
Representing and Verifying Intentions
in Telephony Features

Using Abstract Data Types

Bernard Stepien and Luigi Logrippo
Telecommunications Software Engineering Research Group

Department of Computer Science, University of Ottawa
Ottawa, Ont. Canada, K1M 6N5
(bernard | luigi)@csi.uottawa.ca

Abstract. Feature intentions describe the intended behavior of telephony fea-
tures. A method for formally specifying feature intentions by abstract data types
is given. Further, a method for detecting violation of certain types of feature
intentions at the design stage is provided. Specification languages considered
are SDL, Prolog, and LOTOS. If the specification is in LOTOS, detection can be
helped by the use of goal-oriented execution. Examples of specification and
detection are provided, namely involving Originating Call Screening and Call
Forwarding.

1. Introduction

[CGL94] provide a survey of the many types of feature interactions possible in
telecommunications systems, and propose some categorization schemes. In one
of these they distinguish among three main causes of feature interactions: vio-
lation of feature assumptions, limitations on network support, and intrinsic
problems in distributed systems. [BW94] categorize the different techniques to
deal with the problem in the three following categories: avoidance, detection,
and resolution. In this paper, we propose a new detection technique, which can
be used at the design and specification stage, to find interactions caused by vio-
lations of feature assumptions and by intrinsic problems in distributed systems.

Feature interactions are not necessarily a problem. Some are intended and
some are undesirable. In this context, it is difficult sometimes to base detection
on service specifications alone, that cover only the procedural or technological
aspects of features. In many instances, features are meant to implement some
subscriber’s wishes or intentions. An undesired feature interaction can thus be
defined as a violation of intentions. This concept is reflected by many authors in
their work at various levels of their analysis. For example [LL94] distinguish
between procedural and behavioral specifications of features and [GV94] distin-
guish between technological and policy features. In the first case, the authors
use procedural and behavioral specifications concurrently to detect feature
interactions. In the second case, the authors separate feature interactions into
two groups and decide to address the policy features that reveal mainly inten-
tion violations. Technological feature interactions are detectable by inspection

of the procedural specification. Feature interactions resulting from violations of
intentions however cannot be always detected from such inspection alone
because they depend on the intentions of the user (behaviors or policies). Conse-
quently, we need to be able to describe explicitly and separately such intentions
and verify them against the specification of the various features present in a
system. Some feature interactions resulting from scattering in a distributed
system can also be detected using this method. The two papers mentioned so far
have clearly separated the actual specification of intentions from the feature
interaction detection mechanism. While the basic principles are similar, their
implementations were very different. [LL94] use temporal logic while [GV94]
use proposals or goals in a Prolog form to represent user intentions.

Intentions have also been described as invariant properties [Zav93], which
must hold throughout the system’s lifetime.

In this work, we propose a technique for feature intention violation detection
at the design stage, based on Formal Description Techniques (FDT) that use
Abstract Data Types (ADT) to represent intentions. We show how the technique
can be used to detect feature interactions in association with various standard
procedural formal description techniques. LOTOS appears to be the most suit-
able one, but SDL is also suitable to a certain extent. A more generic technique
based on Prolog programming is also considered. We stress some benefits of the
systematic specification and detection approach that is made possible by FDTs.

1.1 Definition of a generic intention representation

We start by constructing an executable formal model (or prototype) of the sys-
tem with features. This formal model can be built in any of the languages men-
tioned above. Intentions (i.e. invariants) are represented in such a way that
when a feature is activated, they can be verified for every subsequent action.
When verification fails, the invariant has become false, so a flag is raised. Con-
sequently, we need a generic mechanism to verify simultaneously many differ-
ent features that might have been activated during the execution of a
specification that represents a connection attempt between two subscribers
within their own respective environments. The principle of a generic data type
representation is useful, since the specification of the features and of their
interaction detection mechanism is isolated in the data part of the specification.
Our technique is related to the one of [GV94]. Although their paper deals with
run-time detection, while we deal with detection at the design stage, we do
detection by executing the specification. Furthermore, we use a flat, or tabular,
representation, as opposed to the hierarchical system of [GV94]. The latter was
motivated by a resolution technique, which is not among our goals.

2. Representing intentions using Abstract Data Types

In order to define a generic representation and verification mechanism to sup-
port the specification of a variety of features, we need first to determine the cat-
egories of data and the rules associated with features. Telephone systems
operate with a limited set of data or rules: phone numbers, signals, feature
names, and databases of various types of names and phone numbers. Rules usu-
ally are restriction sets such as in the Originate Call Screening feature. In its
ADT representation, a feature is an operation that has the above mentioned

data as its domain, and uses either a substitution or a restriction rule to deter-
mine its range.

The intention of a feature can be abstracted to rules with specific combina-
tions of the four basic classes of data delimited above. So we can represent an
intention as an operation of boolean result that indicates whether a given com-
bination of the basic data involved in an operation is allowed.

intention: Fid, partyRole, operation, Restriction_set -> Bool

For example the originate call screening (OCS) prohibits any connection with a
number that is in the screening list. This can be formulated thus:

The number that has the called role shall not be connected if it is in
the screening list.

The above example can thus be expressed with the following equation:

intention(Focs, called(N), connect,L) = N NotIn L;

where Focs identifies the feature Originating Call Screening, N the phone num-
ber involved in a called role in operation connect and L is the restriction set that
in this case is a screening list, N NotIn L is a boolean expression that verifies if
the number N is not found in the restriction set L, which would mean that the
intention is verified for this particular operation. Note this set will be used in
different ways.

It is clear from this definition that equations have to be provided for each
type of operation, including the operations that are specific only to certain fea-
tures. Similarly, the interaction detection methods used in [BA94] uses a tabu-
lar notation, where analysis of these tables against actual features can lead to
interaction detection. Our equations play the same role as the tables used in
their method. However, the representation of feature intentions is only a first
step toward feature interaction detection. In our method, only the actual simu-
lation of two simultaneous features can verify if an interaction occurs. However
with intentions clearly defined, the detection of an interaction can be automated
(at least in part) and is no longer subject to the designer’s judgement. Also, it is
now clear that the specification of an intention consists in specifying the con-
straints on a set of operations. For the application of our method, two guidelines
must be respected:

• Intentions of a feature are described independently of other features.
This means that the specification of an intention on a specific operation is done
solely in consideration of the given feature. There is no consideration of poten-
tial interactions with another feature at this stage. This is important especially
in the context of a multi-vendor environment where characteristics of a feature
of a vendor may not be known to another vendor. Also, from a design point of
view, this characteristic allows the feature provider to add new features without
having to understand their behavior in combination with other features, as
already mentioned in [GV94].

• Intentions of a feature must be described for every operation that exists
in the system regardless of which feature is actually used. This means that
operations must be considered as belonging to some sort of generic pool of oper-

ations that can be used by various features. This, even if some operations were
created specifically for a feature such as for example Originating Number Dis-
play. While originally an operation may have been created for a feature, chances
are that it will be re-used by other features and thus become more generic. This
convention is a result of the formalism we are using, because with ADTs the
equation set must be complete and convergent.

For implementation purposes we have chosen to represent intentions as
ADT operations that actually detect the intention’s violation. We thus define
operation violates as having the same domain as the intention operation defined
above. The range of this operator is also a boolean value that indicates whether
the intention has been violated or not. However, the boolean expression is
reversed. For example, here we are saying that, in the case of Focs, a violation
occurs if the number involved in operation connect is found in the restriction
list:

 violates(Focs, called(N), connect,L) = N IsIn L;

2.1 Examples

The use of our representation of intentions can be illustrated in three examples
that cover the two main categories of violation of assumptions and problems in
distributed systems defined in [CGL94]. The remaining category of limitations
in network support is not addressed here because it is mainly the result of prob-
lems linked to ambiguities that have been covered with the backward reasoning
methods in [SL94].

2.1.1 Originate Call Screening

This feature is known to interact with the call forward feature and this is an
example of interaction caused by intrinsic problems in distributed systems.
Here is the full example of the specification of the intention violation for the fea-
ture, where L is the screening list:

type intentions is Boolean, features, signals, roles, number_set
sorts intention
opns

violates: feature, role, signals, number_set -> Bool
eqns

forall N:number, S: signals, L:number_set
ofsort Bool

violates(Focs,called(N),connect,L) = N IsIn L;
violates(Focs,called(N),off_hook,L) = false;
violates(Focs,called(N),tone,L) = false;
violates(Focs,called(N),dial,L) = false;
violates(Focs,called(N),conreq,L) = false;
violates(Focs,called(N),detect_forward,L) = false;
violates(Focs,called(N),connect_refused,L) = false;
violates(Focs,called(N),ring,L) = false;
violates(Focs,called(N),answer,L) = N IsIn L;
violates(Focs,called(N),talk,L) = N IsIn L;
violates(Focs,caller(N),S,L) = false;

endtype

We have here some rules for which the outcome is immediately determined
(false) while for others we need to further evaluate if a number belongs to the
restriction set. We can also observe that the Focs rules are complex only for the
called role because the restrictions apply for the called party, while there is only
one catch-all rule for the caller role that always evaluates to false.

2.1.2 Call Forward

Another interesting example related to intrinsic problems in distributed sys-
tems is loop or livelock detection for the call forward feature. These loops are
the result of personalized instantiation by the subscriber of the feature. Here
the restriction set L contains the phone number that has activated its call for-
ward feature, to prevent circular call forwarding. The set of equations is similar
to the one we have seen for originate call screening:

eqns
forall N:number, S: signals, L:number_set

 ofsort Bool
 violates(Fcfw,called(N),connect,L) = N IsIn L;
 violates(Fcfw,called(N),off_hook,L) = false;
 violates(Fcfw,called(N),tone,L) = false;
 violates(Fcfw,called(N),dial,L) = false;
 violates(Fcfw,called(N),conreq,L) = false;
 violates(Fcfw,called(N),detect_forward,L) = false;
 violates(Fcfw,called(N),connect_refused,L) = false;
 violates(Fcfw,called(N),ring,L) = N IsIn L;
 violates(Fcfw,called(N),answer,L) = N IsIn L;
 violates(Fcfw,called(N),talk,L) = N IsIn L;
 violates(Fcfw,caller(N),S,L) = false;

2.1.3 Unlisted number

Finally, the detection of the interaction between the unlisted number feature
and the calling number display feature that is an example of violation of
assumptions is feasible when specifying the intention violation rules for the
unlisted number only. In this case, the only operation that would cause a viola-
tion is a display operation. Consequently there are only two equations required
to describe these intentions:

eqns
forall OP:signal, ROLE:role, L:number_set
ofsort Bool

 violates(Fuln, calling(N), display, L) = N IsIN L;
OP ne display => violates(Fuln, ROLE, OP, L) = false;

Here the restriction list L contains the number that has the unlisted number
feature activated. If this number is involved in a display operation in a calling
role, this means that there is a violation of intentions.

As a final remark on these examples, we note that one must be careful about
how rules that detect violations of intentions are defined, because there could be
interactions between the rules themselves, both inside a single feature, and
among features. For example, one may decide that ringing a number that is on
the originate call screening feature restriction list is a violation. This happens

to be true when the OCS feature is considered in isolation from other features.
But if that same called number has a call forward feature that is activated, then
the caller should not be restricted to hop to another number that is not on the
screening list. This however introduces a delicate intention definition problem,
well-known in this research area: should we consider numbers or subscribers as
a decision criterion. In the second case, if the intention is really to prevent talk-
ing to a given subscriber, then ringing and call forwarding should also be disal-
lowed in the originate call screening rules.

2.1.4 Other languages

So far, the ADTs were shown in LOTOS syntax. However SDL syntax is very
similar, only keywords and delimiters change, and the semantics is identical.

Here is the SDL specifications of intentions for Focs:

newtype intentions
operators

violates: feature, role, signals, number_set -> Bool;
axioms

for all N in number, S in signals, L in number_set
ofsort Bool

violates(Focs,called(N),connect,L) == N IsIn L;
violates(Focs,called(N),off_hook,L) == false;
violates(Focs,called(N),tone,L) == false;
violates(Focs,called(N),dial,L) == false;
violates(Focs,called(N),conreq,L) == false;
violates(Focs,called(N),detect_forward,L) == false;
violates(Focs,called(N),connect_refused,L) == false;
violates(Focs,called(N),ring,L) == false;
violates(Focs,called(N),answer,L) == N IsIn L;
violates(Focs,called(N),talk,L) == N IsIn L;
violates(Focs,caller(N),S,L) == false;

endnewtype intentions

Intentions can be easily represented with PROLOG clauses. The following
example illustrates how we can specify the violation condition for the connect
operation in a call forward feature.

 violates(cfw,called(N),connect,L):-
isin(N,L).

where clause isin(_,_) is defined as:

isin(X,[X|_]):- !.
isin(X,[_|T]):-

isin(X,T).

3. Detecting violations

3.1 Basic mechanism

So far, we have seen how to specify violations. Mechanisms for detection must
now be considered. Our method works by executing a formal specification

(which could be called also formal prototype or formal model) of the system with
features. The ADTs, included in the specification for this purpose, will check
execution sequences to see whether a violation is incurred.

As mentioned earlier, violations of intentions can result from the lack of con-
tinuity that is inherent to distributed systems. A network element may forward
processing to another network element without passing feature data, or the
logic of a feature may be activated too early or too late or not at all when the
critical data it needs becomes available. Our technique records the initial inten-
tions of a feature and activates a mechanism that is independent of the distrib-
uted system to verify that the original intentions still hold regardless of which
component of the system handles a call. The ADTs represent a kind of a central
call model monitor that captures every event associated with a call, regardless
of the component in which it occurs, and verifies if that event conflicts with the
predefined intentions. Such a central mechanism would be impossible to imple-
ment in an actual system, but is possible in a specification.

3.2 Implementation

 There are two main implementation concerns:

 • minimal disruption of feature specifications.
• independence of specification style.

The first concern means that we do not want to modify the specification of
the system in detail for the verification of each feature, as mentioned in [DN94].
The second concern means that we do not want to constrain the usefulness of
our method to a specific structure, or style, or even specification language.

In LOTOS, when several processes are combined together by means of the
parallel composition operator ||, in order for an action to execute, all processes
must participate simultaneously (synchronize) in the action. Further, each pro-
cess can provide its own conditions for the action to execute, and all such condi-
tions must be true simultaneously in order for this to happen. This effect is
inspired by CSP [Hoa85] and is further explained in [FLS91]. Thus the monitor-
ing effect we want to obtain can be achieved gracefully by using an independent
monitoring process in parallel with the system specification. This process will
synchronize with every action occurring in the telephone system, and will check
for every action whether a violation is occurring.

telephone_system[u,n] || verify_intentions[v,u,n]

In SDL, this type of immediate and continuous monitoring is harder to achieve.
One would need to set up some message duplication through a channel connect-
ing a verification process.

In Prolog, one needs to add a verification clause to each execution rule.

 exec_action(sequence(action(A,F,RL),RS),A,RS):-
verify_intentions(A,F,RL).

Since LOTOS is the language in which this method appears to be most easily
specified, henceforth we limit ourselves to LOTOS and we leave the other lan-
guages for further research.

We have studied two different approaches for the procedural part of the veri-
fication process. They are based on different principles. In the first one, most of
the work is done by appropriate processes, while in the second one, most of the
work is done by appropriate ADTs. Thus we call these methods respectively pro-
cess-oriented and ADT-oriented. In both cases, we need to record the fact that a
feature has been activated and we need also to verify for each subsequent action
occurring in the system if an intention has been violated.

3.3 Process oriented feature intentions verification

In this method, the verify_intentions process spawns an independent monitor-
ing process every time a new call is created. verify_intentions itself is in inter-
leave (operator |||) with the intention monitor, i.e. it runs in parallel with it
but without participating in (synchronizing with) its actions. Each intention
verification process is independent of the others. Consequently the
verify_intentions process uses the call initiation action off_hook as a trigger to
create instances of process intentions_monitor.

 process verify_intentions[f,u,n]:noexit:=

 u ? N:number ! off_hook ? L:location ? ConId: ConIdent
;

(
intentions_monitor[f,u,n](ConId)

|||
verify_intentions[f,u,n]

)
 endproc

However, a call may or may not activate a feature. Thus the process
intentions_monitor has a normal mode of operations in the case no feature is
activated, and this mode can be disabled ([> operator) at any time by a mode
where a feature is activated and begins to be monitored.

 process intentions_monitor[f,u,n](ConId:ConIdent):noexit:=

normal_operation[u,n](ConId)
[>

activate_intention[f,u,n](ConId)

 endproc

In order to detect the activation of a feature we need an explicit action in the
telephone system specification. This action carries information such as the
nature of the feature and its restriction set.

The distinction between many instances of intention monitors corresponding
to different connections in the system is achieved using a connection identifier
ConId that is captured on the off_hook action and is propagated throughout the
various actions belonging to the same connection.

process activate_intention[f,u,n](ConId:ConIdent):noexit:=

 f ! ConId ? Feature: feature ? SL: number_set
; monitor_one_feature[u,n](Feature,SL,ConId)

|||
activate_intention[f,u,n](ConId)

endproc

The process activate_intention will spawn a process monitor_one_feature that is
dedicated to monitoring one activated feature for a given connection. It also
uses a recursive interleave construct to allow more than one activated feature to
be monitored at the same time. Some connections will activate many different
features as they progress in time. For example, using a resource oriented style
[VSV91], the originate call screening feature is activated by a call initiator
behavior using gate f to separate it well from the regular specification of the fea-
ture:

process phone[u,n,f] (N:number,FWD:feature_data,OCS:feature_data):noexit:=

u ! N ! off_hook ! origin ? ConId:conIdent
; f ! ConId ! extract_feature(OCS) ! extract_ocs(OCS)
; n ! N ! tone ! origin ! ConId
; u ! N ! dial ? C:number ! origin ! ConId
; ...

endproc

The process monitor_one_intention is where the verification really occurs. It will
make use of the generic violates operator.

 process monitor_one_feature[u,n] (F:feature,SL:number_set,ConId:ConIdent):noexit:=
 hide v in

 n ? N:number ? S:operations ? C:number ? L:location ! ConId
; (

 (* a violation has been detected, display a message and stop *)
[violates(F,determine_role(L,N),S,SL)] -> v ! violation ! F ! S ! ConId ; stop

 []
(* no violation detected, move on to the next action verification *)

[not(violates(F,determine_role(L,N),S,SL))] ->
monitor_one_feature[u,n](F,SL,ConId)

)
[]
(* etc...*)

endproc

The first action n ? N:number ? S:operations ? C:number ? L:location ! ConId
captures the data associated with an operation. These are S, the name of the
operation, and L the location indicator (originating or terminating). Then, this
data capture operation action is followed by a non deterministic choice expres-
sion that offers either an action where the evaluation of the violates operation is
true (a violation has occurred), or a silent move represented by a recursive invo-
cation of the monitor_one_intention process in the case where the evaluation of
the violates operation is false (no violation).

Normally, in a LOTOS specification one has several action types, where an
action type is determined by the gate and by the data elements offered. Since
actions can synchronize only if they have the same types, for each type of action
we need a verification choice construct. The first guarded expression in the con-
struct handles a violation, while the second guarded expression represents the
transition in case there was no violation.

3.4 Abstract Data Type oriented intentions verification

In the second approach, there is only one feature monitor that handles all acti-
vated features at once. Feature activations are kept in a set of activated fea-
tures and every time an action is executed, the verification is performed
recursively for each activated feature contained in that set. If a violation is
detected, a message indicating the circumstances is displayed and the engine
keeps looking for more violations.

The intentions monitor consist of a non-deterministic choice between a fea-
ture activation detection action that will result in the update of the activated
features set, and an action verification process that will verify intentions for
every action occurring except for a feature activation action.

process verify_intentions[f,u,n](AFS: ActFeatSet):noexit:=

(* feature activation detection mechanism *)
 f ? N:number ? F: feature ? SL: number_set
 ; verify_intentions[f,u,n](Insert(activatedFeature(F,N,SL),AFS))

 []
(* action verification mechanism *)
 verify_action[f,u,n](AFS)

endproc

The action intentions verification process will start the recursive intentions ver-
ification for each kind of action.

process verify_action[f,u,n](AFS:ActFeatSet):noexit:=

u ? N:number ! off_hook ? L:location ? ConId:ConIdent
; verify_one_intention[f,u,n](N,ConId,off_hook,L,AFS,AFS)
 []
... (* one similar construct for each type of action *)

endproc

The feature intentions verification process verify_action is a recursive process
that passes the data associated with an action to process verify_one_intention.
This process, that is in parallel with the telephone system specification, evalu-
ates this data for each activated feature until all activated features have been
verified. It then moves on to the next action by recursively invoking process
verify_one_intention. Thus, process verify_one_intention acts as a kind of list
processor.

This alternate method was found to be more implementation-oriented, but
also more difficult to use with our simulation strategy (next section), thus it was
not investigated further.

4. Simulation strategies: use of goal oriented execution

So far we have presented a technique to represent feature intentions in a speci-
fication in such a way that any intention violations encountered when the fea-
ture is executed are flagged. We now discuss strategies that will lead to
detection of potential violations. To do this, one needs to execute the specifica-
tion in some way.

As we have seen, the definition of intentions consists in defining equations
for each operation. Looking for interactions means looking for the execution of
actions which cause the execution of these operations.

Combinatorial explosion of the state space is a well-known problem that is
encountered when trying to explore all paths in the specification of a complex
system. Some relief strategies are known, in particular two methods were
implemented in our tools: goal-oriented and backward execution. These meth-
ods help derive the execution paths necessary to reach a goal which is one of the
actions or operations we are looking for. By inspecting these paths we can see
which features were activated at the time the violation was detected, and con-
clude that an interaction between them was detected. Goal oriented execution
has been introduced in [HLS93] [BE93] and backward execution, which is a
variant of goal oriented execution, has been presented in [SL95] for the LOTOS
paradigm. As far as we know, no such method currently exists for SDL, but the
ideas presented in [DB78][Hol85] apply to finite state machines thus could be
adapted to SDL.

Both methods are useful for finding execution paths leading to a specified
action, which we call the goal. In goal-oriented execution, the execution tree is
narrowed by using syntactic information that eliminates paths exploring parts
of the specification where obviously the goal action cannot be found. In back-
ward execution, the specification is executed backwards from the goal action.
Both techniques are complicated by the need of taking into consideration con-
current paths.

As an example, to find a violation in the case of the Originate Call Screening
feature we need to perform a goal oriented execution looking for the action con-
nect for a number that is in a called role, and which is in the screening list. This
can be found in the specification of a callResponder_role process of a phone.
Going backward we find that this operation is possible only if a phone has been
rung and the high-level specification shows that this can occur only if a switch
has synchronized with a phone on the ring operation. We now inspect the speci-
fication of a switch to find out that there are two different ways a switch can
ring a phone: either directly as a result of a connection request or indirectly as a
result of a call forward. Going backward on these two paths, we find that a call-
Initiator phone would have had to place a connection request, that such a phone
could have had an originate call screening feature activated, and that the phone
that has forwarded its calls to the prohibited number could have been the one
that was rung by this phone.

In this case, our goal was the action connect that belongs to the telephone
system. Another way to perform the goal oriented execution would have been by
using the violation detection action of the intentions monitoring process that is
in parallel with the telephone system specification. This is a powerful and
unmistakable method for violation detection, but experience has shown that it
is very difficult to implement with the tools we currently have, because of com-
binatorial explosion. We need more advanced relief techniques to make this
method workable.

The feature interaction between Focs and Fcfw has been detected using the
University of Ottawa Goal Oriented Execution tool, which is a part of the
ELUDO toolkit. The system configuration used was as follows:

(
(

 phone[u,n,f](num1,fwd(none),ocs(Insert(num3,{})))

 |||
 phone[u,n,f](num2,fwd(num3),ocs({}))
 |||

 phone[u,n,f](num3,fwd(none),ocs({}))
)

 |[n]|

 network[n]
)

 ||

verify_intentions[f,u,n]

In this configuration phone num1 has Focs while phone num2 has Fcfw to num3.
Our end goal is v ! violation ! ’OCS’ ! connect ! conn1 ! num3. However by

using only this goal, the tool runs into combinatorial explosion in trying to com-
plete all paths that could possibly lead to this action. The search can be reduced
by giving some further directions to the tool. These directions are directly
related to the goal. First it is clear that we are placing a call from a phone that
has its Focs activated. In our case this happens to be phone num1. We thus spec-
ify the three necessary actions for phone num1 to place a call regardless of the
terminating number. This is indicated with the three actions:

u !num1 !off_hook !origin !conn1,
u ! num1 ! dial ? C ! origin ! conn1,
n ! num1 ! conreq ? C ! origin ? ocs ! conn1,

Also we know that at least two features have to be activated, first the Focs fea-
ture and then any feature. This is indicated with the two generic actions:

f~,
...
f~

Finally we need to indicate the offending action for which we know that a viola-
tion could be detected on the terminating side:

n ! num3 ! connect ! dest ! conn1

The goal definition, shown in the form of the actual command to the tool, is
as follows:

Goal we want to reach:

[u !num1 !off_hook !origin !conn1,
 f ~,
 u ! num1 ! dial ? C ! origin ! conn1,
 n ! num1 ! conreq ? C ! origin ? ocs ! conn1,
 f ~,
 n ! num3 ! connect ! dest ! conn1,
 v ! violation ! ’OCS’ ! ring ! conn1 ! num3] \\ [f, u, v].

where \\ [f, u, v] means that no intermediate actions involving these gates
should exist in the trace (intermediate actions on gate n only are allowed).

The resulting trace is:

--> u !num1:number !off_hook:operations !origin:location !conn1:ConIdent line(s): [303,214]
--> f !conn1:ConIdent !OCS:feature !Insert(num3, {}):number_set line(s): [345,215]
--> n !num1:number !tone:operations !origin:location !conn1:ConIdent line(s): [377,262,216]
--> u !num1:number !dial:operations ?C,C,C=num2:number !origin:location !conn1:ConIdent

line(s):[389,217]
--> n !num1:number !conreq:operations !num2:number !origin:location !ocs(Insert(num3,

{})):feature_data !conn1:ConIdent line(s): [364,269,227]
--> n !num2:number !ring:operations !dest:location !conn1:ConIdent line(s): [377,286,242]
--> f !conn1:ConIdent !call_forward:feature !Insert(num3, {}):number_set line(s): [412,254]
--> n !num2:number !detect_forward:operations !num3:number !dest:location

!conn1:ConIdent line(s): [353,295,255]
--> n !num3:number !ring:operations !dest:location !conn1:ConIdent line(s): [377,286,242]
--> n !num3:number ! connect:operations ! dest:location !conn1:ConIdent lines:[377,289,247]
--> v !violation:error_msg !OCS:feature !ring:operations !conn1:ConIdent !num3:number

line(s): [378]
End of trace.

The trace indicates a path that goes through phone num2, and a call forward
operation to phone num3.

This experience shows that with this kind of tool there needs to be some
search strategy defined by the analyst, but this strategy can be defined by the
characteristics of one feature independently of the others. As a further detail,
one can note that in our search strategy a call forward feature to phone num3
for phone num2 was set up.Happily, LOTOS allows more generality than this. A
variable can be used instead of a constant by utilizing the distributed choice
construct. In this way, one can specify that a given phone instance has a call for-
ward feature on, without specifying explicitly to which number. A tool including
a narrower will try different values chosen from those declared in the ADT and
eventually will find a solution. The following specification ca be used, instead of
the previous one:

(
 (

 phone[u,n,f](num1,fwd(none),ocs(Insert(num3,{})))
 |||

 (choice X:number [] phone[u,n,f](num2,fwd(X),ocs({})))
 |||

 phone[u,n,f](num3,fwd(none),ocs({}))
)

 |[n]|

 network[n]
)

 ||

verify_intentions[f,u,n]

The variable X stands for an unspecified forward number in expression:

(choice X:number [] phone[u,n,f](num2,fwd(X),ocs({})))

The results of the goal oriented search are identical to the previous case.

5. Conclusions

A method for detecting intention violations in the specification of telephony sys-
tems with features has been presented. The method can be effectively carried
out by using the LOTOS language and associated tools.

Abstract data types are well suited for the verification of intentions because
they are apt to specify constraints in an implementation-independent way and
they can be used in a variety of language contexts. Specification of intentions is
an important step toward feature interaction detection but for actual detection,
some type of execution must be performed.We have seen how the goal-oriented
execution method can help focussing execution and thus reducing combinatorial
explosion. However for this to happen a lot of information must be provided to
the tool. More research needs to be done in the field of static inspection of speci-
fications to determine search strategies to reduce as much as possible the scope
of execution techniques.

Acknowledgments. We are grateful for support of the Telecommunications
Research Institute of Ontario, Bell-Northern Research, and the Natural Science
and Engineering Research Council. Yow-Jian Lin of Bellcore asked us the ‘right
questions’ that led to this work. We should thank Antoine Bonavita for having
helped us with the goal-oriented tool.

References
[BE93] E. Brinksma and H. Eertink, Goal-Driven LOTOS Execution. In: A. Danthine, G.

Leduc, and P. Wolper (eds). Protocol Specification, Testing and Verification, XIII. North-
Holland, 1993, 45-60.

[BW94] W. Bouma and H. Velthuijsen. Introduction to the book Feature Interactions in Telecom-
munications Systems, IOS Press, 1994, vii-xiv.

[BA94] K.H. Braithwaite and J.M. Atlee. Towards automated detection of feature interactions.
In: L.G. Bouma and H. Velthuijsen, Feature Interactions in Telecommunications Sys-
tems, IOS Press, 1994, 36-59.

[CGL94] E.J.Cameron, N.D.Griffeth, Y.-J. Lin, M.E.Nilson, W.K.Schnure and H. Velthuijsen. A
feature interaction benchmark for IN and Beyond.In: L.G. Bouma and H. Velthuijsen,
Feature Interactions in Telecommunications Systems, IOS Press, 1994,1-23.

[DB78] A. Danthine and J. Bremer. Modeling and Verification of End-to-End Transport Proto-
cols. Computer Networks, 2 (1978), 381-395.

[DN94] O.C. Dahl and E. Najm. Specification and Detection of IN Service Interference Using
LOTOS. In: R.L. Tenney, P.D. Amer, and M.U. Uyar (eds) Formal Description Tech-
niques, VI. North-Holland, 1994, 53-69.

[FLS91] Faci, M., Logrippo, L., and Stépien, B. Formal Specification of Telephone Systems in
LOTOS: The Constraint-Oriented Approach. Computer Networks and ISDN Systems 21
(1991) 53-67.

[GV94] N.D.Griffeth and H. Velthuijsen.The negotiating agents approach to runtime feature
interaction resolution. In: L.G. Bouma and H. Velthuijsen, Feature Interactions in Tele-
communications Systems, IOS Press, 1994, 217-235.

[HLS93] M. Haj-Hussein, L. Logrippo, and J. Sincennes. Goal-oriented Execution of LOTOS
Specifications. In: M. Diaz and R. Groz (Eds.) Formal Description Techniques, V. North-
Holland, 1993, 311-327.

[Hol85] G.J. Holzmann. Backward Symbolic Execution of Protocols. In: Y.Yemini, R. Strom, and

S. Yemini (eds.) Protocol Specification, Testing, and Verification, IV. North-Holland,
1985, 19-27.

[LL94] F.J.Lin and Y.-J. Lin. A building block approach to detecting and resolving feature inter-
actions. In: L.G. Bouma and H. Velthuijsen, Feature Interactions in Telecommunications
Systems, IOS Press, 1994,86-119.

[SL95] B. Stepien and L.Logrippo. Feature interaction detection by using backward reasoning
with LOTOS. In: S.T. Vuong and S.T. Chanson. Protocol Specification, Testing and Verifi-
cation XIV. Chapman & Hall, 1995, 71-86.

[VSV91]C. A. Vissers, G. Scollo, M. van Sinderen, and E. Brinksma, Specification Styles in Dis-
tributed Systems Design and Verification, Theoretical Computer Science 89, 1991, 179-
206.

[Zav93] P. Zave. Feature Interactions and Formal Specifications in Telecommunications. IEEE
Computer, August 1993, 20-29.

