used interchangeably.
8. Bisimulation equivalent.

16

specification be of the same type. This will result in forcing typed gates thus making
LOTOS modelling of computational and engineering issues of a distributed application
closer to that of a typed programming language.

Finally, splitting a gate can facilitate the improvement of a specification in terms of
increased parallelism. In fact, different actions which are necessarily sequential when
performed on a single gate might be executed in parallel on different gates into which
the former has been split.
7.5 Computational specification refinement: One of the important aspects of ODP
design methodology should be the support of step wise refinement approach towards
design. At the computational modelling stage of design trajectory, the designer abstracts
from the details of the system. These details are incorporated later in the engineering
modelling, when the proper design decisions are taken, and must be verified using a
mathematical framework. Computational modelers should have the freedom to repre-
sent a set of possible realizations of a distributed application at a certain level of abstrac-
tion, so that the set can be restricted according to design decisions at the stage of
engineering modelling, since engineering environments normally may not support non-
determinism. This kind of support for step-wise refinement of design can be explored in
LOTOS through functionality extension [24] and resolution of non-determinism [3] transfor-
mations. The conformance, reduction, and extension relations, well-established in LOTOS
theory, provide the basis for this type of reasoning.

Another instance of the use of resolution of non-determinism transformation is the fol-
lowing: In the computational modelling sometimes it may be desired to describe mini-
mal conditions for interactions to occur, leaving some implementation freedom for
specific event parameter values. Such conditions can be represented in LOTOS as rela-
tions (occurring in guards), involving the event parameters and possibly some (internal)
state values. The use of relations allows a multitude of parameters to be valid ones,
which characterizes non-determinism. The non-determinism introduced by the use of
relations can be removed by proper replacement of these relations by functions, which
reduces the number of valid parameter values to single one.
7.6 Communication context refinement: Interactions at the interfaces of computational
objects may be represented as multi-way synchronization. Multi-way communication
may imply an agreement between computational objects on the values to be passed or it
may be used for the purpose of synchronizing all the constituent computational objects
involved in the distributed communication. Additionally, multi-way synchronization of
computational interfaces may also mean performing an atomic action. However, the
engineering environment may not have the capability to perform multi-way synchroni-
zation within a single communication construct; only two way communication may be
realizable.

This kind of transformation can be attempted in LOTOS using multi-way-to-two way
synchronization. A process P, in which an action on a gate a can be simultaneously per-
formed by more than two subprocesses, is transformed into an equivalent process Q in
which each action on a gate a is performed by at most two subprocesses.
7.7 Distribution transparency transformation: In a LOTOS specification of the computa-
tional interface template, the distribution transparencies associated with each operation
of the interface may be represented as selection predicates9. In the engineering model-
ling, the transparency requirements expressed in the computational specification are

17

mapped onto the transparency support objects. This kind of transformation, called elimi-
nation of selection predicates[3], is supported in LOTOS formalism. Interactions of the com-
putational specification for which constraints on the values exchanged are explicitly
imposed are replaced by unconstrained interactions in the engineering specification.

8.0 VIEWPOINT TRANSFORMATION: WHY
This section presents the benefits of viewpoint transformation approach to ODP systems
design.
The computational model is an abstraction of a distributed application in terms of its
requirements and expectations from the supporting engineering model.

The engineering model has to show how transparency (and other support facilities)
can be achieved. A combination of two techniques can be defined [25]:
1.linking transparency mechanisms into the access path to an interface to intercept

effects due to distribution (such as replication, concurrency) and take appropriate
action to replace the requirements by mechanisms before passing interactions onto the
object they protect.

2. adding extra functionality needed to achieve transparency by including (binding)
appropriate modules at compilation time.

The engineering model of ODP is concerned not just with run-time structures and
protocols, but also with the tools used to assemble, compile and link programs. The two
techniques described rely on specifying application programs in an abstract form (or at
least those parts of them affected by distribution) and using automated tools to trans-
form this abstract form into a concrete form composed of a configuration of all the sup-
porting infrastructure objects. Such an approach has significant benefits:
1.applications are easier to write because distribution is declarative: source is labelled

with attributes requesting that particular transparencies and constraints be applied to
selected interfaces rather than mixing application code with calls to low-level system
procedures; the engineering is separated from the application.

2.applications are less error-prone because distribution details are automated.
3.programmers are more productive because they concentrate on applications rather

than distribution details.
4.specifications are future proof because the rigorous and simple semantics of ADTs will

survive automated changes in their representation.
The concept of viewpoint transformation permits one to look beyond. One could

imagine to have compilers automatically generating:
1.stubs for access and location transparencies.
2.concurrency control managers and associated objects and mechanisms for the support

of transaction or concurrency transparency.
3.group managers for the realization of replication transparency.
4.scheduling and quality of service (QoS) negotiation for real-time constraints.
5.various fault-tolerant mechanisms (including groups) based on dependability con-

straints.
9.0 FUTURE DIRECTION:

9. Transparencies associated with computational operations may be represented in a number of ways. This
needs further exploration.

18

Our work extends in two directions. The first issue is finding the right set of QOS/envi-
ronment attributes that are needed for some specific distributed applications that would
run on ODP platform and on extending the computational model described in LOTOS
with appropriate environment constraint declarations. Such an integration in LOTOS
would provide an application designer/specifier with a clear division between control
aspects, that are handled by LOTOS specification, and infrastructure guarantees (such as
QOS/environment attributes) that appear declaratively. Some QOS declarations are mere
assertions while some others are constraints that must be fulfilled by the infrastructure.
Typically, such constraints, once formally expressed, may lead, through transformation,
to possibly semi-automatic generation of QOS monitors, transparency support objects
etc. We intend to explore the infrastructural requirements for the IN services/features
that could be considered as applications on future intelligent networks. Specification of
the computational interaction between IN services/features corresponds to the compu-
tational specification of IN services. Transformations may then be applied on the compu-
tational specification to obtain the engineering support objects which animate the
(desired) computational interactions.

Having defined the computational model for distributed applications, the second
direction of research is finding suitable techniques for mapping (or transforming) the
computational model into engineering infrastructure. Specifically the issue of how to
integrate environment constraints in the computational interface template such as to
simplify the transformation exercise to the engineering realization. The existence of a for-
mal semantics for LOTOS provides us with rigorous correctness preserving engineering
solution.

10.0 CONCLUSION:
Specification transformation finds many applications. The more common is the synthesis
of a protocol from service specification. Transformations are used to ensure correctness
of refinement steps and can be done manually or semi-automatically. Each transforma-
tion introduces new information or takes refined decisions. Transformations may also
serve as a description of the design process.

LOTOS is based on models for which (some) theory already exists for supporting
transformations, e.g., in principle, a protocol can be developed from service using trans-
formations.

The viewpoint transformation approach permits the identification of platform
modules in the engineering viewpoint that support the interaction at the interfaces of
Computational objects. The identification of platform modules facilitates software porta-
bility and reusability and therefore it is very strategic in many domains such as TINA,
TMN, and IN which can be considered as large ODP systems [26], [27], or as applications
on top of ODP platform [28].

Another important application of the viewpoint transformation approach is the
very idea of the realization of the AIN “service engineering” concept: designing services
at very high level starting from reusable components could be generalized in the future
to a service engineering methodology supporting construction of new services by instan-
tiation, composition and integration of existing ones. The resulting engineered service
provides support for the application interaction requirements specified as part of the
environment constraints (transparencies, QoS) in the computational interface templates.

19

A distributed application constructed using ODP computational model is executed
by first transforming it into an equivalent engineering description. It is desired that this
transformation is performed, as much as possible, automatically by tools which special-
ize the general computational description into one tailored to particular configuration of
supporting objects.

ACKNOWLEDGEMENT: We would like to express our sincere thanks to Mr.Jean-Ber-
nard Stefani, CNET France, Dr.Andrew Herbert, APM Ltd., Cambridge, U.K., and to Dr.
Kerry Raymond, University of Queensland, Australia for the numerous discussions we
have had with them on the issues related to the topic.

REFERENCES:

[1] ISO/IEC JTC1/SC21/WG7 10746-1: Basic Reference Model for Open Distributed Pro-
cessing-Part 1: Committee Draft 1992.

[2] Schot, J. The Role of Architectural Semantics in the Formal Approach of Distributed
System Design, Ph.D Thesis, University of Twente, Enschede, Netherlands, 1990.

[3] Bolognesi,T. (Eds): Catalogue of LOTOS Correctness Preserving Transformations,
Ref: Lo/WP1/T1.2/N0045/V03, LOTOSPHERE Consortium, April 1992.

[4] ISO 8807: LOTOS: Language of Temporal Ordering Specification: A Formal Descrip-
tion Technique.

[5] ISO/IEC JTC1/SC21/WG7 10746-3: Basic Reference Model for Open Distributed Pro-
cessing-Part 3: Committee Draft 1992.

[6] Stefani,J.,B. Towards a Reflexive Architecture for Intelligent Networks, Proceedings
of the Second International Workshop on Telecommunication Information Networking
Architecture (TINA), Chantilly, France, 1991.

[7] Schill,A. Zitterbart,M. A Systems Framework for Open Distributed Processing, Pro-
ceedings of the International Workshop on Distributed Systems: Operations and Man-
agement, 1992.

[8] Stefani,J.,B. Open Distributed Processing: The Next Target for the Application of For-
mal Description Techniques, Proceedings of the IFIP Fourth International Conference
on Formal Description Techniques for Distributed Systems and Communication Proto-
cols, FORTE’91, Sydney, Australia, November 1991.

[9] Bregant,G. Platform Modelling Requirements from the ROSA Project, Proceedings of
the Third International Workshop on Telecommunication Information Networking
Architecture (TINA), Narita, Japan, 1992.

[10] Proctor,S. An ODP Analysis of OSI Systems Management, Proceedings of the Third
International Workshop on Telecommunication Information Networking Architec-
ture (TINA), Narita, Japan, 1992.

[11] Watson,A. ISA Project Report: Types and Projections, Ref: APM/RC.258.03, Archi-
tecture Project Management Ltd., Cambridge, U.K., April 1992.

[12] Linington,P.,F. Introduction to the Open Distributed Processing Basic Reference
Model, Proceedings of the IFIP International Workshop on Open Distributed Process-
ing, Berlin, Germany, October 1991.

[13] ISO 7498: Basic Reference Model for Open System Interconnection
[14] Langerak,R. Decomposition of Functionality: A Correctness Preserving LOTOS

20

Transformation, Proceedings of the IFIP Tenth International Symposium on Protocol
Specification, Testing, and Verification, Ottawa, Canada, June 1990.

[15] Vissers,C.,A. FDTs for Open Distributed Systems, A Retrospective and a Perspec-
tive, Proceedings of the IFIP Tenth International Symposium on Protocol Specifica-
tion, Testing, and Verification, Ottawa, Canada, June 1990.

[16] Ichikawa,H. Yamanaka,K. Kato,J. Incremental Specification in LOTOS, Proceed-
ings of the IFIP Tenth International Symposium on Protocol Specification, Testing,
and Verification, Ottawa, Canada, June 1990.

[17] van Eijk,P. Schot,J. An Exercise in Protocol Synthesis, Proceedings of the IFIP
Fourth International Conference on Formal Description Techniques for Distributed
Systems and Communication Protocols, FORTE’91, Sydney, Australia, November
1991.

[18] Probert,R.,L. Saleh,K. Synthesis of Communication Protocols: Survey and Assess-
ment, IEEE Transactions on Computers, Vol.40, 1991.

[19] Taylor,C.J. Object-Oriented Concepts in Distributed Systems, Computer Standards
and Interfaces, 1993.

[20] Stefani,J.,B. On the Notion of Trader in Intelligent Networks, Proceedings of the
First International Workshop on Telecommunication Information Networking Archi-
tecture (TINA), Lake Mohonk, USA, 1990.

[21] Rees,O. ANSA Technical Report: Using Path Expressions as Concurrency Guards,
Ref: TR.022.00, Architecture Projects Management Ltd., Cambridge, U.K., February
1993.

[22] Vissers,A. Scollo,G., Alderden,R.,B., Schot,J., Pires,L.F., The Architecture of Interac-
tion Systems: The Structuring of Distributed Systems, Lecture Notes, Enschede,
Netherlands, February 1989.

[23] Pavon,S. Hultstrom,M. Quemada,J. Frutos,D. Ortega,Y. Inverse Expansion, Pro-
ceedings of the IFIP Fourth International Conference on Formal Description Tech-
niques for Distributed Systems and Communication Protocols, FORTE’91, Sydney,
Australia, November 1991.

[24] Rudkin,S. Inheritance in LOTOS, Proceedings of the IFIP Fourth International Con-
ference on Formal Description Techniques for Distributed Systems and Communica-
tion Protocols, FORTE’91, Sydney, Australia, November 1991.

[25] Herbert,A. The Challenge of ODP, Proceedings of the IFIP International Workshop
on Open Distributed Processing, Berlin, Germany, October 1991.

[26] Bregant,G. Towards a Convergence between Telecommunication Services Architec-
ture and Open Distributed Processing, Proceedings of the IFIP International Work-
shop on Open Distributed Processing, Berlin, Germany, October 1991.

[27] Boyd,T. Telecommunication Networks as a Distributed Application Architecture:
An Overview, Proceedings of the First International Workshop on Telecommunica-
tion Information Networking Architecture (TINA), Lake Mohonk, USA, 1990.

[28] Herbert,A. Green,H. Intelligent Networking as an Application of Open Distributed
Processing, Proceedings of the First International Workshop on Telecommunication
Information Networking Architecture (TINA), Lake Mohonk, USA, 1990.

[29] Sinderen,M.V. Schot,J. An Engineering Approach to ODP Systems Design, Proceed-
ings of the IFIP International Workshop on Open Distributed Processing, Berlin, Ger-
many, October 1991.

21

