
Paper appeared in: K. Kimbler and L.G. Bouma (Eds.). Feature Interactions in Telecommuni-
cations and Software Systems V. IOS Press, 1998, 172-186.

Goal-Oriented Feature Interaction Detection
in the Intelligent Network Model

Jalel KAMOUN and Luigi LOGRIPPO
University of Ottawa

Telecommunications Software Engineering Research Group
School of Information Technology and Engineering

Ottawa, Ontario, Canada K1N 6N5
luigi@site.uottawa.ca

Abstract. In the first part of the paper, a LOTOS model for specifying the Intelligent
Network call model and services belonging to the Distributed Functional Plane is de-
scribed. The functional entities involved in the establishment of call connection and in-
vocation of services are formally specified. In the second part of the paper, an approach
to detect feature interactions between IN services is presented. Interactions caused by
violation of features properties are detected. The approach is based on stating feature
properties, on deriving goals satisfying the negation of these properties, and on use of
Goal Oriented Execution to detect traces satisfying these goals. Such traces, if found,
show that interactions exists between the specified features by showing that a scenario
violating one of the properties of the features can be found. An example showing the
detection of interaction between Originating Call Screening and Call Forward Always
is given.

1. Introduction and Motivation

With the infrastructure provided by the Plain Old Telephone System (POTS), the task of
introducing a new service was tedious and very costly. To overcome the limitations of POTS,
Intelligent Networks (IN) were introduced in order to facilitate the creation and provision of
telecommunication services.

One of the aims of IN is independent service implementation, which means that every service
provider will be able to define its own services independently within its Service Creation
Environment (SCE) and deploy them in the network.

However, the rapid development of services is hindered by the feature interaction problem
[1]. Formal Description Techniques (FDTs) have proven useful in detecting feature interactions
at the specification level (see numerous papers in [5][2][7]). A formal description of the system
behavior with the features provides an unambiguous and precise view of the system that can
support formal analysis and validation methods.

In this paper, we describe an architectural model for structuring the specification of IN
components in the formal description technique LOTOS [11], as well as a LOTOS-based
method for detecting feature interactions.

Our view of the Intelligent Network is contained in its Global Functional Plane and
Distributed Functional Plane (DFP). In order to write a specification that constitutes a
functioning model of some of the essential elements of the IN, we were obliged to combine
features of the two planes. Only the characteristics of Capability Set 1 (C1), the ‘basic’ one,
were considered [12] [13] [14].

2. Specification of IN Call Model and Services in LOTOS

Our main objective in specifying the IN call model and services in LOTOS is to provide an
executable specification, or model, that can be used as a test bed for specifying, validating and
detecting feature interactions. The model should enable incremental specification and rapid
implementation of services, i.e. each new service must be able to be specified independently
and then added easily to the global specification without major modifications.

Only the external behavior of the system describing call/connection establishment and
service activation is of interest. Fig. 1 shows the elements of the DFP of CS1 that are involved
when a call is being processed and the features are activated, as well as the elements that were
formalized.

These are the SCF, CCF, SSF and SDF. The management related functions are not specified
since they are not involved in the service processing stage of the service lifecycle. In addition,
functions that are related to implementation and deployment of services are not taken into
account. Among these are the SRF which provides specialized resources such as protocol
conversion and speech recognition, and the CCAF which defines the interface that provides to
network users access to the CCF.

Principles for the specification of telephony systems in LOTOS were discussed in [8]. In this
work, we decided to specify IN in a way that reflects closely the architecture described in the
standard documents. This required further adaptation of the resource-oriented model presented
in that paper.

At the highest level of abstraction, we can view the IN system as a means to establish
connections between network subscribers in order to communicate. For simplicity, in our
model we assume that directory number, line, and network subscriber are the same thing.
Therefore, connections are constrained by the fact that at any time, a directory number or line
is in use at most once and if a network subscriber is in a busy state, it cannot make or receive
calls (in normal call processing). This constraint is handled in our specification by using a list
of busy subscribers which is updated each time a subscriber becomes busy or turns to idle. As
a result, the top level of the behavior part of our specification consists of two processes,

SMF
SMAF

SCEF

SCF SDF

SRF
CCAF

SSF
CCF

 Management related functions

 Figure 1: Functional Entities of the DFP

SMF: Service Management Function
SMAF: Service Management Access Function
SCEF: Service Creation Environment Function
SDF: Service Data Function
SCF: Service Control Function
SRF: Specialized Resource Function
SSF: Service Switching Function
CCF: Call Control Function
CCAF: Call Control Agent Function

Management
Voice control
Services control

The par t of DFP
subject to formal
specification

Service control
related functions

Call control
related functions

Connections and Update_Busy_List composed in parallel and synchronizing through gates N
and DBRequest. The two processes synchronize each time an update or a consultation of the list
of busy users is needed (Fig.2).

The process Connections is composed of two processes: Network_Subscribers and
IN_Network. Process Network_Subscribers defines the subscribers of the network. A network
subscriber is specified generically by the process Subscriber with a parameter representing its
network address. An unlimited number of subscribers can thus be produced. The subscribers
behave independently and each one can initiate a call at any time. Therefore, the process
Network_Subscribers consists of a number of interleaved subscribers.

The process IN_Network defines the activities required to handle call/connections between
network subscribers. These are mainly the functionalities of the CCF/SSF, the SCF and the
SDF. Processes Network_Subscribers and IN_Network communicate through synchronization
on gates N and G. Actions which use N as gate name require a three way synchronization
between processes Network_Subscribers, IN_Network and Update_Busy_List in order to be
performed. These are the actions that involve an update of the user busy list. However, actions
which use gate name G require only a two way synchronization between process
Network_Subscribers and process IN_Network since they don’t require any modification of the
busy list. Synchronization between processes Connections and Update_Busy_List, on gate
DBRequest, is done when an update of the busy users list is needed.

2.1 Process Subscriber

A Subscriber can have one of two roles. It can either initiate or respond to a call, and only one
role can be active at any given time. When a subscriber attempts to initiate a call, it cannot
receive any call and when its telephone rings, it cannot initiate any call. Therefore, we represent
the process Subscriber as a choice between two processes: Caller_Side and Called_Side. When

IN_SYSTE

Connections

Subscr iber

Subscr iber

IN_SYSTEM

Network_Subscribers

Update_Busy_List

N, G

N, DBRequest

IN_Network

 Figure 2: Graphical representation of the top levels of the specification

Subscr iber

see figure 3

the subscriber is idle, which means that it can initiate or receive calls, either process is ready to
synchronize. If one of the processes synchronizes with its environment, the other process dies
and cannot synchronize, since only one scenario is permitted. When the subscriber returns to
idle, an instantiation of process Subscriber is created and becomes ready to synchronize. The
process Subscriber is defined as follows:

process Subscriber [G, N, DBRequest](adr: network_address): noexit:=
(

 Caller_Side[G, N, DBRequest](adr)
 []
 Called_Side[G, N, DBRequest](adr)

)
endproc (* end of process Subscriber *)

Process Caller_Side specifies the behavior of a subscriber that initiates a call. It describes the
actions that are seen and performed by the call initiator.

On the other hand, process Called_Side describes the actions performed and seen by the call
responder. To specify the caller and the called sides of a subscriber, we have referred to the CS1
Basic Call State Model (BCSM), where the Points In Call (PICs) described in the BCSM
identify the CCF activities required to complete one or more basic call/connection states of
interest to the IN services defined in CS1 [15]. The activity described by a PIC can represent
either an internal activity of the switch which is not seen by the subscriber (caller or called side)
or can be manifested by an event or a signal seen at the caller or the called side. For example,
the PIC Analyse_Info defines the activities of analyzing and translating information according
to the dialing plan to determine routing address and call type, therefore, it is not seen by the
subscriber. However, the PIC Collect_Info defines the activity of collecting dialing digits (e.g.,
service code, prefixes, dialed address digits) and is manifested by an event at the caller side
which is the dialing of a number by the call initiator. As a result, only the actions defined by the
PICs that are seen by the call initiator or the call responder are specified by processes
Caller_Side and Called_Side.

2.2 Process IN_Network

Process IN_Network which specifies the DFP entities involved in the establishment of call/
connection is defined as follows (Fig. 3):

process IN_Network [S, G, N, D, Detection_Point, DBRequest]: noexit :=
 CCF_SSF [S, G, N, Detection_Point, DBRequest]

 |[S]|
 SCF [S, G, N, D, DBRequest]

 |[D]|
 SDF [D, DBRequest]

endproc (* end of process IN_Network *)

where process CCF_SSF specifies the CCF/SSF functionalities, process SCF specifies the SCF
activities and process SDF specifies the SDF. Processes CCF_SSF and SCF communicate via
synchronization on gate S, and processes SCF and SDF communicate via synchronization on
gate D. Process CCF_SSF is defined as follows:

process CCF_SSF [S, G, N, Detection_Point, DBRequest]: noexit:=

N ?caller: network_address !OffHookToCall; (1)
(

(
 Basic_Call_State_Model [S, G, N,Detection_Point, DBRequest](caller, nil, null)

 |[Detection_Point]|
Check_Trigger [Detection_Point]

)
|||
CCF_SSF [S, G, N, Detection_Point, DBRequest]

)
endproc (* end of process CCF_SSF*)

where process Basic_Call_State_Model specifies the CS1 BCSM, and process Check_Trigger
checks for the arming criteria at each Detection Point (DP) in the BCSM in order to decide
whether an IN service should be launched. The recursive instantiation of process CCF_SSF af-
ter an interleave operator (|||) induces the fact that an unlimited number of instantiations are
ready to synchronize. When a call is initiated by a subscriber and synchronization on gate N
occurs (action (1) in the specification of process CCF_SSF is executed), an instantiation of the
process Basic_Call_State_Model composed in parallel with the process Check_Trigger is cre-
ated. The CS1 BCSM defines different states in the call processing, and each state is represent-
ed by either a PIC or a DP. At the DP, arming criteria are checked in order to decide if a service
should be invoked or not. If not, the functions defined by the PIC should be processed and the
system moves to one of the next possible DPs depending on the results of processing the PIC.
If a service is launched, it determines the next state (DP or PIC) at which the processing of the
call should continue.

2.3 Process SCF

Process SSF synchronizes with process SCF, which specifies the SCF functionalities, on gate
S. This process has the following structure:

process SCF[S, G, N, D, DBRequest]: noexit:=

Detection_Point

SIB1

SIB’1 SIB’ ’1

SIBn

CCF_SSF

SCF

Basic_Call_State_Model Check_Tr igger

Service 1Service n

IN_Network

SIB’n

SDF

D

S

SSF

 Figure 3: Detailed representation of process IN_Network

Data Base

(
S ! service_1 ?caller: network_address ?dn: dialled_number ?called: network_address;
process_service_1 [S, G, N, D, DBRequest](caller, dn, called)
[]
...
[]

 S ! service_n ?caller: network_address ?dn: dialled_number ?called: network_address;
process_service_n [S, G, N, D, DBRequest](caller, dn, called)

)
endproc (* end of process SCF *)

When a service must be invoked, the two processes synchronize by executing action S !ser
!caller !dn !called, and the call parameters needed to process the service are passed to the
process SCF.

Each choice in process SCF is represented by an action with gate name S composed
sequentially with an instantiation of a process specifying a service. The action with gate S is
specified with an offer event of a variable of sort service_name (service_1,.., service_n)
indicating the service process to be instantiated. At synchronization, the action offering the
variable of sort service_name which is equal to the variable ser (of sort service_name)
specified in the action S !ser !caller !dn !called (in process SSF) is executed. Then, an

instantiation of the process specifying the required service is created with the call parameters
that are passed at the synchronization. We shall see that this process will in turn instantiates the
necessary SIBs.

When a service is executed, it must indicate the return state at which the call must continue
(DP or PIC) and the process describing this state must be instantiated. This is done by
specifying a new type named Process_Name of sort process_name which associates to each
process defining a state a constant (described in the process SSF by the parameters state_1, ...,
state_n). At the end of processing a service, a synchronization on gate S occurs between process
SSF and the process defining the executed service. This synchronization is achieved by
executing the action on gate S with an offer of the parameter of sort process_name indicating
the state process to be instantiated (which corresponds to the return state in the BCSM), and an
accept of the new call parameters (if they have been modified)

2.4 Process SDF

All the data required by IN services are handled by the SDF. This functional entity (FE) can be
considered as a data base which the SCF accesses when an IN service needs access to its data.
This FE is described by the process SDF which communicates with process SCF via
synchronization on gate D. It has the following structure:

process SDF [D, DBRequest]: noexit:=

...
 []

D !Service_Name !Operation_Name ?parameter_1 ... ?parameter_n;

(* ... execute actions to perform the operation ... *)

 D !Service_Name !Operation_Name !result_1 ... !result_m;
 SDF[D, DBRequest]
[]
...

endproc (* end of process SDF *)

In order to perform its functionality, a service process must send a message to the SDF
indicating the type of operation required and the data involved in this operation. The
communication is specified by synchronization on gate D between actions defined in the
service process (instantiated by process SCF) and process SDF. Operation type and data are
specified as parameters to be exchanged or matched at the synchronization. A new type named
Operation_Name of sort operation_name is specified. It defines the different operations that
can be performed by the SDF. Process SDF executes the actions needed, and sends back the
results to the service process. Hence process SDF is defined as a choice between different
operations needed by the different service processes.

2.5 Specification of a New Service

When a new service is to be specified, a new variable of type service_name must be defined
and associated to the service, the arming conditions must be defined in the data types, checking
for the criteria must be added to process Check_Trigger and then the service is specified using
SIBs. Therefore, a specification of the new service can be done independently and added to the
specification of the system without any modifications of structure. This satisfies the principle
of open endedness we have mentioned above.

IN services are defined as a combination of SIBs. Therefore, to specify a new service, we
need to specify the SIBs of which it is composed if they are not yet specified. In order to provide
for the reusability of SIBs, their specification should be generic and parametrized so that they
can be used by different services.

Each SIB requires two types of data parameters in order to perform its functionality. These
are the CID (Call Instance Data) and the SSD (Service Support Data). The CID is a record that
defines the dynamic parameters, whose values change with each call. The three elements of the
CID that are relevant to the specified services and are used as parameters in the SIBs
specification are the network addresses of the caller and called parties, and the number dialled
by the caller.

The SSD are the static parameters needed by a SIB and which are specific to each service.
They do not change in different calls.

The output data of a SIB are the input data whose values can change during the execution of
a service, and some other data depending on the functionality of the SIB. Thus, the behavior of
a process representing a SIB is of the following form:

process SIB_Name [G, N, S, DBRequest](caller: network_address, dn: dialled_number, called:
network_address, SSD_parameters): exit(network_address, dialled_number,
network_address, specific_data):=
(

(* perform SIB operations corresponding to the value of SSD_parameters *)
exit (caller, dn, called, specific_data)

)
endproc (* end of process SIB_Name *)

Once the SIBs composing a service are specified, the task of specifying a service becomes
easy. In fact, we only need to specify the way these SIBs are combined and this can be done
using LOTOS operators.

3. Detecting Feature Interaction between IN services

In our method, feature requirements are expressed as properties in a property language and
interaction is said to occur when these properties are not satisfied by the formal specification
[3] [6].

More precisely, let S be a user-view specification of the basic IN system (without adding
features),described in a formal specification language (LOTOS in our case), and let F1, F2, ...,

Fn be user-view specifications of n features. We denote by S ⊕ F1 ⊕ F2 ⊕ ... ⊕ Fn, a formal
specification of a system obtained by adding features Fi, 1 ≤ i ≤ n, to the IN system, denoted
by S.

Let P1, P2, ..., Pn, be n formulae expressing respectively the feature requirements of F1, F2,
..., Fn, in a suitable property language, and let N |= P denote that a system specification N
satisfies formula P, i.e. N is a model of P. We say that there is interaction between features F1,
F2, ..., Fn if:

S ⊕ Fi |= Pi, 1 ≤ i ≤ n

but
¬ (S ⊕ F1 ⊕ F2 ⊕ ... ⊕ Fn |= P1 ∧ P2 ∧... ∧ Pn) (1)

It should be noted here that these definitions do not attempt to characterize the feature
interaction problem in its most general meaning since this is quite difficult and perhaps
impossible. Our definition is consciously a limitative one. In a two features context, we say that
there is feature interaction when a second feature modifies the effects of an existing one,
although this could be a desired result.

3.1 Properties of Features

To be able to verify the correctness of the behavior of the resulting system (after adding features
to it), we have to express formally the feature requirements and the general properties of the
basic system. Thus we need a formal property language. For this purpose we chose the
branching time temporal logic CTL [4] which is well adapted for concurrent systems since it
permits expression of precedence relations between events. A temporal logic language is
defined over infinite sequences of states, representing execution states of the specification.

Note that the semantics of CTL formulae is defined with respect to Kripke Structures,
however a LOTOS specification is seen as a Labelled Transition System (LTS). This does not
present a problem since any LTS can be transformed into a Kripke Structure. In this
transformation, every transition from a state S1 to a state S2 is transformed into a state in a
Kripke Structure. It is possible also to use other temporal logics more appropriate for LTSs but
this was left for further research.

3.2 Verification Tool: Goal Oriented Execution

In the following, we call trace a sequence of observable actions that a LOTOS process can offer
to the environment. The method we present is based on the Goal Oriented Execution tool
developed within the LOTOS group of the University of Ottawa [9] [10]. Goal oriented
execution allows one to look for execution traces according to several properties. In the
simplest instance of this execution method, the user specifies an action to be reached, usually
an action that is not immediately derivable. The system then proceeds in a sort of selective
eager execution, being able to select traces likely to reach the action. These traces can be found
with the help of a static analysis of the behavior expression. For example, if the behavior
expression is: (a ; b ; stop ||| b ; c ; stop) [] c ; d ; f ; stop and the user wants to be given an (or
all) execution trace(s) reaching f, then the goal oriented execution algorithm uses the fact that
the left-hand side of the behavior expression does not need to be expanded at all, because it does
not contain action f. A considerable saving in computing time and space is obvious from the
example.

Goal oriented execution allows also to define, instead of one action to be reached, a sequence
of (possibly non-contiguous) actions. The system proceeds to select traces that contain this
sequence starting by the first action in the sequence. For example, if the behavior expression is:
(a ; c ; stop [] a ; e ; f ; c ; stop [] a ; stop) and the goal is: [a, c], then the following traces satisfy
the goal and will be found: a ; c and a ; e ; f ; c. Events can be associated with actions in the
expression defining the goal to be reached. For example, if the sequence contains an action a!x1,
the selected trace must contain an action with gate a and with the offer of value x1. If the event
associated with the action is the acceptance of a parameter (?), the system will accept any
possible value of that parameter. An example of a goal to be satisfied is the following:

[a !x1 ?x2, b~, c] \\ [e, f].
This goal is satisfied by all traces of actions starting by an action with gate name a, with an offer
of value x1 and an acceptance of value x2, leading to an action represented by gate c (without
any event), and having as intermediate action an action with gate name b with arbitrary events
(~). Traces must not include actions with gates e or f.

The tool has many characteristics that can speed up the search. If the search is slow or
unsuccessful we can guide it by adding some intermediate actions, that we know must exist in
a trace satisfying the specified goal. For example, if we are looking for a trace leading to an
action specifying a connection establishment between two network users, we can add in the
goal an action where a user dials a number, since it is known that before the establishment of a
connection, a user must dial a number. If we want to exclude the search from some branches of
the behavior tree, we can exclude some gates from the search. The search process will not
search further those branches. It is also possible to set limits on the number of instantiations of
processes, thereby limiting the depth of the search.

Note that goal-oriented execution is a state exploration method that is suitable for infinite-
state systems, since there is no requirement that the global state space of the system be
computed. This is a main difference between the techniques used in [17] and ours. While the
execution times reported by this author are in the order of dozens of hours, our execution times
are in the order of dozens of minutes.

Following the principle described in section 3.2, an interaction occurs if one of the properties
Pi is not verified with respect to the resulting system by adding the n features Fi to S. (1) in
section 3.2 can be expressed by:

∃ Pi, 1 ≤ i ≤ n such that: ¬ (S ⊕ F1 ⊕ F2 ⊕ ... ⊕ Fn |= Pi)
A property Pi is not verified whenever there is a trace ti in the specification describing a sce-
nario which does not satisfy Pi. This means that ti satisfies the property (¬ Pi). Therefore, for
each Pi, we construct a goal gi which satisfies the property (¬ Pi) and we apply Goal Oriented
Execution in order to see if a trace ti satisfying gi can be found. If ti exists, then there is inter-
action.

4. Case Study

In this example we show how the interaction between Originating Call Screening (OCS) and
Call Forward Always (CFA) features is detected.

4.1 Specification of Originating Call Screening (OCS)

OCS is a feature that allows a subscriber to prevent outgoing calls to be made, according to a
screening list for the creation and modification of which the subscriber is responsible.
However, the subscriber can still be reached from subscribers whose telephone numbers are
included in the list.

OCS is composed of the Screen SIB which performs a comparison of an identifier against a
list to determine whether the identifier is in the list. As input data, this SIB needs the call
parameters and a screen list indicator which identifies the list to be used for screening. Call
parameters include network addresses of calling and called parties and the number dialled by
the caller. Some other input data are defined in [14] but they are not relevant to the formal
specification since they are related to implementation details.

In order to perform its functionality, the Screen SIB (instantiated by a service process) needs
to communicate with the SDF where the service related data are handled. The Screen SIB must
send a message to the SDF indicating the type of operation required (consultation, modification
or addition of data) and the data involved in this operation. The communication is specified by
synchronization on gate D between process Screen_SIB which defines the Screen SIB and
process SDF. Operation type and data are specified as parameters to be exchanged or matched
by synchronization. A new type named Operation_Name of sort operation_name is specified.
It defines the different operations that can be performed by the SDF. Process Screen_SIB is
defined as follows:

process Screen_SIB [S, G, N, D, DBRequest]
(ser: service_name, caller: network_address, dn: dialled_number, called: network_address): exit (bool) :=

 [ser eq OCS] ->
 (
 D !IsInScreenList !caller !called; (1)

 D !IsInScreenList ?result: bool; (2)
exit(result)

)
endproc (* end of process Screen_SIB *)

The Screen SIB can be used by different services that need to screen different lists and for
each calling service, certain actions must be executed. For this reason, the variable ser of sort
service_name referencing the invoked service is passed as parameter to the Screen_SIB
process to indicate what actions must be executed. The value of the parameter of sort
service_name referencing the Originating Call Screening feature is OCS.The output of
process Screen_SIB is a boolean variable which is set to true if the identifier is in the screening
list and to false if not.

Processes Screen_SIB and SDF synchronize on gate D by executing action (1) specified in
the former process. This action offers three parameters: IsInScreenList of sort operation_name
indicating the type of operation to be performed by the SDF and caller and called which
represent the call parameters needed to perform the operation. When process SDF performs the
required operation, it sends back the result to process Screen_SIB. This is done by
synchronizing on gate D and executing action (2)(D !IsInScreenList ?result: bool).

Process SDF is defined as a choice between different operations needed by the different SIBs.
It is described as follows:

process SDF [D, DBRequest]: noexit:=

 D !IsInScreenList ?caller: network_address ?called: network_address;
 (
 [called NotIn ScreenList(caller)] ->
 (
 D !IsInScreenList !false;
 SDF[S, G, N, D, DBRequest]
)
 []
 [called IsIn ScreenList(caller)] ->
 (

 D !IsInScreenList !true;
 SDF[S, G, N, D, DBRequest]
)
)
[]
 (* ... definition of other operations ...*)

endproc (* end of process SDF *)

Process SDF reinstantiates itself to allow other synchronizations with other service processes.
This process can always be modified when new operations needed by other SIBs must be
defined. The modification consists in adding a choice with the new operation actions.

The list to be screened is created and updated by the feature subscriber. It is defined in the
type List by the operation: OCS_ScreenList: network_address -> list, which defines for each
feature subscriber the OCS list. The process defining the OCS feature is defined as follows:

process Originating_Call_Screening [S, G, N, D, DBRequest]
(caller: network_address, dn: dialled_number, called: network_address): noexit :=

 Screen_SIB[S, G, N, D, DBRequest](OCS, caller, dn, called) >> accept result: bool in
 (
 [result eq true] ->

 (
S !PIC_Analyse_Info !caller !dn !called;
SCF[S, G, N, D, DBRequest]

)
[]

 [result eq false] ->
(

 S !PIC_O_Exception !caller !dn !called;
SCF[S, G, N, D, DBRequest]

)
)

endproc (* end of process Originating_Call_Screening *)

Process Originating_Call_Screening instantiates process Screen_SIB then, depending on the
output of the latter process, it indicates the return point at which the call must continue. This is
done by synchronizing with process SSF on gate S. If the called was found in the screening
list, the caller must abandon the call and hang up, this is done by synchronization with process
SSF on action S !PIC_O_Exception !caller !dn !called. If the called does not appear in the
screening list, the call must continue and move to the next point defined by the PIC
Analyse_Info. This is done by performing action S !PIC_Analyse_Info !caller !dn !called.

The verification of the authority to originate a call is checked by the OCS feature when a
subscriber finishes dialling a number. Thus, the service must be invoked at the DP
Collected_Info after the dialling string is collected.

In our specification we suppose that the user represented by the network address adr1 has
subscribed to the OCS feature and has the user represented by the network address adr2 in her
screening list. The arming condition is defined by an operation trigger_armed of sort bool
defined in the type Trigger_Detection_Point.

4.2 Specification of Call Forward Always (CFA)

CFA is a feature that allows a subscriber to forward all incoming calls to another telephone
number. With this service, all calls destined to the subscriber’s number are redirected to the new
phone number, no matter what the called party line status is.

The CFA service is composed of the Translate SIB which, as defined in [14], translates input
information and provides output information, based on various other input parameters. These
parameters include the file indicator which indicates what file contains the translation data, and
the call parameters (described by the caller and the called network addresses and the number
dialled by the caller). The Translate SIB is specified by the process Translate_SIB. Its inputs
are the service name and the call parameters. The outputs are the new values of the call
parameters after performing the translation. The translation can affect one of the call parameters
depending on what feature is being processed.

Process Translate_SIB is defined as follows:

process Translate_SIB [S, G, N, D, DBRequest]
(ser: service_name, caller: network_address, dn: dialled_number, called: network_address)
:exit (network_address, dialled_number, network_address):=

[ser eq CFA] ->
(

D !GetForwardedAddress !called; (1)
 D !GetForwardedAddress ?forwarded_called_address: network_address;

 exit (caller, dn, forwarded_called_address)
)

endproc (* end of process Translate_SIB *)

When the CFA feature is invoked, processes Translate_SIB and SDF synchronize on gate D by
performing action (1). CFA is a parameter of sort service_name referencing CFA feature.
GetForwrdedAddress is a parameter of sort operation_name which indicates the type of
operation to be performed at the SDF and which consists in determining the forwarded
network address of the CFA subscriber. The parameter called of sort network_address
indicates the network address of the subscriber. This new operation must be added to process
SDF as follows:

process SDF [D, DBRequest]: noexit:=
...

 []
D !GetForwardedAddress ?called: network_address;

 D !GetForwardedAddress !get_CFAddress(called);
 SDF[D, DBRequest]
[]
...

endproc (* end of process SDF *)

The operation get_CFAddress: network_address -> network_address is defined in the data
types to specify the network address to which calls are forwarded.

The CFA feature is specified by the process Call_Forward_Always defined as follows:

process Call_Forward_Always [S, G, N, D, DBRequest]
(caller: network_address, dn: dialled_number, called: network_address): noexit:=
(

Translate_SIB[S, G, N, D,DBRequest] (CFA, caller, dn, called) >> accept
caller: network_address, dn: dialled_number, new_called_address: network_address in

 (
S !DP_Term_Attempt !caller !dn !new_called_address;

 SCF [S, G, N, D, DBRequest]
)

)
endproc (* end of process Call_Forward_Always *)

Process Call_Forward_Always instantiates process Translate_SIB in order to determine the
new network address to which the call must be forwarded. Then, the call must continue at DP
Term_Attempt since a new attempt to call a new number is taking place. This is described in
the process definition by action S !DP_Term_Attempt !caller !dn !new_called_address on
which process SSF and process Call_Forward_Always synchronize (note that this is a
deliberate simplification in our model).

The CFA feature is invoked when an indication of incoming call is received by the called line.
Thus, the DP Term_Attempt must be armed in order to launch this service. In our specification,
we suppose that the subscriber defined by the network address adr3 subscribes to the CFA
service and its incoming calls are forwarded to the subscriber adr2.

4.3 Detection of interaction between OCS and CFA
Expressing the requirement of OCS in CTL
In this example, we suppose that adr1 subscribes to the OCS feature. Then, it cannot be
connected to any user in the screening list. This means that whenever adr1 picks up the phone
in order to make a call, it cannot reach adr2 (since adr2 is the only user in the screening list).
This property is described in CTL as follows:
P1: AG((N !adr1 !OffHookToCall) -> ¬(EG(N !adr1 !RingsFrom !adr2)))

Expressing the requirement of CFA in CTL
In our example, adr3 subscribes to CFA feature, and forwards all the calls to adr2. Then, if
any user tries to call adr3, the call will be forwarded to adr2 and a connection between adr2
and the calling party takes place. This property is described in CTL as:

P2: AG((Detection_Point !Term_Attempt ?caller !adr3) ->
AF(!Detection_Point !O_Term_Seized !caller !adr2)).

Deriving Goals that satisfy the negation of the OCS property
(¬ P1) is satisfied if there exists a trace that starts with action N !adr1 !OffHookToCall and
leads to the action N !adr1 !RingsFrom !adr2. This can be expressed by the goal:

G1: [N !adr1 !OffHookToCall, N !adr1 !RingsFrom !adr2].

After applying Goal Oriented Execution, a trace satisfying goal G1 was found (Trace 1),
consisting of 25 actions. This trace shows a scenario which violates the property of the OCS
feature, proving that an interaction between OCS and CFA features exists. In this scenario, adr1
dials phone number num3 corresponding to adr3 (line 5), then the OCS feature is invoked to
check whether the called number is in the screening list (line 7). adr3 was not found in the list,
and the processing of the call continues (line 11 to line 14). Then, the CFA feature is invoked
(line 15) and the call is forwarded to adr2 (line 19). A ring is then performed between adr1
and adr2 (line 25). Figure 4 describes how the property of the OCS feature is violated by the
introduction of the CFA features.

5. Conclusion

An architecture for formally specifying the IN Call Model and services as defined in the DFP
of IN CS1 was presented. The specification is designed in a way that independent specification
and rapid introduction of services is provided, given that these are two of the main objectives
of IN. In the second part of the paper, an approach to detect feature interaction between IN
services was presented. This approach is applicable to the detection of logical interactions
which occur when one or some of the requirements or assumptions, that must be satisfied when
a feature is introduced separately in the network, is violated. This method is based on

1-N !adr1: network_address !OffHookToCall: Signal [true] line(s): [1198,681,547]

2-Detection_Point !Orig_Attempt: trigger_detection_point !adr1: network_address !null: network_address line(s): [703]

3-G !adr1: network_address !GetTone: Signal line(s): [560,711]

4-Detection_Point !Orig_Attempt_Auth: trigger_detection_point !adr1: network_address !null: network_address line(s): [767]

5-G !adr1: network_address !Dials: Signal ?dn,dn=num3: dialled_number line(s): [571,775]

6-Detection_Point !Collected_Info: trigger_detection_point !adr1: network_address !adr3: network_address line(s): [804]

7-S !OCS: service_indicator !adr1: network_address !num3: dialled_number !adr3: network_address line(s): [1389,1215]

8-D !OCS:service_indicator !IsInScreenList:operation_name !adr1:network_address !adr3:network_address line(s):[1463,1451]

9-D !OCS: service_indicator !IsInScreenList: operation_name !false: Bool line(s): [1467,1452]

10-i/exit (false:Bool) line(s): [1453]

11-S !PIC_Analyse_Info:state_name !adr1:network_address !num3:dialled_number !adr3:network_address line(s): [1432,1219]

12-Detection_Point !Analysed_Info: trigger_detection_point !adr1: network_address !adr3: network_address line(s): [846]

13-Detection_Point !Route_Selected: trigger_detection_point !adr1: network_address !adr2: network_address line(s): [895]

14-Detection_Point !Orig_Auth: trigger_detection_point !adr1: network_address !adr3: network_address line(s): [865]

17-D !CFA: service_indicator !GetForwrdedAddress: operation_name !adr3: network_address line(s): [1479,1418]

18-D !CFA: service_indicator !GetForwrdedAddress: operation_name !adr2: network_address line(s): [1480,1419]

19-i/exit (adr1: network_address, num3: dialled_number, adr2: network_address) line(s): [1420]

20-S !DP_Term_Attempt:state_name !adr1:network_address !num3:dialled_number !adr2:network_address line(s): [1405,1223]

21-Detection_Point !Term_Attempt: trigger_detection_point !adr1: network_address !adr2: network_address line(s): [885]

22-Detection_Point !Term_Auth: trigger_detection_point !adr1: network_address !adr2: network_address line(s): [927]

23-DBRequest !Consult: dboperations !ADD(adr1, empty): List line(s): [1194,935]

16-S !CFA: service_indicator !adr1: network_address !num3: dialled_number !adr3: network_address line(s): [1394,1215]

15-Detection_Point !Term_Attempt: trigger_detection_point !adr1: network_address !adr3: network_address line(s): [885]

24-Detection_Point !Term_Res_Avail: trigger_detection_point !adr1: network_address !adr2: network_address line(s): [966]

25-N !adr2: network_address !RingsFrom: Signal !adr1: network_address line(s): [1206,974,648]

Trace1: Trace showing interaction between OCS and CFA

☎

 ☎

adr1

Calls adr3

OCS

adr2

CFA

OCS L ist

- adr2
ForwardsConnection

Forward
 address

adr2

1

23

Violation of OCS property

 Figure 4: Interaction between OCS and CFA

formalization of feature properties, which is followed by derivation of goals satisfying the
negation of these properties. Goal Oriented Execution is used to detect traces satisfying these
goals. A trace satisfying a goal shows that an interaction exists between the specified features.
In fact, it describes a scenario violating one of the properties of the features. An example of
detecting interaction between Call Forward Always and Originating Call Screening was
presented. Two other cases of interaction detection following this approach are presented in
[16]. They concern the interactions between OCS and Abbreviated Dialling, and between
Security Screening and CFA.Execution times for this method compare very favorably with
those reported for a related LOTOS-based method.

Acknowledgments
We would like to thank Motorola-ARRC and NSERC for their financial support and all the
members of the University of Ottawa LOTOS group for the fruitful discussions we have had.
We are particularly indebted to Bernard Stepien for his useful comments about some parts of
the specification and to Jacques Sincennes for his technical support in using the Goal Oriented
Execution tool.

References
[1] E.J. Cameron, N. Griffeth, Y. Lin, M.E. Nilson, W.K. Schnure, H. Velthuijsen. A feature interaction bench-

mark for IN and beyond. IEEE Communications 31 (1993), 64-69. Reprinted in extended form in: L.G.
Bouma and H. Velthuijsen (eds.). Second International Workshop on Feature Interactions in Telecommu-
nications Software Systems, IOS Press, 1994, 1-23.

[2] W. Bouma and H. Velthuijsen (Eds.) Feature Interactions in Telecommunications Systems. IOS Press,
1994.

[3] W. Bouma and H. Zuidweg. Formal Analysis of Feature Interactions by Model Checking, PTT research,
the Netherlands, December 1992.

[4] E.M. Clarke, E.A. Emerson and A.P. Sistla. Automatic Verification of Finite State Concurrent Systems us-
ing Temporal Logic Specifications, ACM TOPLAS, 8(2):244-263, April 1986.

[5] K.E. Cheng and T Ohta (Eds.) Feature Interaction in Telecommunications III. IOS Press, 1995.
[6] P. Combe and S. Pickin. Formalization of a User View of Network and Services for Feature Interaction De-

tection. In: L. G. Bouma and H. Velthuijsen (eds.) Second International Workshop on Feature Interactions
in Telecommunications Software Systems, IOS Press 1994, 120 - 135.

[7] P. Dini, R. Boutaba, and L.Logrippo. Feature Interactions in Telecommunications Networks IV. IOS Press,
1997.

[8] M. Faci, L. Logrippo, and B. Stepien. Structural Models for Specifying Telephone Systems. Computer Net-
works and ISDN Systems 29, 501-528.

[9] M. Haj-Hussein. Goal Oriented Execution for LOTOS, PhD Thesis in Computer science, University of Ot-
tawa, Canada, 1995.(http://LOTOS.csi.UOttawa.ca/ftp/pub/Lotos/Theses/)

[10] M. Haj-Hussein, L. Logrippo and J. Sincennes. Goal Oriented Execution of LOTOS Specifications, in M.
Diaz and R. Groz (Eds) Formal Description Techniques, V. North Holland, 1993, 311 - 327.

[11] ISO, IS 8807. Information Processing Systems - Open Systems Interconnection - LOTOS: A formal De-
scription Technique Based on the Temporal Ordering of Observational Behavior, May 1989 (E. Brinksma,
editor).

[12] ITU-T/ETSI Recommendation Q1203, 1993.
[13] ITU-T/ETSI Recommendation Q1204, 1993.
[14] ITU-T/ETSI Recommendation Q1213, 1993.
[15] ITU-T/ETSI Recommendation Q1214, 1993.
[16] J. Kamoun. Formal Specification and Feature Interaction Detection in Intelligent Networks, Master thesis

in Computer Science, University of Ottawa, Canada, 1996.(http://LOTOS.csi.UOttawa.ca/ftp/pub/Lotos/
Theses/)

[17] M. Thomas. Modeling and Analysing User Views of Telecommunications Services. In: Feature Interactions
in Telecommunications and Distributed Systems IV. P. Dini, R. Boutaba, L. Logrippo (eds.) IOS Press,
1997. 168-182.

	Goal-Oriented Feature Interaction Detection
	in the Intelligent Network Model
	Jalel KAMOUN and Luigi LOGRIPPO
	University of Ottawa
	Telecommunications Software Engineering Research Group
	School of Information Technology and Engineering
	Ottawa, Ontario, Canada K1N 6N5
	luigi@site.uottawa.ca
	1. Introduction and Motivation
	2. Specification of IN Call Model and Services in LOTOS
	3. Detecting Feature Interaction between IN services
	4. Case Study
	5. Conclusion
	[1] E.J. Cameron, N. Griffeth, Y. Lin, M.E. Nilson, W.K. Schnure, H. Velthuijsen. A feature inter...
	[2] W. Bouma and H. Velthuijsen (Eds.) Feature Interactions in Telecommunications Systems. IOS Pr...
	[3] W. Bouma and H. Zuidweg. Formal Analysis of Feature Interactions by Model Checking, PTT resea...
	[4] E.M. Clarke, E.A. Emerson and A.P. Sistla. Automatic Verification of Finite State Concurrent ...
	[5] K.E. Cheng and T Ohta (Eds.) Feature Interaction in Telecommunications III. IOS Press, 1995.
	[6] P. Combe and S. Pickin. Formalization of a User View of Network and Services for Feature Inte...
	[7] P. Dini, R. Boutaba, and L.Logrippo. Feature Interactions in Telecommunications Networks IV. ...
	[8] M. Faci, L. Logrippo, and B. Stepien. Structural Models for Specifying Telephone Systems. Com...
	[9] M. Haj-Hussein. Goal Oriented Execution for LOTOS, PhD Thesis in Computer science, University...
	[10] M. Haj-Hussein, L. Logrippo and J. Sincennes. Goal Oriented Execution of LOTOS Specification...
	[11] ISO, IS 8807. Information Processing Systems - Open Systems Interconnection - LOTOS: A forma...
	[12] ITU-T/ETSI Recommendation Q1203, 1993.
	[13] ITU-T/ETSI Recommendation Q1204, 1993.
	[14] ITU-T/ETSI Recommendation Q1213, 1993.
	[15] ITU-T/ETSI Recommendation Q1214, 1993.
	[16] J. Kamoun. Formal Specification and Feature Interaction Detection in Intelligent Networks, M...
	[17] M. Thomas. Modeling and Analysing User Views of Telecommunications Services. In: Feature Int...

