
- 1 -

Specifying Features and Analysing Their
Interactions in a LOTOS Environment1

Keywords: Telephone Features, Feature Interactions, Formal Specifications, LOTOS.

1. Motivation and Background

The plain old telephone service (POTS) is used for establishing a communication
session between two users. A telephone feature, such as call waiting (cw), call forward
on busy (cfb), andthree way calling (3wc), is defined as an added functionality of
POTS.Augmenting POTS with a small set of features is considered to be a technically
straightforward job. Both the behaviours of POTS and the features are analysed and
decisions are taken as to how to integrate the features into POTS. Conflicts between any
of the features are resolved on a case by case basis. However, as more and more features
need to be integrated, as is the case for present and future telephone networks [Lata89],
the task becomes more difficult. Features that perform their functions satisfactorily on
their own are, in some instances, prevented from doing so in the presence of other
features. This problem has become known as thefeature interaction problem
[BDCG89].

Investigations into the feature interaction problem fall into one of three
complementary categories[CaVe93]: Detection, avoidance, and resolution. The

1. Appeared in: L. Bouma and H. Velthuijsen (eds.). Feature Interactions in Telecommunications Systems. IOS Press,
1994, 136-151.

M. Faci and L. Logrippo

University of Ottawa, Protocols Research Group,
Department of Computer Science, Ottawa, Ontario, Canada K1N 6N5

E-mail: {mfaci, luigi}@csi.uottawa.ca

Abstract. This paper presents an approach for specifying telephone features and analysing their
interactions in a LOTOS environment. The approach is characterized by a flexible specification
structure and an analysis method based on knowledge goals. Structurally, the specifications allow the
integration of new features into existing ones by specifying each feature independently and
composing its behaviour with the existing system. Analytically, the reasoning mechanism allows the
specifier to analyse features, for the purpose of detecting their interactions, by defining knowledge
goals and simulating the system to verify if they are reachable. A non reachable knowledge goal
reveals the existence of a feature interaction, or a design error. We explain this approach by the use
of two, now classical, examples of feature interactions, namely Call Waiting & Three Way Calling
and Call Waiting & Call Forward on Busy.

- 2 -

objective of a detection approach is to analyse a set of independently specified features
and determine whether or not there are any conflicts between their joint behaviour
[CaLi91], [Lee92], [BoLo93], [DaNa93]. An avoidance mechanism assumes that the
causes of the interactions are known and an architectural or analytical approach is
defined to prevent the manifestation of such interactions [MiTJ93]. The avoidance
approach is most suitable in the early phases of specification and design of features.
Finally, the objective of a resolution mechanism is to find appropriate solutions to
interactions that manifest themselves at execution time [Cain92] [GrVe92].

This paper describes a method, based on the LOTOS specification language
[BoBr87], [LoFH92], for detecting feature interactions at the specification level, in the
context of single user single element features[CGLN93]. Central to our method are the
concepts ofconstraints andknowledge goals. Constraints, which we have categorized as
local, end-to-end, and global, are used to structure the specification so that new features
can be added to the specification or removed from it with plausible ease [FaLS91].
While the concept of constraints is useful for structuring specifications, the concept of
knowledge goals is useful for reasoning about telephone features, in order to detect
feature interactions. It is based on the theories ofknowledge which are being developed
for understanding and reasoning aboutcommunication protocols and distributed systems
[HaFa89], [HaMo90], [PaTa92]. In the knowledge-based approach, the evolution of the
system can be described by the evolving knowledge of the components, about the state
of other components, which collectively make up the global state. Thus, the state of
knowledge in the system changes as a result of exchanging messages between the
communicating components, and communication between the components depends on
their knowledge about the system state. We use this concept to analyse combinations of
features in order to detect the interactions between them.

In section 2, we describe our method for detecting interactions between
independently specified features. In section 3, we demonstrate the application of our
approach on two examples:cw&cfb and cw&3wc. We conclude with some thoughts
regarding our research directions in section 4.

2. Using a LOT OS Environment to Detect Feature Interactions

Although the feature interaction problem has existed for quite many years, little
attention was paid to it until it was explicitly defined [BDCG89]. Since then, a whole
new field of interest is born. Due to the lack of space, we simply point the reader to some
of the work of other researchers in this area. In particular, we mention the work of
[HoSi88], [CaLi91], [Dwor91], [Cain92], [EKDB92], [GrVe92], [Inoue92], [Lee92],
[DaNa93], and [Zave93]. Two other excellent sources of information are the special
issues of IEEE Computer[Comp93] and IEEE Communications magazine [Magz93].

- 3 -

We begin the section by reviewing the constraint-oriented style that we had
developed for specifying telephone systems in LOTOS. Then, we describe an
improvement to the structure of our specifications which makes it possible to easily
integrate features into a telephone system, while still using the concept of constraints.
We conclude the section by describing a reasoning mechanism which allows us to
analyse the joint behaviour of features, for the purpose of detecting their interactions.

2.1 LOTOS Structure of the POTS Specification: An Overview

We have previously developed a LOTOS specification structure that is well suited for
specifying the behaviour of telephone systems[FaLS91]. The structure is based on the
constraint-oriented specification style [VSVB91], where we identified three types of
constraints:

(1) Local constraintsare used to enforce the appropriate sequences of events
at each telephone, and are different according to whether the telephone is aCaller or a
Called. Therefore local constraints are represented by the processesCaller andCalled
and an instance of each of these is associated with each telephone existing in the system.
Because these two processes are independent of each other, they are composed by the
interleaving operator|||.

(2) End-to-Endconstraints are related to each connection, and enforce the
appropriate sequence of actions between telephones in a connection. For example,
ringing at theCalled must necessarily follow dialling at theCaller. ProcessController
enforces these constraints. Because they must apply to bothCaller andCalled,we have
the structure(Caller ||| Called) || Controller. Thus the controller must participate in
every action of theCaller, as well as in every action of theCalled,separately.

(3) Global constraints are system-wide constraints. In the POTS context, we
identified one main constraint, which is the fact that at any time, a number is associated
with at most one connection. Because global constraints, represented by a process
GlobalConstraints, must be satisfied simultaneously over the whole system,we have the
structureConnections || GlobalConstraints.

It should be stressed that the constraint-oriented style is purely a specification
style, which allows to clearly separate the logical constraints a system must abide. It
does not necessarily reflect an implementation architecture. To obtain an implementation
architecture from a constraint-oriented structure, style transformations may be applied
[VSVB91].

2.2 Enhancing the Structure of POTS Specifications

A graphical representation of the enhanced structure of POTS specifications is shown in
Fig.1. The LOTOS specification of this structure, which handles only 4 users for the
purposes of illustration, is shown in Fig. 2. This structure has the following
characteristics: (1) Each user is represented by two processes, a caller side and a called
side and each caller process is bound to its own controller. So, in the POTS case, each

- 4 -

connection becomes:(Caller(n) ||| Called) || Controller(n), wheren is the subscriber
number. (2) Contrary to the structure presented in [FaLS91], where the number of the
called user was passed to the called process at instantiation time, in this structure, the
called process is now represented as a set of alternatives, where each alternative
represents the called side of a user in the system. Clearly, since the controller offers to
synchronize with only one called at a time, only a single alternative will offer the same
value. As we will see in section 3.1, this structure is highly flexible for integrating new
features into a telephone system. (3) the global constraints process participates in every
action in which any instance of the controllers participates.

2

 7

 5

 2

 7

 5

 9

Fig. 1. Enhanced POTS structure

Caller Side Controller Called Side Global Constraints

9

1 behaviour

2 ((Caller[Suser] (2) ||| Called [Suser](Users))|| Controller [Suser] (2)

3 |||

4 (Caller[Suser] (5) ||| Called [Suser](Users)) || Controller [Suser] (5)

|||

5 (Caller[Suser] (7) ||| Called [Suser](Users)) || Controller [Suser] (7)

6 |||

7 (Caller[Suser] (9) ||| Called [Suser](Users)) || Controller [Suser] (9))

8 ||

9 GlobalConstraints[Suser](parameters)

10 where

11 process Caller[Suser](n: TelNo):noexit:= ...

12 process Called [Suser](Users: List):noexit:=
13 Called [Suser](2) [] Called [Suser](5) [] Called [Suser](7) [] Called [Suser] (9)

14 endproc (* Called *)

15 process Controller[Suser](n: Digit):noexit:= ...

16 process GlobalConstraints [Suser](Parameters: Sets)):noexit:= ...

Fig. 2. LOTOS specification of POTS using the enhanced structure.

- 5 -

2.2.1 Local Constraints

As mentioned, Local constraintsare used to enforce the appropriate sequences
of events within each process. For example, to specify aCaller process, the specifier
needs only to understand the events that are exchanged between theCaller process and
its environment. At this stage, the specifier does not need to concentrate onwho
represents the environment orwhich processes will interact with theCaller process.
These concerns are addressed at a later stage of the specification. By taking this view, we
have in fact reinforced the concept ofseparation of concerns. In the case of
specifications dealing with POTS [FaLS91] [BoLo93],local constraints were applied to
the caller entity and the called entity only. Our experience has shown that the concept of
local constraints can be used for specifying telephone features as well.

2.2.2 End-to-End Constraints

For a simple two-way call processing, theend-to-endconstraints were used to
synchronize the actions of two processes with respect to each other, most often the
sender and the receiver. Our experience in writing the POTS specifications is that
establishing a temporal order between two actions, one being offered by the caller and
the other one by the called, is quite intuitive and simple. However, we recognize that
expressingend-to-end constraints of the new structure may become more complicated,
because there are more processes which may offer synchronization actions. And, it is
still the specifier’s task to impose a temporal order on a set of given actions. The
specifier must then have some heuristics and guidelines at his/her disposal. A possible
approach is to start by expressing the end-to-end constraints ascause-effect[Lin90]
[NuPr93] rules.

2.2.3 Global Constraints

Finally, theGlobal constraints are at a higher level of abstraction than the end-
to-end constraints, since they are imposed on the global behaviour of the system. In the
simple two-way call processing model, the global constraints were restricted to
enforcing value constraints between independent connections. In our new structure,
global constraints gain an added importance. They enforcecontrol constraints as well.
Let us illustrate this with the following example, see Fig. 4. Suppose that user 2, who
subscribes tocw, establishes a connection (A) with user 5. Also, suppose that, while 2 is
talking to 5, 7 calls 2. Since 2 hascw, the global constraints process must manage the
new connection (B), which consists of a new caller and shares the called side with the
existing connection of 2. Therefore, the global constraint is responsible for switchingthe
control between connection A and connection B, depending on what stage of the
communication the users are in. For instance, when 7 dials 2 and 2 answers the call, the
global constraint removes the communications between 5 and 2 from the set of active
sessions and inserts it into the set of holding sessions. At the same time, it allows a
communication session to be established between 7 and 2. When 2 and 7 finish their
conversation, the global constraint reactivates the connection (A), between 2 and 5.

- 6 -

The structure that we have just defined exhibits the required flexibility. New
features are defined in terms of their local constraints and their end-to-end constraints,
while their global constraints are composed with the existing global constraints of the
system. To specify a new feature, the specifier either instantiates actions that already
exist in the system, such as thedial action, or defines new actions, such as theCwTone
action used in the definition of thecw feature. In the former case, the resulting global
constraints on thedial action is the conjunctionof the existing constraints and the new
constraints. In the latter case, a new alternative action is added to the behaviour of the
global constraint process.

2.3 Using Knowledge Goals to Reason about LOT OS Specifications

This section describes how to adapt theknowledge-oriented model of Halpern and
Moses [HaMo90] and incorporate it into LOTOS specifications for telephony systems.
The intuition we want to capture, by using the knowledge-based approach, is that the
designer reasons about LOTOS processes in terms of how relevant information, from the
local point of view (i.e., local constraints) of each process, becomes satisfied at certain
points during the execution of the system. To analyze whether two features, saycw and
cfb, interfere with each other, the designer defines a set of knowledge goals and verify
their reachability, when both featuresareactive. If any of the goals is unreachable, the
designer concludes that a feature interaction (or design error) exists. Otherwise, no
conclusion can be drawn from the analysis. In a way, this is similar to system testing. A
test which fails to reveal an error does not indicate that the system under test is error
free, it only means that the system is error free with respect to the assumption expressed
by the test. Details of our analysis using two examples are given in section 3.

POTS
User 7

Local Constraints - Caller Side

POTS
Call

Local Constraints - Called Side

Sender Receiver

Waiting

User 2

Global Constraints

POTS

User 5

end-to-end for connection A

end-to-end for connection B

Fig. 4. The global constraints monitoring two connections of user 2.

- 7 -

It is interesting to emphasize that each process reasons about the outside world
only in terms of its local information. Therefore, a process moves from one state to
another state based only on its knowledge. Similarly, it gains (or loses) new knowledge
as it moves from one state to another. Also, notice that knowledge in this context is an
external notion, in the sense that processes do not acquire knowledge on their own nor
are they able to analyze the knowledge state of other processes.For the purposes of
analysis, the specifier is responsible for choosing the appropriateknowledge goals used
to reason about the system.

3. Application of the Approach

In this section, we show how to apply our method to two examples of feature
interactions: cw vs. cfb andcw vs. 3wc. For each example, we show how to use the
enhanced structure to integrate the two features into a single LOTOS specification, and
then we show how to use the reasoning mechanism to detect their interactions. Only
LOTOS segments which contribute significantly to the understanding of the integration
and reasoning mechanisms are given.

3.1 Specifying Features in LOT OS

We have concluded from our experiments of specifying telephone features that most
features act on behalf of either the caller side or the called side. From our structural and
analytical points of view, some features which seem to act on behalf of both the caller
side and the called side can be given only one of the two roles. An example of this is the
automatic recall feature (not discussed in this paper). When a user is busy, this feature
automatically returns the last incoming call when the subscriber’s line becomes idle. We
have classified this feature as having a caller role because its first action is to initiate a
connection back to a user who has initiated a call.

3.1.1 Call Waiting

Call Waiting is a feature which generates a call waiting tone, to alert a busy user that a
second incoming call is waiting to be answered. The user may choose to answer the call,

2

 7

 5

9

 5

 7

 9

Fig. 5. Structure of integratingcw into POTS

 2

cw

- 8 -

using a specialflashhook signal, or may simply continue with the original
communication and ignore the call waiting tone.

This feature has a called role. Therefore, first, we specify the behaviour of the
feature in the context of POTS.Second, we modify the existingController so that it
handles any new actions that the new feature participates in, such ascall waiting tone.
This results in a structure of the form:(Caller(n) ||| Called) || ControllerCw(n).Third,
we replace the existing definition of the controller with the new definition, which is now
capable of handling POTS calls as well as subscribers with the call waiting feature.
Finally, for each action in which the feature participates, we check that the predicates
remain valid in the global constraints. Modifications of figure 1 are shown in Fig. 5 and
result in the structure of Fig. 6.

3.1.2 Call Forward on Busy

Call Forward on Busy is a feature which allows a user, who is already involved in a
conversation with a second user, to transfer his/her incoming calls to a predetermined
third user. Depending on the specifier’s intentions, the busy user may or may not be
informed that a call transfer has occurred. This feature acts on behalf of the called side,
so its specification is similar to that of call waiting. The modification of Fig. 1 results in
a similar structure to that of call waiting, and is not shown.

3.1.3 Three Way Calling

Three way calling is a feature which allows a user, who is already involved in a
conversation with a second user, to add a third user to the conversation. The subscriber

1 behaviour

2 ((Caller[Suser] (2) ||| Called [Suser](Users)) || Controller [Suser] (2)

3 |||

4 (Caller[Suser] (5) ||| Called [Suser](Users)) || Controller [Suser] (5)

5 |||

6 (Caller[Suser] (7) ||| Called [Suser](Users)) || Controller [Suser] (7)

7 |||

8 (Caller[Suser] (9) ||| Called [Suser](Users)) || Controller [Suser] (9))

9 ||

10 GlobalConstraints[Suser](parameters)

11 where

12 process Caller[Suser](n: TelNo):noexit:= ...

13 process Called [Suser](Users: List):noexit:=
14 CalledPots [Suser](2) [] CalledPots [Suser](5) [] CalledPots [Suser](7)

15 [] CalledPots [Suser] (9)

16 [] CalledCw(2) <---------------Added

17 endproc (* Called *)

18 process Controller[Suser](n: Digit):noexit:= ... <---------------- Modified

19 process GlobalConstraints [Suser](Parameters: Sets)):noexit:= ... <--- Modified

Fig. 6. LOTOS specification ofcw within POTS.

- 9 -

of the feature must put the second user on hold, using a specialflashhook signal, while
establishing a communication with the third user. Once the communication is
established,a secondflashhook brings the second user back to the conversation to form a
3 way communication.

This feature has a caller role. It is specified as follows. First, we specify the
behaviour of the feature with respect to POTS. Second, we modify the existing
Controller so that it handles any new actions that3wcparticipates in, such asflashhook.
This results in a structure of the form:(Twc(n) ||| Called) || Controller3wc(n),wheren
identifies the subscriber for which the feature is to be invoked. Third, we compose this
new structure with the existing connections using the||| operator. Finally, for each
action in which the feature participates, we check that the predicates in the global
constraints process remain valid. Extending our specification of Fig. 1, the structures of
Figs. 7 and 8 result:

 7

 5

 2

 7

 9

 5

9

Fig. 7. Integrating3wc into POTS

 2

3wc

- 10 -

3.2 Analysing Features to Detect their Interactions

In this section, we present our method and show how it can be used to detect
interactions betweencw&cfb andcw&3wc. The method calls for the following steps to
be carried out:

1• Specify each feature independently, within a POTS context;

2• Use the structure defined in section 2.2 to integrate both features into a sin-

gle specification;

3• Define the knowledge goals to be reached in the reasoningphase; a knowl-

edge goal is expressed as a LOTOS process which is composed in parallel

with the specification obtained in 2 above.

4• Finally, simulate the system and check if the selected goals are reachable.

A feature interaction (or design error) is detected if the selected goals are

not reachable.

Fig. 8. New LOTOS Structure of POTS

1 behaviour
2 ((Caller[Suser] (2) ||| Called [Suser](Users)) || Controller [Suser] (2)

3 |||

4 (Caller3wc[Suser] (2) ||| Called [Suser](Users)) || Controller3wc [Suser](2)<-------- added

5 |||

6 (Caller[Suser] (5) ||| Called [Suser](Users)) || Controller [Suser] (5)

|||

7 (Caller[Suser] (7) ||| Called [Suser](Users)) || Controller [Suser] (7)

8 |||

9 (Caller[Suser] (9) ||| Called [Suser](Users)) || Controller [Suser] (9)

10)

11 ||

12 GlobalConstraints[Suser](parameters)

13 where
14 process Caller[Suser](n: TelNo):noexit:= ...

15 process Caller[Suser](n: TelNo):noexit:= ...

16 process Called [Suser](Users: List):noexit:=
17 Called [Suser](2) [] Called [Suser](5) [] Called [Suser](7) [] Called [Suser] (9)

18 endproc (* Called *)

19 process Controller[Suser](n: Digit):noexit:= ...

20 process Controller3wc [Suser](n: Digit):noexit:= ...<-------- Added

21 process GlobalConstraints [Suser](Parameters: Sets)):noexit:= ...

- 11 -

Assuming that points 1 and 2 above are completed successfully, let us proceed
with point 3. In the two examples to follow, the designer has chosen to reason about the
system in terms of subscribers’ talking states. In other words, the designer knows that
each feature, when active by itself within the context of POTS, can successfully reach its
talking state, and the question she is attempting to answer is: can two features, if
activated simultaneously by the same user, reach their talking states? as will be seen, the
answer is no in both examples. Notice that if the designer fails to detect an interaction
using a selected knowledge goal, it is strongly recommended that other goals be tried.
So, it is the responsibility of the designer, using her design insights, to define the
appropriate goals for reasoning about the system.

3.2.1 Call Waiting & Call Forward on Busy

Fig. 10 shows the modification of POTS by extending its functionality
according tocw andcfb.Let usassume that only cw is active on 2. Then, if 7 calls 2
while 2 is talking to 5, one possible scenario is that 5 is put on hold and a talking session
between 7 and 2 is established. This scenario is shown on the left side of Fig. 10. If we
assume instead that only cfb is active, and using the same execution scenario, a talking
session between 2 and 5 remains active and a talking session is established between 7
and 9. Therefore, our knowledge goal is defined as: Talk(2, 7)and Talk(7, 9). Since
each of these two goals is reachable when only one feature is active, then theymust also
be reachable if cw and cfb are activated simultaneously with respect to their talking
sessions.

To clarify this further, we denote by POTS+CW+CFB[gpots, gcw, gcfb] the
extension of POTS by the featurescw andcfb, where each feature is added to POTS
separately; gpots is the gate through which all POTS events occur, gcw is the gate
through which allcw events occur,gcfb is the gate through which allcfb events occur.
Let the first part of the goal Talk[gpots, gcw](2, 7) be defined by theexpression (gpots !7
!dials !2; gcw !2 !flashhook), as shown in the left branch of Fig. 10; letthe second part
of the goal Talk[gpots, gcfb](7, 9) be defined by the expression(gpots !7 !dials !2; gcfb

2

 7

 5 5

9

Fig. 9. Integratingcw andcfb

 2

cw

 9

 7

cfb

- 12 -

!9 !rings (from 7); gcfb !9 !answers), as shown in the right branch of Fig. 10. Therefore,
if a deadlock (in the sense of LOTOS) occurs in the behaviour expression:
POTS+CW+CFB[gpots, gcw, gcfb] || (Talk[gpots, gcw] |[gpots]| Talk[gpots, gcfb]),
then we can conclude that a feature interaction exists. The LOTOS specification and its
execution tree are given as follows:

3 behaviour

4 gpots !7 !dials !2;

5 (gcw !2 !flashhook; stop

6 []

7 gcfb !9 !rings; gcfb !9 !answers !7; stop

8)

9 ||

10 (

11 gpots !7 !dials !2; gcw !2 !flashhook; stop

12 |[gpots]|

13 gpots !7 !dials !2; gcfb !9 !rings; gcfb !9 !answers !7; stop

14)

Execution tree

1 gpots [4,11,13]

| 1 gcw [5,11]DEADLOCK
| 2 gcfb [7,13]DEADLOCK

☎
cfb

5

☎7

☎9

☎2

Fig. 10. Extending Pots with cw and cfb

cw

☎
cfb

5

☎7

☎9

☎2

☎ 7

☎5 ☎ 2

(b) = {t{2,7}} (c) = {t{2,5}}

(d) = {t{2,5}, t(7, 9)}

gcfb !9 !answers

gpots !7 !dials !2

(a) = {t{2,5}} ☎
cfb

5 ☎2

gcw !2 !flashhook gcfb !9 !rings

 cw
☎5 ☎ 2

- 13 -

3.2.2 Call Waiting & Three W ay Calling

Our analysis for detecting the interaction betweencw and3wc is similar to that
of the previous example.Clearly, our objective is to know whether or notcw and3wc
can be invoked simultaneously by 2 without causing a conflict between them.

 9

 5

 9
Fig. 11. Integratingcw and3wc into POTS

 2

cw

 2

3wc

 5

 7

 7

cw

cw

☎
3wc

3wc

☎
3wc

☎5

☎5

☎5

☎5

☎5

☎ 7

☎ 2

☎ 2

☎ 2

☎ 2

☎ 2

 9

 9

3wc
☎5 ☎ 2

(a) = {t{2,5}}

gcw !2 !flashhook g3wc !2 !flashhook

(b) = {t{2,7}} (c) = { }

(d) = {h{2,5}, t(2, 9)}

gpots !2 !dials !9 ;
gpots !9 !rings;
gpots !9 !answers

(e) = {t{2,5}, t(2, 9)}

g3wc !2 !flashhook

Fig. 12. Extending Pots with cw and 3wc

- 14 -

The left side of Fig. 12 is the same as the left side of Fig. 10. Concerning the
right-hand side, assume that only 3wc is active, and that, using the same flashhook
signal, 2 moves to a state where he may dial 9. To make the analysis easier, we assume
that 9 is idle and answers the call. Therefore, a talking session between 2 and 9 is
established. A second flashhook reestablishes the original talking session between 2 and
5. Therefore, our knowledge goal can be defined as: Talk(2, 7)and Talk(2, 9). As is in
the previous example, we must show that the behaviour:POTS+CW+3WC[gpots, gcw,
g3wc] || (Talk[gpots, gcw] |[gpots]| Talk[gpots, g3cw])) is deadlock free. In this case as
well, a deadlock is reached as can be easily verified by executing the above behaviour
expression. We conclude that a feature interaction exists.

4. Conclusions and Research Directions

We have proposed a method, based on a formal approach, for detecting feature
interactions at the specification level, for single user single element features.
Structurally, the approach uses three types of constraints: local constraints, end-to-end
constraints, and global constraints. This structure allows the integration of new feature
specifications into existing ones simply by classifying their roles ascaller or called and
expressing their global constraints as a conjunction.This structure is possible because of
LOTOS’s multiway synchronization mechanism, which also offers the flexibility to
describe a system as a composition of constraints. Analytically, the approach is based on
a reasoning mechanism which allows the specifier to analyse features, for the purpose of
detecting their interactions, based on knowledge goals, where each goal is expressed as a
LOTOS process.Our interpretation, in this context, is that conflicts between features
correspond to deadlock situations in the LOTOS sense.

Important items for future research are adapting our approach to more realistic
examples, extending the technique to other types of feature interactions, and making the
technique more automatic. i.e., less dependent on designer’s insight regarding where the
problem might be found.

Acknowledgment. Funding sources for our work include the Natural Sciences and
Engineering Research Council of Canada, the Telecommunications Research Institute of
Ontario, Bellcore, Bell-Northern Research, and the Canadian Department of
Communications. We like to acknowledge the many fruitful discussions that we had with
Bernard Stepien and members of our LOTOS group. Also, comments from the referees
have led to improvements of the content of this paper.

5. References

[BDCG89] T.F. Bowen, F.S. Dworak, C.H. Chow, N. Griffeth, G.E. Herman, and Y-J.
Lin, The Feature Interaction Problem in Telecommunications Systems, 7th
International Conference on Software Engineering for Telecommunication

- 15 -

Switching Systems, July 1989, 59-62.
[BoBr87] Bolognesi, B.,Brinksma, E. Introduction to the ISO Specification Language

LOTOS. Computer Networks and ISDN Systems 14, 1987, 25-59.
[BoLo93] R. Boumezbeur, L. Logrippo, Specifying Telephone Systems in LOTOS,

IEEE Communications Magazine, Aug. 1993, 38-45.E. J. Cameron, N.
Griffeth, Y. Lin, M. E. Nilson, W. K. Schnure, H. Velthuijsen, A Feature
Interaction Benchmark for IN and Beyond, IEEE Communications, vol. 31,
No. 3, 64-69, March 1993.

[CaLi91] E. J. Cameron and Y.J. Lin, A Real-Time Transition Model for Analyzing
Behavioral Compatibility of Telecommunications Services. In Proceedings
of the ACM SIGSOFT 1991 Conference on Software for Critical Systems,
pp. 101-111, December 1991, New Orleans, Louisiana.

[CaVe93] J. Cameron and H. Velthuijsen, Feature Interactions in Telecommunications
Systems, IEEE Communications Magazine, Aug. 1993, 18-23.

[Cain92] M. Cain, Managing Run-Time Interactions Between Call-Processing
Features, IEEE Communications Magazine, pp. 44-50, February 1992.

[Comp93] IEEE Computer, Special Issue on Feature Interactions in
Telecomunications Systems, Aug. 1993.

[DaNa93] O. Dahl and E. Najm, Specification and Detection of IN Service
Interference Using LOTOS, to appear in the proceedings of Forte ’93,
Boston.

[Dwor91] F. S. Dworak, Approaches to Detecting and Resolving Feature Interactions,
GLOBECOM 1991, pp. 1371-1377.

[EKDB92] M. Erradi, F. Khendek, R. Dsouli, and G. V. Bochmann, Dynamic
Extension of Object-Oriented Distributed System Specifications, First
International Workshop on Feature Interactions in Telecommunications
Software Systems, Florida, 1992, 116-132.

[FaLS91] Faci, L. Logrippo and B. Stepien,Formal Specifications of Telephone
Systems in LOTOS: The Constraint-Oriented Style Approach, Computer
Networks and ISDN Systems, 21, 52-67, North Holland, 1991.

[GrVe92] N. D. Griffeth and H. Velthuijsen, The negotiating agent model for Rapid
Feature Development, Proceedings of the 8th International Conference on
Software Engineering for Telecommunications Systems and Services,
Florence, Italy, March/April 1992.

[HaFa89] J. Y. Halpern and R. Fagin, Modelling Knowledge and action in distributed
systems, Distributed Computing, 3, 159-177, 1989.

[HaMo90] J. Y. Halpern and Y. Moses, Knowledge and Comon Knowledge in a
Distributed Environment, JACM, Vol. 37, No. 3, 549-587, July 1990.

[HoSi88] S. Homayoon and H. Singh, Methods of Addressing the Interactions of
Intelligent Network Services With Embedded Switch Services, IEEE
Communications Magazine, pp. 42-47, Dec. 1988.

[Inoue92] Y. Inoue, K. Takami, and T. Ohta, Method for Supporting Detection and
Elimination of Feature Interaction in a Telecommunication System, First
International Workshop on Feature Interactions in Telecommunications

- 16 -

Software Systems, Florida, 1992, 61-81.
[Lata89] LATA Switching Systems Generic Requirements (LSSGR), Bellcore, TR-

TSY-000064, FSD 00-00-0100, July 1989.
[Lee92] A. Lee, Formal Specification and Analysis of Intelligent Network Services

and their Interaction, Ph. D. Thesis, Dept. of Computer Science, University
of Queensland, 1993.

[Lin90] Y. J. Lin, Analyzing Service Specifications Based upon the Logic
Programming Paradigm, In Proceedings of the IEEE GLOBECOM 1990,
pp. 651-655, December 1990, San Diego, California.

[LoFH92] L. Logrippo, M. Faci and M. Haj-Hussein, An Introduction to LOTOS:
Learning by Examples, Computer Networks & ISDN Systems, Vol. 23, No.
5, 1992, pp. 325-342.

[Magz93] IEEE Communications Magazine, Special Issue on Feature Interactions in
Telecomunications Systems, Aug. 1993.

[MiTJ93] J. Mierop, S. Tax, R. Janmaat, Service Interaction in an Object Oriented
Environment, IEEE Communications Magazine, Aug. 1993.

[NuPr93] K. Nursimulu and R. L. Probert, Cause-Effect Validation of
Telecommunications Service Requirements, Technical Report TR-93-15,
University of Ottawa, Dept. of Computer Science, October 1993.

[PaTa92] P. Panangaden and K. Taylor, Concurrent Common Knowledge: Defining
Agreement for Asynchronous Systems, Distributed Computing, 6, 73-93,
1992.

[VSVB91] C.A. Vissers, G. Scollo, M. van Sinderen, E. Brinksma, Specification Styles
in Distributed Systems Design and Verification, Theoretical Computer
Science 89, 1991, 179-206.

[Zave93] P. Zave, Feature Interactions and Formal Specifications in
Telecommunications, IEEE Computer Magazine, Aug. 1993, 18-23.

