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Abstract. A methodology for feature design, specification, and validation is
presented. The methodology is based on Use Case Maps for the description of
features and on LOTOS with its tools for animation of the features, for feature
validation, and for feature interaction detection. It has been developed as a
collaborative project between the University of Ottawa and Mitel Corporation, and
is being used experimentally to design, specify and validate the features of Mitel’s
new PBX.

1 Introduction

A methodology for feature design, specification, and validation, is being developed in a
joint project between Mitel Corporation and the University of Ottawa. This methodology
uses Use Case Maps (UCMs) [5][7] for the design and documentation of features, and
LOTOS [12] for the formal specification of features and for their formal verification,
including the detection of undesirable interactions.

The UCM notation allows designers to describe scenarios visually. System-wide
scenario paths connect abstract responsibilities and (possibly) components in causal flows.
It has been shown in [2][6] that UCMs can be useful for describing telephony features and
agent systems, and for reasoning about potential interactions at a high level of abstraction,
without commitment to detailed design decisions.

LOTOS is an algebraic language with a history of applications to validation of
distributed systems in general and to feature interaction detection in particular (see
[3][9][15][22][23], among an extensive literature).

UCMs and LOTOS are complementary in many ways. UCMs provide a visual
notation to capture, integrate, and reason about functional requirements, whereas LOTOS
provides a means for formalization, abstract prototyping, and validation. Since in the
normal software development process the former activities precede the latter, our method
starts with the use of UCMs and continues with the use of LOTOS (although finer
interleaving is possible).

It should be noted at the outset that this methodology is based on existing ideas,
documented in publications by the authors of this paper or by other authors in the UCM and
LOTOS community. Some of the ideas of the methodology were previously applied to an
artificial example, i.e. the features described in the 1998 Feature Interaction Contest [2],
and to another example involving the mobile data standard GPRS [3]. The contribution of



this paper is to show how these ideas were combined for use in an industrial context for the
development of an agent-based private branch exchange (PBX). A related approach was
presented in [17].

After an introduction to UCMs, the paper provides a brief overview of the system
architecture and of the basic call model. Basic LOTOS concepts are then recalled, and the
generation of a LOTOS prototype from the UCMs is discussed. The validation of the LOTOS
model is done through test cases derived from the UCMs, and the detection of undesirable
interactions between pairs of features is also based on a testing approach.

2 Use Case Maps (UCMs)

Use Case Maps are used to emphasize abstract sequencing (causal paths) among the most
relevant, interesting, and critical functionalities of reactive and distributed systems, which
are composed of responsibilities. UCMs can be unbound, i.e. without reference to
components, or bound, in which case they will show components. Note that only bound
UCMs will be seen in this paper. Unbound UCMs, however, can be useful at the earliest
stages of design, when the components are still undefined. Responsibilities along causal
paths can be internal to a component or can be observable. They can be chosen to be of
different granularities, as required by the stage of design were they are defined, and usually
well above the level of specific message exchanges. Therefore, UCMs can represent
specific scenarios, as well as abstract (generic) ones and can cover multiple scenario
instances. UCMs are often highly reusable and, normally, the coarser the grain of their
responsibilities, the greater their reusability.

Figure 1 A simple Use Case Map.

Figure 1 shows a simple bound UCM where a user (Alice) attempts to establish a
telephone call with another user (Bob) through some network of agents. Each user has an
agent responsible for managing subscribed telephony features such as Outgoing Call
Screening (OCS). Alice first sends a connection request (req) to the network through her
agent. This request causes the called agent to verify (vrfy) whether the called party is idle or
busy (conditions are italicized). If he is, then there will be some status update (upd) and a
ring signal will be activated on Bob’s side (ring). Otherwise, a different update will occur
(upd-b) and an appropriate message (stating that Bob is not available) will be prepared and
sent back to Alice (msg).

A scenario starts with a start point which represents a triggering event that can be
associated with certain pre-conditions (filled circle labeled req) and ends with one or more
end points, representing resulting events that can be associated with certain post-conditions
(bars), in our case ring or msg. Intermediate responsibilities (vrfy, upd, upd-b) have been
activated along the way. A causal path goes from a start point to an end point. In this
example, the responsibilities are allocated (bound) to abstract components (boxes Alice,
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AgentA, Bob and AgentB), which could be seen as objects, processes, agents, databases, or
even roles, actors, or persons.

 Figure 1 is a simple diagram, yet it conveys much information in a compact form,
and it allows for requirements engineers and designers to use two dimensions (structure and
behavior) to evaluate architectural alternatives for their systems. This view is reusable, in
the sense that system behavior is shown at a level close to the functional level, without
implementation details. The same view can be of interest not only to designers, but also to
product managers and even users.

2.1 UCMs, Messages, and Architectural Reasoning

Use Case Maps can be refined in terms of Message Sequence Charts (MSC) [14] or UML
interaction diagrams [24]. As mentioned, UCMs do not explicitly define message
exchanges between components, but, in the design process, messages need to be
constructed in such a way that the causal relationships between responsibilities from
different components are satisfied. There are usually many ways to do so, depending on the
available interfaces, communication channels, and protocols.

Figure 2 Refining UCMs with message exchanges.

The causal path <req, vrfy, upd, ring>, which represents a successful scenario
extracted from Figure 1, will serve as an example. At the top of Figure 2, this path is bound
to our component structure, where implicit communication channels exist between users
and their respective agents, and between agents. Start points and end points are interpreted
essentially as messages themselves, whereas responsibilities are MSC actions performed by
components. New messages (e.g. msg1) are necessary for the causal flow to remain valid.
These messages can be of various nature and complexity. UCMs allow designers to
describe functionalities even when messages are not known in advance, e.g. when complex
negotiations are involved between agents.

UCMs enable one to reuse the same paths on different architectural alternatives. For
example, the UCM at the bottom of Figure 2 reuses the same path as the top UCM, but on a
different set of components. Here, the responsibilities are allocated to traditional telephony
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components such as a switch and a service node (SN), with different dependencies. Lines
have been added to represent communication links, hence constraining the potential senders
and receivers of each message. Different decisions about the protocols and control can lead
to multiple solutions, one of which is given on the right (note that SN and Bob cannot
communicate directly).

Since they can be easily decoupled from structures, UCM paths improve the
reusability of scenarios and lead to behavior patterns that can be used across a wide range
of applications. On many occasions, UCMs may provide helpful visual patterns that
stimulate thinking and discussion about system issues and that may be reused. Note also
that this notation enables evaluation of architectural alternatives to be done at a high level
of abstraction, without early commitment to messages and protocols as in Message
Sequence Charts.

2.2 Additional UCM Notation

To introduce further notation elements, new features can be added to the basic scenarios.
Figure 3 abstracts from the component instances introduced in Figure 1. The components
do not refer to Bob and Alice any longer, rather they refer to more generic call origination
and termination roles (for both users and agents). Dashed components are called slots and
may be populated with different instances at different times. They can represent roles of a
particular class of components.

Figure 3 More complex call connection and new notation elements.

In [5][7], Buhr introduces an architectural notation with different types of
components and richer semantics (active processes, passive objects, groupings, pools of
objects, interrupt service requests, agents, mutex, etc.). These components can also be
dynamic, i.e. can be created, destroyed, stored, and moved around in a way similar to data.
Since their definition would take much space, the next examples will provide only a few
intuitive descriptions.

The middle part of Figure 3 shows an enhanced version of the UCM in Figure 1 that
represents a whole class of related scenario instances. It is called a root map because this
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UCM possesses containers (called stubs) for sub-maps (called plug-ins), and this UCM is
not itself a sub-map. Stubs are of two kinds:

• Static stubs: represented as plain diamonds (e.g. StubT). They contain only one
plug-in, hence enabling hierarchical decomposition of complex maps.

• Dynamic stubs: represented as dashed diamonds (e.g. StubO). They may contain
several plug-ins, whose selection can be determined at run-time according to a
selection policy (often described with pre-conditions).

Path segments coming in and going out of stubs have been identified on the root
map (italicized labels). For instance, the originating dynamic stub StubO has two plug-ins:
Originating and OCS. The start point of the Originating plug-in (in1) is bound to the
incoming path segment IN1, and the end point out1 is bound to the outgoing segment
OUT1. Figure 3 makes use of similar labels for a clear binding relation between plug-ins
and stubs, but in general names can be different and the relation has to be described
explicitly.

The OCS plug-in shows a new component (the passive object OCSlist) that
represents a list of screened numbers that the originating user (UserO) is forbidden to
contact. If UserO is subscribed to the Outgoing Call Screening service, then the OCS plug-
in is selected instead of the Originating plug-in. In this case, the called number is checked
against the list (chk). If the call is denied, an appropriate message is sent back to the
originating party (md).

The Terminating plug-in improves on the original UCM by allowing the update
(upd) and the ring result to be accompanied, concurrently, by a ring-back signal to be
prepared and sent back to the originating party (mrb). Concurrency is represented here by
an AND-fork (thin bar). The notation allows for alternative paths (OR-fork and OR-join, as
in the Terminating plug-in), concurrent paths (AND-fork and AND-join), shared
responsibilities, exception paths, timers, failure points, error handling, and (a)synchronous
interactions between paths, to name but a few elements.

Once stubs are defined at key points on a path, it becomes simple to add new plug-
ins, which could represent new features in our example. Existing maps and plug-ins can
further be decomposed or extended (e.g. when a radically different service is added) with
new paths and new static and dynamic stubs. By selecting plug-ins for the stubs in the
integrated view, one can obtain a flattened map, which still contains multiple possible end-
to-end scenarios.

This method of hierarchical representation, using maps containing at different
locations several types of stubs for different features and other system characteristics,
appears to be general and flexible, i.e. adaptable to many architectures. Obviously, it is
important that designers exercise much care in properly defining the root maps and the
stubs to allow for the type of modifications and refinements that can be expected at various
stages of design.

Systems for the new converged voice and data marketplace are expected to be
highly dynamic in many respects. They should be dynamically customizable to suit the
needs of individual enterprises. They should also adapt to rapidly changing network
environments, and to highly dynamic applications. UCMs, with their dynamic components,
pluggable behavior, compact form and multiple levels of abstraction, make dynamic
architectures understandable and hence easier to implement. This capability was found to be
lacking in other popular software engineering description techniques or CASE tools that
were examined.

A graphical tool, called UCM Navigator, has been developed at Carleton University
in order to help drawing UCMs [18][25]. Among other features, this tool maintains various
bindings (plug-ins to stubs, responsibilities to components, etc.), as well as the pre- and



post-conditions. Also, it allows users to navigate much like a Web browser, and to visit and
edit the plug-ins related to stubs of all levels.

3 Basic System Architecture

The highly dynamic nature of modern telecommunications systems was noted above. This
characteristic must be addressed while maintaining a required quality of service. The
system in consideration is a new architecture [27] being designed by Mitel. Call processing
goes through three types of components (agents):

• Device Agents (DAGENT): handle the devices, i.e. the physical endpoint of a call
(e.g. telephone, a computer capable of voice over IP, diary, etc.).

• Personal Agents (PAGENT): know the restrictions and privileges given to
specific users. They also know about the preference relationships between a user
and his/her devices.

• Functional Agents (FAGENT): represent the functional role of the endpoint of a
call (e.g. president, director, secretary, etc.).

Many instances of DAGENTs, PAGENTs and FAGENTs can be active simultaneously
for one user. From a scenario perspective, it is also helpful to distinguish between the roles
played by these components (e.g. originating or terminating). The features are processed in
the components as appropriate.

The exact functionalities of these components are not important for the
understanding of the methodology and thus will not be described further.

4 Use Case Maps for the Call Model and UCM-based FI Detection

The Mitel system architecture, including the various features, was captured using UCMs,
for which an example is shown in Figure 4. This figure shows part of the Root UCM,
limited to the originating DAGENT, PAGENT, FAGENT elements. This scenario starts with
the acquisition of a string representing the role or person to be called. Note the existence of
several dynamic stubs, which contain the plug-in UCM(s) describing the stub as well as the
appropriate selection policy. Feature UCMs are plugged into these stubs.

Figure 4 Part of the Basic Call Root UCM.

More than 100 UCMs, created by Mitel designers, were structured in a hierarchical
way to describe the 10 features that were considered in this project. Nearly 60 stubs were
used along the way, and many plug-in UCMs were reused in more than one stub. The
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responsibilities are found in the plug-ins, sometimes several levels deep in the hierarchy.
This set of UCMs is currently being extended to support additional features. Due to the
already large number of stubs and functionalities in the current UCMs, and given the
reusability of these, we expect to need few additional UCMs to capture the extra features.

UCMs can help directly in the detection and avoidance of many undesirable
interactions before any prototype is generated [2]. By inspecting specific locations such as
dynamic stubs, designers may select appropriate strategies. For instance, a selection policy
where preconditions are incomplete or overlapping (non-deterministic) is likely to cause
problems. The detection and resolution of many non-determinism issues can hence be done
locally at the stub level, which is, in our experience, far better than at the whole system
level. The correctness of selection policies is further validated when testing the LOTOS
specification (Section 7.2).

5 LOTOS Concepts

Although LOTOS has been used for the specification of telephony systems, by our team and
others [2][3][9][15][22][23], overall its application has been limited, SDL being far more
common [8][13][16]. For this reason, some LOTOS concepts will be explained by
contrasting them with the corresponding SDL concepts. Although the two languages largely
overlap in range of applicability, there are substantial differences. While SDL requires the
identification of specific system components, specific directional messages between
components, and specific system states, LOTOS can specify systems in abstract terms as
partial orders of generic responsibilities, to be refined later into exchanges of directional
messages. In particular, while SDL actions are messages that are sent from one component
to another, LOTOS actions are events that are not necessarily directional and can involve
simultaneously several system components. This synchronization concept is explained
below. Such events cannot be implemented directly, and their implementation may require
a protocol. They represent abstract conceptual behavioral units, which can be useful at
certain stages of design. It can be seen then that in this sense UCM responsibilities
correspond closely to LOTOS actions. This has important consequences: UCMs can be
mapped into LOTOS fairly easily, whether components are identified or not [3]. Therefore,
LOTOS may be more appropriate for formal specification and validation at the initial stages
of design. SDL is more implementation-oriented and is more appropriate for the later stages
of design [1].

Although LOTOS is mostly inspired by CCS [19], its interprocess communication
mechanism is direct multi-way synchronization between components, as in CSP [11]. This
is similar to SDL's remote procedure call, but it can occur between any number of
components. Think of connecting a number of electrically charged wires together: this will
establish a common charge; similarly, in LOTOS, a synchronization event among different
processes will establish common values. Unlike SDL, LOTOS has no concept of built-in
queues between components. If queues are needed, they must be explicitly specified.

Hereafter, a brief overview of LOTOS syntax and semantics is given. LOTOS
represents the behavior of the system by using actions and behavior expressions. Actions
represent basic behaviors of the system, at the targeted conceptual level, for example, req
or ring. There is also an internal (invisible) action written as i. Three basic behavior
expressions exist: stop (also called deadlock or unsuccessful termination), exit
(successful termination) and process instantiation P[G](V), where P is the name of a
LOTOS process, G is a set of gate parameters, and V is a set of value parameters. Given
behavior expressions B, B1, B2, etc. and actions a, a1, a2, etc., LOTOS operators can be used
to construct more complex behavior expressions as follows:



a; B: action prefix operator B1 [> B2: disable operator
B1 [] B2: choice operator B1 || B2: full synchronization operator
B1 >> B2: enable operator B1 ||| B2: interleaving operator
hide a in B: internalizes (transforms to
i) all offerings of actions a in B.

B1 |[a1, a2, ... an]| B2:
selective synchronization operator

LOTOS also includes a basic Abstract Data Type formalism, called ACT ONE, which
is used to represent data abstractions (in this, LOTOS is similar to SDL). Boolean value
expressions can be used to guard actions. Data can be associated with actions in two basic
ways: !, meaning value offer, and ?, meaning value query. These can be combined in
actions, for example:

COM !p_1 !dialTone ?telephone:number
denotes an action where on gate COM, the current value of the variables p_1 and dialTone
are offered, and a value for telephone is queried simultaneously. Offers and queries are
called experiments. Note that when no data is involved, actions are simply gate names.
With data, actions are gate names with experiments, i.e. data offers and queries. Sequences
of LOTOS actions are called traces. Traces should include only visible actions; however
internal actions often are also shown, for completeness.

LOTOS operators make it possible to represent clearly telephony system structures in
terms of agents that coexist independently (interleave), communicate (selective
synchronization), follow each other's actions (enable), or can interrupt each other (disable).
Internal system actions can be hidden. Several specification styles are possible in LOTOS
[26]. Some styles are appropriate for representing abstractly system requirements, while
others are appropriate for representing implementation structures.

6 Translation from Use Case Maps to LOTOS

The translation from UCMs to LOTOS corresponds to the formalization and mapping of an
abstract, semiformal model into a formal and executable one, but still remaining at the
design specification level. An analytic approach is taken for this translation, i.e. it is first
done manually and then it is verified formally. In order to do this mapping, the UCM
system is  analyzed and missing information, confusions or errors are detected and
corrected. Experience shows that several potential design errors can be caught at this stage.

6.1 Translation Guidelines

We have defined guidelines to construct LOTOS specifications from UCMs:
• Start points and end points are usually represented by LOTOS gates in the prototype.

They can then be controlled and observed during the validation.
• UCM responsibilities are also represented as gates, sometimes with additional message

exchanges (to ensure causality across components).
• LOTOS gates representing UCM responsibilities and channels that are not observable to

users are hidden through the hide operator.
• UCM components are represented as processes synchronized on their shared

channels/gates. The structure is specified mostly in a resource-oriented style [26], with
multi-way synchronization (|[...]|) and interleaving (|||) operators.

• Containment of components is maintained. If a component, represented by a LOTOS
process, contains sub-components, then the processes representing these are
instantiated (and possibly defined) within the former process.



• If multiple path segments (possibly from different UCM scenarios) cross one
component, they are integrated together in the same LOTOS process, often as
alternatives.

• Elementary processes are specified mostly in a state-oriented style, with choice ([])
and action prefix (;) operators, and with guarded behaviors ([...]->).

• Abstract data types are used to represent databases, operations, and conditions (LOTOS
guard expressions).

• Symmetry is enforced in synchronized actions: actions in one component/process must
be mirrored in the other synchronized processes, unless locally hidden.

• Components with stubs have sub-processes, one for each stub. These processes specify
the selection policy, i.e. the type of composition between the possible plug-ins.

• Dynamic stubs may have multiple sub-processes, one for each plug-in, whereas static
stubs are refined directly by the process representing their only plug-in.

• Stub processes receive a list of entry/exit points as input and then output another such
list upon termination.

6.2 Interprocess Synchronization

The translation process starts by analyzing the UCM model to determine an appropriate
specification structure. During this analysis, the LOTOS designer makes choices concerning
the mapping of agents, stubs, plug-ins, etc., according to the guidelines mentioned in
Section 6.1. Since UCMs are used at a higher level of abstraction than LOTOS, this analysis
gives the opportunity of inspecting the documentation and detecting missing parts,
contradictions, or other problems.

Let us consider the following processes (where gate parameters within brackets
represent the visible channels):

process DAGENT [ DA_to_PA, PA_to_DA ]: exit :=
DA_to_PA; exit

endproc
process PAGENT [ PA_to_DA, DA_to_PA ]: exit :=

DA_to_PA; exit
endproc

These can be combined to require synchronization over all their gates as follows:

DAGENT [ DA_to_PA, PA_to_DA ]
 |[ DA_to_PA, PA_to_DA ]|
PAGENT [ PA_to_DA, DA_to_PA ]

The synchronizing points between processes DAGENT and PAGENT are then all actions that
involve the gates DA_to_PA and PA_to_DA. According to LOTOS semantics, if one of the
processes wants to fire an action with gate DA_to_PA or PA_to_DA, the other process must
also be willing to do this for the action to become executable. Synchronizing on an action
also implies an agreement on the values of the parameters of the event, i.e. the experiments.

Combined with the interleaving operator |||, experiments may be used also to
provide a more dynamic kind of synchronization. This subtlety is called gate splitting [4]. It
involves including in actions experiments that play the role of addresses. For example, an
action that starts by a!1 (where 1 is a constant) will only synchronize with other actions
that start in the same way, and, if m and n are value identifiers, an action that starts by a!m
will only synchronize with other actions a!n if m=n. Let us consider that a DAGENT should
communicate with two different PAGENTs. In a simplistic approach, one could consider a



set of gates (one for each direction) for the communication with each of the two PAGENTs.
This would produce an undesirable static structure, inappropriate for the dynamic nature of
agent systems: notice that the set of gates of a DAGENT would have to be changed
whenever a PAGENT is added or removed. Gate splitting makes it possible to have more
dynamic structures. A typical application is that of a switch that may wish to synchronize
with any phone, but one at a time. All the phone processes are interleaved (run
independently of each other) while the switch is ready to synchronize with any of them:

switch[COM]
|[COM]|
(    phone[COM](p_1)
 ||| phone[COM](p_2)
 ||| ...
 ||| phone[COM](p_n) )

An experiment is included in an action to uniquely identify each phone such that the switch
may selectively synchronize with a specific one. To query a telephone number from the
process phone p_1, the switch could specify the action:

COM !p_1 !dialTone ?telephone:number
The previous definitions of DAGENT and PAGENT can be extended with gate

splitting to a system containing three processes (e.g. two PAGENTs and one DAGENT).
PAGENT processes are instantiated with a parameter that predefines their identity. The
process definitions become:

process DAGENT [ DA_to_PA, PA_to_DA ]: exit :=
  DA_to_PA !PAgent_a !connect; exit
  []
  DA_to_PA !PAgent_b !disconnect; exit
endproc

process PAGENT [PA_to_DA, DA_to_PA](PAgent:PAgentID):exit :=
  DA_to_PA !PAgent ?message:Data; exit
endproc

And the system behavior is as follows:

DAGENT [ DA_to_PA, PA_to_DA ]
|[ DA_to_PA, PA_to_DA ]|
( PAGENT [ PA_to_DA, DA_to_PA ](PAgent_a of PAgent_ID)
  |||
  PAGENT [ PA_to_DA, DA_to_PA ](PAgent_b of PAgent_ID) )

Each instance of PAGENT outputs its own identifier (PAgent_a and PAgent_b,
respectively) and queries a message of sort Data, on the same gate DA_to_PA. The
DAGENT may either synchronize with PAGENT PAgent_a through the event DA_to_PA
!PAgent_a !connect or with PAGENT PAgent_b through the event DA_to_PA
!PAgent_b !connect. In all cases, the DAGENT offers both the identifier of the PAGENT
and the message it wishes to send. For any action to be executed, one PAGENT needs to
agree on the first experiment (the PAGENT identifier) and accept the second one (the
message).

By using these techniques, we can have in our specification many instances of these
processes, each instance created by a process of recursive instantiation, on demand.



Instances of DAGENT, PAGENT, and FAGENT are agents composed of several static
and dynamic stubs. These stubs can in turn contain other stubs and so on. A static stub is
represented as a single process. A dynamic stub is represented by the instantiation of a
process of the same name. This process handles the instantiation (most of the time as an
exclusive choice, depending on the selection policy) of one of the sub-processes, where
each sub-process corresponds to a plug-in of the dynamic stub.

These choices result in a LOTOS specification that is close to the UCM model. It also
makes the translation of features a straightforward technique, consisting in following the
UCM model and replacing the plug-ins.

The features considered so far in this projects are: Outgoing Call Screening (OCS),
Call Forward Always (CFA), Call Forward on Busy (CFB), Call Hold (CH), Recall (RC),
Call Pickup (CP) and Call Transfer (CT). As mentioned above, they are described (with
three other features not yet specified in LOTOS) in more than 100 UCMs. Their translation
into LOTOS resulted in a specification of over 3,000 lines.

7 Validating the System with LOTOS

The LOTOS specification is executable and thus constitutes a prototype of the final system.
This means that, for example, it is possible to execute the specification in order to see its
response to possible actions at each state (step-by-step), to see whether the specification
accepts/rejects certain scenarios, and to analyze a large number of scenarios by means of
reachability analysis and model-checking tools. Often these three methods are used in this
order to achieve different types of assurance on the quality of the specification. The main
technique used in this project so far has been the second one (acceptance/rejection test
scenarios), which is a form of specification-level testing [21].

7.1 UCM-Based Testing for LOTOS

Test scenarios are manually extracted from the UCM model. Since the latter is a scenario-
based model to start with, scenario extraction is carried out by simply following possible
paths in the model. This works well for the derivation of basic system and individual
feature scenarios because these rely directly on the specification. The sequence of activities
that compose a given path is extracted from the UCM. That sequence is translated into a
LOTOS process. The resulting scenario can be used for testing the LOTOS specification of the
system in order to verify the consistency between the specification and the UCM, and to
validate the requirements.

We can derive abstract validation test sequences from UCMs. For most realistic
systems, the high (if finite) number of global states makes the generation of exhaustive test
suites impossible. Hence, it becomes essential to select carefully a small and finite set of
validation test cases. To do so, we base our strategy on the exploration of UCM paths,
following a strategy similar to the white-box approaches used for sequential programs.
Depending on the targeted functional coverage, we can choose to explore some paths, all
combination of paths, some or all the temporal sequences resulting from concurrent paths,
etc. We call testing patterns these selection strategies for UCMs. A number of testing
patterns can be defined based on UCM constructs, such as:

• Alternatives: All results; All paths; All path combinations; All combinations of
sub-conditions within a complex condition.

• Concurrent: One combination (a temporal sequence); Some combinations; All
combinations.

• Loops: One iteration; At most two iterations; 0, 1, n, and n+1 iterations.



These patterns help to document test selection strategies related to the functional
coverage of designs represented with UCMs. However, this list is not exhaustive as other
UCM constructs exist and patterns based on combinations of constructs can also be defined.

As an example, suppose a test, whose goal is to check a scenario where a call is
initiated, goes through OCS, but is refused because the terminating party is already busy. In
terms of the UCMs in Figure 3, this corresponds to the path shown in Figure 5:

Figure 5 From UCM paths to LOTOS tests.

The only possible abstract sequence is shown in the figure. This sequence translates
into the test OCStest. The content of this process may vary depending on architectural
decisions taken during the generation of the LOTOS specification from the UCMs. For
instance, local responsibilities (chk, vrfy, upd-b) and communication between users and
agents (channels u2a and a2u) and between agents (a2a) may be hidden. The italicized
actions would hence be removed from the test, leaving only the actions visible to the users
(req and msg). Note also how gate splitting can help identify the users and agents involved
in the various events and messages (as seen in Section 6.2). Various rejection test cases,
whose purpose would be to improve the robustness and the correctness of the design, could
also be defined for the same abstract sequence. Note also that conditions accumulated along
a path ([allowed] and [busy]) must be satisfied. This helps defining the initial configuration
of the system (instances, databases, etc.) for each test to pass successfully.

Through the use of tools such as LOLA [21], validation test suites consisting of
dozens of test cases can be checked against large specifications within several minutes or
even seconds. When the specification is non-deterministic, LOLA checks all possible
outcomes, so test cases do not need to be applied more than once to achieve a good
coverage. Functional coverage criteria to see if all UCM paths are covered are also applied
[3]. Although this testing technique appears to be limited (tests and specifications being
both derived from the same UCMs), it proves to be a practically feasible approach to
validation and verification. The main reason is that functional tests are much closer to the
requirements and simpler to validate than a specification that integrates all features.

7.2 Verification and Interaction Detection

The purpose of scenarios derived from the UCM model is twofold: to verify the LOTOS
specification against the UCMs (and hence to validate the requirements) and to test the
system for interactions. Furthermore, scenarios are derived with three types of tests in
mind:

• Basic System Properties: the basic properties that the system must possess are
tested (i.e. basic call without features). The scenarios involve simple tests such
as calling another party that is idle and calling another party that is busy.

UserO AgentO AgentT

req

msg

chk

OCSlist
[allowed] vrfy

[busy]

upd-b

Abstract sequence:
<req, chk, vrfy, upd-b, msg>

process OCStest[...]: noexit:=
  req !User1 !User2;
  u2a !User1 !Agent1 ! req !User2;
  chk !Agent1 !allowed;
  a2a !Agent1 !Agent2 ! req;
  vrfy !Agent2 !busy;
  upd_b !Agent2;
  a2a !Agent2 !Agent1 busy;
  a2u !Agent1 !User1 ! busy;
  msg !User1 !busy;
  success; stop
endproc
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• Individual Features Properties: the features taken individually are tested. Each
feature needs to be working properly by itself before being integrated with other
features for detecting interactions.

• Feature Interactions: undesirable feature interactions are tested. These test
scenarios aim to reveal problems that a given feature might inflict upon other
features.

Extracting the first two types of scenarios is fairly straightforward, and their goal is
to verify that the LOTOS specification is consistent with the UCMs. Extracting scenarios for
feature interaction detection involves understanding the properties of the features and their
behaviors in relation to each other and to the system. Some features can interact with many
while others can interact only with a few. The strategy used consists in analyzing the
features and to target those pairs of features that appear to present the risk of interaction
[17]. This analysis requires a good knowledge of the system and of its features. It was
carried out in close collaboration between the design team and the formal specification
team.

Each feature interaction scenario has a precondition (or initial configuration), that
describes a desired state of affairs before the scenario is tested. An example scenario is (see
also Section 8):

User B is registered to Outgoing Call Screening and screens calls to user C.
A calls B and talks with her. A puts B on hold, then calls C. A talks to C,
then A transfers B (held) to C (talking). Transfer fails because of B’s OCS, B
gets a fast busy tone, C is back with A.

UCMs can help pruning out scenarios that are unlikely to cause interactions, hence
UCMs can guide the selection of feature interaction test cases. For example, many potential
interactions are avoided between features that are allowed to proceed independently in
different stubs in a UCM. To a certain extent, these stubs encapsulate the features from
their environment. Although UCM-based selection of interaction test cases has been little
used, this idea seems promising and is currently the topic of further study [20].

Many other problems were detected and solved while specifying the LOTOS
prototype. Beyond this, the testing phase helped detecting more subtle problems, many of
which resulted from unclear expected interactions between features and from race
conditions. So far, we have developed and checked 20 test cases for the basic system
properties, 15 test cases for the individual properties of our 7 features, and 20 tests for the
detection of interaction between pairs of features. However, we observed that the initial set
of UCMs was well built and that real problems were scarce. This increased our confidence
in the effectiveness of the UCM-based design approach. Nevertheless, it is expected that, as
features are added, the human ability to prevent and detect interaction by design and
inspection will decrease, and thus our testing method will prove more valuable.

The detection of interactions is not limited to UCM-based testing. Having a LOTOS
model enables the use of many complementary techniques, based on several available
LOTOS tools. These include goal-oriented execution [15] and the use of observers [9]. Also,
we are planning to start experimenting with the CADP tool, which allows extensive
reachability analysis and model checking [10].

8 Translation of LOTOS Traces to MSCs , and Animation Tools

The raw results of the testing process are given in the form of LOTOS traces, i.e. commented
sequences of LOTOS actions. In order to make these understandable to users not familiar
with LOTOS syntax, some tools are being developed.



The first tool is a translator from LOTOS traces into Message Sequence Charts
(MSCs). The main difficulty to be addressed here is that LOTOS actions are non-directional
and result from multi-way synchronization, while arrows in MSCs represent messages
generated by an entity and directed to another entity. This difficulty is overcome by
associating directions to gates and by indicating sender and receiver entities (i.e. DAGENT,
PAGENT) as parts of the gate name (see examples above). User-prepared configuration
tables define the structure of the system and of the messages for the tool. Each action
typically includes (in a fixed order that is described in the configuration tables) the
following list of experiments: the identifiers of the instances of the sender and receiver
entities, the message type, and the parameters of the message. The tool constructs the MSCs
by drawing the vertical lines corresponding to the components specified in the
configuration tables and then by drawing the arrows representing messages. In fact, LOTOS
traces are translated into MSC’s machine processable representation (.mpr) [14]. The MSCs
are then printed using tools such as Telelogic Tau. Figure 6 shows a flat UCM that
illustrates the scenario given in Section 7.2, and a MSC corresponding to part of this UCM.
Call establishment and disconnection are not shown in this MSC, also some internal system
actions are represented as states. Note that in this example the UCM and the MSC are at the
same level of abstraction: in reality, this is seldom the case (Section 2.1). This example is
for illustration purposes, and is not part of the Mitel design documentation, which is higher-
level, is better structured, and could not be detailed here due to space and confidentiality
constraints.

A tool to translate the MSC .mpr notation into LOTOS traces was also developed.
This tool is used in order to check whether a LOTOS specification recognizes scenarios
produced by hand or by other tools, e.g. SDL tools.

Figure 6 Partial UCM and partial MSC for the target system.
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Another tool that has been developed is a graphic animator for given traces. It
shows the system in the form of a conventional structural diagram with boxes and
connectors. The user causes message firings by flicks of the mouse. When a message is sent
from one component to another, the animator shows the movement of an arrow. Boxes are
associated with expressive icons that change depending on the message received, i.e.
showing telephones going on-hook, off-hook, and so on.

Prototypes for the tools described so far have been completed. A more advanced
graphic animator, a real simulator that enables to see system responses to user actions such
as composing numbers, lifting the handset, etc., as icons on the screen (inspired by [16]), is
in an advanced stage of design.

The use of such tools requires that LOTOS specifications be written according to
specific guidelines.

9 Conclusions and Future Work

The main result of this project is to have shown, to the satisfaction of the industrial partner,
that a design methodology for telephony switches based on the combined use of UCM and
LOTOS specification methods is feasible and effective in practice. In a companion project
(FAST SPEC-TO-TEST), this methodology is being extended to the generation of functional
test cases, in TTCN, for testing the implementation of the switches.

A number of research directions suggest themselves in order to complete the
methodology. For one, the translation from UCM to LOTOS should be helped. This could be
done by user-assisted tools that would construct skeleton specifications corresponding to
certain architectures. Alternatively, an intermediate language could be defined. This
language would look like UCM but semantically could be closely related to LOTOS. A
longer range goal might be defining a new formal language more closely corresponding to
UCMs.

The extension of the analysis to a much larger number of features will present new
problems. Feature databases, with the capability of configuring systems with different sets
of features, will have to be designed. With more features, it will also become critical to
have automated tools to propose scenarios to be tested. Nakamura et al. [20] address this
issue with a  filtering approach that extracts interaction-prone scenarios based on the
configuration of UCM stubs and plug-ins.
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